
CHAPTER 4

DEFINITION OF THE SYSTEM MODEL

Manfred Broy1 and Maŕıa Victoria Cengarle1 and

Hans Grönniger2 and Bernhard Rumpe2

1Software and Systems Engineering, Technische Universität München, Germany
2Software Systems Engineering, Technische Universität Braunschweig, Germany

4.1 INTRODUCTION

This chapter is devoted to the definition of a system model tailored towards UML.

The hierarchy of theories that compose the system model is stepwise introduced.

These theories are combined into a theory of sophisticated state transition systems.

The semantics of a word in a UML sublanguage, i.e., a diagram, can then be defined

by a set of such transition systems. Given two or more actual diagrams, possibly

forming a complete UML model, the semantics of them together is defined by the

intersection of their translations into the system model. In other words, consistency

of a model is defined by non-empty intersection of the sets containing the transition

systems that implement the diagrams individually.

UML2 Semantics and Applications. By Kevin Lano

Copyright c© 2011 John Wiley & Sons, Inc.

63

[BCGR09a] M. Broy, M. V. Cengarle, H. Grönniger, B. Rumpe
Definition of the UML system model.
In: Kevin Lano, editor, UML 2 Semantics and Applications.
John Wiley & Sons, 2009
www.se-rwth.de/publications

64 DEFINITION OF THE SYSTEM MODEL

Definition 4.2.1 (This is a definition)

DefinitionName

introduction of new elements (sets, functions, ...)

Notation:

additional notational abbreviations (optional)

definition of properties that hold

informal, textual explanation (optional)

The system model supports underspecification in two manners. On the one hand,

the fact that the semantics of a single UML diagram or of a complete UML model is

not univocal is a form of underspecification. On the other hand, at the metalevel, the

system model can be further constrained in such a way that the ambiguity inherent to

the language is reduced or even eliminated. The latter ambiguities are called variation

points, and the choice of a particular variant reduces the range of possibilities.

The former chapter motivates and explains the system model that is introduced

below. The system model in this chapter is a simplification of the one presented

in [1]. In that work, a number of variation points are also presented. These include,

among others, records and Cartesian products within the type system of the system

model, subclassing observing structure, objects as values, locations and reference

types, qualified and ordered binary associations, active vs. passive objects, single vs

multithreaded computation.

This chapter is organized as follows. Section 4.3 contains the definition of the

structural part of the system model. Sections 4.4 and 4.5 contain the control and

communication related definition definitions which form the basis to describe the

state of a system in Section 4.6. Two variants of state transitions systems are

introduced to define object behaviour in Sections 4.7 (event-based) and 4.8 (timed).

4.2 NOTATIONAL CONVENTIONS

This section contains the conventions used in order to structure the mathematical

theories that constitute the system model.

Definitions, presented as shown in 4.2.1, usually contribute new elements to the

system model and/or add constraints to already existing ones. Noteworthy derived

properties following from a definition are stated as Lemmas, that are presented in

way similar to that of definitions.

In order to simplify the notation, if a formula contains a symbol whose value is

irrelevant for the purpose of the fomula, the symbol is replaced by a wildcard ∗. For

instance, ∀ a : P(a, ∗, ∗) stands for ∀ a : ∃ y, z : P(a, y, z) where the variables y, z

are unused within the predicate P and are existentially quantified at the innermost

level. Also a number of container structures is used, such as P(.) for powerset,

Pf (.) for the set of finite subset of a given one, List(.), Stack(.), and Buffer(.) for the

STATIC PART OF THE SYSTEM MODEL 65

Definition 4.3.1 (Types and values)

Type1
UTYPE

UVAL

CAR : UTYPE → P(UVAL)

∀ u ∈ UTYPE : CAR(u) 6= ∅

UTYPE is the universe of type names.

UVAL is the universe of values.

CAR maps type names to non-empty carrier sets; carrier sets need not be disjoint.

usual constructs. These structures are defined in mathematical terms with appropriate

manipulation and selection functions. For details on these basics, the reader may

consult report [1].

4.3 STATIC PART OF THE SYSTEM MODEL

The static part of the system model contains the unalterable information of the

intended systems. The static part is composed of, among other things, some universes

of elements that are assumed given and not fully described here. Properties of and

relationships between those universes may be furthermore assumed. Universes are

for instance, the universe of type names UTYPE, the universe of values UVAL, a

relation CAR that associates a set of values to each type name (see Definition 4.3.1),

the universe of class names UCLASS, and the universe of object identifiers UOID

(see Definition 4.3.5). The primitive concept of name is not futher prescribed.

4.3.1 Type Names and Carrier Sets

A type name identifies a carrier set which contains simple or complex data elements

called members or values of (or associated with) the type name. The universe of all

type names is denoted by UTYPE. Members of all type names are gathered in the

universe UVAL of values; see Definition 4.3.1.

Any T ∈ UTYPE is a type name, not a type, but may be referred to as type T .

In particular, the types of the system model explicitly encode UML types, i.e., deep

embedding of types is used.

The above definitions leave open quite a number of possibilities to characterize

types. [1] shows a few examples, which are not formal parts of the system model.

For example, we may wish to express that integer and float are type names, i.e.,

Int,Float ∈ UTYPE, integer and floating point values are values in the system

model R ⊆ UVAL, and that integer values are also floats: CAR(Float) = R and

CAR(Int) = Z ⊆ R.

66 DEFINITION OF THE SYSTEM MODEL

Definition 4.3.2 (Basic types)

BoolInt

Bool, Int ∈ UTYPE

true, false ∈ UVAL

CAR(Bool) = {true, false}
true 6= false

CAR(Int) = Z ⊆ UVAL

UTYPE contains at least the type names Bool and Int.

UVAL contains at least Boolean and integer values.

Definition 4.3.3 (Basic type Void)

Void

Void ∈ UTYPE

void ∈ UVAL

CAR(Void) = {void}

void can be used to e.g. return control without an actual return value.

The value void is usually needed for giving semantics to procedures or methods

with no return value. This is customary in the semantics of programming languages.

4.3.2 Basic Type Names and Type Name Constructors

Basic type names for basic values such as Boolean and integer values (see Defini-

tion 4.3.2) are by default given, together with their typical operations like logical

connectives and arithmetic operators (not detailed here). The carrier set associated

with Void, a further basic type name, is a singleton; see Definition 4.3.3.

4.3.3 Variables

The notion of variable (see Definition 4.3.4) permits the encoding of object attributes,

method parameters and method local variables. Each variable name has a unique

type name associated.

4.3.4 Class Names and Objects, Subclass Relation

Definition 4.3.5 introduces the universes UCLASS of class names, UOID of object

identifiers, and INSTANCE of instances. A class name is associated with a finite set of

attributes, which simply are variables. Each class name is moreover associated with

a set of object identifiers. By use of the association mechanism (see Section 4.3.7),

STATIC PART OF THE SYSTEM MODEL 67

Definition 4.3.4 (Variables, attributes, parameters)

Variable

UVAR

vtype : UVAR → UTYPE

vsort : UVAR → P(UVAL)
VarAssign = (v : UVAR ⇀ vsort(v))

Notation:

a : T denotes “a is a variable of type T”, i.e., vtype(a) = T .

∀ v ∈ UVAR : vsort(v) = CAR(vtype(v)) ∧ ∀ val ∈ VarAssign : val(v) ∈ vsort(v)

UVAR is the universe of all variable names, each with a unique type associated.

