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ABSTRACT
“Software languages are software too”, hence their creation, evolu-
tion, and maintenance is subject to the same challenges. Managing
multiple stand-alone variants of similar DSLs raises the related
maintenance and evolution efforts for the languages and their asso-
ciated tooling (analyses, transformations, editors, etc.) to a higher
power. Software variability management techniques can help to
harness this complexity. Research in software language variability
focuses on metamodels and consequently mainly supports manag-
ing the variability of abstract syntaxes, omitting concrete syntax
variability management. We present an approach to manage con-
trolled syntactic variability of extensible software language product
lines through identification of dedicated syntax variation points
and specification of variants from independently developed fea-
tures. This fosters software language reuse and reduces creation,
maintenance, and evolution efforts. The approach is realized with
the MontiCore language workbench and evaluated through a case
study on architecture description languages. It facilitates creating,
maintaining, and evolving the concrete and abstract syntax of fami-
lies of languages and, hence, reduces the effort of software language
engineering.
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1 INTRODUCTION
Model-driven development (MDD) leverages (domain-specific) mod-
eling languages (DSMLs) to reduce the conceptual gap between
problem domains and the solution domain of software engineer-
ing [8]. Hence, efficient engineering, customization, and reuse
of DSMLs has become a prime concern in MDD characterized
as software language engineering (SLE) [13]. But “software lan-
guages are software too” [7] and as such are subject to the same
challenges regarding creation, evolution, and maintenance. Con-
sequently, SLE has produced a multitude of solutions to create
languages based on metamodels or grammars, interpreters or gen-
erators, well-formedness rules in metalanguages or programming
languages. Metamodels encode the abstract syntax (i.e., structure)
of languages as classes and their associations without providing
means to instantiate models. Grammars also describe the structure
of a language, but can support integrated definition of concrete
syntax as well [9]. From these, model processing infrastructure
to translate textual models into abstract syntax instances can be
derived automatically, which greatly facilitates the efficient usage
of DSMLs.

Research and industry have contributed a wealth of different
DSMLs for different application domains and scenarios. A study [18]
on architecture description languages (ADLs), for instance, discov-
ered over 120 different ADLs for various domains. This requires
creating, evolving, and maintaining independent languages and
tooling for each of these individually. Research in software product
lines (SPLs) has produced means to capture and manage variability
of similar software in product lines. From these, different products
can be derived through selection of features. Leveraging SPLs to
DSMLs can facilitate engineering and maintaining product lines of
similar languages. Research to DSML SPLs focuses on metamod-
els [22, 29] or grammars [16]. Both requires to maintain variability
of the semantic mapping separately. Moreover, approaches to DSML
variability either are restricted to fixed 150% models, where every
possible feature must be known a priori [29], or support arbitrary
language feature extension, which allows to break the structure
imposed by feature diagrams easily.

We present a concept of controlled language variability that facil-
itates a posteriori extensibility with additional features, considers
concrete syntax, and enables (re-)using languages as features with-
out explicitly foreseeing this usage at language design time. It is
realized through a family of integrated MontiCore [9] DSMLs and a
composition mechanism based on well-defined language extension
points. The realization builds upon existing language composition
techniques of MontiCore and enables controlled language composi-
tion to support, e.g., validation on product line level. The individual
languages are independent of each other, which enables these to
be developed by different language engineers.
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The contributions of this paper, hence, are:

• A concept of controlled, extensible language product lines
(LPLs) leveraging composition of independent language fea-
tures that can be composed post hoc without invasion.

• Its realization with the MontiCore language workbench.
• A case study in architecture description languages.

To this end, Section 2 introduces our running example, before
Section 3 introduces preliminaries. Afterwards, Section 4 presents
our problem space concept for managing DSML variability and
Section 5 presents its solution space implementation. Section 6
describes the application of our approach to managing features of
an ADL. Section 7 highlights related work and Section 8 discusses
observations.

