
Deriving Fluent Internal Domain-Specific Languages
from Grammars

Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and Andreas Wortmann
Software Engineering, RWTH Aachen University, Aachen, Germany

<lastname>@se-rwth.de

Abstract
A prime decision of engineering domain-specific languages
(DSLs) is implementing these as external DSLs or inter-
nal DSLs. Agile language engineering benefits from easily
switching between both shapes to provide rapidly devel-
oped prototypes before settling on a specific syntax. This
switching, however, is rarely feasible due to the effort of
re-implementing language tooling for both shapes. Current
research in software language engineering focuses either on
internal DSLs or external DSLs. We conceived a concept to
automatically derive customizable internal DSLs from gram-
mars that operate on the same abstract syntax as the external
DSL. This supports reusing tooling (such as model check-
ers or code generators) between both shapes. We realized
our concept with the MontiCore language workbench and
Groovy as host language for internal DSLs. This concept
is applicable to many grammar-based language definition
formalisms and can facilitate agile language engineering.

CCS Concepts • Software and its engineering → Soft-
ware notations and tools; Domain specific languages;

Keywords External DSLs, Internal DSLs, Grammarware
ACM Reference Format:
Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe,
and Andreas Wortmann. 2018. Deriving Fluent Internal Domain-
Specific Languages from Grammars. In Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engineer-
ing (SLE ’18), November 5–6, 2018, Boston, MA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3276604.3276621

1 Introduction
Research and engineering have produced various approaches
to develop textual domain-specific languages (DSLs). Ex-
ternal textual DSLs [28, 31, 33] usually rely on grammars

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00
https://doi.org/10.1145/3276604.3276621

defining their syntax and parsers translating the DSLs’ con-
crete syntaxes into internal representations, such as abstract
syntax trees (ASTs). Furthermore, they typically comprise
tailored infrastructures for model checking [15], transfor-
mation [17], editing [32], execution [18], and debugging [4].
Internal DSLs [9, 23, 27] rely on general-purpose program-
ming languages (GPLs) as host languages and provide infras-
tructure (syntax, type system, editors, etc.) to the internal
DSL, i.e., an “internal DSL is just a particular idiom of writ-
ing code in the host GPL. So a Ruby internal DSL is Ruby
code, just written in a particular style which gives a more
language-like feel” [12]. Hence, GPLs with flexible syntax
(e.g., Groovy or Scala) are particularly well-suited.

Engineering a DSL requires a number of design decisions
regarding syntax, semantics, and realization in technologi-
cal spaces. Deciding on its shape is a prime design decision
affecting many subsequent decisions, including syntactic
flexibility, executability of its models, extensibility, and sup-
port by development tools [8]. Engineering internal DSLs
can require significantly less effort than engineering external
DSLs and they are favorable when the DSL users are already
familiar with the host GPL [8]. In contrast, where a DSL re-
quires domain-specific editor assistance or a specific syntax
tailored towards non-software-experts, externals DSLs seem
more appropriate [8]. Agile language engineering envisions
short iteration cycles with the customers exploring language
prototypes. However, rapidly prototyping an internal DSL
and switching to an external DSL later (or vice versa) rarely
is feasible due to the effort in re-engineering corresponding
language realization constituents.

To facilitate agile switching between both shapes, we con-
ceived a concept to automatically derive internal DSL tooling
and external DSL tooling from the same grammar. Both DSL
shapes use the same abstract syntax, but the external DSL
instantiates it via parsers, while the internal DSL employs a
generated builder infrastructure. This facilitates switching
to an external DSL – if required at all – and prevents detach-
ing both shapes. Further, it enables using tooling developed
for the external DSL (e.g., model checkers, code generators)
with models constructed via the internal DSL, hence, enables
“metamorphic” [1] (i.e., multi-shape) DSLs. The internal DSL
can be tailored to changing customer requirements easily
without need to change related tooling (e.g., editors, execu-
tion infrastructure) as dramatically as with external DSLs.
This enables exploring the DSL with customers more flexibly

187

[BDL+18] A. Butting, M. Dalibor, G. Leonhardt, B. Rumpe, A. Wortmann:
Deriving Fluent Internal Domain-specific Languages from Grammars.
In: International Conference on Software Language Engineering (SLE'18). ACM, 2018.
www.se-rwth.de/publications/

https://doi.org/10.1145/3276604.3276621
https://doi.org/10.1145/3276604.3276621

SLE ’18, November 5–6, 2018, Boston, MA, USA A. Butting, M. Dalibor, G.Leonhardt, B. Rumpe, A. Wortmann

and ultimately can reduce development effort. To this end,
this paper contributes (1) a concept to derive fluent internal
DSLs from external, grammar-based DSLs, and (2) a descrip-
tion of its realization with the MontiCore [16, 28] language
workbench. In the following, Section 2 presents a motivating
example before Section 3 discusses preliminaries. Section 4
describes our concept and Section 5 explains its realization.
Section 6 presents a case study and Section 7 debates observa-
tions. Section 8 discusses related work. Section 9 concludes.

2 Example
Developing software languages usually is an iterative pro-
cess. For instance, the design of the concrete syntax should
be discussed in close relation with the users to integrate their
requirements. This requires an efficient method to adapt the
concrete syntax while implementing the tooling against a
more stable abstract syntax. Consider the development of a
small architecture modeling language (ADL). The grammar
of this language is depicted in Figure 1 (top). The language
should describe component models that comprise a name
(l. 2) and subcomponents (l. 4), ports (l. 5), and connectors
(l. 6). Ports are directed, typed interfaces for communication
with other component models. Connectors connect ports
to enable communication between these. Subcomponents
are instances of other component models that enable hierar-
chical decomposition of components. Many language work-
benches, such as MontiCore, use grammars as description
for the language’s syntax and generate language-processing
infrastructure (e.g., parser, abstract syntax classes) from it.
With our approach, we instantiate the generated abstract
syntax classes via a fluent builder resembling an internal DSL.
This enables deriving the concrete syntax for an internal DSL
operating on the same abstract syntax as the parser (cf. Fig-
ure 1 center). While the concrete syntax of the language can
still be adjusted by integrating handwritten extensions to the
fluent builder, the abstract syntax can be used to implement
language tooling, such as well-formedness rules and other
analyses and transformations (cf. Figure 1 bottom). The in-
ternal DSL yields the advantage that no parsing is necessary
for instantiating the abstract syntax tree and that tooling
(e.g., editors) for the host language can be employed while
these are not available yet for the external DSL. Additionally,
the process of instantiating the abstract syntax tree is more
transparent with fluent builders. This can be leveraged, e.g.,
to investigate potential flaws regarding ambiguities in the
instantiation of the abstract syntax. Even if only the internal
DSL is to be used, our concept provides a good approach for
describing its syntax. It generates complete tooling (i.e., an
abstract syntax data structure and the fluent builder for its
instantiation) that can be adjusted with handwritten code
from a grammar. This alleviates language engineers from
implementing internal DSL tooling from scratch, which is

grammar ADL {
Component = "component" Name "{" E* "}";
interface E;
Subcomponent implements E = "component" type:Name instace:Name;
Port implements E = "port" dir:["in"|"out"] Type Name;
Connector implements E = "connect" Name "->" Name;
//…

}

01
02
03
04
05
06
07
08

MCG

Fluent

Builder

ADL

Parser

Component

Port Subcomponent

«interface»
E

Connector

ADL AST

Well-

Formedness Rules

Analyses/

Transformations
Further Tools

language-specific,
generated infrastructure

instantiates instantiates

operates on operates onoperates on

*

Figure 1. Overview of the interplay between internal and
external DSL of an exemplary ADL language.

usually error-prone with regard to checking the correct or-
der of statements and to disabling undesired statements of
the host language in internal DSL models.

