
CHAPTER 3

CONSIDERATIONS AND RATIONALE

FOR A UML SYSTEM MODEL

Manfred Broy1 and Maŕıa Victoria Cengarle1 and

Hans Grönniger2 and Bernhard Rumpe2

1Software and Systems Engineering, Technische Universität München, Germany
2Software Systems Engineering, Technische Universität Braunschweig, Germany

3.1 INTRODUCTION

Semantics definition for the UnifiedModeling Language (UML) [33, 8] is not an easy

task. Although considerable efforts have been made starting in the late nineties [19],

no commonly agreed, formal and integrated semantics of the UML exists. In [1], we

have defined a system model as a semantic domain for the UML. The system model

is supposed to form a possible core and foundation of the UML semantics definition.

For that purpose, the definitions are targeted towards UML which means that central

concepts of UML have been formalized as theories of the system model.

This contribution is structured as follows: In the rest of this Chapter, we discuss

the general approach and highlight the main decisions. This Chapter is important to

understand the system model definition, given in Chapter 4. This work is based on

UML2 Semantics and Applications. By Kevin Lano

Copyright c© 2011 John Wiley & Sons, Inc.

43

[BCGR09] M. Broy, M. V. Cengarle, H. Grönniger, B. Rumpe
Considerations and Rationale for a UML System Model.
In: Kevin Lano, editor, UML 2 Semantics and Applications.
John Wiley & Sons, 2009
www.se-rwth.de/publications

44 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

the second version of the system model [1] which is the result of a major effort to

define the structure, behaviour and interaction of object-oriented, possibly distributed

systems abstract enough to be of general value, but also in sufficient detail for a

semantic foundation of the UML. The first version of the system model can be found

in [4, 5, 6].

3.2 GENERAL APPROACH TO SEMANTICS

The semantics of any formal language consists of the following basic parts [44]:

• the syntax of the language in question (here: UML) – be it graphical or textual,

• the semantic domain, a domain well-known and understood based on a well-

defined mathematic theory, and

• the semantic mapping: a functional or relational definition that connects both,

the elements of the syntax and the elements of the semantic domain.

This technique of giving meaning to a language is the basic principle of denotational

semantics: every syntactic construct is mapped onto a semantic construct. As dis-

cussed in the literature, there are many flavors of these three elements. Syntax can,

for example, be specified by grammars or metamodels. To stay formal, our approach

intends to use the abstract syntax of UML in a mathematical form that resembles

context-free grammars, examples are given in [11, 10]. In [24] the term system

model was used the first time to denominate a semantic domain; it defines a family of

systems, describing their structural and behavioural issues. Each concrete syntactic

instance (in our case, an individual UML diagram, or even a part of it) is interpreted

by the semantic mapping as a predicate over the set of systems defined by the system

model. As explained in [21] the semantic mapping has the form:

Sem : UML → P(Systemmodel)

and thus functionally relates any item in the syntactic domain to a set of constructs

of the semantic domain. The semantics of a model m ∈ UML is therefore Sem(m).
Given any two models m, n ∈ UML combined into a complex one m ⊕ n (for

any composition operator ⊕ of the syntactic domain), the semantics of m ⊕ n is

defined by Sem(m ⊕ n) = Sem(m) ∩ Sem(n). This definition also works for sets

of UML documents which allows an easy treatment of views on a system specified

by multiple UML diagrams. The semantics of several views, i.e., several UML

documents is given as Sem({doc1, . . . , docn}) = Sem(doc1) ∩ . . . ∩ Sem(docn). A
set of UML models docs is consistent if systems exist that are described by the

models, so Sem(docs) 6= ∅. As a consequence, the system model supports both view

integration and model consistency verification.

In the same way, n ∈ UML is a (structural or behavioural) refinement of m ∈
UML, exactly if Sem(n) ⊆ Sem(m). Formally, refinement is nothing else than

“n is providing at least the information about the system that m does”. These

STRUCTURING THE SEMANTICS OF UML 45

general mechanisms provide a great advantage, as they simplify any reasoning about

composition and refinement operators.

The system model described in this document identifies the set of all possible

object-oriented (OO) systems that can be defined using a subset of UML which

we call “clean UML” as introduced below. It relies on earlier work on system

models [9, 24, 20, 2, 1, 40].

To capture and integrate all the orthogonal aspects of a system modeled in UML,

the semantic domain necessarily has to have a certain complexity. Related approaches

very often contain a relatively small and specialized semantic domain, such as (pairs

of) sets of traces for UML interaction [22], template semantics based on hierarchical

state machines [42] or Kripke structures [43] for UML State Machines, or sets of

inequations to give semantics to class diagrams focusing on satisfyability of associa-

tion cardinality [38, 8, 30, 18]. However, these approaches fail to give an integrated

semantics for different types of UML notations. Approaches with a broader scope are

for example [14] which define a UML subset called krtUML and associates with each

model a symbolic transition system. [27] combine class, object and state machine

diagrams using graph transformations. In [15] dynamic metamodeling (also based

on graph transformations) is used to define the operational semantics of, e.g., UML

activities. Semantics for class and state machine diagrams have been developed for

different purposes. [39] examines the refinement of associations. [17] provide a

compositional semantics that considers activity groups. [28] additionally supports

sequence diagrams and considers timing issues. In [45] consistency between (sim-

plified) state machines and sequence diagrams is checked using a model checker.

Consistency conditions are also proposed [29, 35].

3.3 STRUCTURING THE SEMANTICS OF UML

Our long term goal is to define the semantics of a comprehensive core of well-defined

concepts of UML.