VarAssign is the set of all total and partial assignments of values for variables.

class names can be related to each other. Also methods can be associated with class

names; see Definition 4.4.2.

Except for the object identifier Nil (see Definition 4.3.7), there is a bijection

between the universes UOID and INSTANCE. Thus, besides Nil, there are no dangling

references. As a consequence each object belongs exactly to one class,2 and this does

not vary over time, whereas the object value can vary and dereferencing from an

object identifier is state dependent. (In particular, structurally equivalent classes are

distinguished.)

More precisely, UOID contains references to all possible objects and, in a similar

way, INSTANCE contains all possible objects. These sets are usually infinite because

they represent the possible existence of objects. Furthermore, INSTANCE contains

all object values thus describing many different object values with the same identifier.

At each point of time only a finite subset of objects will actually exist in the data store

(see Section 4.3.6 below) and there will be at most one instance for any identifier.

Definition 4.3.6 introduces the mechanisms for accessing the attributes of an

object. A distinguished term is this, which can be treated as were it an attribute

though it is not (and thus does not appear in attr(C)). In particular, no type name

is associated with this, thus a number of conceptually difficulties are avoided like

recursive type definitions.

Definition 4.3.7 introduces the special identifier Nil and constrains UOID to exactly

consist of object identifiers and INSTANCE of objects only.

4.3.5 Subclass Relation

The subclass (or inheritance) relation sub is introduced in Definition 4.3.8. There,

also a type name contructor is introduced, that associates a type name with each class

name; this type name collects in its carrier set all the object identifiers associated

2Polymorphism is introduced below in Section 4.3.5.

68 DEFINITION OF THE SYSTEM MODEL

Definition 4.3.5 (Classes and instances)

Class

UCLASS

UOID

INSTANCE

attr : UCLASS → Pf (UVAR)

oids : UCLASS → P(UOID)
objects : UCLASS → P(INSTANCE)
objects : UOID → P(INSTANCE)
classOf : INSTANCE → UCLASS

classOf : UOID ⇀ UCLASS

∀ oid ∈ oids(C) : classOf (oid) = C ∧
objects(oid) = {(oid, r) | r ∈ VarAssign ∧ attr(r) = attr(C)}

∀ o ∈ objects(C) : classOf (o) = C

UCLASS is the universe of class names.

attr assigns a finite set of attributes to each class name.

UOID is the universe of object identifiers.

INSTANCE is the universe of objects of the form o = (oid, r) where oid is an

object identifier and r a variable assignment for the attributes of the class name

associated with oid.

oids assigns a set of object identifiers to a class name.

classOf enforces uniqueness of the class (name) associated with each object and

with each identifier.

Definition 4.3.6 (Attribute access)

Attribute

this : INSTANCE → UOID

getAttr : INSTANCE × UVAR ⇀ UVAL

attr : INSTANCE → Pf (UVAR)

attr : UOID → Pf (UVAR)

Notation:

o.this is shorthand for this(o)
o.a is shorthand for getAttr(o, a)

∀ o, (oid, r) ∈ INSTANCE :
this((oid, r)) = oid

getAttr((oid, r), a) = r.a
attr(oid) = attr(classOf (oid))
attr(o) = attr(classOf (o))

o.this is written in the spirit of attribute selection, but treated differently: this is

not an actual attribute of the class.

STATIC PART OF THE SYSTEM MODEL 69

Definition 4.3.7 (Introduction of Nil)

Nil

Nil ∈ UOID

∀C ∈ UCLASS : Nil 6∈ oids(C)
∀ o ∈ INSTANCE : o.this 6= Nil

UOID = {Nil} ∪
⋃

C∈UCLASS oids(C)
INSTANCE =

⋃
C∈UCLASS objects(C)

Nil is a distinguished object identifier, the only one not associated to any class or

any object. UOID and INSTANCE only consist of object identifiers and of objects,

respectively.

Definition 4.3.8 (Subclass Relation)

Subclassing

sub ⊆ UCLASS× UCLASS

·& : UCLASS → UTYPE

UOID ⊆ UVAL

transitive(sub) ∧ reflexive(sub)
∀C ∈ UCLASS : CAR(C&) = {Nil} ∪

⋃
C1 sub C oids(C1)

sub is the transitive and reflexive subclass relation.

The carrier set associated with type name C& contains all object identifiers that

belong to the carrier set of class name C or any of its subclass names.

with class name or any of its subclass names. Therefore, object identifiers are values,

i.e., UOID ⊆ UVAL.

Thus, the subclass relation allows a precise definition of the type of a class: the

object identifiers associated with the class and any of its subclasses belong to the

carrier of the type assigned to the class.

Definition 4.3.8 leaves a number of questions open and allows thus further re-

finement. For instance the binary relation sub is not enforced to be antisymmetric

(although this is the case in any implementation language today). Furthermore, sub-

classing is not based on a structural definition: the sets of attributes of two classes

may be in the subset relation, and nevertheless the classes be unrelated by sub.

The technique of defining sub as a subset relation on object identifiers instead of

objects permits a great simplification on the type system within the system model.

Furthermore, it allows the redefinition of attribute structures in subclasses without an

otherwise necessary loss of the substitution principle.

70 DEFINITION OF THE SYSTEM MODEL

Definition 4.3.9 (The data store)

DataStore1
DataStore ⊆ (UOID → INSTANCE)
oids : DataStore → P(UOID)

∀ ds ∈ DataStore : oids(ds) = dom(ds)
∀ o ∈ UOID, ds ∈ DataStore : ds(o).this = o

DataStore is the set of all data stores or possible snapshot values.

oids(ds) is the set of existing objects in given a data store ds.

Definition 4.3.10 (DataStore Infrastructure)

DataStore

val : DataStore× UOID× UVAR ⇀ UVAL

setval : DataStore× UOID× UVAR× UVAL ⇀ DataStore

addobj : DataStore× INSTANCE → DataStore

Notation:

ds(oid.at) is shorthand for val(ds, oid, at)
ds[oid.at = v] is shorthand for setval(oid, at, v)

∀ ds ∈ DataStore, oid ∈ oids(ds), at ∈ attr(oid), v ∈ CAR(vtype(at))) :
val(ds, oid, at) = ds(oid).at

setval(ds, oid, at, v) = ds⊕ [oid = (oid, π2(ds(oid))⊕ [at = v])]
o.this 6∈ oids(ds)⇒ addobj(ds, o) = ds⊕ [o.this = o]

val retrieves the value for a given object and attribute.

setval updates a value for a given object and attribute.

addobj adds a new object.

4.3.6 Data Store Structure

Intuitively, a data store is a snapshot of the data state of a running system. Defini-

tion 4.3.9 introduces data stores as functions assigning objects to object identifiers.

Any such function assigns an object o to an object identifier oid only if this is the

identifier of that object, which can be retrieved using o.this.

A number of convenient retrieval and update functions for data stores is given in

Definition 4.3.10. They basically deal with lookup and change of attribute values as

well as “creating” a new object in the store.

Various restrictions on the use of retrieval and update functions apply. They

involve the use of values of appropriate type, attributes that actually exist in a class,

etc. However, we refrain from defining these restrictions here.