2 EXAMPLE
Consider developing software architectures for different domains.
To prevent the efforts of creating, maintaining, and evolving mul-
tiple stand-alone ADL variants tailored to the specific domains,
language engineering starts with a core ADL with specific exten-
sion points and independently developed language components
that provide modeling elements required for architectures of the
different domains. A feature model associates the different language
features (LFs) with extension points of the core ADL and of other
features. Based on a feature configuration, the language compo-
nents are combined such that an integrated ADL is created that
allows the different domain experts to use precisely the modeling
elements required. This enables a separation of concerns where
language engineers develop LFs independent of each other. The
arrangement of these features to a feature diagram is performed by
a LPL manager. A language product manager is a domain expert
who selects all features of a LPL that are relevant to the domain to
generate language-processing tooling. A modeler then uses such a
tool to implement models that conform to this language.

An example of a compact LPL for ADLs used for cloud systems
and embedded systems is depicted in Figure 1. Based on indepen-
dent language components (depicted right) with explicit extension
points provided by different language engineers, the LPL manager
defines the feature model governing, which features are available
and how these relate (depicted left). Besides a common base feature,
the LPL described by the feature model includes features typical
to ADLs for embedded systems (such as automated connection of
ports based on their types or names or component behavior mod-
els) as well features related to scalable and secure cloud systems
(such as replicating components and encrypted communication).
Each feature contains a language component that may yield fur-
ther extension points. The relation between two features defines
how their language components can be integrated. This decou-
pling enables reusing the language components in different feature
models. Based on a feature configuration defined by the product
manager (middle left), a software tool establishes the connections
between the selected features’ language components. Based on
the selection of features, their respective language components
are integrated into the extension points of the language compo-
nents of the respective feature’s parent. For instance, the language
component of feature InputOutputAutomata is integrated into the
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Figure 1: A LPL defined as feature model over language com-
ponents. Given a feature configuration (top), the variant is
transformed into a new language component (bottom).

extension point e of the language component contained in the fea-
ture ComponentBehavior. After integrating all referenced language
components of the selected features, a new language component
is generated, which can be used by the respective domain experts
to model corresponding software architectures using the modeling
elements selected through the feature configuration (in this case
automata models describing component behavior).

Being able to reuse language components without modification
enables to reuse the associated tooling (analyses, transformations)
with the generated language component as well. Changes to a
language component and its tooling are immediately available in
the generated language modules as well. Both reduces the effort
in creating, maintaining, and evolving modeling languages. The
loose coupling between features and language components also
enables to easily integrate new features into the feature diagram –
integrating a new feature below ComponentBehavior, for instance,
does not influence other features and language components. As the
resulting language component can yield extension points again, the
creation of intermediate products that require further refinement
also is supported. Where multiple similar domains are addressed,
creating refined domain-specific LPLs enables restricting a large
base LPL accordingly.

3 PRELIMINARIES
While our concept for syntactical language variability can be ap-
plied to metamodel-based languages (e.g., via abstract metamodel
classes) as well, its realization is based upon the MontiCore lan-
guage workbench [9]. MontiCore employs extended context-free
grammars (CFGs) supporting integrated definition of concrete and
abstract syntax [9] of DSMLs. From a DSML’s CFG, MontiCore gen-
erates its abstract syntax tree (AST) classes and parsers that trans-
late textual models into AST instances. To validate well-formedness
constraints not expressible with CFGs, MontiCore features com-
positional context conditions (CoCos). Template-based code gen-
erators realize the DSMLs’ semantics. MontiCore also supports
compositional DSML integration via inheritance, embedding, and



aggregation [9]. Inheritance enables DSMLs to extend and override
productions of their (possibly multiple) parent DSMLs. From inher-
iting DSMLs, MontiCore produces refined AST classes that inherit
from the AST classes of the overridden productions. MontiCore
also features interface productions, which enable underspecifica-
tion in grammars that can be leveraged through inheritance to
contribute new productions at well-defined extension points as
depicted in Figure 2.

grammar ADLGrammar {
Component = "comp" Name " {"
Port* Subcomponent* Connector*

"}";
interface Port;
DefaultPort implements Port 
= "port" Type Name ";";

// .. Subcomponent, Connector, etc.
}

01
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04 
05
06
07
08
09 

grammar CloudADLGrammar
extends ADLGrammar {

EncryptedPort implements Port = 
"secport" Protocol Name ";";

Protocol = ("DES"|"AES") ";";
}
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Figure 2: Example: Grammar Inheritance in MontiCore.