3 Preliminaries
The realization of deriving internal DSLs from context-free
grammars (CFGs) relies on the MontiCore language work-
bench and Groovy as host language for internal DSLs.

3.1 The MontiCore Language Workbench
MontiCore [21, 22, 28] is a language workbench [12] for de-
veloping external, textual DSLs. To define abstract syntax
and concrete syntax of a language in an integrated fash-
ion, MontiCore relies on an extended, customized notation
of EBNF grammars [2]. From such grammars, MontiCore
generates language tooling, including a parser, an AST data
structure, and a visitor infrastructure for traversing AST in-
stances. For well-formedness checks not expressible with
CFGs, MontiCore supports well-formedness rules (context
conditions) implemented as Java classes. These are checked
against the AST by employing the generated visitor infras-
tructure. Analyses and transformations on the AST can be
implemented via the visitors as well. The aforementioned
constituents of MontiCore are depicted in Figure 2.
The syntax of MontiCore grammars borrows fundamen-

tal concepts of EBNF grammars and enriches these with
concepts known from object-oriented programming [28].
The grammar language of MontiCore is bootstrapped. An
excerpt of the metagrammar for MontiCore grammars op-
timized for human reading is depicted in Figure 3: Each
grammar begins with the keyword grammar, followed by a
name and, optionally, names of one or more supergrammars

188

Deriving Fluent Internal Domain-Specific Languages from Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

Analyses/

Transformations
Analyses/

Transformations

Model

AST

Language Grammar Parser

instantiatesreads

reads

Context

Conditions

conforms

generates

Visitor

traverses the AST and applies
context conditions, analyses,
and transformations

Analyses/

Transformations

traverses

Figure 2. Overview of MontiCore language constituents.

grammar MC {
GrammarModel = "grammar" Name Ext? "{" Prod+ "}";

interface Prod;
PProd implements Prod = Name Ext? Impl? "=" RHS ";";
EProd implements Prod = "external" Name ";";
IProd implements Prod = "interface" Name Ext? ("=" RHS)? ";";
AProd implements Prod = "abstract" Name Ext? Impl? ("=" RHS)? ";";

Ext = "extends" Name ("," Name)*;
Impl = "implements" Name ("," Name)*;

interface RHS;
Alt implements RHS = RHS ("|" RHS)+;
Card implements RHS = (Group|T|NT|Enum) (opt:"?"|star:"*"|plus:"+");
Group implements RHS = "(" RHS ")";
Concat implements RHS = RHS+;

T implements RHS = (usage:Name ":")? "\"" Name "\"";
NT implements RHS = (usage:Name ":")? Name;
Enum implements RHS = (usage:Name ":")? "[" T ("|" T)+ "]";
}

MCG01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

Figure 3. Excerpt of the MontiCore grammar language.

(l. 2). The effect of extending a grammar is that all its pro-
ductions are imported, i.e., can be used in the subgrammar,
and productions can be overridden. The body of a grammar
comprises a list of production rules (Prod, l. 4). Production
rules can be parser productions (PProd, l. 5), external pro-
ductions (EProd, l. 6), interface productions (IProd, l. 7), or
abstract productions (AProd, l. 8). Parser productions are
grammar productions that are directly relevant for parsing.
External productions underspecify a right-hand side (RHS),
which must be provided by another grammar (through gram-
mar inheritance). Therefore, a grammar containing external
productions is incomplete and does not produce a parser.
Abstract productions and interface productions are realized
as abstract classes (or interfaces, respectively) in the abstract
syntax. Parser productions and abstract productions can
extend other grammar productions and override their right-
hand side. The effect of this extension is that the extending
grammar production can be applied wherever the extended
production is expected. Interface productions can extend
other interface productions. Parser productions and abstract
productions may implement interface productions. The RHS
of parser productions and abstract productions may contain
alternatives (l. 14) and concatenations of terminals and non-
terminals (l. 17) with the usual cardinalities (l. 15): optional
(‘?’), list (‘*’), or non-empty list (‘+’). Further, elements of a

RHS may be contained in (nested) groups (l. 16). Nontermi-
nals (l. 20) may have an optional name to distinguishmultiple
occurrences of the same nonterminal within a single RHS
(e.g., to distinguish an Expression nonterminal that occurs
as a precondition and as postcondition within the same RHS).
Terminals (l. 19) are delimited by quotation marks and also
may have an optional name. This name indicates that the ter-
minal is relevant for the abstract syntax. A named terminal
is translated to a Boolean attribute in the abstract syntax that
is true iff the terminal appears in a processed model. Monti-
Core also supports the definition of enumeration terminals
(l. 21) that translate to enumerations in the abstract syntax.
The RHS of abstract productions and interface productions
is optional. If no concrete RHS is present, it is underspecified
and must be provided by extending or implementing pro-
ductions for a grammar to be complete and produce a parser.
An interface production’s RHS prescribes nonterminals that
have to be present in grammar productions that implement
the interface productions. Furthermore, MontiCore supports
literal nonterminals, which are directly translated into basic
data types while they are parsed. For instance, the nonter-
minal Name in l. 2 defines the name of a grammar model.
In the AST data structure of GrammarModel, the name is
represented as a String.

3.2 Internal DSLs with Groovy
External textual DSLs [12] usually utilize a parser and em-
ploy a code generator or an interpreter to give meaning to
a model. Models in internal DSLs are implemented within
a host GPL, which implies that they do not require pars-
ing. While the grammar of external DSLs enables defining
any parseable concrete syntax, the freedom of design for
the concrete syntax of an internal DSL is restricted to the
possibilities to adapt the syntax of their host language. How-
ever, internal DSL models can be executed directly, saving
the expense of a further generation and parsing process.
Groovy [9, 20] is a language that is executed on the Java vir-
tual machine and therefore integrates well with plain Java.
Groovy therefore includes most of the syntax of Java, i.e.,
many Java artifacts are valid Groovy artifacts. Compared
to Java, Groovy has an optional static type system, certain
simplifications of syntactical elements, and enables to spec-
ify scripts that are executed against a script base class. For
instance, Groovy allows omitting the semicolon ending an
instruction, omitting braces in calls of methods with at least
one parameter, and omitting dots for chained method calls.
Evaluating Groovy scripts requires to state a base class that
defines, which properties and methods are available within
the script. Groovy also supports assigning its keywords and
operators new meanings. Furthermore, Groovy supports the
usage of closures [9], which are anonymous blocks of state-
ments that can have arguments and a return type. These can
be used in internal DSLs for defining blocks of instructions,
as they open a new scope and are delimited by curly braces.

189

SLE ’18, November 5–6, 2018, Boston, MA, USA A. Butting, M. Dalibor, G.Leonhardt, B. Rumpe, A. Wortmann

Flatten
Grammar
Hierarchy

Normalize
Grammar AST

Generate
Internal DSL

Tool

Generate
Fluent Builder

Class

Derive
Validation
Automaton

Derive
Fluent Builder

Methods

[Further grammar
productions]

Figure 4. Activities for deriving internal DSL tooling.

These particularities make Groovy well-suited for serving
as host language for internal DSLs.