STATIC PART OF THE SYSTEM MODEL 71

Definition 4.3.11 (Basic definitions for associations)

Association

UASSOC

classes : UASSOC → List(UCLASS)
extraVals : UASSOC → P(UVAL)
relOf : UASSOC × DataStore → P(UVAL× UVAL)

∀R ∈ UASSOC,Ci ∈ UCLASS(i = 1, . . . , n), ds ∈ DataStore :
classes(R) = [C1, . . . ,Cn]⇒

relOf (R, ds) ⊆ (CAR(C&
1)× . . .× CAR(C&

i))× extraVals(R)

UASSOC is the universe of association names.

classes returns the list of class names related by a given association name.

extraVals of a given association name is the set of further values that accompany

with the association name.

relOf is the retrieval function to derive the actual links for an n-ary association

based on the current store.

4.3.7 Associations

Definition 4.3.11 introduces the universe UASSOC of association names. The func-

tion classes associates a list of class names to each association name; given an as-

sociation name R, classes(R) = [C1, . . . ,Cn] is sometimes called the signature of R.

classes assigns a list, and not a set, of class names to an association name. The order

of the classes is relevant as in, for example, a self-association like “parent-child”.

Additional values that accompany an association name can be retrieved using

the function extraVals. Addtional values permit qualified associations by using one

(or more) of them as qualifier. They moreover allow non-unique associations: by

introducing a value as distinguishing flag, a tuple can be duplicated.

Given a system snapshot, i.e., a data store, the relation retrieval function relOf

returns the tuples that constitute the (instantiation of) the association name, each one

together with the additional values extraVals, in that data store. These tuples contain

values of the corresponding types; these types, in turn, are obtained from the class

names in the signature of the association name using the type name constructor ·&.

This means, the tuples of an instantiation of the association name may include objects

identifiers whose classOf is a subclass of the corresponding class in the signature of

the association name.

Restrictions on the changeability of an association, as UML class diagrams may

impose, can only be observed or checked when two consecutive DataStores are

compared. This means, the semantics of a class diagram cannot be completely

defined using only one snapshot of the DataStore.

Variation Point: Simple Associations Only Variation Point 4.3.12 is not

formally part of the system model but shows how to refine it by adding further

constraints. Each of the constraints may be imposed individually.

72 DEFINITION OF THE SYSTEM MODEL

Variation Point 4.3.12 (Simplified associations)

[SimplAssociation]
∀R ∈ UASSOC, ds ∈ DataStore : #relOf (R, ds) ∈ N

∀R ∈ UASSOC : #extraVals(R) = 1

∀R ∈ UASSOC : #classes(R) = 2

∀R ∈ UASSOC, ds ∈ DataStore, oid ∈ UOID :
#{(oid1, oid2, x) ∈ relOf (R, ds) | oid = oid1} = 1

These constraints restrict the instantiations of association names to finite sets of

tuples, disallow additional values for association names, enforce association names

to be binary, or all association names to have multiplicity 1-to-* (which includes

1-to-1), but not *-to-*.

Other variation points may define binary, qualified, and ordered association names

as well as realization techniques for them.

4.4 CONTROL PART OF THE SYSTEM MODEL

Once defined the data part, this and the following section focus on the control part

of the system model. The control part defines the structure used to store control

information. Roughly speaking, this structure is divided into a control store and an

event store. The control store contains all the information needed to determine the

state of the system during computation.

That is, in addition to its data store as introduced in Definition 4.3.10, a state

machine of the system model has a control store. This store contains information

about the behaviour of the intended system and is used by the state machine in order

to decide which transition to perform next. A control store consists of:

• a stack of method/operation calls, each with its arguments and local variables,

• the progress of the running program (e.g., a program counter), and

• possibly information about one or more threads.

In any setting, be it distributed or not, any state machine of the system model

also has to deal with receiving and sending of events that trigger activities in objects.

General events, such as “message arrived” or “timeout”, must be handled by any

object. These events are put into an event store, which consists of an event buffer for

each object where handling of events is managed. The event store, which is the last

constituent of the state an object, is defined in Section 4.5.

CONTROL PART OF THE SYSTEM MODEL 73

Definition 4.4.1 (Definition of operations)

Operation

UOPN

UOMNAME

nameOf : UOPN → UOMNAME

classOf : UOPN → UCLASS

parTypes : UOPN → List(UTYPE)
params : UOPN → P(List(UVAL))
resType : UOPN → UTYPE

∀ op ∈ UOPN : parTypes(op) = [T1, . . . , Tn]⇒
params(op) = {[v1, . . . , vn] : vi ∈ CAR(Ti)(i = 1, . . . , n)}

UOPN is the universe of operations.

UOMNAME the universe of operation (or method) names.

nameOf returns the name of a given operation.

classOf returns the class to which a given operation belongs.

parTypes returns the list of types of the parameters of a given operation.

params returns all possible arguments of the given operation.

resType returns the result type of the given operation.

4.4.1 Operations

Objects are accessed through their methods/operations. Here, the term operation

refers to the signature (or head) whereas the term method refers (also) to the imple-

mentation (or body). Operations can be called and they may provide a return value

as given by the corresponding implementation. Each operation has a name and a

signature (which includes arguments and a return value that may be of type Void).

Definition 4.4.1 specifies signatures, which consist of a (possibly empty) list of

types for parameters and a type for the return value. Note that parameter names are

not present in the signature; parameter names are only part of the implementation.

For each operation, its signature and its implementation, as well as the class it belongs

to, are uniquely specified.

The subclassing mechanism lets subclasses inherit operations from their super-

classes. This means, subclassing imposes a constraint on signatures and, in many

languages, also a constraint on the promised behaviour of its related classes. Defi-

nition 4.4.2 relates operations in super-/subclasses in the co/contra-variant way (see

e.g. [7]). The operation in the subclass may accept a superset of parameter values

and may return a subset of return values, compared to the possible values of the

superclass operation. In this way, the subclass operation can safely substitute the

superclass operation.

Definition 4.4.2, although rather general, needs not to hold in all object-oriented

languages. In particular, languages such as Smalltalk exhibiting “Message not un-

74 DEFINITION OF THE SYSTEM MODEL

Definition 4.4.2 (Definition of type safety on operations)

TypeSafeOps

∀ op1 ∈ UOPN, c ∈ UCLASS : c sub classOf (op1)⇒
∃ op2 ∈ UOPN : classOf (op2) = c ∧

nameOf (op1) = nameOf (op2) ∧
CAR(resType(op1)) ⊇ CAR(resType(op2)) ∧
params(op1) ⊆ params(op2)

Any class type-safely inherits operations from any of its superclasses.

derstood” errors to which a program can react, do not enforce this type safety re-

quirement.

In the system model, operations have exactly one return value. Multiple return

values, however, can be encoded, for instance by packing them in a class or record.

4.4.2 Methods

The term operation only refers to the signature whereas the term method refers (also)

to the implementation of an operation. Methods, thus, have a signature and an internal

implementation. The signature of a method consists of a list of parameter names with

their types. Projected on the list of types, this list coincides with the parameter type

list of the associated operation(s).

To provide all information necessary for a detailed understanding of method

interactions, a binding mechanism between arguments and corresponding formal

parameters is needed, as well as a store for local variables and an abstract notion of

a program counter, as given in Definition 4.4.3. Furthermore, a method is equipped

with the class name to which it belongs and where it is implemented. Note that

localsOf and parOf result in variable assignments that contain mappings of variables

to appropriate values. For convenience, parameters, attributes and local variables of

a method are assumed disjoint (which is allowed by syntactic resolution).