Here, the grammar ADLGrammar (top left) describes the quintes-
sential elements of an ADL [19], i.e., components that yield inter-
faces of typed ports and subcomponents that exchange messages
through connectors between their ports (ll. 2-4). The production
Port (l. 5) is an interface production that does not describe concrete
or abstract syntax. Instead, it acts as extension point, which can be
used in the defining language, such as the production DefaultPort
(ll. 6-7), which consists of a data type and a name. From this, Mon-
tiCore generates five AST classes (depicted top right), out of which
Port is an interface implemented by the AST class DefaultPort.

Interface productions can also be used in inheriting grammars,
such as illustrated with grammar CloudADLGrammar depicted bot-
tom. The grammar extends ADLGrammar (l. 2) and defines another
implementation of Port that features security properties and omits
port data types (ll. 3-4). Accordingly, MontiCore generates the two
AST classes EncryptedPort and Protocol. Through this, CloudADL-
Grammar can reuse all modeling elements of the extended gram-
mar and introduce new ones where foreseen by the developers of
ADLGrammar.

To leverage interface productions as extension points for DSML
features, we specify their use and relations through feature mod-
els [12]. We use a textual representation of feature trees, with the
usual relations (mandatory, optional) between parent- and sub fea-
tures and feature groups (alternative, exclusive). Besides this, the
possible feature configurations can be restricted via cross-tree con-
straints (requires, excludes). For visualization purposes, we some-
times provide the graphical representation.

4 MODELING DSML VARIABILITY
Generally, languages are characterized as “the set of sentences” [13]
that constitute the language, which also applies to modeling lan-
guages. With this definition being hardly accessible to investigation,
a common refinement [4] is that DSMLs comprise (1) a concrete
syntax (its sentences); (2) a minimal abstract syntax (structuring its

sentences); (3) a semantic domain (typically a well-defined math-
ematical theory); and (4) a semantic mapping (giving meaning to
the abstract syntax by mapping it to the semantic domain).

Software languages can be constructed from a variety of different
constituents. Abstract syntaxes can be defined through metamodels
(cf. EMF’s Ecore [24], MPS [28]) or grammars (cf. Neverlang [25],
Xtext [1]). Concrete syntaxes can be implemented through parsing
textual models [14] or graphical editors [27]. Semantic mappings
can be implemented through interpretation [5] or code genera-
tion [1]. Depending on the selected language constituents, various
different forms of language composition are possible as well [6]. To
manage variability and to explain composition, the definition above
needs refinement. In the following, we define language components
to comprise of (1) a grammar defining its abstract syntax (AS) and
concrete syntax (CS) in an integrated fashion, (2) a (possibly empty)
set of dedicated interface productions acting as abstract syntax ex-
tension points, and (3) a set of well-formedness rules. The dedicated
set of abstract syntax extension points is foreseen by the language
engineer to enable extending the language with new capabilities.
The language itself might provide (default) implementations for its
extension points. This, for instance, enables to define a Statechart
language with extension points for guard transition expressions
that already yields built-in expression but is open for future ex-
tension as well. The notion of AS extension points also applies
to metamodel-based AS definitions, where these can be realized
similarly.

As language components are unaware of being used with fea-
tures, the composition of LFs and their composition enables reusing
independently developed language components in different feature
models. This facilitates extending the feature model post-hoc with
new features, and prevents uncontrolled composition (cf. [25]). The
composition operator we use for composing language components
prevents invalidation of feature models through adding additional
features. This property, called conservative extension, holds because
it is impossible to remove syntactical language concepts by adding
new features. The property holds only for the language’s syntax
and guarantees tooling stability, but cannot guarantee semantical
correctness of analyses. The next section presents a realization of
language components, LFs, and the composition operator based on
MontiCore.

