
Chapter 10

Compositional Modeling Languages
with Analytics and Construction
Infrastructures based on
Object-Oriented Techniques - The
MontiCore Approach
Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, Andreas Wortmann

Abstract. Composing modelling languages and analysis tools still requires significant efforts to
properly consider syntax and semantics as well as related analyses and syntheses. This compo-
sition ideally should be defined on individual language components that can be composed when
needed. Only when model-based analysis infrastructures can be composed in accordance to their
related language definitions and can be reused in a black-box fashion without modification, can
we foster automation in language engineering and integration. In this chapter, we demonstrate
object-oriented language engineering concepts that enable composing models of heterogeneous
languages using the language workbench MontiCore. This composition includes the concrete
syntax and abstract syntax as well as analysis infrastructures and analyses. We demonstrate in
detail, how the MontiCore infrastructure enables (de)composing languages and related model-
based analysis techniques such that the analyses can be reused with other languages with minimal
effort. Several of the provided techniques are based on adaptations of the well known concepts
of object-oriented development, such as inheritance and the extension and the visitor patterns.
This can reduce the effort of engineering truly domain-specific modelling languages significantly.

This case-study chapter illustrates concepts introduced in Chapter 4 and addresses Challenge 1
in Chapter 3 of this book [Hei+21].

10.1 Introduction

Many engineering domains moved to use explicit modelling languages to enable domain experts
to contribute to the engineering of systems. Ideally, these modelling languages and their parts
can be reused in and tailored to different contexts, such that deploying precise domain-specific
modelling languages (DSMLs) becomes less challenging. Despite efforts in software language en-
gineering [Kle08; HRW18], the composition of modelling languages, especially their analyses and
syntheses, is far from solved in general (cf. Chapter 3 of this book [Hei+21]) and still requires
significant manual efforts. This hinders the deployment of the most suitable domain-specific
modelling languages for experts, who instead have to cope with overly generic modelling lan-

179

[BHR+21] A. Butting, K. Hölldobler B. Rumpe, A. Wortmann:
Compositional Modelling Languages with Analytics and Construction Infrastructures Based on Object-Oriented Techniques—The MontiCore Approach.
In: Composing Model-Based Analysis Tools, pp. 217-234, Springer, 2021.
www.se-rwth.de/publications

180 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

guages, such as the unified modeling language (UML) [Obj15] or the systems modeling language
(SysML) [Obj12] and tailor these through profiles or modelling guidelines. Both introduce a
conceptual gap [FR07] between the experts’ problem domain of discourse (e.g., material science,
kinematics, geometry) and the solution domain of software engineering through which the domain
experts need to work around the limitations of these languages.

The efforts for efficiently engineering DSMLs can be reduced if the languages support mod-
ularity and their infrastructure follows this modularity. When the infrastructure for analyses
is derived in ways that foster modularity, composition of this infrastructure can be automated
as well. This eases reusing DSML (parts) and their analysis in the context of other languages
and can foster the application of DSMLs in general. In this chapter, we therefore demonstrate
core concepts to compose models from heterogeneous sublanguages. This includes the syntax
(concrete and abstract) as well as the infrastructures to define the syntax and the analyses to op-
erate on these composed languages. We demonstrate in detail, how the MontiCore infrastructure
allows to decompose a number of analysis techniques, both for functional and extra-functional
properties.

The contributions of this chapter, hence, are

• a method for engineering modelling languages based on modular syntax definitions,

• generation of a visitor-based framework for modular model-based analyses, and

• families of modular languages for expressions and literals.

In the remainder, Section 10.2 introduces MontiCore, before Section 10.3 applies it to engi-
neering modular languages and analysis infrastructures. Section 10.4 highlights related work and
Section 10.5 discusses our approach. Section 10.6 concludes.

10.2 Preliminaries

This section introduces the MontiCore [HR17] language workbench [Erd+15] and its features
used for engineering compositional languages as explained in subsequent sections.

MontiCore is a language workbench that provides an EBNF-like grammar format to define
languages from which it generates much of the infrastructure necessary to efficiently engineer
modular languages. It has been applied to the engineering of modelling languages for a variety of
domains, including automotive [Dra+19], cloud services [Eik+17], robotics [Ada+17b], systems
engineering [Dal+19], and more.

For a given grammar, MontiCore generates infrastructure for the language. This includes
parser and lexer, Java classes for the abstract syntax tree (AST), an infrastructure to implement
context conditions (language well-formedness rules), visitors [Hei+16] to develop and compose
analyses, and symbol tables [HMR15; MRR15; MRR16] to combine models of different languages.
The general procedure to process a model is depicted in Figure 10.1. First, the model is transferred
to its internal representation, i.e., the AST, by the parser and lexer. Next, the AST is processed by
functions, which can include well-formedness checks, analyses, or transformations. The resulting
AST as well as the analysis results are used to produce the output, which can be generated code,
models, or analysis reports.