The concepts of method (implementation) and of operation (signature) are fully

decoupled, which allows their mutually independent description. However, there

usually is a strong link between methods and operations: A method can only imple-

ment operations with compatible signatures. Nevertheless, as implementations can

be inherited, multiple operations can refer to the same method as its implementation.

In this way, on the one hand the operation signature can be adapted (e.g., made more

specific) without changing the implementations, and on the other the implementation

can be redefined using a new method in a subclass. Definition 4.4.4 describes this

relation through a function impl that associates a method with a signature; if the class

can be instantiated, all operations of that class need to have implementations.

The signature params(op) of an operation op is a set of lists of values, whereas

the parameter list parNames(m) of the corresponding method implementation m =
impl(op) is a single list of variables.

CONTROL PART OF THE SYSTEM MODEL 75

Definition 4.4.3 (Definition of methods)

Method1
UMETH

UPC

nameOf : UMETH → UOMNAME

definedIn : UMETH → UCLASS

parNames, localNames : UMETH → List(UVAR)
parOf : m : UMETH → P(VarAssign|set(parNames(m)))
localsOf : m : UMETH → P(VarAssign|set(localNames(m)))
resType : UMETH → UTYPE

pcOf : UMETH → Pf (UPC)

∀m ∈ UMETH, v ∈ UVAR, val ∈ parOf (m) :
v ∈ dom(val)⇔ v ∈ set(parNames(m))

∀m ∈ UMETH, v ∈ UVAR, val ∈ localsOf (m) :
v ∈ dom(val)⇔ v ∈ set(localsNames(m))
parNames(m) ∩ localNames(m) = ∅

parNames(m) ∩ attr(definedIn(m)) = ∅

localsNames(m) ∩ attr(definedIn(m)) = ∅

UMETH is the universe of methods.

UPC is the universe of program counter values.

Given a method, definedIn returns the class to which the method (implementation)

belongs (and where it was defined).

parNames returns the formal parameter variables of a given method.

localNames returns local variables of a given method.

parOf and localsOf return sets of variable assignments of formal parameters and

of local variables, respectively, of a given method.

resType returns the result type of a given method.

pcOf is (finite) the set of possible program counter values of a method.

Pairwise disjointedness of parNames, localNames and attr is assumed for conve-

nience.

76 DEFINITION OF THE SYSTEM MODEL

Definition 4.4.4 (Relationship between method and operation)

Method

impl : UOPN ⇀ UMETH

∀ op ∈ UOPN : m = impl(op)⇒
nameOf (m) = nameOf (op) ∧
classOf (op) sub definedIn(m) ∧
CAR(resType(m)) ⊆ CAR(resType(op)) ∧
n = length(parNames(m))⇒
{[val(parNames(m)1), . . . , val(parNames(m)n)] : val ∈ parOf (m)}
⊇ params(op)

∀ c ∈ UCLASS, op ∈ UOPN : oids(c) 6= ∅ ∧ classOf (op) = c ⇒
op ∈ dom(impl)

impl assigns a method implementation to each operation.

4.4.3 Stacked Method Calls

A stack is a well-known mechanism to store the structure necessary to handle chained

and (mutually) recursive method calls. In order to describe nested operation calls and,

in particular, object recursion3, a control stack is indispensable. Object recursion is

a common principle in object orientation and provides much flexibility and expres-

siveness. Almost all design patterns (see e.g. [4]) as well as callback-mechanisms of

frameworks (e.g. [3]) rely on this principle.

Thus, the information needed in order for computation to resume after a method

has finished is standardly store in a stack. The notion of stack used is abstract, the

information stored in the stack is organized in frames which include, among others,

program counter values.

Although using abstractions, the matter is complicated enough to justify an incre-

mental definition of the method call mechanism. Firstly the single-threaded case is

considered.

A stack frame, introduced in Definition 4.4.5, contains the relevant information

about the method in execution. A frame on top refers to a method executing at

the moment, or to be started now. A frame below the top of the stack refers to

a method executing at the moment that has passed control and is blocked. The

relevant information in a frame includes the object identifier to which the method

belongs, the name of the method, the current program counter value of the method,

the object identifier of the calling object, and the (current) variable assignment for

formal parameters and local variables of the method. StackFrame defines the minimal

information needed for the description of stack frames; additional conditions can be

added to further constrain stack frames.

3That is, a method calls another method of the same object. In contrast, method recursion is when a

method which has not finished execution yet is called from a method of an other object.

CONTROL PART OF THE SYSTEM MODEL 77

Definition 4.4.5 (Stack frames)

StackFrame

FRAME = UOID× UOMNAME × VarAssign× UPC × UOID

framesOf : UMETH → P(FRAME)

framesOf (m) = { (callee, nameOf (m), val, pc, caller) |
∃ op ∈ UOPN : m = impl(op) ∧

callee ∈ oids(classOf (op)) ∧ pc ∈ pcOf (m) ∧
val ∈ parOf (m)⊕ localsOf (m) }

FRAME is the universe of frames;

framesOf is the set of possible frames for a given method.

Derived:

framesOf (m) =
⋃

op∈UOPN,m=impl(op) oids(classOf (op))× {nameOf (m)} ×
(parOf (m)⊕ localsOf (m))× pcOf (m)

In the case of a single-threaded system, the only existing thread can be defined as

an element of type Stack(FRAME).
The method may fork several control flows. Nevertheless, frames have only one

program counter. When a fork takes place, a new thread is started. Each thread is

then represented by its own stack of frames, each of which contains again only one

program counter. Therefore, the definition of frames suffices also for multi-threaded

case, the only difference is that there are more than one stack of such frames.

4.4.4 Multiple-thread Computation, Centralized View

The concurrency concept of the system model is orthogonal to objects, i.e., various

concurrent threads may independently and even simultaneously “enter” the same

object. In the following, a model of threads is added to the system model definition

introduced so far. The increment is general enough to allow specialization to other

approaches, and is based on an assumed notion of atomic action (whose precise

definition is deferred to the defintion of UML actions).

In Definition 4.4.6, the (abstract) universe of possibly infinitely many threads is

introduced. The control store maps a stack of frames to each thread. These stacks

satisfy the following condition: for any two adjacent frames in the stack, the calling

object above is the called object below. An illustration of the central control store

with concurrently executing threads is given in Example 4.4.7.

4.4.5 Multiple-thread Computation, Object-Centric View

The central control store defined above is rather general, but so far does not cover how

concurrent threads are executed within an object. To enable a general mechanism

78 DEFINITION OF THE SYSTEM MODEL

Definition 4.4.6 (The control store in centralized version)

Thread

UTHREAD

CentralControlStore ⊆ (UTHREAD → Stack(FRAME))

∀ ccs ∈ CentralControlStore, t ∈ UTHREAD :
∀ n < #ccs(t) : ∃ oid ∈ UOID :

ccs(t)[n] = (oid, ∗, ∗, ∗, ∗) ∧ ccs(t)[n + 1] = (∗, ∗, ∗, ∗, oid)

UTHREAD is the universe of threads.

CentralControlStore assigns a stack of frames to each thread.