��������	

�
��

������������	 ��
��������

Figure 3.1 General strategy for the definition of the semantics of UML 2.0

The overall strategy of giving semantics to a modeling language is depicted in

Figure 3.1. The basic idea expressed by this diagram is as follows:

46 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

• Full UML is restricted to a subset (called “clean UML”) that can be treated

semantically without overly sophisticated constructs.

• Clean UML is mapped by transformations into Simplified UML. In doing

so, derived constructs of UML are replaced by their definition in terms of

constructs of the core. That way, notational extensions and derived concepts

can be eliminated. UML provides a number of derived operators which do

not enhance the expressiveness of the language but the comfort of its use.

Derived constructs can be defined in terms of constructs of the core as, e.g.,

state hierarchy of UML’s state transition diagrams can be neglected without

losing expressiveness.

• Simplified UML, finally, is mapped to the system model using a predicative

approach.

The system model describes the “universe (set) of all possible semantic structures

(each with its behaviour)”. The semantic mapping interprets a UML model as a

predicate that restricts the universe to a certain set of structures, which represents the

meaning of the UML model. To be able to faithfully map concepts from UML to the

system model, the system model has to cover a number of basic concepts expressible

in UML. Otherwise, the semantic mapping cannot be defined in an adequate manner.

The system model itself is defined in a modular fashion. From a global viewpoint,

a system in the system model is a state transition system. This semantic universe is

introduced in layers of mathematical theories which are shown in Figure 3.2. Please

note that this figure shows the full set of theories as defined in [1], in this text we

slightly shorten the definitions.

The rectangles in Figure 3.2 contain names of the theories, whereas arrows show

a relationship among concepts that could be paraphrased as “is defined in terms of”.

For instance, basic theories for types and objects are used to define the data, control,

and event state of a system, that in turn are used to define the state space for the

transition systems.

When defining the constituents of the system model, we will state the decisions

that have to bemade, that can be left open or do not even occur when staying informal.

We clearly identify those decisions either directly, or mark them as a “variation point”

and leave it to the user of the system model to choose or adopt a variation. Those

variation points may very nicely correspond to stereotypes on the language side, such

that the language designer (and semantics definer) can transfer the freedom of choice

to the actual modeler.

3.4 THE MATH BEHIND THE SYSTEM MODEL

A precise description of the system model calls for a precise instrument. For our

purposes, mathematics is exactly appropriate because of its power and flexibility.

Admittedly, reading and understanding mathematics is an effort that requires some

training, but it allows for precisely and abstractly describing things that cannot be

THE MATH BEHIND THE SYSTEM MODEL 47

������

���	

�����

���	�
��
�� ������

�
�	� ��

�
��

���������

����
�����

���

�
�
������

�
�
�����

������
����
������

����
	

�����������

�����	

��
����
��

�����	�

 ���
����

�����
!� ��

��	��

����

�����	�

�����	"�����

����
��#$��������

��	 �%�����
���&

 �%�����
����

����

��
����

 �%���
$���

�������
$���

#���������

����	���

����
#$������

����������

�
�

� �

� ��'���	�(��

����(

�	�	���

Figure 3.2 Theories that constitute the system model

defined using, e.g., UML itself. Using UML itself to describe semantics of UML

might seem, a pragmatic approach. This approach, however, is somewhat meta-

circular and necessarily calls for a kind of bootstrap, typically mathematics again.

Moreover, understanding the semantics of UML in terms of UML itself demands a

very good knowledge of the language whose semantics is about to be formally given.

Besides, UML does not conveniently provide the appropriate mechanisms we need,

e.g., to handle scheduling, distributed systems and to deal with underspecification in

a precisely controllable way. Of course, whenever appropriate, we use diagrams to

illustrate some mathematically defined concepts, but the diagrams do not replace the

mathematical formulas.

Instead of relying on basic mathematics, related work often proposes the use of

specialized formalisms. [7, 16] translate UML to the formal language Z while [37]

map to B. Graph transformations are used in [27]. The process algebra π-calculus

has been proposed to model activities [26] that also have been formalised using

Petri nets [41], or Abstract State Machines (ASMs) [37]. Trace-based semantics for

interactions have been presented in [22, 12]. Metamodeling techniques have been

employed by [15]. Template semantics [42] that are based on state machines allow

for describing semantic variation points.

We intentionally avoided the use of more specialized notations such as Z, B,

ASMs, etc. for two reasons.

48 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

• It is not clear that any of these notations is general and comfortable enough to

allow a satisfactory and adequate expression of all concepts in UML.

• Arguably, all these notations have a certain bias (e.g., for state-based formal

specification, analysis with a theorem prover, analysis with a model checker);

we kept the system model free of this bias to ensure that we obtain a true

reference semantics that, if useful, enables the future use of other notations for,

e.g., analysis purposes.

Because of these reasons we decided to use only mathematics. The following

principles have proven to be useful when defining the system model:

1. Mathematics is used to define the system model. Its sub-theories are built

on: numbers, sets, relations, and functions. Additional theories are built in a

layered form. That is, only notation and mathematical definitions and neither

new syntax nor language are introduced or used in the systemmodel. Diagrams

are occasionally used to clarify things, but do not formally contribute to the

system model.

2. The system model does not constructively define its elements, but introduces

the elements and characterizes their properties. That is, abstract terms are

used whenever possible. For instance, instead of using a record to define the

structure of an object, we introduce an abstract set of objects and a number of

selector functions. Properties of the set are then defined through such selectors.