A MontiCore grammar defines the abstract and concrete syntax of a language. It consists
of productions that define nonterminals. A production consists of a left-hand side (LHS) and a
right-hand side (RHS) separated by an = sign. The LHS is the nonterminal that the production
defines while the RHS is the production’s body and defines both the abstract and concrete
syntax. Figure 10.2 depicts a MontiCore grammar of a compact language for finite automata
while Figure 10.3 shows a corresponding automaton model. This grammar consists of three
productions defining the nonterminals Automaton, State and Transition. MontiCore generates one

10.2. PRELIMINARIES 181

models

Function

library

Output

AST

Template

Engine

Models,

Reports,

Code, etc

Model

loader

Input

AST

artifact tool
object
structure

Figure 10.1: MontiCore’s tool chain for processing models comprises fully generated components
(parser, lexer, etc.) and modular infrastructures for tools that are handcrafted (well-formedness
rules, model transformations).

1 grammar Automata extends ExpressionsBasis,
2 CommonLiterals {
3 Automaton = "automaton" Name "{"
4 (State | Transition)* "}" ;
5

6 State = ["initial"]? ["final"]? "state" Name ";";
7

8 Transition = from:Name "-" ("[" guard:Expression "]")?
9 input:Name ">" to:Name ";";

10 }

Figure 10.2: Exemplary grammar of an automata language

AST class for each production. Its attributes are defined by the production body. Stored terminals
map to attributes while nonterminal usages map to compositions.

The body of a production consists of terminals and nonterminals. Terminals are surrounded
by quotation marks, e.g., "automaton" in line 3 of Figure 10.2. Both terminals and nonterminals
can have different multiplicities, i.e., by appending a question mark ? it becomes optional while
* allows arbitrary many (including zero) occurrences and + enforces at least one occurrence.
Alternatives are separated by | and grouping can be achieved by parenthesising parts using round
brackets. Terminals whose presence is relevant for the abstract syntax can be parenthesised in
square brackets, yielding a Boolean attribute in the abstract syntax. Optionals are mapped to
Java optionals and multiple occurrences to Java lists.

1 automata PingPong {
2 initial state Ping;
3 state Pong;
4

5 Ping - [ballHit] returnBall > Pong;
6 Pong - returnBall > Ping;
7 }

Figure 10.3: Exemplary automaton for the language of Figure 10.2

Besides “normal” nonterminals, MontiCore provides interface, abstract and external nonter-
minals. Abstract and external nonterminals are not detailed here but detailed information on
these is available in [HR17]. Interface nonterminals are marked using the keyword interface (cf.
Figure 10.4, line 3). They do not specify concrete syntax themselves. Instead interface nontermi-
nals are implemented by other nonterminals (cf. Figure 10.4, line 5). For interface nonterminals,
a production body can be used to restrict possible implementing nonterminals [HR17]. Concep-
tually, interface nonterminals are an extension of alternatives. Whenever interface nonterminals

182 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

are used in a production body, every interface implementation is possible. Thus, instead of A =
B | C; one can use interface nonterminals to define interface A; B implements A; C implements A;. The
concrete syntax for these two examples does not differ. However, for interface nonterminals an
AST interface instead of a class is generated and the relation between A and B, and A and C is
mapped to inheritance instead of composition in the abstract syntax.

Using MontiCore, languages can be developed efficiently by reusing the modular (parts of)
other languages. To this end, MontiCore provides grammar extension mechanisms. As depicted
in Figure 10.2 line 1, the grammar of the automata language already uses this concept. By
using the keyword extends followed by one or multiple comma-separated grammars, a grammar
can extend other grammars. As a consequence, all nonterminals defined by productions of the
inherited grammars (also referred to as super grammars) are available in the current grammar.
In the automata language this is used for the transition production as it uses the nonterminals
Expression that is not defined locally but defined in the super grammar ExpressionsBasis. If a
grammar is designed for reuse only and does not define a language itself it can and should be
marked as a component grammar by adding the keyword component (cf. Figure 10.4, line 1).

The start nonterminal of a grammar is by default the first nonterminal in the grammar
[HR17]. However, there are situations in which this is not feasible, e.g., when extending an
existing grammar and one of its nonterminals should be the start nonterminal of the currently
developed language. To address this, it is possible to configure the start nonterminal explicitly
as follows: start State;. In this case State is used as the start nonterminal.

When extending a grammar, it is possible to extend productions of the super grammars. This
is possible for normal as well as for interface productions. In both cases, conceptually a new
alternative to the existing body resp. implementations is created. Thus, all nonterminals and
especially interface nonterminals can serve as extension points. To further control the priority of
the newly added alternative, it is possible to add a priority in angle brackets (cf. Figure 10.4,
line 5). The higher the number within the brackets the higher is the alternative’s priority in the
generated parser.