4 Deriving Internal DSLs
This section presents a concept for deriving a fluent builder
for the abstract syntax of a language from a CFG. The fluent
builder is an extension to the builder pattern [14] and enables
building up the abstract syntax of a model in the fashion of
an internal DSL. Deriving fluent builders can be fully auto-
mated. Besides usual CFG production rules that the parser
of a language applies, our concept considers MontiCore-
specific grammar production kinds and inherited grammars
as presented in Section 3. The fluent builder produced by our
concept yields the following properties: (1) Internal DSL and
external DSL have a similar concrete syntax, (2) The internal
DSL considers the order of method calls in the fluent builder
to restrict the concrete syntax, (3) Fluent builders and exter-
nal DSL parser instantiate the same AST data structure, and
(4) The generated fluent builders are adjustable with hand-
written extensions. The derivation comprises six activities as
depicted in Figure 4. First, the grammar hierarchy is flattened
to eliminate information not required by further steps in de-
riving the internal DSL. Then, the grammar is parsed, e.g.,
with MontiCore. Afterwards, the AST of each production
rule of the parsed grammar is normalized by systematically
applying transformations discussed in the following. Then,
we generate methods to instantiate the abstract syntax type
generated from the first production of the grammar and con-
struct a validation automaton, which validates the correct
ordering of method calls. These methods are contained in
a generated fluent builder class for each grammar produc-
tion. If the grammar contains more production rules, the
next rule is processed afterwards. Ultimately, a base class
for Groovy scripts (i.e., internal DSL models) defining the
syntax of the internal DSL is generated. The next sections
explain the activities in more detail.

4.1 Flattening Grammar Hierarchies
MontiCore allows for a grammar to inherit from multiple
other grammars. For the derivation of an internal DSL, we
flatten the inheritance hierarchy including all supergram-
mars to produce a single grammar. Overriding grammar pro-
ductions might entail overriding fluent builder methods with
the same name but, e.g., different return types. Therefore,
maintaining separate fluent builders for separate grammars

that are in an inheritance relationship is not feasible. The
flattening operation combines all grammar productions of
all participating grammars into a single grammar. In this
process, overridden grammar productions are not included
in the new grammar, only the overriding productions remain.
Interface nonterminals, external productions, and abstract
productions are eliminated and replaced by their transitive
closure. To this effect, every usage of an interface production
on a RHS of a production is replaced with an alternative of
all nonterminals implementing the production. For instance,
the interface production E in Figure 1 (top) is removed and
all occurrences of E on any RHS (in the example only in l. 2)
are replaced with the alternative (Subcomponent | Port |
Connector). Similarly, abstract productions are eliminated.
Occurrences of an abstract nonterminal on the RHS of a pro-
duction are replaced with an alternative between the RHS of
the abstract nonterminal and RHS of grammar productions
that extend the abstract nonterminal. External productions
are also removed and the transitive connection between us-
ing an external nonterminal on the RHS of another grammar
production and providing a RHS to an external production is
leveraged. For incomplete grammars, which contain external
productions, abstract productions, or interface productions
without providing grammar productions realizing their right-
hand sides, no parser can be generated. Consequently, our
approach does not produce fluent builders for these either.
To this effect, only parser productions remain in flattened
grammars. The flattening operation for grammars does, how-
ever, not alter the accepted language of the grammar. Instead,
only the produced AST is altered as it does not contain any
representation of interface nonterminals and abstract nonter-
minals. But if the realization of the concept instantiates the
original AST data structure, this is feasible and internal DSL
and external DSL still rely on the same AST data structure.

4.2 Normalizing the AST
As stated in Figure 3, each parser production has a RHS and
can extend abstract productions or implement interface pro-
ductions. A RHS of a parser production is a composition of
seven different building blocks of two different types: com-
posed building blocks and atomic building blocks. Composed
building blocks are either Alt, Card, Concat, or Group (cf.
Figure 3 ll. 14-17). Atomic building blocks are either T, NT,
or Enum (cf. Figure 3 ll. 19-21). The result of normalizing the
AST of a parsed grammar production is an intermediate data
structure containing only information necessary for deriv-
ing the internal DSL. It contains information derived from
the AST representing the parsed grammar and enriches it
with additional information including, e.g., on how to handle
non-parser productions. Parsing the RHS of a grammar pro-
duction produces a right-hand side AST comprising nested
building blocks. Each atomic building block translates to a
method in the fluent builder. Composed building blocks do

190

Deriving Fluent Internal Domain-Specific Languages from Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

not yield methods, but affect the construction of the valida-
tion automaton. This becomes more complex if non-parser
productions and multiple inheritance of grammars (cf. Sec-
tion 3.1) are considered.
The RHS of a parser production may contain terminal

symbols e.g., keywords, brackets, etc. that are not directly rel-
evant for the abstract syntax. Such symbols usually structure
the model, make it parseable, and increase its readability. The
concrete syntax poses the following two challenges for de-
riving internal DSLs: (1) Terminal symbols typically contain
special characters (e.g., curly braces) or reserved keywords of
the host language. For instance, for in imperative program-
ming languages typically refers to a loop, while in modeling
languages, it might be given a completely different mean-
ing. This raises a problem, as keywords of the host language
usually cannot be used within an internal DSL. (2) Termi-
nal symbols are also usually used to structure the text of a
model. For the internal DSL, this structure has to be “rebuilt”
with means of the host language, or realized in a different
way (e.g., replace curly braces of a block with begin and end).
To address the first issue, our approach recognizes conflicts
between terminal symbols of a language that are relevant for
the abstract syntax and naming guidelines for elements of
the host language. These conflicts are resolved by renaming
the terminal symbol. This applies to reserved keywords (e.g.,
a terminal final is replaced by r__final to avoid name
clashes with a keyword) as well as to operators (e.g., a termi-
nal + is replaced by plus). For terminals that are not part of
the abstract syntax, the effect of their appearance in the con-
crete syntax for the internal DSL is not clear, therefore these
are removed. This is especially necessary for deriving the
validation automaton. Whenever deleting a terminal symbol,
which occurs as an exclusive alternative to another building
block as, for instance, in A | B | "t", the whole alternative
becomes optional (e.g., (A | B)?).

The preferable realization of addressing the second issue
depends on the means of the host language. In our imple-
mentation, for instance, we do not replace curly braces with
begin and end statements and therefore do not perform ex-
plicit normalization for this. Instead, we leverage Groovy
closures to introduce structuring elements into the concrete
syntax of the internal DSL.

4.3 Deriving Validation Automata and Fluent
Builders

Concatenations in the RHS of a grammar production imply
a strict ordering. For instance, a parser produced for a gram-
mar production C = x y always expects to parse an x that is
followed by a y. If this is not the case, the parser rejects the
model. Method calls of builders [14], on the other hand, are
generally not restricted in the order or cardinality of invoca-
tions. This raises a gap when using builders for an internal
DSL. For example, the method call trace y() y() x() in the
internal DSL would be allowed whereas the corresponding

	 �
�

�

�

	
getB()

�

getA()

�

P

P getA()

P getB()

P = ["a" | "b"];

initial state

MCG

NFA

accepting
state

CD

�

�

Figure 5. Derivation of a validation automaton and fluent
builder class from an exemplary constant group.

grammar only accepts the trace x() y(). Furthermore, a
builder usually would not distinguish between alternatives
and concatenations. To avoid accepting invalid traces, our
approach produces a validation automaton for each produc-
tion in the grammar. The automaton checks correct method
ordering at runtime and is contained in the generated fluent
builder class.

Whenever a fluent builder method is called, the automaton
tries to accomplish the corresponding transition that starts
at the current internal state and matches the transition label.
If there is no such transition, an appropriate error is thrown.
The validation automaton can be intuitively interpreted as
the automaton corresponding to a regular expression match-
ing the RHS of the parser production constructed by ap-
plying the Thompson construction [29]. Based on a set of
rules, parts of the validation automaton are produced. Then,
these automata are connected to realize alternatives and
concatenation. The following explains the derivation rules
for creating the validation automaton and corresponding
methods generated from the RHS of grammar productions.