Based on our background and knowledge, we claim that we can transform this

system model into a constructive version (and actually do this, cf. [9]), but that

would probably be more awkward to read and less intuitive, as it costs a lot

more mathematical machinery. This will satisfy “constructivists” who wish

everything being constructive or executable.

3. Everything important is given an appropriate name. For instance, in order to

deal with classes, there is a “universe of class names” UCLASS, and similarly

there is also a “universe of type names” UTYPE, which however is just a set

of names (and not types); see Sects. 4.3.4 and 4.3.1 below.

4. To our best knowledge, any underlying assumptions were avoided, according

to the slogan: What is not explicitly specified does not need to hold. If we, for

instance, do not explicitly state that two sets are disjoint, these two sets might

have elements in common. Sometimes these loose (underspecified) ends are

helpful to specialize or strengthen the system model and are there on purpose.

If you need a property, (a) check whether it is there, (b) if absent, check whether

it can be inferred as an emerging property, (c) if not, check if it is absolutely

necessary, and (d), if yes, you may add it as an additional restriction.

5. Generally, deep embedding (or explicit representation) is used. This means

the semantics of the embedded language, i.e., UML, is completely formalized

within the supporting language, in our case, mathematics. As one consequence,

WHAT IS THE SYSTEM MODEL? 49

although there are similar concepts in the language describing the systemmodel

(which is mathematics) and the language described (UML), these need not be

related. For instance, the system model characterizes the type system of UML,

it however does not have and does not need a type system itself.

6. Specific points, where the system model could be further strengthened, have

been marked as “variation points”. Variation points deal with additional ele-

ments that can be defined upon the systemmodel. Wemay introduce additional

machinery that needs not be present in each modeled system. Prominent exam-

ples of such variations are the existence of a predefined top-level class called

“Object” or an enhanced type system, including, e.g., templates. Furthermore,

variations describe changes of definitions, that lead to a slightly different sys-

tem model. Variation points allow us to describe specialized variants of the

system model, that may not be generally valid, but hold for a large part of

possible systems. Examples are single inheritance hierarchies or type-safe

overriding of operations in subclasses, which may not be assumed in general.

3.5 WHAT IS THE SYSTEM MODEL?

As already indicated in Sect. 3.3, the system model is a hierarchy of theories that

capture a large number of concepts typically found in distributed object-oriented

systems. To obtain an adequate semantic domain, the system model defines concepts

such as types and values, classes with attributes and methods, objects, messages and

events, or threads.

An object-oriented system can basically be described using one of various existing

paradigms. We opted for the paradigm of a global state transition system in order to

accommodate a global (and maybe distributed) state space. The system model, thus,

defines a universe of state transition systems. A state transition system is given by its

state space, its initial states, and its state transition function. Note that our notion of

state transition system is more basic and does not directly relate to the state machines

the UML provides. The global state transition system, if detailed enough, is perfectly

appropriate tomodel parallel, independent and distributed computations. In principle,

a system of communicating, elementary transition systems could be considered more

convenient than a single, globalmachine for describing the semantics ofUMLmodels.

It is also possible to construct a global transition system by integrating elementary

ones; however, this is a non-trivial operation. Therefore, it is more appropriate

to employ the concept/metaphor of one state transition system at a higher, non-

elementary level. In fact, we introduce a composition operator on transition systems

representing fragments of larger systems, such that these transition system can be

composed, leading to larger systems.

50 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

Static and Dynamic Issues

The types and classes are static, i.e., they do not change over the lifetime of a system.

Similarly, the sets of defined operations, methods, messages, and events do not

change. This information is called the static information of a state transition system.

The set of existing objects, the values of the attributes, the computational state of

invoked methods, and dispatched and not yet delivered messages passed from one

object to another one are dynamic, i.e., they may change in transition steps. This

is called the dynamic information of a state transition system and is encoded in the

states of the system. In the database realm, the static part is called “schema”, and

the dynamic part is the “instance”. The schema instantiation is changeable while

the schema itself is not. Schema changes (usually called “schema evolution” in the

literature) are not considered, as they usually do not occur within a running system,

but when evolving and/or reconfiguring it.

Summarizing, the state space of the transition systemwill be defined in terms of the

orthogonal constituents data, control, and events. Each of these theories contributes

static and dynamic information to the system model definitions.

Types, Classes, Objects, and DataStore

The first part of the systemmodel definition (c.f. Sect. 4.3) is concerned with defining

type names, their carrier sets, classes, objects, associations, and the component of a

system state that stores information about existing objects and their variable values.

Although we do not deal with peculiarities of various type systems, strong or weak

typing, etc., we outline basic assumptions on the underlying type system, as we need

to map the type information of UML to this type system. In that respect, we use a

deep embedding of the type system of UML, by representing it through type names

and a universe of values only. By deep embedding, we mean that we do not map

types of the UML to a type system of the underlying mathematical structure, but

explicitly model types as first-class elements.

Occasionally, we make assumptions that simplify matters but pay attention that

we do not lose generality. For example, we assume global variables in the system.

In practice, it would be relatively inconvenient if every variable name could only be

used once in a program. We then would see a global namespace and thus not have

any hiding concepts in the language. In the system model, however, we may accept

such a restriction, and handle it as follows. Like in ordinary programming languages,

variables shadow each other when a new variable with the same name is introduced in

an inner scope. We assume static binding, thus each variable name can be statically

resolved (as opposed to dynamic binding of variables by which the resolution of a

variable name depends not on the environment of its definition but on the environment

of its use, and thus variable resolution can only occur at run time). Generally, we

assume that in the modeling languages we deal with, a consistent and model-wide

redefinition of variable names is possible in such a way that each variable is used only

once. Then variable shadowing does not occur and any variable is unique. We may

WHAT IS THE SYSTEM MODEL? 51

handle that systematically through encoding the place of definition or the namespace

within each variable. Quite the same is done by many compilers anyway.