10.3 Compositional Language Engineering

MontiCore provides means to support modular definition of languages and means to realise lan-
guage composition [HR17]. Modularisation fosters language reusability and reduces co-evolution,
as the commonalities in different languages can be extracted to individual language modules that
multiple languages rely on.

Grammar inheritance can be leveraged to decompose the syntax of a language into mod-
ules (cf. Section 10.2). Further, MontiCore supports the definition of component grammars to
indicate that a grammar contains a reusable collection of pieces of syntax rather than a com-
plete language. For instance, the automata grammar presented in Figure 10.2 uses grammar
inheritance to decouple the definitions of the automata language syntax in terms of states and
transitions from the syntax of expressions and of literals. This is realised by extending the gram-
mars ExpressionsBasis and CommonLiterals. A language module, also referred to as
language component, is defined by its grammar, but also contains all artefacts generated from
the grammar, all handwritten extensions to the generated artefacts, and handwritten language
tooling such as e.g., model-based analyses. Therefore, modularisation has to be carried out for
all these constituents as well.

As describing modular analyses on languages requires modular language syntax, the following
first introduces some of MontiCore’s means for modular grammar definitions, before introducing
the modular visitor infrastructure. Afterwards, the application of this infrastructure for modular
analyses is demonstrated by example.

10.3. COMPOSITIONAL LANGUAGE ENGINEERING 183

10.3.1 Modular Syntax Definition

1 component grammar ExpressionsBasis extends LiteralsBasis {
2

3 interface Expression;
4

5 NameExpression implements Expression<350> = Name;
6

7 LiteralExpression implements Expression<340> = Literal;
8 }

Figure 10.4: Component grammar providing basic syntax elements for expressions

1 component grammar CommonExpressions extends ExpressionsBasis {
2

3 LogicalNotExpression implements Expression <190> =
4 "!" Expression;
5

6 PlusExpression implements Expression <170> =
7 left:Expression operator:"+" right:Expression;
8

9 EqualsExpression implements Expression <130> =
10 left:Expression operator:"==" right:Expression;
11 }

Figure 10.5: Component grammar describing the syntax of basic expressions

Expressions, types, literals, and statements are typical elements in modelling or programming
languages. However, every language requires a well-suited variant of these concepts. Thus, these
concepts are natural candidates for being encapsulated into individual language components that
can be reused by any language.

To facilitate this, MontiCore offers a multitude of modular base grammars each of which
contributes syntax to define expressions, literals statements, or types. Figure 10.4 - Figure 10.7
demonstrate this concept. The ExpressionsBasis (Figure 10.4) and CommonExpressions (Figure 10.5)
grammars provide syntax for expressions.

The ExpressionsBasis grammar is a component grammar providing building blocks for the syn-
tax of expressions. At its core, it contains an interface nonterminal Expression acting as extension
point for different syntactical constructs that realise expressions. ExpressionsBasis only provides
the syntax for names (cf. NameExpression) and values (cf. LiteralsExpression). Name (not depicted)
is a token for Java-like identifiers, such as Java method names. Literal is an inherited interface
nonterminal provided by LiteralsBasis (cf. Figure 10.6), which only provides this interface nonter-
minal but no implementations. Thus, the decision what kind of literals are used and how these
are defined is delayed to further grammars extending the ExpressionsBasis grammar.

CommonExpressions extends ExpressionsBasis and adds three novel implementations to the Expres-
sion nonterminal providing syntax for some basic expressions. While the LogicalNotExpression and
EqualsExpression are commonly used for Boolean expressions, the PlusExpression is commonly used
for number expressions. However, it can also be used to represent, e.g., String concatenation.
These grammars define only the syntax of the expression, their evaluation is performed at a later
stage in language processing.

All three grammar productions in the grammar for common expressions introduce poten-
tial left recursion through inheritance with the interface nonterminal Expression. MontiCore can
handle the ambiguity introduced by this left-recursion, inter alia, through the parser priorities
(cf. Section 10.2). The grammar CommonLiterals (cf. Figure 10.7) extends the LiteralsBasis and
introduces Boolean literals (ll. 3-4) and integer literals (ll.6-7).

An example of how to use ExpressionsBasis and add pre-built Literal implementations is pre-

184 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

1 component grammar LiteralsBasis {
2 interface Literal;
3 }

Figure 10.6: Grammar providing a syntax extension point for literals

1 component grammar CommonLiterals extends LiteralsBasis {
2

3 BooleanLiteral implements Literal =
4 source:["true" | "false"];
5

6 SignedNatLiteral implements Literal =
7 (negative:["-"])? Digits;
8 }

Figure 10.7: Basic Boolean and integer literals

Automata ExpressionsBasis LiteralsBasis

CommonLiterals

ASTAutomaton

ASTState ASTTransition

«interface»

ASTExpression

String from

String input

String to

boolean initial

boolean final

String name

**

0..1

transitionsstates

guard

ASTName

Expression

ASTLiteral

Expression

«interface»

ASTLiteral

ASTBoolean

Literal

ASTSignedNat

Literal

1

literal

language
component

Figure 10.8: Excerpt from the AST generated from the Automata grammar

sented in Figure 10.2. The automata grammar extends both the ExpressionBasis grammar and the
CommonLiterals. Through this multiple inheritance, the Literal nonterminal in the ExpressionsBasis
grammar is implemented by the nonterminals introduced in CommonLiterals. An excerpt of the
AST data structure that MontiCore produces from the grammar Automata is depicted in Fig-
ure 10.8. As a result of this extension, true and false as well as integer numbers can be used in
guards of an automaton through the LiteralExpression.