Example 4.4.7 (Centralized view on concurrently executing threads) The figure

below illustrates the situation where two threads are active, and both object recursion

as well as concurrency occurs. Here “Framex.y” denotes that the frame is in thread

x at position y, where the highest y-numbers denote the active frames:

����������

	
���
����

	
���
����

	
���
�
��

��
���
���

�������

����������

	
��������

	
�����
��

��
�������

�������

����������

CONTROL PART OF THE SYSTEM MODEL 79

Definition 4.4.8 (The control store in object-centric version)

ControlStore

ControlStore ⊆ (UOID → UTHREAD → Stack(FRAME))
. ∼ . ⊆ CentralControlStore× ControlStore

ccs ∼ cs ⇔
∀ oid ∈ UOID, t ∈ UTHREAD :

cs(oid)(t) = filter({(oid, ∗, ∗, ∗, ∗)}, ccs(t))

ControlStore splits each stack in parts that belong to objects.

. ∼ . relates two representations of the control store by essentially filtering the

centralized stack with regards to individual objects.

Lemma 4.4.9 (Control store representations are equivalent)

∀ ccs ∈ CentralControlStore : ∃
1

cs ∈ ControlStore : ccs ∼ cs

∀ cs ∈ ControlStore : ∃
1

ccs ∈ CentralControlStore : ccs ∼ cs

for scheduling and definition of priorities, the representation of thread-based stacks

is rearranged by providing a different view on threads. The key idea is to use an

object-centric view of stacks instead of the current thread-centric view as shown in

Definition 4.4.8. As an important side effect, objects are then described in a self-

contained way. This means that the control information in the system and the object

state in full provide a compositional view on object-oriented systems.

For a ControlStore cs the stack cs(oid)(t) contains exactly those frames where a

method from object oid was called in thread t.

Note that the relation . ∼ . defines an isomorphism as formulated in Lemma 4.4.9.

The decentralization into a control store is by definition a function. However, the

original stacks can also be uniquely reconstructed because the caller object identifier

is part of the frame of the called object. So both representations of the control store

provide exactly the same information differently arranged.

Example 4.4.10 shows the above Example 4.4.7 as represented by the object-

centered control store.

According to the definition of method calls below (cf. 4.5.3 below), an object can

easily recognize that it is being called a second time within the same thread. This is

important when, for instance, scheduling or blocking incoming messages from other

threads. The Java synchronization model distinguishes recursive calls from other

threads and calls from the same threads, and blocks the former but not the latter.

80 DEFINITION OF THE SYSTEM MODEL

Example 4.4.10 (Object-centric view on concurrently executing threads)

��������		

������		

�����	�		

��������		

��������		

��������� ������	��

�����	�			

��������� ������	��

��������

��������

������		

�����

4.5 MESSAGES AND EVENTS IN THE SYSTEM MODEL

In this Section, messages and events are specified as well as how they are stored and

handled within objects.

4.5.1 Messages, Events and the Event Store

A uniform handling of events and messages is allowed when messages are considered

events as well, and this gives rise to a general concept likewise called “Events”. Events

can be handled by an operation being executed, or a blocked operation continues

execution (in case of a return event), or ignored. They need not be consumed in the

order they appear, a more sophisticated management (scheduling) can be individually

defined for each object: event occurrences may be handled immediately, or their

handling may be delayed until it is made possible, or they can even be ignored.

To capture this rather general notion, a universe of events occurring in systems

is introduced. Events are not further structured yet; below certain kinds of events,

like method call and return, are introduced as special forms of events. Further

specializations are left open.

In Definition 4.5.1, the universe UEVENT of events and the universe EventStore

of event stores are introduced. An event store buffers events that have occurred and

are waiting for being processed. A buffer is a rather general structure to store and

handle messages, deal with priorities, etc. Event occurrences are instances of events

that may store information like the time the instance occurred and possibly other state

information. In the system model, hence, event occurrences correspond to system

states in which the event has just been added (sent) or removed (received) from the

event store.

The following Definition 4.5.2 introduces the universe UMESSAGE of messages

and the event kind MsgEvent. Messages are a general mechanism to encode any

kind of synchronous method call, as well as asynchronous message passing. Each

message has a unique sender and a unique receiver. That is, a direct description

of broadcasting or multicasting is not possible. This means no restriction though:

multicasting, for example, can be simulated by repeatedly sending the same message

MESSAGES AND EVENTS IN THE SYSTEM MODEL 81

Definition 4.5.1 (EventStore and object event signature)

EventStore

UEVENT

eventsIn : UOID → P(UEVENT)
eventsOut : UOID → P(UEVENT)
EventStore ⊆ (UOID → Buffer(UEVENT))

events(oid) = eventsIn(oid) ∪ eventsOut(oid)
∀ es ∈ EventStore : es(oid) ∈ Buffer(events(oid))

UEVENT is the universe of events.

eventIn are the events that an object may receive.

eventOut are the events that an object may generate.

EventStore maps an object identifier to a buffer of processable events.

Definition 4.5.2 (Object message signature)

Message

UMESSAGE

MsgEvent : UMESSAGE → UEVENT

sender, receiver : UMESSAGE → UOID

msgIn,msgOut : UOID → P(UMESSAGE)

∀m ∈ UMESSAGE, oid ∈ UOID :
sender(m) = oid ⇔ MsgEvent(m) ∈ eventsOut(oid)
receiver(m) = oid ⇔ MsgEvent(m) ∈ eventsIn(oid)
msgIn(oid) = {m | receiver(m) = oid}
msgOut(oid) = {m | sender(m) = oid}

UMESSAGE is the universe of messages.

MsgEvent wraps messages into events that can then be adequately stored. sender

and receiver enforce uniqueness of sender and receiver, respectively, of any mes-

sage.

to different addressees. Moreover, no further distinction between the various possible

forms of messages is enforced.

4.5.2 Method Call and Return Messages

Common kinds of messages describe method call and return. The well-known tech-

nique of encoding method call and return into messages, as practiced in distributed

systems, among other things supports “remote procedure calls”.

Call messages carry the usual information, like caller and called objects, method

name, parameter values, thread. All possible invocations for given caller and called

82 DEFINITION OF THE SYSTEM MODEL

Definition 4.5.3 (Method call messages)

MethodCall

callsOf : UOID× UOPN × UOID× UTHREAD → P(UMESSAGE)
callsOf : UOID → P(UMESSAGE)

∀ r, s ∈ UOID, op ∈ UOPN, th ∈ UTHREAD :
callsOf (r, op, s, th) ⊆ UOID× UOMNAME × TUPLE × UOID× UTHREAD

callsOf (r, op, s, th) = {(r, nameOf (op), pars, s, th) |
r ∈ oids(classOf (op))∧
pars ∈ params(op)}

callsOf (r, op, s, th) ⊆ msgIn(r)
callsOf (r, op, s, th) ⊆ msgOut(s)

callsOf (r) =
⋃

op∈UOP,s∈UOID,th∈UTHREAD callsOf (r, op, s, th)

callsOf defines the set of all possible method calls from object s to r with operation

signature op and run in thread th.