Class names in the system model are introduced in an abstract fashion. Each class

name is associated with a set of object identifiers and with a set of attributes. This

is sufficient to define the structure of objects belonging to a class in form of a tuple,

consisting of object identifier and a mapping of attributes to values.

In the system model, classes are also types. Together with a subclassing relation,

the carrier set of a class is the set of object identifiers belonging to the class or to

one of its subclasses. This allows to polymorphically store subclass identifiers in

places where superclass identifiers are expected. As a consequence, we require object

identifiers to be values. However, objects will not be forced to be values. We leave

open whether objects are also to be treated as values (variation point). Our relational

point of view concerning subclassing also supports multiple inheritance which is

covered by several binary inheritance relationships. As we assume global attribute

names, we avoid name conflicts that otherwise could arise.

For the data store, we abstract from a number of details, such as storage layout

and physical distribution. We use an abstract global store to denote the data state of

an object system. Even if there is no such concept in the real, possibly distributed

system, we can conceptually model the system that way by organizing all instances in

this single global store. We also allow interleaving, as well as concurrent activities,

as can be seen in the control part of the system model in Section 4.4.

Intuitively, the data store models the data state of a system at a certain point in

time. Normally, at each point of time the store contains real objects for a finite subset

of the universe of all object identifiers. We will, however, see that the data store is

not enough to describe the system, but a control store and an event store need to be

added. In these stores time progress is modeled by state transitions of the overall

state machine.

At each point in time, i.e., in each state of the state machine, when an instance

exists, we assume that its attributes are present and their values are defined, but it

is not necessarily the case that we do know about these values. They may be left

underspecified. In particular it may be that, after creation of an instance, its attributes

still need to be initialized, i.e., come into a known (and thus well-defined) state. Note

that this is a usual modeling technique used, e.g., in verification systems to avoid an

explicit handling of a pseudo-value “undefined” [32]. It also resembles reality, e.g.,

when an uninitialized variable of type int is accessed, we do know that it contains an

integer, but we do not have a clue which one it is.

One of the core concepts of UML are associations. Associations are relations

between classes; and links, which can be regarded as instances of associations, are

the corresponding relations between object identifiers at runtime. While associations

are mostly binary, they may be of any arity, in addition they may be qualified in

various ways and may have additional attributes on their own. Furthermore, an

association can be “owned” by one or more of the participating objects/classes or

can stand on its own, not owned by any of the related objects. In an implementation

a basic mechanism for managing those relations is to use direct links or Collection

classes but there are other possibilities as well. To semantically capture different

52 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

variants of realizations of associations, we use a generalized, extensible approach:

Retrieval functions extract links from the store. We allow for a variety of realizations

of these functions. This approach is very flexible as it, on the one hand, abstracts

away from the owner of associations as well as from how associations are stored

and, on the other hand, does not restrict possible forms of an association. As a

big disadvantage of this approach, we cannot capture all forms of associations in

one uniform characterization, but need to provide a number of standard patterns that

cover the most important cases. If no standard case applies, e.g., for a new stereotype

for associations, then the stereotype developer has to describe his/her interpretation

of the stereotype directly in the terms of the system model. We demonstrate this

approach by defining variants of binary associations below.

The retrieval function relOf depends on the concrete realization of the association.

Even after quite a number of years of studying formalizations of object orientation,

there is so far not a really satisfactory approach describing all variants of association

implementations. Therefore, we provide this abstract function and impose some

properties on the function without discussing the internal storage structure. The only

decision we made so far is that associations are somehow contained within the store,

i.e., they are somehow part of objects and association relations do not extend the store.

This is pretty much in the spirit of the system model where higher-level concepts are

explained using lower-level concepts. In order to retrieve the links of an association,

the state of multiple objects may have to be examined. From the viewpoint of a single

object, this is not possible since it only has access to its own state. Hence, we assume

that links may be retrieved using an “API”, i.e., special methods that can be called by

an object and that return the links.

Operation, Methods, Threads, and ControlStore

The control part defines the constituents of the structure used to model control

information like operations and methods. The control store contains additional

information needed to determine the state of the system during computation. In

particular, we provide means to express how control flows (as part of method calls)

through active and passive objects, what it means for an object to be active or passive,

how messages are passed, delayed and handled, how events are handled, how threads

work in a distributed setting, and how synchronization of all these concepts takes

place, c.f. Sect. 4.4.

One result of this section is a flexible mechanism to describe control structures of

various kinds resembling quite a number of implementation languages. This variabil-

ity is enforced by the UML and leads to a rather complex formalization of control. In

fact, UML does not allow us to abstract away from control primitives. In the systems

we describe with UML, we do not only have various types of control and interaction,

but also very often their combinations within a single system. Unfortunately, we need

rather detailed definitions for stacks, events, and threads that are not very elegant and

do not give us much abstraction. However, this lack of elegance accurately covers

the lack of elegance in distributed object-oriented systems where method calls, asyn-

chronous signals and threads of activity are orthogonal concepts that can be mixed

WHAT IS THE SYSTEM MODEL? 53

in various ways. On the one hand, these concepts provide the system developer with

great flexibility. On the other hand, they make it difficult to understand the behaviour

of the resulting systems. In addition, many orthogonal concepts make it very awk-

ward to describe a system model that uses all of them, because any combination

(useful or not) needs to be covered. The resulting complexity becomes apparent in

modeling the control part of the system model.