Other possible extensions are to either add further implementations of interface nonterminals
Expression or Literal in the automata grammar or use further pre-built grammars that provide ad-
ditional implementation such as CommonExpressions. Figure 10.9 gives an overview of MontiCore’s
pre-built grammars for expressions, literals, and types. Types and literals grammars each are
in a linear inheritance relationship, where each grammar extends the syntax provided by their
parent grammar conservatively [HR17]. To this end, if a language uses types (or literals), it can
be post-hoc extended with more syntax for types (or literals) by additionally inheriting from a
grammar that (transitively) extends the type (or literal) grammar that was originally used.

The various application purposes for expressions prevent a linear inheritance hierarchy for
expression grammars: For example, it should be possible for a language to use only the syntax
for assignment expressions without bit expressions (which include, e.g., shift operators). At
the same time, other languages should be able to use only bit expressions without assignment
expressions. However, all expression grammars extend the basis grammar for expressions and
all syntax these add is available by implementing the Expression interface. Therefore, through

10.3. COMPOSITIONAL LANGUAGE ENGINEERING 185

multiple inheritance with different expression grammars, a combination of expression syntaxes
can be made available as well.

Literals

Basis

Common

Literals

Java

Literals

Common

Expressions

JavaClass

Expressions

Bit

Expressions

Assignment

Expressions

Expressions

Basis

OCL

Expressions

Full

GenericTypes

Simple

GenericTypes

Collection

Types

Basic

Types

Figure 10.9: Structure of base grammars for expressions, literals, and types

In summary, the essence for modular syntax definitions as suggested in this approach is to
provide a grammar that only provides an interface nonterminal (in the following called interface
grammar). An interface grammar can be extended by other grammars. Hereby two kinds of
extensions are conceivable: (1) Grammars extending the interface grammar can provide further
pre-built syntax options that other languages can use. (2) Through inheriting from the interface
grammar, a language can delay the decision, which implementations should be used. Languages
engineers, thus, can design grammars that extend those interface grammars and by this, specify
that some sort of literals, statements, or types are used within their developed language and
where they are used. Later, this is resolved through multiple inheritance from this language and
the grammar(s) that extend(s) the interface grammars for, e.g., literals, statements, or types.
For example, the ExpressionsBasis extends the LiteralsBasis, but through multiple inheritance in the
Automata grammar (cf. Figure 10.2), expressions used in automata can use literals provided by
CommonLiterals.

Figure 10.10 provides two example language components that utilise the language components
shown in Figure 10.9. RoboJAction is a domain-specific language for modelling actions in the
context of service robotics applications similar to this approach [Ada+17a]. The language lends
notation elements from Java, but only supports basic types, literals of reduced complexity as
well as a subset of possible expression implementations. These notation elements are reused
by inheriting from several language components. The language further introduces novel syntax
elements for realising domain-specific concepts.

The second example is the object constraint language (OCL) which combines the language
components CommonLiterals, BitExpressions, AssignmentExpressions, CommonEx-
pression, OCLExpressions, and CollectionTypes. JavaLight and an OCL are consid-
ered as complete modelling languages. However, in case more complex types, literals or ex-
pressions are needed it is possible to extend those languages and combine them with additional
language components such as SimpleGenericTypes or JavaLiterals.

10.3.2 Modular Analysis Infrastructure

The modularity for syntax presented in the previous section would be of limited use without
modularity in analyses, transformations, and further operations implemented against the syntax.
For this purpose, MontiCore generates composable visitors [Hei+16]. From each grammar, a
Visitor interface prefixed with the name of the grammar is generated. This interface provides four
methods handle, visit, traverse, and endVisit for each nonterminal of the given grammar. A depth-first
traversal of the AST of the grammar is already included via default implementations of the handle

186 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

RoboJAction

OCL

Common

Expressions

Bit

Expressions

Assignment

Expressions

OCL

Expressions

Collection

Types

Common

Literals

Common

Expressions

Assignment

Expressions

Basic

Types

Common

Literals

Figure 10.10: Combining base grammars

and traverse methods. The handle methods encapsulate the handling of the nonterminals and call
the corresponding visit, traverse and endVisit methods for the nonterminals. The traverse method is
responsible for traversing child nodes of the nonterminal. To implement an analysis for models of
a given language, language engineers can focus on implementing the analysis using the visit and
endVisit methods. By default, visit and endVisit methods have an empty default implementation
and only have to be implemented if it is intended to use these for the implementation of the
analysis. The visitor interfaces provide methods for the current grammar only. However, they
extend the corresponding visitor interfaces of all extended grammars and through this, all visitor
methods for inherited nonterminals are available as well.