Definition 4.5.4 (Return messages)

MethodReturn

returnsOf : UOID× UOPN × UOID× UTHREAD → P(UMESSAGE)
returnsOf : UOID → P(UMESSAGE)

∀ r, s ∈ UOID, op ∈ UOPN, th ∈ UTHREAD :
returnsOf (r, op, s, th) ⊆ UOID× UVAL× UOID× UTHREAD

returnsOf (r, op, s, th) = {(r, v, s, th) |
s ∈ oids(classOf (op)) ∧ v ∈ CAR(resType(op))}

returnsOf (r, op, s, th) ⊆ msgIn(r)
returnsOf (r, op, s, th) ⊆ msgOut(s)

returnsOf (r) =
⋃

op∈UOP,s∈UOID,th∈UTHREAD returnsOf (r, op, s, th)

returnsOf defines the set of all possible returns from object s to r that may occur

as response to a method call in thread th.

object, operation, and thread, are packed by the function callsOf into an appropriate

message; see Definition 4.5.3.

Return messages carry the return value, the thread, the sender and receiver of the

result value. So the Definition 4.5.4 only slightly differs from the previous definition

of method calls. According to the definition of returnsOf , the receiver r of the return

message was the sender of the original method call.

The concepts of method calls and returns, on the one hand, and of messages, on the

other, can be gathered into one single concept of message passing. Message passing

allows the handling of composition of objects and provides a clear interface definition

OBJECT STATE 83

Definition 4.5.5 (Signals as asynchronous messages)

Signal

USIGNAL ⊆ UMESSAGE

callsOf (∗, ∗, ∗, ∗) ∩ USIGNAL = ∅

returnsOf (∗, ∗, ∗, ∗) ∩ USIGNAL = ∅

for objects and object groups. Method calls and returns are then just special kinds of

messages and can be treated together with other kinds of incoming messages.

4.5.3 Asynchronous Messages

Formally, signals are just asynchronous messages that do not transfer any control.

Therefore, not every message needs to carry a thread marker. There moreover may

exist signals that an object may accept. In this case, the object needs to be “active”

in the sense that it already has an internal thread to process the stimulus. It is

furthermore possible that the object is not in itself active, but belongs to a group

of objects that has a common scheduling concept for the processing of messages

that come from outside the group. This concept resembles the situation in classical

language realizations where one process contains many objects. A concept of regions

allows the description of such a common scheduling strategy.

In Definition 4.5.5 the universe USIGNAL of signals is introduced, which is a

subset of the universe of messages.

4.6 OBJECT STATE

Objects may have an individual state, and groups of objects may have a collective

state.

4.6.1 Individual Object States

The signature and the state space of an object comprises data, control and event

stores. The three stores are defined as mappings from UOID to the respective state

elements. Thus, the state of an object is fully described by a value of OSTATE as

given in Definition 4.6.1.

4.6.2 Grouped Object States

The functions state and states, introduced in Definition 4.6.2, can be generalized to

define the actual and potential set of states for groups of objects. These generaliza-

tions use a mapping from object identifiers to their respective contents and are thus

structurally equivalent to STATE. The structural equivalence of STATE and states(os)
raises the possibility to use a composition on object states in Lemma 4.6.3 that can be

84 DEFINITION OF THE SYSTEM MODEL

Definition 4.6.1 (State space of an individual object)

ObjectStates1
STATE ⊆ DataStore× ControlStore× EventStore

oids : STATE → P(UOID)
OSTATE = INSTANCE × (UTHREAD → Stack(FRAME))

× Buffer(UEVENT)
state : STATE × UOID → OSTATE

states : UOID → P(OSTATE)

STATE = {(ds, cs, es) | dom(ds) = dom(cs) = dom(es)}
oids(ds, cs, es) = oids(ds) = dom(ds)
∀ oid ∈ oids(us) : state((ds, cs, es), oid) = (ds(oid), cs(oid), es(oid))
states(oid) = {state(us, oid) | us ∈ STATE ∧ oid ∈ oids(us)}

The state of an object consists of its actual attribute values, the events and the

threads belonging to an object. states defines the potential states of an object.

Derived:

oids(ds, cs, es) = dom(ds) = dom(cs) = dom(es)

furthermore used to compose state machines in the following section. In particular,

f ⊕ g is well defined, as state(us, osi) is equal on the common objects os1 ∪ os2.

This also allows to regard the possible set of object states in states as a cross product,

where the common object identifiers need to coincide in their state.

Definition 4.6.2 identifies states(o) and states({o}) as equivalent, as the latter is

a function with a singleton domain only.

4.7 EVENT-BASED OBJECT BEHAVIOUR

Based on the notions of state for each object and the corresponding incoming and

outgoing events, the behaviour of an object is specified in form of a state transition

system. For this purpose the theory of state transition systems (STS) as defined in

Appendix A.1 is used.

An STS-based representation of basic actions is required. For that purpose an

ordinary programming language such as Java is used. The special actions of UML

(cf. [8, Chap. 11]) were disregarded because of the better expressiveness of Java.

4.7.1 Control Flow State Transition Systems

As objects react to incoming events, an STS describing object behaviour is basically

event-based and does not necessarily describe timing aspects. To trigger the next

execution step for thread th within an object, a pseudo-event †(th) is used as given in

EVENT-BASED OBJECT BEHAVIOUR 85

Definition 4.6.2 (State space of sets of objects)

ObjectStates2
state : STATE × P(UOID)→ (UOID → OSTATE)
states : P(UOID)→ P(UOID → OSTATE)

∀ os ⊆ UOID, us ∈ STATE, oid ∈ UOID :
state(us, os)(oid) = state(us, oid)
∀ os ⊆ UOID :

states(os) = {state(us, os) | us ∈ STATE ∧ os ⊆ oids(us)}

Function state and states can be generalized to define the actual and potential set

of states for groups of objects.

Derived:

∀ os ⊆ UOID, us ∈ STATE : dom(state(us, os)) = os ∩ dom(us)
∀ os ⊆ UOID, f ∈ states(os) : dom(f) = os ∩ dom(us)

Lemma 4.6.3 (State space composition)

ObjectStates

∀ os1, os2 ⊆ UOID, us ∈ STATE :
state(us, os1 ∪ os2) = state(us, os1)⊕ state(us, os2)
∀ os1, os2 ⊆ UOID, os1 ∩ os2 = ∅⇒

states(os1 ∪ os2) = {f1 ⊕ f2 | fi ∈ states(osi), i = 1, 2}

Function state and states are compositional wrt. the state of objects.

Derived:

∀ os, os1, os2 ⊆ UOID : os = os1 ∩ os2 ⇒
states(os1 ∪ os2)
= {f1 ⊕ (f2 |os2\os1) | fi ∈ states(osi)}
= {(f1 |os1\os2)⊕ f2 | fi ∈ states(osi)}
= {(f1 ⊕ f2) | fi ∈ states(osi) ∧ f1 |os= f2 |os}

86 DEFINITION OF THE SYSTEM MODEL

Definition 4.7.1 (The stepper for an STS)

STSStepper

† : UTHREAD → STEP

injective(†)

†(th) is used as trigger for the next execution step in thread th.

Variation Point 4.7.2 (Control flow STS for methods)

[CFSTS]
cfsts : UMETH × UOID× UTHREAD ⇀ STS(S, I,O)

∀m ∈ UMETH, oid ∈ UOID, th ∈ UTHREAD :
classOf (oid) sub classOf (m) ∧ cfsts(m, oid, th) = (S, I,O, δ, s0)⇒

S = {(o, fr) ∈ objects(oid)× framesOf (m) |
fr = (oid, ∗, ∗, ∗, ∗)}∧

s0 = {(o, fr) ∈ S | ∃ start ∈ StartPC : fr = (∗, ∗, ∗, start, ∗)}∧
I = {MsgEvent call | call ∈ callsOf (oid,m, ∗, th)} ∪ STEP ∧
O = eventsOut(oid)

cfsts assigns a possibly underspecified CFSTS to each method. This describes the

implemented behaviour of that method in form of a state machine.