We define operations (signatures) and methods (implementations) as separate

entities. Operations are named, have a list of parameter types and one return type.

Methods additionally define parameter names and may have an implementation.

This approach does not explicitly specify overloading, signature and implementation

inheritance, overriding and dynamic binding but allows specializations in a flexible

way to various actually used mechanisms of method binding. This even includes

binding mechanisms such as that in Modula-3. These concepts, thus, are to be

decided and defined by the time the mapping from UML to the system model is

devised.

In UML, interestingly, subclassing does not impose clear constraints on method

implementations, as the implementation may be redefined according to some “com-

patibility” notion. This notion, however, is a semantic variation point thatwe therefore

also leave open to a semantic specialization, e.g., by adding additional constraints for

redefined method behaviour. Subclassing in general allows for renaming of parame-

ters in the implementation, as those are not part of the signature. The signatures (in the

form of lists of types), however, are either equal or in a generalization/specialization

relation. The types of parameters can be generalized, and the type of the return value

can be specialized. This is the well-known co/contra-variant way (see, e.g., [7])

that ensures type safety in a language. We also impose this constraint in the system

model.

UML furthermore provides “out” and “in/out” parameters. Many authors however

advise against the use of (in/)out parameters. The recommendation in the present

context is to use a variation point where, if several “out”-values are to be assigned,

each of these is assigned through method call or message passing. In this way, object

encapsulation is kept. However, if needed, the system model allows to encode these

parameters by passing locations of the variables where the “out”-values are to be

stored.

In UML there is also the notion of “object behaviour”, which, strictly speaking, is

not a method. However, for simplification we assume that “object behaviour” can be

encoded as a special kind of operation associated with the object whose parameters

define the signature of the operation.

The computational state of a method is stored in a frame with the obvious infor-

mation like sender, receiver, values of local variables and parameters. A thread in the

system model is associated with a stack of frames. The control store is the part of a

system model state that information about which threads currently execute methods

in which objects.

There are quite a number of approaches to combine object orientation and con-

currency. Some approaches argue that each object is a unit of concurrency on its

own. Others group passive objects into regions around single active objects, allowing

54 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

operation calls only within a region and message passing only between regions. The

programming languages that are commonly used today, however, have concurrency

concepts that are completely orthogonal to objects. This means, various concurrent

threads may independently and even simultaneously “enter” the very same object.

The system model is abstract enough to allow specializations to any of these ap-

proaches. We do, however, have the basic assumption that there is a notion of atomic

action. These atomic actions are the basic units for concurrency; their exact definition

is deferred to the UML actions definitions. On top of atomic actions we assume forms

of concurrency control that are provided through appropriate concepts in UML (like

“synchronized” in Java). However, UML currently does not provide sufficient mech-

anisms to actually define scheduling and atomicity of actions conveniently. Possible

units of concurrency, for example, would be a variable assignment or an operation

invocation.

Messages, Events, and EventStore

One crucial question is the choice of the appropriate communication or interaction

mechanism. Two basic flavors are asynchronous and synchronous communication.

There is no definitive answer as to which one of these two possibilities is better,

and both approaches can model each other. The system model is based on the

asynchronous approach because of its abstractness. Synchronous method calls within

the system model are encoded as asynchronous message passing.1

The UML specification distinguishes between event (types) and event occurrences

(cf. [8, Sect. 6.4.2]) and provides a rather general notion of events and event occur-

rences. An event may be a message (which resembles a method call with parameters

or return values), a timeout, a simple signal, or a spontaneous state change. Event

occurrences, for example, are sending of a message or reception of a message. In

Sect. 4.5.1 we introduce events, and subsets of events that contain messages (which

may further contain method calls and returns) and signals.

The last constituent of the state of an object is the event store. For each existing

object, the event store stores a buffer that contains the events that still need to be

processed. Event occurrences correspond to system states in which an event has just

been added (sent) or removed (received) from the event store.

States

The state of a system is straightforwardly defined to consist of one data store, one

control store, and one event store (see Sect. 4.6). So in each system state we capture

the attribute values, the computational state, and the event buffer of each object.

Given a system state, the state of an individual object is consequently the part of

each store that holds information for that object. One of the main features of the

1Message passing is the general term; in the system model, events (which include message events) are

passed.

USAGE SCENARIOS 55

systemmodel is its compositionality. This means that an object state can be described

on an individual basis as well as in any (meaningful) group.

Transition Systems

We provide two different kinds of transition systems to define object behavior. Event-

based state transition systems (see Sect. 4.7) are suitable to explain object behavior

on a fine-grained level. Objects react to incoming events and their next computational

activity is explicitly triggered by a scheduling event. The scheduling may be defined

for groups of objects (belonging to the same processor, virtual processor, scheduling

domain, etc.). Specific scheduling strategies, however, have not been defined yet.

As with object states, object behaviour can be described on an individual basis

as well as in groups. Behaviour for compositions of groups of objects into larger

components can be defined. For this purpose we use the time-aware version of state-

transition systems, called timed STS (TSTS), see Sect. 4.8. Although asynchronous

communication is assumed in the system model, the time-based approach allows

the use of a simple abstraction on the time scale to look at communication as being

synchronous. Communication between objects is dealt with by channels. Channels,

on the one hand, help to compose groups of objects into larger units and hide their

internal communication. On the other hand, UML provides linguistic constructs like

“pins” in some of its diagrams; these pins resemble communication lines between

objects and can be mapped to channels.