«interface»

AutomataVisitor

handle(ASTState n)

traverse(ASTState n)

visit(ASTState n)

endVisit(ASTState n)

�

«interface»

ExpressionBasisVisitor

handle(ASTExpression n)

traverse(ASTExpression n)

visit(ASTExpression n)

endVisit(ASTExpression n)

AutomataDelegatorVisitor

setAutomatonVisitor(AutomataVisitor v)

setExpressionBasisVisitor(

ExpressionBasisVisitor v)

handle(ASTExpression n)

traverse(ASTExpression n)

visit(ASTExpression n)

endVisit(ASTExpression n)

handle(ASTState n)

traverse(ASTState n)

visit(ASTState n)

endVisit(ASTState n)

�

delegates to visitors set for
the different languages parts

handles AST nodes of
the ExpressionBasis
language

handles AST nodes of the Automaton language

visit(n);

traverse(n);

endVisit(n);

climb-down strategy

generated default
(depth first)

called when
- entering the node
- leaving the node
(empty hot spots)

Figure 10.11: Visitors generated for the example in Figure 10.2

In addition to visitor interfaces, MontiCore generates delegator visitors that are composed

10.3. COMPOSITIONAL LANGUAGE ENGINEERING 187

of other visitors. These visitors only handle the traversal themselves, but delegate the visit and
endVisit to registered visitors. By default, one visitor per super grammar can be registered.
Figure 10.11 depicts the visitor interface and the delegator visitor that MontiCore generated for
the automata grammar in Figure 10.2.

10.3.3 Composed Analyses

With the modular analysis infrastructure, MontiCore enables language engineers both (1) to
describe monolithic analyses across different syntax modules and (2) to reuse analyses as part
of reusing a language component. A monolithic analysis across modular syntax can be realised
by implementing a visitor interface and using the visitor methods of all (including inherited)
nonterminals. This kind of analysis, thus, enables to optionally reuse all visitor infrastructure
parts from inherited language components while being able to override and customise parts of it
whenever this is required or desired. A monolithical analysis is specifically suitable in situations
in which the kind of analysis that is required from inherited language parts has a low potential for
being reused in different contexts. If analysis parts that operate on inherited language parts are
intended to be reused in a different contexts, we recommend to realise such parts as individual,
modular analyses.

CommonLiteralsExpressionsBasis

LiteralsBasis

Automata

Map<String,Integer> result

boolean traversable

visit(ASTState n)

visit(ASTTransition n)

visit(ASTBooleanLiteral)

visit(ASTSignedNatLiteral n)

endVisit(ASTTransition n)

traverse(ASTAutomaton n)

Map<String,Integer> getResult()

«interface»

CommonLiteralsVisitor
«interface»

ExpressionsBasisVisitor

«interface»

LiteralsBasisVisitor

(

((

EffectiveStateDegrees

«interface»

AutomataVisitor

(

if(isTraversable) {

result.put(n.getFrom(), result.get(n.getFrom()) + 1);

result.put(n.getTo() , result.get(n.getTo()) + 1);

}

traversable = true; //default, if no guard is present

traversable = !n.isNegative();

traversable = n.getSource() != FALSE;

result.put(n.getName(), 0); //initialize degree

Figure 10.12: Example for a monolithic analysis across several language components

An example for a monolithic analysis on the automata language presented in Section 10.2
is to calculate the effective degree of all states of an automaton model. By effective degree,
we denote the number of incoming and outgoing transitions of a state, which have a satisfiable
guard condition, i.e., a guard condition that does not always evaluate to false. This analysis
can be realised as a class EffectiveStateDegrees implementing the interface AutomataVisitor (cf. Fig-
ure 10.11) as depicted in Figure 10.12. Through transitive inheritance, the visitor methods, e.g.,
for ASTExpressions are reused without modification. Only visitor methods that perform parts of

188 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

the analysis’ calculations are overridden. The traverse method for automata is overridden to
first handle the traversion of all states of the automaton, before handling all transitions. The
purpose of this is that the degree of each state can be initialised with 0 in the visit method of
the ASTState. The visit method of ASTTransition is overridden as well. It initialises a Boolean
variable isTraversable with true. By this, each transition is initially regarded as traversable. If a
transition in the model has a guard condition, the AST nodes of this condition are visited by
the traversal strategy before invoking the endVisit method of the transition. Thus, by overriding
visit methods of expressions and literals, the isTraversable variable can be adjusted specific to each
guard. As the automata language in this example uses the ExpressionsBasis language, a guard can
only comprise either a single name or a Boolean or integer literal. For this example, we consider
expressions comprising either the Boolean value false or negative integers as unsatisfiable. This
is realised by overriding the visit methods of the respective AST classes in the EffectiveStateDe-
grees. The overridden endVisit method for transitions increments the degree of source and target
states if isTraversable is true. As the employed evaluation for expressions has a low potential of
being reused in other language components than for automata, the developers decided to realise
this as monolithical analysis.