Our variability concept aims at enabling a well-defined inte-
gration of language components through definition of LPLs over
features using these components. To this end, we describe language
variability as trees of LFs supporting the usual relations [12] be-
tween feature diagram elements. Each feature contains a reference
to its parent feature, a language component, and a set of mappings.
Each of these mappings relates a production of its grammar to an
interface production of the grammar contained by its parent feature
(relative to a specific feature model). The concept also allows to
refine an extension point with another extension point, i.e., inter-
face production. For the top-level feature, the set of mappings is
empty. Through the relation to a parent feature, LFs are specific to
the feature model they are used in, which also governs the restric-
tions between LFs (such as being optional, mandatory, exclusive,
etc.). In particular, this enables reusing language components in
different features and with different extension points. We reuse the
requires relationship between two features to denote that a feature
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Figure 3: An illustration of LFs based on language com-
ponents comprising grammars with dedicated extension
points.

relies on the presence of another feature, which, e.g., reflects in an
inheritance relationship between the grammars of these features.

Individual LFs are not required to implement all extension points
of their parent feature, which enables to refine LPLs by fixing the
binding of some extension points and leaving other to be bound
through features. Moreover, this enables using any suitable lan-
guage as base language without modifying the language itself. Cre-
ating a LPL requires identifying and arranging LFs in a feature
model based on their extension points. Language product man-
agers then can derive language products from the LPL according
to specific requirements (e.g., to derive a robot ADL). How lan-
guage components are related to LFs is depicted in Figure 3, which
highlights the contents of some of the features depicted in Figure 1.

Here, the Base LF contains the ADLGrammar grammar, which
describes quintessential elements of a component & connector
ADL. This includes the extension point CmpElem, which is real-
ized as an interface production of ADLGrammar and for which the
ADLGrammar might provide its own (default) implementations. The
feature ComponentBehavior contains the BehaviorGrammar com-
prising an interface BehModel that refines the extension point
CmpElem. The grammar of the feature InputOutputAutomata de-
scribe the syntax for input output automata, and the feature maps
these to the interface production BehModel of its parent feature.
Each feature can contribute well-formedness rules operating on its
abstract syntax: for instance, the AutomataLngComponent might
yield a well-formedness ensuring that names of automaton states
are unique. Based on the selected feature configuration, the features
are composed to ultimately produce an integrated language compo-
nent that enables the modeler to describe precisely what she needs
to express without facing the accidental complexities of superfluous
modeling elements. This composition is directed, as features lower
in the feature models’ hierarchy implement extension points of
their parent features.

Language features are composed pairwise one after another, such
that ultimately, a single, composed LF remains. The order in which
sibling features are composed has no influence on the overall result.
All context conditions are contained in the composed feature, and a

joined grammar is generated. The composed LF retains all extension
points.

To this effect, the composition is monotonically increasing in
number of the extension points as features cannot remove extension
points of their parents’ grammars. The notion of amandatory exten-
sion point only reflects in the feature model, but not in a single LF.
Moreover, if grammar extension is allowed in the implementation,
the approach only permits the grammars of a LPL to inherit from
another if this is indicated as a requires relation between the fea-
tures. As the composition relies on grammar extension, the newly
added inheritance relations might interfere with existing ones and
create a circular inheritance relation. To overcome this, we check
the validity of a feature selection also with regard to potential circu-
lar inheritance relationships. The next section presents a realization
of language components, language features, and composition based
on the MontiCore languages.

5 INTEGRATING DSML SYNTAXES
With MontiCore [9], languages are defined in terms of extended
context-free grammars (CFGs) that integrate concrete syntax with
abstract syntax and use well-formedness rules implemented in
Java, called context conditions (CoCos), to add restrictions not ex-
pressible through CFGs. Interface productions describe grammar
extension points for which the grammar itself may provide (de-
fault) implementations (cf. Figure 2). Our solution space variability
mechanisms, hence, are based on composing language components
provided as MontiCore CFGs and context conditions.

Language components are developed independent of how they
are used within a LPL. Nonetheless, language engineers have to
foresee potential extension points in terms of interface productions.
In our realization of the concept, language components are defined
by a MontiCore CFG (MCG) and a list of context conditions. The
approach generally permits the MCG of a language component to
extend another MCG, unless this grammar is also part of the LPL.
MontiCore supports dedicated interface productions that do not
have a right-hand side as illustrated in l. 5 of Figure 2. Interfaces can
be used in other productions (cf. Component in ll. 2ff). In another
production, which is not necessarily in the same grammar model,
interfaces can be implemented by other productions (cf. ll. 6f). The
resulting structure of the AS is depicted on the right of Figure 2.