Further Extensions

Of course this system model that can be seen as a hierarchy of algebras may and

probably should be extended by adding further functional machinery to ease descrip-

tion of the mapping of UML constructs to the system model. However, we wanted

to keep the system model rather simple and therefore did not concentrate on this

additional machinery very much. “Users” of the system model are really invited to

add whatever they feel appropriate.

There are also a number of loopholes and particular variation points that can be

further investigated by providing additional machinery to clarify a mapping of UML

concepts to the system model.

3.6 USAGE SCENARIOS

After discussing the general approach to define the semantics of UML and highlight-

ing the main characteristics of the systemmodel, this section presents usage scenarios

of a system model-based UML semantics.

Analysis

Assuming we have defined the semantics for UML using the system model, we are

able to precisely express if a model A is well-formed, i.e., sem(A) 6= ∅. Similarly,

56 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

models A and B are consistent if sem(A) ∩ sem(B) 6= ∅. It is well-known that

for models to be well-formed a necessary but not sufficient condition is that they

correspond to the language’s grammar or metamodel. However, additional syntactic

conditions, so called context conditions, need to be fulfilled. So, the challenge is to

develop a set of context conditions coco that - if fulfilled - guaranteeswell-formedness,

e.g., coco(A,B) ⇒ Sem(A)∩Sem(B) 6= ∅. Analysing thewell-formedness ofmodels

can then be reduced to checking syntactic conditions again. Unfortunately, also

undecidable conditions exists that cannot be checked automatically but verification

is needed.

Verification

As pointed out above, system model-based verification of UML models can be

necessary to verify context conditions that cannot be checked automatically. In

general, we are also interested in proving properties of concrete models using the

UML semantics. The semantics characterizes all properties of systems s realizing

model(s) A from which we then try to infer the property of interest φ, i.e., ∀ s ∈
Sem(A) : φ s. Verification can also be applied to prove transformations or generators

correct. Assume, e.g., a transformation; that refines model A to B, we have to show

that ∀A,B : A ; B ⇒ Sem(B) ⊆ Sem(A).

Simulation

The system model deliberately is not defined in an executable way to support under-

specification. It is, however, possible to resolve this underspecification and to encode

the declarative specification into an executable simulator that is highly customizable

with respect to semantic variation points [9]. Given a mapping from UML to the exe-

cutable system model, we can validate models and experiment with different choices

for semantic variation points via simulation.

Tool Support

The general approach to defining the semantics of UML has been outlined in Sects 3.2

and 3.3. To summarize, a precise and adequate semantics is made up of equally

precise and adequate definitions for the syntax, the semantic domain, and the semantic

mapping.

The most flexible way of defining these constituents surely is using pencil and

paper. In order to keep most of the flexibility but to benefit from the advantages

of a machine-readable semantics which can be (type) checked, used for automated

verification etc., we use Isabelle/HOL [32] to formalize the system model definitions

and also the semanticmapping. As a front-end for defining the syntax of the language,

MontiCore [25], a framework for the development of modeling languages, is used.

The overall approach is depicted in Fig 3.3.

1. The syntax is specified as a grammar in the MontiCore grammar definition

language which basically is a context-free grammar.

CONCLUDING REMARKS 57

2. The framework then generates a data type in Isabelle/HOL that represents the

abstract syntax.

3. The semantics developer then uses this abstract syntax and the available for-

malization of the system model theories in Isabelle to encode the semantics of

the syntactic constructs as predicates over system models.

����������

�	
������

��
�
���
���

���������������

�������
��

��������

����
�����
�

����
��
��	
���
�

�
�������

�������

�������
��
��	
���

����
�������
���

Figure 3.3 Approach with tool support

3.7 CONCLUDING REMARKS

In this Chapter, we described our approach to UML semantics and discussed the

rationale underlying the system model definition. The system model describes struc-

ture and behaviour of object systems on a very detailed and fine-grained basis. It

uses the general notion of (timed) state transition systems which is integrated with

the data, control and event stores. As a general result of the system model theory,

we have a complete description of how systems are decomposed into objects, what

states objects may have and how objects interact. As motivated in the introduction,

the mathematical theory is developed in layers, each building up an algebra that

introduces some universe of elements, functions and laws for these functions. The

detailed definitions can be found in Chapter 4.

The key features are support for underspecification, and a modular and flexibly

extensible definition that is not biased by the choice of a concrete formal language

or tool. Even the use of mathematical theories probably will bias the semantics a

little but we hope as little as possible. Such bias easily creeps in and we carefully

tried to avoid it. In particular, we do not address executability because this includes

one of the biggest biases a modeling language can have: A model shall have the

ability for underspecification. It shall be open for a specification of many different

implementations. An executable semantics for an underspecified UML model must

therefore necessarily contain implicit choices added by the semantic mapping.

To prevent the executability bias, we chose a specific style of description. This

form of description allows us to leave quite a number of definitions open. We usually

introduce a universe and then characterize the properties of its elements without fully

58 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

determining how many elements it has or how these elements look like. Sometimes,

we only describe a subset of the elements and allow other kinds of elements to be in

the universe as well.

This gives us the chance to specialize variation points according to specific situa-

tions. To put it in UML jargon, we could for example define a “systemmodel profile”

that specializes the general definitions to sequential, single threaded systems, to

static systems without creation of new objects, or to systems without subclassing,

etc. While the system model is an underlying basis for these kinds of systems, it does

not provide such specialization directly; this is matter of further work. Indeed, as one

of the results of this work, we have been able to make a number of variation points

explicit. Although there are a lot more variation points to explore and their bandwidth

to clarify, we regard this approach as a first important step to the formalization and

clarification of variation points. On the other hand, the complexity of the system

model shows that the integration of objects, threads, state-based behaviour and con-

currency is complex, has many variations and is therefore somewhat arbitrary. It is

particularly complex to model the possible interactions between these, leading us to

the assumption that it is particularly difficult to master these not so well integrated

concepts.