Definition 4.7.1. With this trigger as explicit input of an STS, the scheduling can be

defined in a separate entity.

Transitions within the control flow STS (CFSTS) are regarded as atomic actions. A

CFSTS is defined in such a way that an object has no direct access to an attribute of any

other object, but may call methods and send events as desired. The state of a CFSTS

is defined by the objects own attributes and the currently active frame. Variation

Point 4.7.2 introduces CFSTS, and uses STS as introduced in Definition A.1.1.

Note that there are alternatives to describe the result of method execution, by

e.g. using actions as defined in [8, Chap. 11]. An action language may encom-

pass an ordinary programming language but allow additional actions that deal with

manipulation of associations, timing and scheduling, etc.

Indeed, to define such high-level, “model-aware” actions is useful, as otherwise

such concepts need to be emulated through lower-level concepts if at all possible. This

would mean for instance that associations are encoded as attributes, and scheduling

managed through an API of an ordinary object serving as scheduler.4

Variation Point 4.7.2 is not constraining CFSTS. Certainly, many states of the

CFSTS will never be reached, many outputs that are included in O will not be made.

4In Java this would be a Thread object.

EVENT-BASED OBJECT BEHAVIOUR 87

Definition 4.7.3 (Event-based STS for objects)

EventSTS

ests : UOID → STS(S, I,O)

∀ oid ∈ UOID :
ests(oid) ∈ STS(states(oid), eventsIn(oid) ∪ STEP, eventsOut(oid))

ests assigns a possibly underspecified STS to each oid, thus allowing to describe

externally visible behaviour for an object as a state machine.

However, it is relatively accurate on the input, as it describes all information about

the context that is known.

Note that one CFSTS for each method implementation is attached to each object

individually. This gives some freedom, allowing different behaviours for the ob-

jects of the same class. In practice, however, objects of one class are assigned the

same CFSTS. Furthermore, objects of subclasses whose methods are not overridden

are assigned the same CFSTS as their superclass objects. This resembles method

inheritance on the level of behaviour through CFSTS.

4.7.2 Event-Based State Transition Systems

Objects react to incoming events and can therefore be described by an STS. This be-

haviour does not describe timing aspects. Event-based STS (ESTS) handle execution

within a single object.

Definition 4.7.3 specifies the general structure and signature of ESTS. An ESTS

operates on the full object state and is triggered either by real events or by steps

indicated by a †. Those steps denote only scheduling of steps, not timing.

The nondeterministic transition function δ of an ESTS supports underspecification

and thus multiple possible behaviours within the STS. This underspecification may

be totally or partially resolved during design time by the developer or during runtime

by the system itself choosing transitions according to some circumstances, sensor

input, etc.

Compared to the previously defined CFSTS, this notion of ESTS is rather general.

It embodies all data, control, and event states on a very general level and thus can

describe interference of parallel executions as well as handling of incoming events

in the buffer. In contrast to an CFSTS, an ESTS embodies the complete object state

including control state and event buffer. A detailed description of the relationship

between an CFSTS and an ESTS can be found in [1], where also a variation point for

ESTS is provided that is composed of several CFSTS.

88 DEFINITION OF THE SYSTEM MODEL

4.8 TIMED OBJECT BEHAVIOUR

This section presents the time-aware version of STS, called timed STS (TSTS) as

defined in Appendix A.2. TSTS allow the description of individual object behaviour

and composition thereof.

A discrete global time is assumed available. Each step of transition of the TSTS

corresponds to a progress of one time unit. A system executes in steps, each step

consumes a fixed amount of time. TSTS are transition systems that deal with this

paradigm. Roughly speaking, in each step a finite set of input events is provided to a

TSTS, and a finite set of output events is produced by the TSTS.

As a further mechanism, communication channels allow the description of the in-

teraction (communication flow) between parts of the objects and thus of the behaviour

of objects on a very fine-grained level.

As a general result, a complete description of how systems are decomposed into

objects is provided, as well as what states objects may have, and how objects interact.

4.8.1 Object Behaviour in the System Model

In the system model, the object and component instances cooperate by asynchronous

message passing. Method invocation is already modeled by the exchange of two

events, the method invocation event and the method return event.

Communication between objects is dealt with by channels. A communication

channel is a unidirectional communication connection between two objects. The

system model defines a universe UCN of channels and leaves open how many channels

are used between objects.

Each channel has a name, e.g., c ∈ UCN, and the type of events that may flow

through c is given by csort(c). Each object has a number of incoming and outgoing

channels, and each event is associated with the channel through which it flows; see

Definition 4.8.1.

As an important consequence of the above definitions, each channel is the in the

output signature of only one object, since events are not only associated to a channel

but also to its originating object. This ensures the applicability of composition

techniques for TSTS, which only work if the output channels of composed objects

are disjoint.

Based on channels and their type, the behaviour of a single object is defined in

Definition 4.8.2. This definition is based on the assumption of a time granularity fine

enough to ensure the independence of the output in one step from the input received

in that step. In this way, strong causality between input and output is preserved. The

composition of state machines is moreover simplified since feedback within one time

unit is ruled out and thus causal inconsistencies are avoided. The actual (real-)time

occurrence of events can be abstracted away, thus only the untimed behaviour of

objects needs be considered.

Definition 4.8.3 provides a flexible concept of components including, e.g., classical

sequential systems (in this case, there is only one input and one output channel). Input

and output flow of events can further restricted allowing the reception or the dispatch

TIMED OBJECT BEHAVIOUR 89

Definition 4.8.1 (Channel signatures of objects)

Channels

UCN

sender, receiver : UCN → UOID

channel : UEVENT → UCN

inC, outC : UOID → P(UCN)
csort : UCN → P(UEVENT)

∀m ∈ UEVENT, oid ∈ UOID :
sender(m) = oid ⇒ sender(channel(m)) = oid

receiver(m) = oid ⇒ receiver(channel(m)) = oid

∀ c ∈ UCN :
inC(oid) = {c | receiver(c) = oid}
outC(oid) = {c | sender(c) = oid}
csort(c) = {m ∈ UEVENT | channel(m) = c}

UCN denotes the universe of channel names.

sender and receiver assign a sending and a receiving object to each channel.

channel assigns a channel to each event.

inC, outC denote the channel signature of each object.

The type of each channel csort(c) describes the possible events flowing over that

channel.

Definition 4.8.2 (Behaviour of individual objects)

ObjBehaviour

beh : UOID → Bcsort(I,O)

∀ oid ∈ UOID :
beh(oid) ∈ Bcsort(inC(oid), outC(oid))

beh(oid) denotes the behaviour of one single object.

90 DEFINITION OF THE SYSTEM MODEL

Definition 4.8.3 (Behaviour of object compositions)

CompBehaviour

beh : P(UOID)→ Bcsort(I,O)
inC, outC : P(UOID)→ P(UCN)

∀ os ⊂ UOID :
I = inC(os) = {c | receiver(c) ∈ os ∧ sender(c) 6∈ os}
O = outC(os) = {c | sender(c) ∈ os ∧ receiver(c) 6∈ os}
beh(os) =

⊕
oid∈os beh(oid)

beh(os) denotes the behaviour of a group of objects where internal communication

is not visible anymore.

inC describe the incoming channels for a group of objects, outC the outgoing

channels.