A language component encapsulates all artifacts of the definition
of a single language into one dedicated artifact by holding explicit
links to the grammar and a set of links to CoCo classes. Figure 4
depicts an exemplary language component ADLLC that references
the ADL grammar (see Figure 2) and two CoCos. The exports key-
word starts a list of explicit extension points via the names of the
respective MontiCore interface productions. As the implementation
exploits MontiCore interface productions as extension points, it
might be that several interface productions are exposed as exten-
sion points undesiredly. To overcome this, we require language
engineers to explicate all language extension points in the language
component.

We separate LFs from language components to foster decoupled
development of a language component and its context in a LPL.
A LF defines (1) the language component it is based on, (2) the
parent feature in the feature tree, and (3) a binding of grammar



language ADLLC {

grammar com.ma.ADLGrammar;

cocos {

com.ma.cocos.CompNameLowerCase,

com.ma.cocos.PortNamesUnique

}

exports { CmpElem }

}
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Figure 4: The language feature ADLLC.

feature BehaviorLF {

parent ADLLF;

language BehaviorLngComponent;

bindings { CmpElem -> BehModel; }

}
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LF feature ADLLF {

// no parent 

language ADLLC;

// no bindings

}
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Figure 5: The LFs BehaviorLF and ADLLF.
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start Component;

RobotADLBehModel extends IOAutomaton implements BehModel

= "ioautomaton" "{" AutElem* "}";

} 
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grammar BehaviorGrammar {

interface BehModel;

//...

} 

grammar IOAutGrammar {

IOAutomaton

= "ioautomaton" "{" AutElem* "}";

//...

}
production
extension

interface
implementation

Figure 6: The composition (bottom) of two grammars (top).

productions to extension points of the parent feature. Language
features are the building blocks of the feature model of a LPL. Each
LPL requires a root feature, which has an empty parent feature
and must not have bindings. For all other features, we require the
parent to be present. If any bindings are present, the composition
operator realizes language embedding (cf. Section 2). Otherwise, if
no bindings are present, it realizes language aggregation.

Figure 5 depicts two LF models. BehaviorLF (left) references
ADLLF as parent feature (l. 2) and BehaviorLngComponent as the
implementing language component (l. 3). The binding relates the
extension point CmpElem of the parent feature with the BehModel
extension point of the grammar of the BehaviorLngComponent
(l. 4). ADLLF (right) neither yields a parent feature, nor bindings.

The features are arranged in a feature model. We reuse a lan-
guage and tooling for textual feature diagrams and selected variants
(i.e., feature configurations) implemented with MontiCore. With
the LPL defined by the LPL manager at hand, a product manager
can define a language variant by selecting a set of features. If the se-
lection is valid with regard to the feature model and with regard to
the approach’s constraints, a new, composed language component
is generated. From this, MontiCore generates language process-
ing infrastructure such as a parser and an AST data structure on
a push-button basis and iteratively composes two features from
the leaves of the feature tree to the root as explained in Section 4.
Figure 6 (top) depicts the grammars of the two LFs BehaviorLF
and InputOutputAutomata. The bottom of Figure 6 depicts the
grammar that results from the composition of these features, with

language RobotADLLC {

grammar com.ma.RobotADLGrammar;

cocos {

com.behavior.SingleBehaviorModel,

com.ioaut.SingleInitialState,

//...

}

exports { CmpElem, BehElem}

}
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Figure 7: Language component of the composed LFs.

the binding applied. The name of the generated grammar is de-
rived, with the feature configuration name as prefix before the
name of the grammar of the root feature. The resulting grammar
uses MontiCore’s inheritance mechanism to extend both grammars.
For technical reasons, the generated grammar has to reference the
start production of the grammar of the root feature, to be used as
top-level element for the generated parser. Further, the generated
grammar comprises a new, generated production for every binding
that has been applied. The left-hand side of the generated produc-
tion is a derived non-terminal name, that states that the production
extends the production of the extension and that it implements the
interface production of the extension point. The effect of imple-
menting an interface production has been explained in Section 3,
the effect of extending another production is that the production
can be applied wherever the extended production can be applied.
Additionally, the generated abstract syntax class extends the gener-
ated abstract syntax class of the extended production. This has the
advantage that all algorithms and tooling that are applicable to the
extended AS element can be applied to the new one. The right-hand
side of the generated production usually equals the right-hand side
of the extended production. An exception is that if the right-hand
side of a generated production contains a non-terminal symbol
that has been bound as part of mapping. This is replaced with the
left-hand side of the production generated from this mapping.