We also described usage scenarios and discussed how a systemmodel-based UML

semantics can be used to analyze, verify, and validate UML models.

The system model defined in [1] and the previous version [4, 5, 6] has actively

been used to define the semantics of UML sublanguages like class diagrams [10] and

Statecharts [11]. In [9] a simulator for UML models has been developed based on

the system model definitions. This work has been carried out in the context of the

DFG rUML project. In [13] UML actions are formalized using the system model

as a semantic domain. The system model also forms the basis for characterizing the

semantics of model composition [23] as part of the MODELPLEX project.

We wish to thank a number of colleagues, and especially Bran Selic, Michelle

Crane, JürgenDingel, Gregor vonBochmann, GregorEngels, Alain Faivre, Christophe

Gaston, Sébastien Gérard, and Martin Schindler for their valuable help.

REFERENCES

1. Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Sys-

tems, Views and Models of UML. In Proceedings of the Unified Modeling Language,

Technical Aspects and Applications. Physica Verlag, Heidelberg, 1998.

2. Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara Paech, Bernhard

Rumpe, and Veronika Thurner. Towards a Formalization of the Unified Modeling Lan-

guage. In Proceedings of ECOOP’97 – Object Oriented Programming. 11th European

Conference. Springer-Verlag, LNCS 1241, 1997.

3. Manfred Broy, Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Modular

Description of a Comprehensive Semantics Model for the UML (Version 2.0). Technical

Report 2008-06, Carl-Friedrich-Gauß-Fakultät, Technische Universität Braunschweig,

2008.

REFERENCES 59

4. Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Semantics of UML –

Towards a System Model for UML: The Structural Data Model. Technical Report TUM-

I0612, Institut für Informatik, Technische Universität München, June 2006.

5. Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Semantics of UML –

Towards a System Model for UML: The Control Model. Technical Report TUM-I0710,

Institut für Informatik, Technische Universität München, February 2007.

6. Manfred Broy, Marı́a Victoria Cengarle, and Bernhard Rumpe. Semantics of UML –

Towards a System Model for UML: The State Machine Model. Technical Report TUM-

I0711, Institut für Informatik, Technische Universität München, February 2007.

7. Jean-Michel Bruel and Robert B. France. Transforming UML models to Formal Speci-

fications. In Pierre-Alain Muller and Jean Bézivin, editors, International Conference on

the Unified Modelling Language: Beyond the Notation (UML’98, Proceedings), volume

1618 of Lecture Notes in Computer Science. Springer, 1998.

8. Marco Cadoli, Diego Calvanese, Giuseppe De Giacomo, and Toni Mancini. Finite Model

Reasoning on UML Class Diagrams Via Constraint Programming. In Roberto Basili

and Maria Teresa Pazienza, editors, AI*IA, volume 4733 of Lecture Notes in Computer

Science, pages 36–47. Springer, 2007.

9. M. V. Cengarle, J. Dingel, H. Grönniger, and B. Rumpe. System-Model-Based Simulation

of UML Models. In Proceedings Nordic Workshop on Model Driven Engineering (NW-

MODE 2007), 2007.

10. Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Se-

mantics of Class Diagrams. Technical Report 2008-04, Carl-Friedrich-Gauß-Fakultät,

Technische Universität Braunschweig, 2008.

11. Marı́a Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Seman-

tics of Statecharts. Technical Report 2008-04, Carl-Friedrich-Gauß-Fakultät, Technische

Universität Braunschweig, 2008.

12. Marı́a Victoria Cengarle and Alexander Knapp. UML 2.0 Interactions: Semantics and

Refinement. In Jan Jürjens, Eduardo B. Fernandez, Robert France, and Bernhard Rumpe,

editors, 3rd Int. Wsh. Critical Systems Development with UML (CSDUML’04, Proceed-

ings). Technical Report TUM-I0415, Institut für Informatik, Technische Universität

München, 2004.

13. Michelle L. Crane and Juergen Dingel. Towards a Formal Account of a Foundational

Subset for Executable UML Models. In Models 2008, 2008. to appear.

14. Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. Understanding

UML: A Formal Semantics of Concurrency and Communication in Real-Time UML. In

Frank de Boer, Marcello Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors,

Proceedings of the 1st Symposium on Formal Methods for Components and Objects

(FMCO 2002), volume 2852 of LNCS Tutorials, pages 70–98, 2003.

15. Gregor Engels, Christian Soltenborn, and Heike Wehrheim. Analysis of UML Activities

Using Dynamic Meta Modeling. In Marcello M. Bonsangue and Einar Broch Johnsen,

editors, FMOODS, volume 4468 of Lecture Notes in Computer Science, pages 76–90.

Springer, 2007.

16. Andy Evans, Kevin Lano, Robert France, and Bernhard Rumpe. Meta-Modeling Se-

mantics of UML. In Proceedings of Behavioral Specifications of Businesses and Systems.

Kluver Academic Publisher, 1999.

60 CONSIDERATIONS AND RATIONALE FOR A UML SYSTEM MODEL

17. Harald Fecher, Marcel Kyas, Willem P. de Roever, and Frank S. de Boer. Compositional

Operational Semantics of a UML-Kernel-Model Language. Electr. Notes Theor. Comput.