Rule 1: Terminal Symbols Relevant for Abstract Syn-
tax As introduced in Section 3, the MontiCore grammar
language supports terminal symbols that reflect in the ab-
stract syntax, either as named terminal symbol or as constant
group (i.e., enumeration). Constant groups are more general
than named terminals, as the latter can be transformed into a
constant group comprising only a single constant. Therefore,
we only consider a derivation rule for constant groups.

Figure 3 depicts the Enum production (l. 21) that defines
constant groups in the MontiCore grammar language. Con-
stant groups are atomic building blocks and as such, affect
the fluent builder as well as the validation automaton. For
each constant of a constant group in a parser production P,
we generate an attribute and a getter method for the property
into the corresponding fluent builder class. This is depicted
in Figure 5 (right) by example. The produced validation au-
tomaton (part) has a single source and a single accepting
state. Each constant of a constant group is translated into
two states and a transition labeled with the getter method of
the generated property in the fluent builder. The source state

191

SLE ’18, November 5–6, 2018, Boston, MA, USA A. Butting, M. Dalibor, G.Leonhardt, B. Rumpe, A. Wortmann

�
n(String)

� �
�

P

P n(String)

P = n:Name; MCG

NFA CD

usage name

Figure 6. Derived validation automaton and fluent builder
class from production P = n:Name.

of the automaton is connected to the first state of each alter-
native, and the second state of each alternative is connected
to the joint accepting state. For each constant, this automa-
ton therefore contains exactly one path from source state
to accepting state. This is depicted by example in Figure 5
(left), where one path implies to invoke the method getA()
generated from the constant a and the other path implies to
invoke the method getB() generated from the constant b.

Rule 2: Nonterminal Usage The RHS of grammar produc-
tions may contain nonterminal symbols that refer to the non-
terminal of a different grammar production, therefore, they
“use” the nonterminal. Referencing a nonterminal has no vis-
ible impact on the concrete syntax of a language, because
all occurrences of nonterminal references can be replaced
by their corresponding referenced production’s RHS until a
single rule is left. However, this approach results in an expo-
nential blowup of this rule and the transformation may not
terminate if the input grammar contains cyclic dependencies
between rules. Thus, such an in-lining of nonterminals is
not possible in general.

Instead, our approach generates one fluent builder method
per nonterminal usage. For the name of the method, we
leverage the usage name of the nonterminal (cf. Figure 3) to
distinguish potential usages of the same nonterminal in the
same RHS of a production. If no such usage name is present,
it is derived from the nonterminal name. The derived nonter-
minal usage name is equal to the nonterminal name, starting
with a lower case letter. The generated fluent API method
always has a single parameter, which is a closure switching
to the namespace of the used nonterminal. Each nontermi-
nal (usage) name is transformed to a name compliant with
the naming conventions of methods in the host language
of the internal DSL. As depicted in Figure 6, constructing a
corresponding validation automaton for a nonterminal refer-
ence is straightforward. It comprises three states: an initial
state α , a method call state n, and a final state ω. A transi-
tion is triggered if the corresponding method derived from
nonterminal usage is executed. Figure 6 visualizes the fluent
builder class P generated for production P = n:Name and
the corresponding validation automaton contained in P. The
method has a parameter of type String (and not a closure),

ε

ε

�

	

	

�

�

�

�

�

a(Closure)

b(Closure)

P

P a(Closure<A>)

P b(Closure)

P = A | B; MCG

NFA CD

Figure 7. Derived validation automaton and fluent builder
class from production P = A | B.

� �	
�

�

P = A?; MCG

NFA CD

P

P a(Closure<A>)

�
	

a(Closure)
�

�

Figure 8. Derived validation automaton and fluent builder
class from production P = A?.

because Name is a special nonterminal – a literal – that is
translated to a String. Therefore, no closure is required.

Rule 3: Alternatives The syntax of alternatives is depicted
in Figure 3 (l. 14). Alternatives are composed building blocks,
and as such for these no fluent builder methods are generated.
Nonetheless, they affect the construction of the validation
automaton. An alternative node has at least two child nodes,
one for each option. For each option, we derive a separate
validation automaton. The Thompson construction for all
alternatives results in a validation automaton with initial
state α and accepting state ω. Similar to the derivation of the
validation automaton for constant groups, different paths
– one per option of the alternative – lead from the initial
state to the accepting state. Transitions are labeled with the
methods generated from the nonterminal usages, if an alter-
native directly contains a nonterminal usage. Otherwise, the
application of the Thomson construction is continued and
the alternative paths contain other parts of the overall vali-
dation automaton derived from the respective alternatives
in the grammar. A concrete example for production P = A
| B is given in Figure 7. The fluent builder class P contains
methods generated from the nonterminal usages of A and B.
The corresponding validation automaton yields two paths
from initial state to accepting state.

Rule 4: Cardinalities In MontiCore, cardinalities are: op-
tionals (?), iterations (*), or non-empty iterations (+), as in-
troduced in Figure 3 l. 15. All cardinalities are composed
building blocks and therefore only affect the construction
of the validation automaton. Each of the three cardinalities
yields a separate derivation rule. The generated validation

192

Deriving Fluent Internal Domain-Specific Languages from Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

� �	

�

�

�

P = A*; MCG

NFA CD

P

P a(Closure<A>)

�
	

a(Closure)
�

�

Figure 9. Derived validation automaton and fluent builder
class from production P = A*.

automaton for an optional contains the initial state α , the
accepting state ω state, and three further states. Two paths
connect the initial state with the accepting state. One path
includes all states from initial state to final state and contains
a transition labeled with the method call for the nonterminal
usage. The other path, representing that the option has not
been chosen, leads directly from initial state to target state
without the transition labeled with the method call. Figure 8
depicts the fluent builder class and the validation automaton
for the exemplary production P = A?.

�
�

�	 	

�

�
a(Closure)

�
�

P = A+; MCG

NFA CD

P

P a(Closure<A>)

Figure 10. Derived validation automaton and fluent builder
class from production P = A+.

For iterations, the constructed validation automaton, de-
picted in Figure 9, is similar to the one generated for option-
als. Additionally, it contains an edge connecting the state
after the target state of the transition labeledwith themethod
call to the initial state. This edge realizes the iteration.

For other non-empty iterations, the validation automaton
is similar to the one for iterations, but the edge from initial
state to accepting state is removed. As effect, the edge la-
beled with the method call has to be visited at least once. An
example for production P = A+ is depicted in Figure 10 that
includes the generated fluent builder class and the resulting
validation automaton.

Rule 5: Concatenation and Groups Concatenation is a
composed building block (cf. Figure 3, l. 16) describing a
sequence of other building blocks. Again, as concatenation
is a composed building block, we do not generate dedicated
fluent builder methods. The derived validation automaton
concatenates the automata of all child nodes in the correct
order. The initial state of the resulting automaton is the
initial state of the first automaton in the concatenation. The

	 �
�

��

a(Closure<A>)
��

P

P a(Closure<A>)

P b(Closure)

P c(Closure<C>)

P = A B C; MCG

NFA CD

�

	 �
�

��

c(Closure<C>)
��

�

	

	
�

�

b(Closure)

�

�

�	

�

�

�

�		
�

Figure 11. Derived validation automaton and fluent builder
class from production P = A B C.

accepting state of the concatenation is the accepting state of
the last automaton in the concatenation. The intermediate
automata are joined by connecting the accepting state of the
i-th element of the concatenation with the initial state of the
i + 1-th element of the concatenation. This is depicted by
example in Figure 11.
In some cases, it is necessary to group certain building

blocks. For instance, the concrete syntax of (AB)* in most
cases differs from the concrete syntax of A*B* and the se-
mantics might as well. The latter is due to the fact, that
the numbers of A appearances and B appearances must be
equal in (AB)*, whereas it may differ in A*B*. In MontiCore
grammars, groups are composed building blocks enclosed by
parentheses that contain a non-empty set of sub-blocks. In
the grammar depicted in Figure 3, this is indicated by the fact
that a group may contain any RHS. Group nodes can affect
the construction of validation automata, e.g., a|b* results in
a different validation automaton than (a|b)*. The second
case allows a trace bb which is not supported by the first
case. But the validation automaton for (a|b) does not differ
from the automaton for a|b. Groups only affect the order in
which parts of the validation automaton are derived.