Using delegator visitors enables reusing visitors for the individual language parts involved
and, thus, to develop analyses and other operations on the AST modularly. As depicted in Fig-
ure 10.11, a delegator visitor has a setter method for visitors of each (transitive) parent grammar
as well as traversal and visit methods for all nonterminals of all grammars. An example for a
modular operation on the example automata language is a model complexity analysis as depicted
in Figure 10.13. This analysis counts all instances of abstract syntax elements of a model that
introduce concrete syntax. For each language component in the example that introduces concrete
syntax, a class realising the model complexity analysis (suffixed MoCoA) is implemented. These
classes implement the visitor interfaces and override their methods to count the syntax elements.
The ExpressionsBasisMoCoA, for instance, is capable of counting model elements of expressions only.
The CommonLiteralsMoCoA counts boolean and integer values only. The AutomataMoCoA counts all
syntax elements of an automaton model except the expressions in the guards.

ExpressionsBasis CommonLiteralsAutomata

«interface»

AutomataVisitor

«interface»

CommonLiteralsVisitor

«interface»

ExpressionsBasisVisitor

Automata

MoCoA
ExpressionsBasis

MoCoA

CommonLiterals

MoCoA

automataVisitor commonLiteralsVisitorexpressionsBasisVisitor1 1 1delegates analysis to
other visitors

«interface»

AutomataDelegatorVisitor

ModelComplexity

Analysis

Figure 10.13: Example for composing modular analyses via delegation visitor

We distinguish different forms of composing analyses as explained in Chapter 4 of this
book [Hei+21]. Combining these modular analyses can be achieved by employing a delegator
visitor. In the example, the class ModelComplexityAnalysis extends the delegator visitor for au-
tomata and manages delegates for each analysis module. The effect of this is that the delegator
visitor delegates the execution of the handle method for an AST node to the delegate, which is
responsible for this node. Through this, the model complexity analysis takes into account all au-
tomaton model elements including those of the guard condition. Instead of this modular analysis,
the ModelComplexityAnalysis could be realised as monolithical analysis as well. But as stated above,
this would prevent reusing the analysis modules for literals and expressions for model complexity
analyses in other contexts. Furthermore, modular analyses enable reusing foreign analysis parts
conveniently. If, for example, the engineers of the automata language decide to use the Common-

10.4. RELATED WORK 189

Expression language component with an individual analysis module instead of ExpressionBasis, the
only adjustment in the analysis is to exchange the delegate object.

Conducting analyses can be orchestrated based on different strategies as described in Chap-
ter 5 of this book [Hei+21]. If a composed analysis yields analysis results, these are typically
contained in the analysis modules after execution of the analysis. Such results can be exploited
in different forms, e.g., to calculate aggregated results or to serve as input for other analyses
(cf. Chapter 7 of this book [Hei+21]). In our example, the results are collected from the modules
and unified. Each above-mentioned analysis module can yield an integer number representing the
number of syntax elements counted during analysis execution. A suitable technique for unifying
the partial results in this analysis is to calculate the sum. Sometimes it is useful to exchange
information between analysis modules while the analysis is executed or to collect the analysis
results in a common place. This can be realised by sharing a data structure between the analysis
modules, e.g., by passing it to the analyses as argument. For instance, the model complexity
analysis could store the syntax element counts by their abstract syntax type in a common map.
The map could be passed to the analysis modules as argument.

Monolithic analyses can be reused for other analysis by means of delegator visitors as well.
For instance, a new complexity analysis can use the analysis results both of the EffectiveState-
Degrees analysis and of the ModelComplexityAnalysis. This new analysis can be realised as delegator
visitor pointing to both analyses and combine their result. Sometimes, such analyses do not
have to be composed at all: If the analyses do not depend on another, it is possible to execute
these independently in sequence or parallel and combine their result (cf. Chapter 4, 7 of this
book [Hei+21]).

10.4 Related Work

Research in software language engineering has produced a wealth of formalisms to define abstract
and concrete syntaxes, well-formedness rules, and model transformations [Kle08; HRW18]. These
include (1) the grammar-based integrated syntax formalisms of Neverlang [VC15], Whole Plat-
form [Erd+15], and Xtext [Bet16], as well as the abstract data types Spoofax [KV10] and the
metamodels of GEMOC Studio [CBW17] and MPS [Voe11]; (2) formalisms for the specification
of well-formedness, such as OCL [Hei+10] or the Name-Binding Language [WKV14] of Spoofax;
and (3) model transformation formalisms, such as ATL [Jou+06], the epsilon transformation
language [KPP08], FreeMarker [HR17], or Xtend [Bet16]. Model transformations with ATL are
explained in Chapter 12 of this book [Hei+21]. Language workbenches [Erd+15] combine mul-
tiple of such formalism to facilitate engineering the constituents of software languages. Yet, the
compositionality of the related analyses is limited and rarely directly follows the composition of
the syntaxes without severe manual implementation efforts.