Sci., 156(1):79–96, 2006.

18. Ingo Feinerer and Gernot Salzer. Consistency and Minimality of UML Class Specifica-

tions with Multiplicities and Uniqueness Constraints. In TASE, pages 411–420. IEEE

Computer Society, 2007.

19. Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. Developing the UML

as a Formal Modelling Notation. In Proceedings of the Unified Modeling Language.

UML’98 Beyond the Notation. Mulhouse. Proceedings., pages 336–348, LNCS 1618.

Springer, 1998.

20. Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model

with State. Technical Report TUM-I9631, Technische Univerität München, 1996.

21. David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of

“Semantics“? Computer, 37(10):64–72, 2004.

22. Oeystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil Stoelen. STAIRS

towards formal design with sequence diagrams. Software and System Modeling (SoSym),

4(4):355–357, 2005.

23. Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven

Völkel. An Algebraic View on the Semantics of Model Composition. In D. H. Akehurst,

R. Vogel, and R. F. Paige, editors, Model Driven Architecture - Foundations and Appli-

cations (ECMDA-FA), number 4530 in LNCS, pages 99–113, Haifa, Israel, June 2007.

Springer.

24. C. Klein, B. Rumpe, and M. Broy. A stream-based mathematical model for distributed

information processing systems the SysLab system model -. In E. Naijm and J.-B. Ste-

fani, editors, FMOODS’96, Formal Methods for Open Object-based Distributed Systems.

Chapman & Hall, 1996.

25. Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular development

of textual domain specific languages. In Proceedings of Tools Europe, 2008.

26. J. Küster, J. Koehler, J. Novatnack, and K. Ryndina. A Classification of UML2 Activity

Diagrams. Technical report, IBM ZRL Technical Report 3673, 2006.

27. Sabine Kuske, Martin Gogolla, Ralf Kollmann, and Hans-Jörg Kreowski. An Integrated

Semantics for UML Class, Object and State Diagrams Based on Graph Transformation.

In IFM ’02: Proceedings of the Third International Conference on Integrated Formal

Methods, pages 11–28, London, UK, 2002. Springer-Verlag.

28. Kevin Lano. A compositional semantics of UML-RSDS. Software and System Modeling

(SoSyM), to appear. DOI: 10.1007/s10270-007-0064-x.

29. Xiaoshan Li. A Characterization of UML Diagrams and their Consistency. In ICECCS,

pages 67–76. IEEE Computer Society, 2006.

30. Azzam Maraee and Mira Balaban. Efficient Reasoning About Finite Satisfiability of

UML Class Diagrams with Constrained Generalization Sets. In David H. Akehurst,

Régis Vogel, and Richard F. Paige, editors, ECMDA-FA, volume 4530 of Lecture Notes

in Computer Science, pages 17–31. Springer, 2007.

31. Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall,

1997.

REFERENCES 61

32. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-

Order Logic. Springer, 2002.

33. Object Management Group. Unified Modeling Language: Infrastructure Version 2.1.2

(07-11-05), 2007. http://www.omg.org/docs/formal/07-11-04.pdf.

34. Object Management Group. Unified Modeling Language: Superstructure Version 2.1.2

(07-11-02), 2007. http://www.omg.org/docs/formal/07-11-02.pdf.

35. Greg O’Keefe. Dynamic Logic Semantics for UML Consistency. In Arend Rensink and

Jos Warmer, editors, ECMDA-FA, volume 4066 of Lecture Notes in Computer Science,

pages 113–127. Springer, 2006.

36. B. Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme. Herbert

Utz Verlag Wissenschaft, 1996. PhD thesis, Technische Universität München.

37. Stefan Sarstedt and Walter Guttmann. An ASM Semantics of Token Flow in UML 2

Activity Diagrams. In Irina Virbitskaite and Andrei Voronkov, editors, Ershov Memo-

rial Conference, volume 4378 of Lecture Notes in Computer Science, pages 349–362.

Springer, 2006.

38. Ken Satoh, KenKaneiwa, andTakeakiUno. Contradiction Finding andMinimal Recovery

for UML Class Diagrams. In ASE, pages 277–280. IEEE Computer Society, 2006.

39. Colin Snook and Michael Butler. UML-B: Formal modeling and design aided by UML.

ACM Trans. Softw. Eng. Methodol., 15(1):92–122, 2006.

40. Thomas Stauner, Bernhard Rumpe, and Peter Scholz. Hybrid System Model. Technical

Report TUM-I9903, Technische Univerität München, 1999.

41. Harald Störrle and Jan Hendrik Hausmann. Towards a Formal Semantics of UML 2.0

Activities. In Peter Liggesmeyer, Klaus Pohl, and Michael Goedicke, editors, Software

Engineering, volume 64 of LNI, pages 117–128. GI, 2005.

42. Ali Taleghani and Joanne M. Atlee. Semantic Variations Among UML StateMachines.

In MoDELS, pages 245–259, 2006.

43. Michael von der Beeck. A structured operational semantics for uml-statecharts. Software

and System Modeling, 1(2):130–141, 2002.

44. Glynn Winskel. The Formal Semantics of Programming Languages. Foundations of

Computer Science Series. MIT Press, Cambridge, Mass., 1993.

45. Xiangpeng Zhao, Quan Long, and Zongyan Qiu. Model Checking Dynamic UML Con-

sistency. In Zhiming Liu and Jifeng He, editors, ICFEM, volume 4260 of Lecture Notes

in Computer Science, pages 440–459. Springer, 2006.