5 Deriving Internal Groovy DSLs from
MontiCore Grammars

The internal DSL is designed as alternative to the external
DSL parser, where both instantiate the same AST data struc-
ture to leverage reusing tooling and code generators for both.
The derivation of the internal DSL is integrated into the exist-
ing MontiCore infrastructure by generating an external DSL
parser and AST data structure, as visualized in Figure 12. The
fluent builder is generated by the fluent builder generator
that utilizes the MontiCore grammar parser for processing
the input grammar. The generated fluent builders can be
optionally customized by extending these with handwritten
Java classes (cf. Section 5.3). The fluent builder is executed
by the internal DSL tooling that processes an internal DSL
model, i.e., a Groovy script.

193

SLE ’18, November 5–6, 2018, Boston, MA, USA A. Butting, M. Dalibor, G.Leonhardt, B. Rumpe, A. Wortmann

5.1 Generating Fluent Builder Classes
The internal DSL is a collection of fluent builder classes
implemented in Java. Each fluent builder class is a fluent
builder for a MontiCore AST node. Each method is gener-
ated from one leaf node of the normalized AST and employs
the generated validation automaton to check the validity
of a method invocation. Generating a fluent builder class
does not depend on other fluent builder classes, therefore
the generation can be parallelized. The validation automaton
is realized as a state map mapping transition labels to a set
of possible valid predecessor states. This yields an efficient
check for deciding at the beginning of each method whether
calling the method is currently allowed or not. If this check
evaluates to true, the current state is updated properly. Oth-
erwise, an error is thrown. The predecessor state sets for all
transition labels are computed while generating the fluent
builder class. First of all, the validation automaton produced
from the grammar according to the rules presented in Sec-
tion 4 has to be transformed into an equivalent deterministic
final automaton without ε transitions by applying powerset
construction [26]. After that, the predecessor state set for
each transition label is computed.

A fluent builder contains literal methods, closure methods,
or Groovy properties, depending on the productions con-
tained in the input grammar. All three are explained in the
following: In MontiCore, each grammar may define special
literal productions that translate to basic data types. These
include, e.g., a BooleanLiteral that translates to Boolean,
an IntLiteral that translates to an integer, or Name that
translates to a string. If a nonterminal reference on the RHS
of a production refers to such a literal production, Monti-
Core translates these into attributes of the corresponding
AST class. The fluent builder generator creates one method
for each literal nonterminal reference. The method header
has the form A name(T value) where A is the name of the
fluent builder class and T is the basic data type that the literal
translates to. name is either the usage name or the name of
the referenced production if the usage name is not present
(cf. Figure 3, l. 20). Whenever a literal method is executed, it
validates the current state of the validation automaton and
instantiates the respective AST class.

A closure method has the form A name(Closure cl)
where A is, again, the name of the current fluent builder class
and B is the name of a fluent builder class produced from a
referenced (non-literal) grammar production. Calling a clo-
sure method validates the current builder state and – if valid
– applies one recursion step. Therefore, the method creates a
new fluent builder class instance of the builder referenced
in the closure and executes this closure. The executed code
within the cl utilizes the new fluent builder class instance
and produces a correctly populated AST node of the referred
production, which is then set as a child node of the current
AST node, i.e., the node instantiated by the current builder.

Grammar.mc4

«gen»

AST.java

parses
«gen»

FluentBuilder

TOP.java
ExtendedFluent

Builder.java

«hw»

Internal

Model.groovy

«hw»

External

Model

«hw»
Target

Code

«gen»

MontiCore

Grammar

Parser

Fluent Builder

Generator

Tooling and

Backend

uses

uses

generates

generates instantiates

instantiates

generates

executes

operates on

parses

generates

internal DSL

external

DSL

reuse

«gen»

DSLParser.java

executes

Figure 12. Integration of the internal DSL infrastructure
into the MontiCore language workbench.

The third kind of methods are Groovy properties, which
are of the form A getInitial() where A is the name of a
fluent builder class and initial is the name of a property.
They are generated for each constant in a constant group
and for each terminal that is visible within the AST (cf. Sec-
tion 3.1). Groovy properties are similar to literal methods, i.e.,
they validate the current builder state and set the appropriate
field of the current AST node.

5.2 Using the Fluent Builder in Groovy
For better compatibility with existing MontiCore infrastruc-
ture, the fluent builder classes are generated as Java classes
(and not as Groovy classes). Therefore, the internal DSL
model implemented as Groovy script has to be aware of the
available methods and properties of the fluent builder. To
this effect, a special BaseScript class is generated that con-
tains all possible fluent builder start methods. These start
methods are those derived from start productions of the
grammars, i.e., those that produce a root node of the AST. If
the start production is a parser production, there is exactly
one method. In case the start production is an abstract or
interface production there may be multiple start methods.
The BaseScript class is set as base class to the internal DSL
model that is to be processed. Furthermore, a so-called inter-
nal DSL “parser” is generated. Analogously to an external
DSL parser, it accepts an internal DSL model and produces
a corresponding AST of the same type. Therefore, all Mon-
tiCore infrastructure generated for an external DSL can be
reused without any modification. In other words, parsing
an external DSL model and the corresponding internal DSL
model produces equal ASTs.

5.3 Customizing Derived Fluent Builder
The syntax of automatically generated internal DSLs may
not conform to the language developer’s intent and may not
be intuitive to understand. The question, if the presented

194

Deriving Fluent Internal Domain-Specific Languages from Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

public P2 p1(String name) {

return p1(closure(p1 -> p1.name(name)));

}

Java01

02

03

Figure 13. Example of preventing a closure.

public P1Chain p1(String name) {

return new P1Chain(name);

}

public class P1Chain extends Chain<P1, P2> {

public P1Chain(String name) { … }

public P2 age(int age) {

getBuilder().age(age);

return end();

}

}

Java01

02

03

06

07

08

09

10

11

12

return type

type of serving fluent builder

delegates to P1

ends the chain

Figure 14. Example of method chaining.

approach produces “good” results mainly depends on the
shape of the given input grammar and the set of implemented
derivation rules. Especially, this approach derives method
names from corresponding nonterminal names, which can
lead to unexpected naming in the fluent builder. To overcome
this, our concept supports handwritten extensions of the
generated fluent builder.

To extend a fluent builder class with a handwritten class,
we apply the MontiCore TOP mechanism [28] for AST nodes
to the fluent builder. During generation, the fluent builder
generator checks if there exists a (handwritten) class in the
expected package with the same name. If so, the generator
adds the TOP postfix to the generated fluent builder class
name. The handwritten class has to extend the correspond-
ing TOP class and therefore inherits all generated fluent
builder methods. To this extent, the TOP mechanism only
allows addition and overriding of existing methods but does
not support to delete generated methods. Furthermore, the
implementation of a fluent builder method can use other
fluent builder methods, but must not access the AST directly.
In other words, all added handwritten methods may only
use the generated fluent builder and are, therefore, shortcuts
for inconvenient parts of the internal DSL.
On the one hand, this approach has the drawback that it

is limited in its expressiveness, especially if the language de-
veloper intents to explicitly remove undesired fluent builder
methods. On the other hand, it has the advantage that the
fluent builder is backward compatible to the generated ver-
sion. Additionally, it is not necessary to apply any modifi-
cations to the validation automaton, because reusing other
fluent builder methods still guarantees that the constructed
AST node is built correctly. We have identified four types
of common fluent builder modifications sufficient to adapt
the concrete syntax of an internal DSL towards the concrete
syntax of the corresponding external DSL:

public P2 p1(String name, int age) {

return p1(closure(p1 -> p1.name(name).age(age)));

}

Java01

02

03

Figure 15. Example of multi-parameter methods.