For instance, in Neverlang [VC15], DSMLs are defined through language modules compris-
ing grammars describing concrete and abstract syntax as well as through evaluation phases that
realise well-formedness checking and syntheses. Extension points of grammars are used, but un-
defined, production names. While this enables to compose language modules along such extension
points, there is no support for automatically composing the languages’ analyses accordingly.

SugarJ [Erd+11] serves to specify syntactic extensions for Java that are contained in syntactic
sugar libraries. By “desugaring”, the extended syntax is transformed into the base syntax. SugarJ
uses parsers that are capable of detecting ambiguities, for which they report an error. While it
supports importing language modules into another, it does not automatically derive combined
analyses from this integration.

The core of the ableC [Kam+17] language framework is an extensible variant of the C lan-
guage. It uses attribute grammars to describe the syntax of independent language components
and provides a composition mechanism for these that guarantees correct composition of the
attribute grammars and, therefore, also of the related analyses. As the base language C, how-

190 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

ever, cannot be exchanged, this, of course, limits the application of ableC. The same holds for
Mbeddr [Voe+12], a projectional language workbench on top of a C base language.

SDF+FeatureHouse [LDA13] employs superimposition, weaving, and inheritance to compose
language modules. While this supports powerful integration of syntaxes, the composition of the
related analyses still demands significant effort.

10.5 Discussion

This work focuses on modularity in languages foreseen by language engineers, therefore language
components are built as individual units of reuse. In practice, however, this is rarely feasible and
requires premature optimisation in identifying such units of reuse. Instead, it occurs that parts of
a language component’s syntax are identified as units of reuse only once these parts are of use for
another language, or if a similarity analysis between language components reveals a potential to
extract a common part to a separate component. However, it is possible to modularise an existing
MontiCore language with little effort by extracting the nonterminals that should be reused to a
separate grammar. The original grammar then extends the new grammar, similar to the “pull-up
attribute” refactoring in object-oriented programming.

State = "state" Name (("{" (State | Transition)* "}") | ";");

HState extends State = "state" Name "{" (State | Transition)* "}";

(a)

(b)

Figure 10.14: Adding hierarchical states via (a) overriding or (b) extending a grammar production

MontiCore’s support for engineering modular languages can be used to build product lines of
languages [But+19] in which each feature uses a language component. These foster the reusabil-
ity of language components for scenarios with a high complexity induced by the number and
interrelations of available language components. Through the modular analysis infrastructure,
analyses can be defined per feature and then are available for all products of the product line.

Reusing analyses as described in Section 10.3 has to be handled with care: If an analysis
defined for a language is directly reused in a language that extends the original language, it might
yield unintended results. Consider, for example, the automata language presented in Section 10.2
and a new HierarchicalAutomata language that extends this language and introduces decomposed
states that themselves contain states and transitions. The model complexity analysis for the
original automata language, as described in Section 10.3, can be applied to the language for
hierarchical automata without modification. However, it depends on the realisation of hierarchical
states whether these are taken into account or not.

If hierarchical states are introduced through overriding the production for states as depicted
in Figure 10.14(a), neither hierarchical nor non-hierarchical states are visited by the visitor as the
parser translates both into instances of the new ASTState class. Thus, both are not counted in
the analysis. If, however, the hierarchical states are introduced by extending the state production
(cf. Figure 10.14(b)) non-hierarchical states are visited by the visitor and, thus, taken into account
in the analysis.

The techniques described in this chapter can be used to realise both qualitative and quantita-
tive, automated, static analyses as described in Chapter 4 of this book [Hei+21]. Given an AST
of the input language as depicted in Figure 10.1 enables realising analysis on the model/system
structure, while the output AST, together with an understanding of the semantic domain, forms
a basis for realising behavioural analyses.

MontiCore internally uses the modular analysis framework for each language: Context con-
ditions are realised as Java classes and are checked against the AST using a visitor. Therefore,
context conditions can be reused as part of reusing a language component. Similarly, the instan-

10.6. CONCLUSION 191

tiation of the symbol table of a language [HR17] is performed by a symbol table creator realised
as visitor.

10.6 Conclusion

We have presented an approach for compositional language engineering based on modular syn-
tax definitions from which a modular, visitor-based infrastructure for model-based analyses and
syntheses is derived. The presented approach relies on language extension and interface produc-
tions that can be extended in the extending languages. From this information, visitors for the
participating languages are generated that automatically take care of model traversal. Hence,
model-based analyses implemented through these visitors can be reused in other language com-
binations without modification.