If an extension point is refined, both the extension and the ex-
tension point are realized as interface productions. In this case, a
new interface (with a derived name) is generated that extends both
interfaces. MontiCore generates parsers such that they are capable
of parsing, despite this ambiguity in the concrete syntax.

Figure 7 depicts the language component resulting from the
compositions of the two language features InputOutputAutomata
and BehaviorLF. The referenced grammar is the grammar depicted
at the bottom of Figure 6, which combines the abstract syntaxes
and concrete syntaxes of the composed grammars. The context
conditions of both features are joined. As the context conditions
are checked against certain AS classes (and therefore, also their
subclasses), all context conditions can be applied to the generated
classes. It also comprises all exported extension points of the in-
dividual language components. Generally, the composition of two
features f and д, where д is the parent of f , results in a composed
LF with the parent feature of д, the composed language component,
and the bindings of f .

6 EXTENDED EXAMPLE
This section demonstrates the application in context of an ADL to
adapt it towards different domains. Developing and maintaining



grammar ADLGrammar {

Component = "component" Name "{" CmpElem* "}"; 

interface CmpElem;

interface Port extends CmpElem;

DefaultPort implements Port = "port" Type Name ";";

/* Subcomponent and Connector productions omitted */

}
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language CoreADLLngComponent {

grammar ADLGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique
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exports { CmpElem }

}
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feature BaseADL { language CoreADLLngComponent; }01 LF

Figure 8: Parts of the BaseADL language feature.

domain-specific variants of an ADL is challenging [2]. To this effect,
we applied the approach presented in this paper to derive domain-
specific ADL variants from a domain-agnostic BaseADL. Figure 1
in Section 2 depicts the language feature model representing all
possible ADL variants. The root feature BaseADL contains the basic
elements such as components, ports, and connectors that are com-
mon to each variant. The Autoconnect feature adds syntax and
transformations to realize an automatic connection of ports with
either identical names or types. The feature Encryption enables
to describe secure ports (SecurePort) and encrypted connections
(EncryptedConnector) between them. The Replication feature
provides elements for modeling systems where components are
capable of replicating themselves when needed. This is useful in
client-server architectures, for instance, where a client component
is replicated on each request. The LPL manager considers compo-
nent replication to be a threat for autoconnecting ports. Choosing
one of the two corresponding features thus excludes the other.
The ComponentBehavior feature introduces behavior-blocks to the
ADL. Component behavior models are intended to be modeled in
such blocks, only. The subfeatures StructuredTextBehavior and
InputOutputAutomata contain different behavior languages. As it
should not be possible to model empty behavior blocks, choosing
the ComponentBehavior feature requires to choose at least one
feature that defines a component behavior language. Automata
use expressions on their transitions as guard conditions. For this
purpose, the LPL currently only includes JavaExpressions, which
are therefore marked mandatory.

Consider a product manager who aims at developing static soft-
ware architectures where atomic components’ behavior can be spec-
ified via input/output automata. She thus selects the configuration
containing the following features BaseADL, ComponentBehavior,
InputOutputAutomata, and JavaExpression. Parts of the config-
uration’s constituent are depicted in Figures 8-11. The BaseADL LF
(cf. Figure 8) neither has a parent feature nor defines a binding as it
is the LPL’s root feature. The feature’s grammar defines language
elements common to all ADL variants such as components, con-
nector, and ports. The language component further defines two
context conditions and exports the interface CmpElem.With this, it is
possible to extend component definitions with further top level ele-
ments through LF composition. The Subcomponent and Connector
productions of the BaseADL grammar are omitted. The grammar

component grammar ComponentBehaviorGrammar {

interface BehModel;

}
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language BehaviorLngComponent {

grammar BehaviorGrammar;

cocos {

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents

}

exports { BehModel }

}
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feature ComponentBehavior {

parent BaseADL;

language BehaviorLngComponent;

bindings { CmpElem -> BehModel }

}
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ComponentBehavior

Figure 9: The ComponentBehavior language feature.