Closure prevention: Sometimes, the RHS of a production is
trivial e.g., P1 = Name. In this case, the generator introduces
a closure method for each reference of P1 which results in
an inconvenient model e.g., p1 { name "user" }. By adding
a closure preventing method as shown Figure 13 into the
fluent builder class P2, the language developer avoids this
flaw. The closure method used in l. 2 adapts the given lambda
expression as a Groovy closure and passes it to the fluent
builder method p1.
Method chaining: Method chaining is another concept of
closure prevention, which can be applied to replace an arbi-
trary closure method. Method chaining replaces a closure
by a concatenation of method calls. Based on the validation
automaton, this replacement could be derived fully auto-
matically. However, this would yield the drawback that the
concrete syntax of the internal DSLmay bemore complicated
to understand. As depicted in Figure 14, method chaining for
a production P1 = Name age:IntLiteral can be realized by
adding an additional nested class P1Chain to fluent builder
class P2. This P1Chain creates a new internal fluent builder
of P1. All methods of P1Chain delegate to corresponding
methods of P1 (e.g., in l. 9). If there is no following method
in the chain, P1Chain invokes the fluent builder method
p1(Closure) in P2 with the internal fluent builder object
(P1) as argument. In this example, method chaining allows
the modeler to write name "user" age 42 instead of p1 {
name "user" age 42 }.
Multiple parameter methods: By default, generated fluent
builder methods always have a single parameter. This can
be changed by adding a handwritten method with multiple
parameters. In the internal DSL model, multiple parameters
must be separated by a comma. For example, Figure 15 de-
fines a method supporting the concrete syntax p1 "user",
42. The implementation is similar to Figure 13.
Adding operators and renaming methods: Besides clo-
sure prevention,method chaining, andmulti-parametermeth-
ods, there are other possibilities to modify the generated
fluent builder. For example, the language developer can cre-
ate additional methods behaving as aliases for other fluent
builder methods or add operators to the syntax of the inter-
nal DSL. The latter leverages the possibility of Groovy to
overload operators (e.g., a bitwise right shift operator) and
to give these a new meaning. Furthermore, all mentioned
modifications can be combined with each other.

195

SLE ’18, November 5–6, 2018, Boston, MA, USA A. Butting, M. Dalibor, G.Leonhardt, B. Rumpe, A. Wortmann

grammar Automaton extends Literals {
Automaton = "automaton" Name "{" (State | Trans)+ "}";
State = "state" Name (("<<" ["initial"] ">>") |

("<<" ["final"] ">>"))*
(("{" (State | Trans)* "}") | ";");

Trans = from:Name "-" input:Name ">" to:Name ";";
}

MCG01
02
03
04
05
06
07

Figure 16. Initial automaton grammar. Parts affecting the
syntax of the generated fluent builder are highlighted blue.

6 Case Study
Engineering a modeling language requires the profound de-
sign decision whether to develop an internal DSL or an exter-
nal DSL. As this affects how language tooling is developed,
this decision is usually taken at an early stage in develop-
ment to avoid re-engineering of tooling. With our approach,
switching between both kinds of DSLs causes much less ef-
fort in re-engineering. Our implementation generates the
complete infrastructure for the internal DSL. Optionally, the
automatically derived internal DSL can be customized with
handwritten enhancements, which are realized by subclass-
ing the generated artifacts. Consequently, the generated code
is not directly manipulated, but extended with handwritten
customizations. For illustration, we consider the develop-
ment of an automaton language. The automaton language
can be used for modeling discrete state transition systems.
It supports the definition of (hierarchically decomposed)
states and transitions. Hierarchical states include a body
comprising further states and transitions. The grammar of
the automaton language is developed by the language devel-
oper and is depicted in Figure 16. It can be used as a starting
point for deriving the parser of the external DSL as well as
the generation of the fluent builder for the internal DSL. The
automaton grammar includes parser productions (ll. 2,4,7),
terminals (ll. 2-6), literal (ll. 2,3,6) and non-literal (ll. 2,5) non-
terminal references, constant groups (ll. 3-4), together with
composed building blocks iteration, disjunction, grouping,
and concatenation.

To preserve the ordering of the right-hand sides, the fluent
builder generator constructs a validation automaton for each
production. Figure 17 depicts a simplified version of the gen-
erated automaton for production Automaton. For each fluent
builder method, there exists a related state in the automaton.
All incoming transitions of a state are labeled with the cor-
responding method name. The states State and Trans are
marked as final. This fits the observation that the Automaton
production requires the definition of a name and at least one
state or transition, whereas further states or transitions are
optional. As depicted in Figure 18, the fluent builder genera-
tor produces one fluent builder class per production and the
two classes AutomatonBaseScript and AutomatonParser.
Non-literal nonterminal references are mapped to methods

NFAclosures introduce new
fluent builder objects with

own validation automaton

Name
name(String)

State

Trans

state(Closure) trans(Closure)

state(Closure)

state(Closure)

trans(Closure)

trans(Closure)

Figure 17. Validation automaton for the rule Automaton.

Transition

Automaton

State

AutomatonBaseScript

AutomatonParser

CD

Transition from(String)

Transition input(String)

Transition to(String)

literal
methods

State transition(Closure<Transition>)

State state(Closure<State>)

State name(String)

State getInitial()

State getR__final()

Groovy
properties

Automaton state(Closure<State>)

Automaton transition(Closure<Transition>)

Automaton name(String) closure methods

ASTAutomaton automaton(Closure<Automaton>)

Optional<ASTAutomaton> parse(File path)

Figure 18. Generated fluent builder classes.

automaton TrafficLight {

state Red <<initial>>;

state Yellow;

state Green <<final>>;

Red - next > Yellow;

Yellow - next > Green;

}

Automaton01

02

03

04

05

06

07

08

Figure 19. Example of an external DSL model.

with a closure as parameter as, e.g., state(Closure). Be-
cause the automaton grammar only uses the Name literal
production, all literal methods accept a String. Furthermore,
Groovy properties and get-methods for these are generated
for each constant of a constant group e.g., getInitial().
Counter-intuitively, methods with the prefix get set an AST
attribute to a certain value of a property. Since Groovy al-
lows omitting get-prefixes together with following brackets,
this does not influence the concrete syntax of the internal
DSL. A profound drawback of the generated fluent builder is
the naming of the method r__final. As final is a keyword
of the host language, it can neither be used as a method nor
as property name. To overcome this, our generator adds the
prefix r__, which makes the fluent builder and therefore the
internal DSL unintuitive.
After executing the fluent builder generator, the internal

DSL prototype is immediately available to the customer for
early feedback. The top of Figure 20 depicts an example traf-
fic light model, written in Groovy and utilizing the generated
fluent builder. At the beginning of each internal DSL model,
the developer can only use fluent builder methods provided
in the AutomatonBaseScript class i.e., in the example, only

196

Deriving Fluent Internal Domain-Specific Languages from Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

automaton {

name "TrafficLight";

state{name "Red" initial };

state{name "Yellow"};

state{name "Green" r__final };

transition{from "Red" input "next" to "Yellow"};

transition{from "Yellow" input "next" to "Green"};

}

Groovy01

02

03

04

05

06

07

08

09

10

automaton "TrafficLight", {

state "Red" initial;

state "Yellow";

state "Green" accepting;

"Red" - "next" >> "Yellow";

"Yellow" - "next" >> "Green";

}

Groovy01

02

03

04

05

06

07

08

closure closing

properties

literal methods

multi parameter
method

method chain

usage of operators

closure opening

Figure 20. Example of an internal DSL model using the
generated (top) and extended fluent builder (bottom).

the method automaton(Closure<Automaton>). We can ob-
serve the effect of closures on the example model, which
change the available methods. All fluent builder methods
that require a parameter Closure<T> also introduce a pair of
curly brackets into the model. Inside these brackets, the mod-
eler can only choose methods provided by fluent builder class
T. Definitions of state “Red” (l. 4) and “Green” (l. 6) invoke
the property methods getInitial() and getR__final().