Definition 4.8.4 (Behaviour as TimedSTS)

TimedSTS

tsts : UOID → TSTScsort(S1, I1,O1)
tsts : P(UOID)→ TSTScsort(S, I,O)

∀ oid ∈ UOID :
tsts(oid) ∈ TSTScsort(states(oid), inC(oid), outC(oid))
S(tsts(oid)) = beh(oid)
∀ os ⊂ UOID :

tsts(os) =
⊕

oid∈os tsts(oid)

tsts(oid) denotes the TSTS-based description of behaviour of one single object.

The definition is then generalized to a set of objects.

of at most one event in each step. At the other extreme, highly concurrent systems

with a large number of input and output events in one state transition step can likewise

be described.

4.8.2 State-based Object Behaviour

The behaviour of an object oid is precisely defined as beh(oid). The relationship of

this behaviour to a state-based view is not defined yet. For this purpose, a timed state

transition system to each object is attached as shown in Definition 4.8.4. According

to this definition, each object oid ∈ UOID can be described by a nondeterministic

TSTS as introduced in Appendix A.2.

The axiom S(tsts(oid)) = beh(oid) for any oid states that the behaviour of each

object is defined by an appropriate TSTS. It can be shown that the composition

of TSTS and of I/O-behaviours is compatible. This means, it can be switched

THE SYSTEM MODEL DEFINITION 91

between a state-based and a purely I/O-based view of object behaviour, and moreover

the behaviour of objects or groups (components) can be individually specified and

afterwards meaningfully composed.

Note that each object oid has exactly one single TSTS tsts(oid). However, as

tsts(oid) is a nondeterministic state machine, it allows various forms of underspec-

ification. Therefore, there is no need to add a further concept of underspecification

by, e.g., assigning a set of possible TSTS to each object. Any UML model, however,

may have an impact on the elements of a TSTS. For instance, the sets of reachable

states can be constrained, the initial states restricted to be a singleton, or the non-

determinism reduced by enforcing a behaviour that is deterministic in reaction and

time.

With this last part of the system model, a TSTS for the whole system is available

that includes all snapshots and all system states and is thus capable of describing any

behavioural and structural restrictions by tsts(UOID). The overall system tsts(UOID)
does not have any external channels, it incorporates all “objects”. This also includes

objects that have direct connections to interfaces to other systems, mechanical devices

or users and thus can act as surrogates for the context of the system. In other words,

the overall system makes a closed worlds assumption. In [9] includes a discussion

on how to deal with a closed world assumption to describe open, reactive systems,

and also what the advantages are implied by this assumption. In [1], also a general

mapping from event-based to TSTS is defined.

4.9 THE SYSTEM MODEL DEFINITION

The last Definition 4.9.1 finally introduces the universe of system models.

REFERENCES

1. Manfred Broy, Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Modular

Description of a Comprehensive Semantics Model for the UML (Version 2.0). Technical

Report 2008-06, Carl-Friedrich-Gauß-Fakultät, Technische Universität Braunschweig,

2008.

2. Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas Gritzner, and

Rainer Weber. The Design of Distributed Systems - An Introduction to FOCUS. Technical

report, TUM-I9202, SFB-Bericht Nr. 342/2-2/92 A, 1993.

3. Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. The UML/F Profile for Frame-

work Architecture. Addison-Wesley, 2001.

4. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

5. Randy H. Katz. Contemporary logic design. Benjamin-Cummings Publishing Co., Inc.,

Redwood City, CA, USA, 1993.

6. N.A. Lynch and M.R. Tuttle. An Introduction to Input/Output Automata. CWI Quarterly,

2:219 – 246, 1989.

92 DEFINITION OF THE SYSTEM MODEL

Definition 4.9.1 (Definition of the system model as a universe)

SYSMOD

SYSMOD

sm ∈ SYSMOD ⇒
sm =
(UTYPE,UVAL,CAR,
UVAR, vtype, vsort,
UCLASS,UOID, attr, oids, classof ,
sub,&,
UASSOC, classes, extraVals, relOf ,
UOPN,UOMNAME, nameOf , classof , parTypes, params, resType,
UMETH,UPC, nameof , definedIn, parNames,

localNames, resType, pcOf , impl,
UTHREAD,
UVENT, eventIn, eventsOut,
UMESSAGE,MsgEvent,USIGNAL,
ests,
UCN,
tsts)

such that all constraints defined above are fulfilled.

7. Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,

1997.

8. Object Management Group. Unified Modeling Language: Superstructure Version 2.1.2

(07-11-02), 2007. http://www.omg.org/docs/formal/07-11-02.pdf.

9. B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme. Herbert

Utz Verlag Wissenschaft, 1996. PhD thesis, Technische Universität München.

Appendix

A.1 STATE TRANSITION SYSTEMS

As objects react on incoming events, state transition systems are an appropriate way

of describing object behaviour. Several forms of state transition systems and their

compositions are used in the theory. Therefore, we introduce the basics of STS as a

general technique here.

A.1.1 STS-Definition

The theory used here is based on the theory of automata, but was partly enhanced

in [9] to describe a form of automata, called I/O∗-automata, where transitions are

TIMED STATE TRANSITION SYSTEMS 93

Definition A.1.1 (I/O∗-STS)

STS

STS(S, I,O) =
{(S, I,O, δ, s0) | s0 ⊆ S ∧ s0 6= ∅

∧ δ ∈ S× I → P(S× O∗)
∧ ∀ s ∈ S, i ∈ I : δ(s, i) 6= ∅}

Notation:

δ : s
i/o
−→ t is shorthand for (o, t) ∈ δ(s, i)

STS(S, I,O) is the set of all, possibly underspecified STS with given state, input

and output sets. An STS has a complete transition relation as δ(s, i) 6= ∅ for all

s, i.

triggered by one incoming event and the effect of this event, namely a sequence of

possible outputs is the output of the same transition. In contrast to I/O-automata [6],

this form allows to abstract away from many internal states of the automaton, which

are necessary, if each output is triggered by an individual transition. The application

of I/O∗-automata to our description of objects is given in Definition A.1.1.

As can be seen from the definition the transition function is nondeterministic.

This allows to model underspecification and thus multiple behaviours in the STS. As

discussed in [9], this underspecification may be resolved during design time by the

developer or during runtime by the system itself taking the choice according to some

random circumstances, sensor input, etc.

The semantics of such an STS is defined in [9] using stream processing functions

in the form of [2]. These stream processing functions allow composition, behavioural

refinement etc.

However, STS themselves are not fully compositional regarding compositionality

of the state space. But there are quite a number of techniques to combine smaller

STS to a larger STS.

A.2 TIMED STATE TRANSITION SYSTEMS

Timed state transition systems do not directly use events to make their steps, but time

progress. A timed state machine equidistantly performs its steps as time progresses

and consumes all events arriving at that time. As a big advantage, we cannot only

integrate time into the specification technique, but also have composition operators

at hand that are compatible with the composition on streams.

A.2.1 Definition of Timed State Transition Systems

A timed state transition system (TSTS) is a STS where each transition resembles

a time step. Such a time step can handle several input events and produce several