component grammar IOAutGrammar {

IOAutomaton = "ioautomaton" "{" AutElem* "}";

interface AutElem;

State implements AutElem = 

(["initial"])? "state" Name ";";

Transition implements AutElem = "transition" src:Name

"[" Guard "]" "{" PortAss* "}" trg:Name ";";

interface Guard;

interface PortAss;
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language AutLngComponent {

grammar IOAutGrammar;

cocos {

com.ioaut.cocos.StateNamesUpperCase,

com.ioaut.cocos.UniqueInitialStates

}

exports { Guard, PortAss }

}
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feature InputOutputAutomata {

parent ComponentBehavior;

language AutLngComponent;

bindings { BehModel -> IOAutomaton }

}
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InputOutputAutomata

Figure 10: The InputOutputAutomata language feature.

of LF ComponentBehavior (cf. Figure 9) defines a single interface
BehModel where behavior models for atomic components are in-
tended to be embedded. The feature’s language component further
comprises two context conditions. The first ensures that each com-
ponent contains at most one behavior model. The second requires
that composed components must not contain behavior models. The
LF binds the BehModel interface to the CmpElem interface of its
parent feature’s grammar. As a result, it is possible to specify com-
ponent behavior models as top-level elements in component defini-
tions. However, the syntax of possible component behavior models
is still underspecified. For this reason, the ComponentBehavior LF
is connected to two further features via an or-node (cf. Figure 1).
Thus, each valid configuration containing the ComponentBehavior
feature also contains at least one of the two subfeatures. The prod-
uct manager chose the InputOutputAutomata feature out of these
two features. The feature’s grammar (cf. Figure 10) enables to
model input/output automata for specifying component behav-
ior. Transitions of such automata consist of guards (l. 7) and port
assignments (l. 7). The productions’ implementation remain un-
derspecified (ll. 8-9) and are exported by the feature’s language
component. Thus, the exported interfaces must be bound by the
LF’s sub-features. The language component further consists of two



grammar JavaInADLExprGrammar extends JavaDSL {

GuardExpr = Expression;

PortAssExpr = Expression;

}
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language JavaExprInADLExprLC {

grammar JavaGuardExprGrammar;

cocos {

com.javaexprguard.cocos.PortAssSimpleNameOnLHS,

com.javaexprguard.cocos.PortAssCorrectlyTyped,

com.javaexprguard.cocos.GuardExprBoolean,

com.javaexprguard.cocos.ReferencedPortsExist

}

}
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imported from JavaDSL

feature JavaExpression {

parent InputOutputAutomata;

language JavaExprInADLExprLC;

bindings {Guard -> GuardExpr, PortAss -> PortAssExpr}

}
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Figure 11: The JavaExpression language feature.

context conditions ensuring each input/output automaton contains
exactly one initial state and that state names start with capital let-
ters. The grammar’s IOAutomaton production is embedded into
the BehModel production of the LF’s parent feature. Further, the
JavaExpression feature (cf. Figure 11) has to be embedded, as it
is marked as mandatory subfeature of InputOutputAutomata. Its
grammar inherits the productions from a Java grammar (l. 1) and
defines two new Productions (ll. 2-3). Using the new productions
GuardExpr and PortAssExpr enables to specify Java expressions
(The Expression production is part of the inherited Java grammar).
The two productions are bound to the Guard and PortAssExpr
interfaces exported by the InputOutputAutomata LF. The LF’s
grammar introduces two new productions and does not simply
directly bind the Java Expression production to the Guard and
PortAssignment productions to enable separate handling of guards
and port assignments via their types. The first two context con-
ditions of the feature’s language component, for instance, only
restrict the well-formedness of expressions used in port assign-
ments, whereas the third context condition only restricts guard
expressions, and the fourth context condition affects guards as well
as port assignments. Composing the four features as described
in Section 5 leads to the LF depicted in Figure 12 that models the
composed language. The grammar is composed of the grammars of
the selects LFs by iteratively applying the transformation described
in Section 5. The new LF’s CoCos are all CoCos of all selected LFs.
The new LF exports each interface exported by any selected LF. A
validmodel of the new language is depicted in Figure 13. The compo-
nent and port declarations (ll. 1-3) originate from the ADLGrammar
(cf. Figure 8). The InputOutputAutomata LF’s grammar (cf. Fig-
ure 10) provides the possibility to declare automata, states, and
transitions (ll. 5-7) through extending the interface added by the
ComponentBehavior LF (cf. Figure 9). The expressions true and in
= out used in the transition’s guard and port assignment originate
from the JavaExpression LF (cf. Figure 11).