Since the effort of generating an appropriate external DSL
parser is negligible and possible at any point in time, the
customer may take a look at external DSL models resulting
in the same abstract syntax as the internal DSL model, e.g.,
as depicted in Figure 19. Here, a list of potentially undesired
differences between both models can be detected: The defini-
tions of states and transitions in the internal DSL introduce
curly brackets that are not present in the external DSL. The
name method inside the definitions of automaton and state
also change the appearance of the language. Moreover, the
r__final is unintuitive and could be replaced by a keyword
that is not reserved in the host language, e.g., accepting.
These enhancements can easily be implemented manu-

ally using the fluent builder TOP mechanism as described
in Section 5.3. In our example, the developer has applied
some enhancements of the internal DSL’s concrete syntax
by providing handwritten classes that extend the generated
classes of the internal DSL as depicted in Figure 21. Classes
marked with the «gen» stereotype are equal to the classes
presented in Figure 18, the postfix TOP indicates that Monti-
Core found handwritten classes acting as extension to the
generated ones. Unmarked classes are handwritten.

The developer adds a method state(String) enabling to
chain consecutive calls of getInitial() or getAccepting().

AutomatonBaseScript

String

StateChain

Automaton

Transition

operator overloading uses Groovy
meta-classes

required for method chaining

AutomatonParser

«gen»

«gen»

AutomatonTOP

«gen»

TransitionTOP

«gen»

«gen»

AutomatonBaseScriptTOP

StateChain state(String)

ASTAutomaton automaton

(String, Closure<Automaton>)

State

Transition minus(String)

Automaton getAccepting()

Automaton getInitial()

Transition rightShift(String)

CD

Figure 21. Class diagram of the extended fluent builder.

Therefore, the class Automaton extends the appropriate TOP-
class and adds the method state(String) returning an in-
stance of StateChain, which enables calling getInitial()
or getAccepting(). Consequently, the curly brackets and
the name keyword can be omitted and r__final is replaced
by accepting. Also, the developer adds a fluent builder
methodwith two parameters to class AutomatonBaseScript.
Thus, the name of the automaton can directly be defined
without any additional call of name. As depicted in Figure 20
l. 1, arguments of a multi-parameter method are separated
by comma. Moreover, operator overloading via Groovy meta-
classes [20] enables replacing from, input, and to by the
operators - and >>, resulting in a concrete syntax closer to
the external DSL. As overloading > is not supported, the lan-
guage developer chooses >> instead. Whether the presented
adjustments to the concrete syntax are “improvements” de-
pends on the taste of the internal DSL developer or customer.
They can be combined, but fluent builder methods can only
be added or modified, never removed. Whenever the cus-
tomer decides to prefer the internal over the external DSL or
vice versa, developed language tooling or infrastructure do
not have to be changed. This makes language engineering
more agile and enables “rapid prototyping” of DSLs.

7 Discussion
We derive internal DSLs from grammars by generating flu-
ent builders in Groovy that can operate on the grammars’
external abstract syntax representations. This enables using
both shapes of the DSL - external and internal - in parallel
and facilitates developing language tooling. However, giving
meaning to a processed internal DSL model requires to inter-
pret the respective AST or to generate executable (GPL) code

197

SLE ’18, November 5–6, 2018, Boston, MA, USA A. Butting, M. Dalibor, G.Leonhardt, B. Rumpe, A. Wortmann

from it. Being fully automated also facilitates engineering in-
ternal DSLs with our approach, as developing these requires
complex host language patterns (such as closures) that intro-
duce accidental complexities [13] to language engineering
rarely unbeknownst to grammarware. Their syntax of inter-
nal DSLs is naturally restricted by their host language. Many
restrictions can be mitigated using the presented extension
mechanism, some restrictions, e.g., reserved language key-
words, cannot be lifted easily. While selecting another host
language may enable using the internal DSL keywords of
choice, our concept rests on the existence of closures or a
similar concept. Its translation into other host languages,
such as Scala [24], is subject to investigation. Our concept,
furthermore, relies on flattening the inheritance hierarchy
of languages, which (a) generally can lead to name clashes
between inherited productions and thus render the resulting
grammar unusable, and (b) is inefficient as certain base gram-
mars must be translated more often than necessary instead
of reusing their internal DSL representations between differ-
ent language projects. Regarding the former, we assume that
the languages’ grammars are valid with respect to inheri-
tance, i.e., either their names can be qualified unambiguously
or the originating language workbench already takes care
of rejecting such grammars. We currently cannot prevent
re-generating the fluent builders. The naive approach of
inheriting from builders generated from super-grammars
previously fails on the type systems of relevant host lan-
guages. For instance, we cannot have methods of the same
name and different return types (i.e., abstract syntax types).
This also is future work.

8 Related Work
There are various language workbenches [11] that support
creating external or internal DSLs.
MPS [25] relies on projectional editing for (meta)model

modification. Its base language, a DSL similar to Java, can
be extended to support stepwise derivation of an internal
DSLs by extending the base language with internal DSL
concepts. However, without significant manual adjustments,
both shapes share the abstract syntax of Java, which can be
more complex than necessary. Neverlang [31], Rascal [19],
Spoofax [33], and Xtext [3] support defining external DSLs
as grammars (Neverlang, Rascal, Xtext) or abstract data types
(Spoofax) and focus on different aspects of engineering ex-
ternal DSLs. Neither deriving internal DSLs, nor integrating
the abstract syntaxes of both shapes are supported. Regard-
less, developing a generator that translates grammars into a
fluent API as presented in this paper would be realizable in
these language workbenches. Another approach [7] trans-
lates UML class diagrams into an internal Java DSL. The
implementation processes XML models and translates these
into model graphs. These are translated into Java Fluent
APIs using a template engine. While similar, this approach is

limited to class diagrams. MetaBorg [6] enables providing a
customized concrete syntax in a GPL. To this end, the meta-
programmer defines a new concrete syntax and an assimila-
tion that describes how code specified using the new syntax
translates into code of the host language. The paper proposes
an implementation with SDF [33] for syntax definition and
SGLR [5] as a parser. This requires a syntax definition of the
host language which, in general, is not present and has to be
defined first. Racket [30] is a programming language support-
ing the definition of internal DSLs. These can be bundled into
modules to be reused in different projects. The framework
generally supports the definition of DSLs but does not allow
to change between internal and external DSLs. Cedalion [23]
realizes the inverse of our concept: Its projectional editor
facilitates the definition of an individual concrete syntax
that is independent on the host language. Thus, it supports
creating internal DSLs and providing these with external
DSL features as an individual concrete syntax. With this at
hand, developers can offer DSL-specific tool support, e.g.,
editors or analyses for internal DSLs. Xbase [10] is a DSL
that provides Java expressions and statements enriched with
some syntactic sugar. Developers can combine Xbase with
any Xtext DSL to enrich their models with behavior descrip-
tions. These can be interpreted or generated into Java code
via the provided generator. Hence, Xbase is an external DSL
providing Java features while we translate external DSLs
definitions (grammars) into internal DSLs. Overall, to the
best of our knowledge, there are currently no other concepts
or language workbenches supporting the integrated engi-
neering of external DSLs and internal DSLs such that these
operate on the same data structures.

9 Conclusion
We have presented a concept to derive internal DSLs from
grammars that enables agile language prototyping before
committing to an internal or external DSL shape. To this
end, we automatically derive fluent builders from the gram-
mars’ productions that instantiate classes of the grammars’
external abstract syntax classes. Instantiating models of the
internal DSL is as restricted as for models of the external DSL
due to the accepting automata added for each grammar rule.
These prevent constructing invalid models with respect to
the grammar. We plan on conducting a study evaluating the
effort of creating an internal DSL from scratch compared to
creating an internal DSL with our approach. Further, we are
currently developing a concept for executing abstract syntax
classes that, in combination with the presented approach,
fosters agile language engineering. Overall, the presented
approach facilitates agile language prototyping, as tooling
(analyses, well-formedness rules, code generators) can be
developed against abstract syntax classes while exploring
the different shapes with customers.

198

Deriving Fluent Internal Domain-Specific Languages from Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] Mathieu Acher, Benoit Combemale, and Philippe Collet. 2014. Meta-

morphic domain-specific languages: A journey into the shapes of a
language. In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software.
ACM, 243–253.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers:
Principles, Techniques, and Tools. Addison-Wesley.

[3] Konstantinos Barmpis, Dimitrios Kolovos, and Justin Hingorani. 2018.
Towards a Framework for Writing Executable Natural Language Rules.
In European Conference on Modelling Foundations and Applications.
Springer, 251–263.

[4] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. 2016. Execution Framework
of the GEMOC Studio (Tool Demo). In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering.
ACM, ACM, New York, NY, USA, 84–89.

[5] Martin Bravenboer, Eelco Dolstra, and Eelco Visser. 2007. Preventing
Injection Attacks with Syntax Embeddings. In Proc. of International
Conference on Generative Programming and Component Engineering
(GPCE) 2007. ACM. https://doi.org/10.1145/1289971.1289975

[6] Martin Bravenboer and Eelco Visser. 2004. Concrete syntax for ob-
jects: domain-specific language embedding and assimilation without
restrictions. In ACM SIGPLAN Notices, Vol. 39. ACM, 365–383.

[7] Dmitry Buzdin and Oksana Nikiforova. 2012. Transformation of UML
class diagram to internal java domain-specific language. Applied Com-
puter Systems 13, 1 (2012), 61–67.

[8] Jesús Sánchez Cuadrado, Javier Luis Cánovas Izquierdo, and Jesús Gar-
cía Molina. 2013. Comparison between internal and external DSLs
via RubyTL and Gra2MoL. In Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments. IGI Global, 109–131.

[9] Fergal Dearle. 2010. Groovy for Domain-Specific Languages. Packt
Publishing Ltd.

[10] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus. 2012.
Xbase: implementing domain-specific languages for Java. In ACM
SIGPLAN Notices, Vol. 48. ACM, 112–121.

[11] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Laurence Tratt,
Remi Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, et al. 2015. Evaluating and Comparing Lan-
guage Workbenches: Existing Results and Benchmarks for the Future.
Computer Languages, Systems & Structures 44 (2015), 24–47.

[12] Martin Fowler. 2010. Domain-Specific Languages. Addison-Wesley
Professional.

[13] Robert France and Bernhard Rumpe. 2007. Model-Driven Development
of Complex Software: A Research Roadmap. In Future of Software
Engineering 2007 at ICSE.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional.

[15] Object Management Group. 2010. Object Constraint Language Version
2.2 (OMG Standard 2010-02-01).

[16] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Voelkel, and Andreas Wort-
mann. 2015. Integration of Heterogeneous Modeling Languages via
Extensible and Composable Language Components. In Proceedings
of the 3rd International Conference on Model-Driven Engineering and

Software Development. Scitepress, Angers, France.
[17] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. 2015. Sys-

tematically Deriving Domain-Specific Transformation Languages. In
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’15). ACM/IEEE, 136–145.

[18] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Mon-
perrus, and François Fouquet. 2015. Mashup of metalanguages and
its implementation in the kermeta language workbench. Software &
Systems Modeling 14, 2 (2015), 905–920.

[19] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. 2009. Rascal: A
domain specific language for source code analysis and manipulation.
In Source Code Analysis and Manipulation, 2009. SCAM’09. Ninth IEEE
International Working Conference on. IEEE, 168–177.

[20] Dierk König, Paul King, Guillaume Laforge, Hamlet D’Arcy, Cédric
Champeau, Erik Pragt, and Jon Skeet. 2015. Groovy in Action. Manning
Publications.

[21] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2008. Monti-
Core: Modular Development of Textual Domain Specific Languages.
In Proceedings of Tools Europe.

[22] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. MontiCore:
a Framework for Compositional Development of Domain Specific
Languages. In International Journal on Software Tools for Technology
Transfer (STTT).

[23] David H Lorenz and Boaz Rosenan. 2011. Cedalion: a language for
language oriented programming. In ACM SIGPLAN Notices, Vol. 46.
ACM, 733–752.

[24] Martin Odersky, Lex Spoon, and Bill Venners. 2008. Programming in
scala. Artima Inc.

[25] Vaclav Pech, Alex Shatalin, and Markus Voelter. 2013. JetBrains MPS
as a tool for extending Java. In Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools. ACM, 165–168.

[26] Michael O Rabin and Dana Scott. 1959. Finite automata and their
decision problems. IBM journal of research and development 3, 2 (1959),
114–125.

[27] Alastair Reid, John Peterson, Greg Hager, and Paul Hudak. 1999. Pro-
totyping real-time vision systems: An experiment in DSL design. In
Proceedings of the 21st international conference on Software engineering.
ACM, 484–493.

[28] Bernhard Rumpe and Katrin Hölldobler. 2017. MontiCore 5 Language
Workbench. Edition 2017. Shaker Verlag.

[29] Ken Thompson. 1968. Programming Techniques: Regular Expression
Search Algorithm. Commun. ACM 11, 6 (June 1968), 419–422.

[30] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. 2011. Languages as libraries. In ACM
SIGPLAN Notices, Vol. 46. ACM, 132–141.

[31] Edoardo Vacchi andWalter Cazzola. 2015. Neverlang: A framework for
feature-oriented language development. Computer Languages, Systems
& Structures 43 (2015), 1–40.

[32] Vladimir Viyović, MirjamMaksimović, and Branko Perisić. 2014. Sirius:
A Rapid Development of DSM Graphical Editor. In Intelligent Engi-
neering Systems (INES), 2014 18th International Conference on. IEEE,
IEEE, Tihany, Hungary, 233–238.

[33] Guido H Wachsmuth, Gabriël D P Konat, and Eelco Visser. 2014. Lan-
guage Design with the Spoofax Language Workbench. IEEE Software
31, 5 (2014), 35–43.

199

https://doi.org/10.1145/1289971.1289975

	Abstract
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 The MontiCore Language Workbench
	3.2 Internal DSLs with Groovy

	4 Deriving Internal DSLs
	4.1 Flattening Grammar Hierarchies
	4.2 Normalizing the AST
	4.3 Deriving Validation Automata and Fluent Builders

	5 Deriving Internal Groovy DSLs from MontiCore Grammars
	5.1 Generating Fluent Builder Classes
	5.2 Using the Fluent Builder in Groovy
	5.3 Customizing Derived Fluent Builder

	6 Case Study
	7 Discussion
	8 Related Work
	9 Conclusion
	References