7 DISCUSSION AND RELATEDWORK
Our notion of DSML features is based on unrestricted interfaces,
i.e., the interface productions do no prescribe parts of the required
abstract syntax or concrete syntax. While this prevents lifting func-
tionality considering these features to the LPL, it allows for great

language CompoundLC {

grammar CompoundGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique,

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents,

/* CoCos of IOAutLC and JavaExprInADLExprLC omitted */

}

exports { CmpElem, BehModel, Guard, PortAssignment }

}
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feature CompoundLF { language CompoundLC; }01 LF

grammar CompoundADLGrammar extends ADLGrammar, 

BehaviorGrammar, IOAutGrammar,

JavaInADLExprGrammar {

start Component;

interface CompoundBehModel extends BehModel, CmpElem;

CompoundIOAutomaton extends IOAutomaton

implements CompoundBehModel =                        

"ioautomaton" "{" AutElem* "}";

CompoundGuardExpr extends GuardExpr

implements Guard = Expression;

CompoundPortAssExpr extends PortAssExpr

implements PortAss = Expression;

}
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CompoundADL

Figure 12: Result of composing the configuration’s features.

component MyComponent {

port Integer in;

port Integer out;

ioautomaton {

initial state s1; state s2;

transition s1 [true] {in = out} s1;

}

}
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Figure 13: A valid model of the LF depicted in Figure 12.

extension flexibility. The inheritance relation between the feature
grammars and the base grammar is established after feature selec-
tion. This can liberate feature developers from comprehending the
base grammar at all, leading to fully independent DSML features.
However, our concept also supports feature grammars aware of
the base grammar to enable more specific features. Further, using
the requires mechanism of feature diagrams, more dependencies
between features can be described. Where most existing approaches
use either bottom-up or top-down development of LPLs [15], we
allow both directions as the feature model and the domain model
are only loosely coupled. This supports agile extension of the LPL.
The approach does not cover pure presentational variability [3]
in the concrete syntax that does not affect the abstract syntax. As
stated in [11], a usable language extension framework should have
independent language extensions, which shall be automatically
composable, and must not yield a corrupted composed compiler.
Our approach satisfies these assumptions, because language compo-
nents are (usually) independent of each other and can be composed
using the composition mechanism described above. Our form of
language (syntax) composition realizes the concept of conservative
extensions known from formal languages. To this effect, all models
that are conform to a language defined by a set of selected features,
are still valid models of a language that is based on these features
and arbitrary other additional selected features. Through a system-
atic literature review [20] comparing different approaches for LPLs,
the authors identified 14 approaches realizing LPLs, where many



different concepts are involved. Some of the approaches support
variability in abstract syntax only [10, 23, 29]. Most approaches use
variability in metamodels, only few support variability in abstract
syntax and concrete syntax on grammars, such as Neverlang [25],
LISA [21], and FeatureHouse [17]. Our concept of LFs relates to
the language components of Neverlang [25, 26], which contain syn-
tax definitions in form of grammars and corresponding evaluation
phases realizing its semantics. It differs in the way extension points
are defined, which are realized in Neverlang using placeholders in
the grammar, which are resolved via matching names. AiDE [16],
built on top of Neverlang, also supports variability management of
language components.

8 CONCLUSION
We have presented a concept for syntactic DSML variability that
facilitates engineering, maintaining, and evolving product lines of
related languages. The concept relies on modularly composable
grammars encapsulated in DSML feature models related through
a feature diagram model. The composition of the modular DSML
features produces an integrated new feature that realizes the prop-
erty of a conservative extension. With the generated DSML feature,
a language workbench, such as MontiCore, can generate a parser
and further tooling on a push-button basis. We lay this as the foun-
dation for further research to be capable of covering not only the
syntax, but all constituents of DSMLs.
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