The visitor-based infrastructure traverses the abstract syntax and can support realising a
language’s semantics. The applicability of the infrastructure for conceiving novel forms of gener-
ator compositions, however, has yet to be evaluated. This fosters not only the reuse of modelling
languages and analysis tools but facilitates engineering truly domain-specific modelling languages
to integrate experts of the different systems engineering domains more efficiently.

Bibliography

[Ada+17a] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Jérôme Pfeiffer, Bernhard
Rumpe, and Andreas Wortmann. Modeling Robotics Tasks for Better Separation of
Concerns, Platform-Independence, and Reuse. Shaker, 2017. url: http://www.
se-rwth.de/phdtheses/Modeling-Robotics-Tasks-for-Better-
Separation-of-Concerns-Platform-Independence-and-Reuse.pdf.

[Ada+17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. “Modeling
Robotics Software Architectures with Modular Model Transformations”. In: Journal
of Software Engineering for Robotics 8.1 (2017), pp. 3–16. doi: 10.1109/IRC.
2017.16.

[Bet16] Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd, 2016.

[But+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. “Systematic Composition of Independent Language Features”. In: Jour-
nal of Systems and Software 152 (2019), pp. 50–69.

[CBW17] Benoit Combemale, Olivier Barais, and Andreas Wortmann. “Language Engineering
with the GEMOC Studio”. In: IEEE International Conference on Software Archi-
tecture Workshops. 2017, pp. 189–191. doi: 10.1109/ICSAW.2017.61.

[Dal+19] Manuela Dalibor, Nico Jansen, Bernhard Rumpe, Louis Wachtmeister, and Andreas
Wortmann. “Model-Driven Systems Engineering for Virtual Product Design”. In:
First International Workshop on Multi-Paradigm Modelling for Cyber-Physical Sys-
tems, MPM4CPS. Sept. 2019, pp. 430–435. doi: 10.1109/MODELS-C.2019.
00069.

[Dra+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny Kus-
menko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes Richen-
hagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and Andreas
Wortmann. “SMArDT modeling for automotive software testing”. In: Software: Prac-
tice and Experience 49.2 (2019), pp. 301–328. doi: 10.1002/spe.2650.

http://www.se-rwth.de/phdtheses/Modeling-Robotics-Tasks-for-Better-Separation-of-Concerns-Platform-Independence-and-Reuse.pdf
https://doi.org/10.1109/IRC.2017.16
http://www.se-rwth.de/phdtheses/Modeling-Robotics-Tasks-for-Better-Separation-of-Concerns-Platform-Independence-and-Reuse.pdf
https://doi.org/10.1109/MODELS-C.2019.00069
https://doi.org/10.1109/MODELS-C.2019.00069
http://www.se-rwth.de/phdtheses/Modeling-Robotics-Tasks-for-Better-Separation-of-Concerns-Platform-Independence-and-Reuse.pdf
https://doi.org/10.1002/spe.2650
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1109/IRC.2017.16

192 CHAPTER 10. COMPOSITIONAL LANGUAGES - THE MONTICORE APPROACH

[Eik+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and Andreas
Wortmann. “Architecting Cloud Services for the Digital me in a Privacy-Aware En-
vironment”. In: Software Architecture for Big Data and the Cloud. 2017, pp. 207–
226. doi: 10.1016/B978-0-12-805467-3.00012-0.

[Erd+11] Sebastian Erdweg, Lennart CL Kats, Tillmann Rendel, Christian Kästner, Klaus
Ostermann, and Eelco Visser. “Library-based Model-driven Software Development
with SugarJ”. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. 2011,
pp. 17–18. doi: 10.1145/2048147.2048156.

[Erd+15] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Laurence Tratt, Remi Bosman,
William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al.
“Evaluating and comparing language workbenches: Existing results and benchmarks
for the future”. In: Computer Languages, Systems & Structures 44 (2015), pp. 24–47.
doi: 10.1016/j.cl.2015.08.007.

[FR07] Robert France and Bernhard Rumpe. “Model-driven Development of Complex Soft-
ware: A Research Roadmap”. In: Future of Software Engineering (May 2007), pp. 37–
54. doi: 10.1109/FOSE.2007.14.

[Hei+10] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, Michael Thiele,
Christian Wende, and Claas Wilke. “Integrating OCL and textual modelling lan-
guages”. In: International Conference on Model Driven Engineering Languages and
Systems. 2010, pp. 349–363. doi: 10.1007/978-3-642-21210-9_34.

[Hei+16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wort-
mann. “Compositional Language Engineering using Generated, Extensible, Static
Type Safe Visitors”. In: Conference on Modelling Foundations and Applications.
2016, pp. 67–82. doi: 10.1007/978-3-319-42061-5_5.

[Hei+21] Robert Heinrich, Francisco Durán, Carolyn L. Talcott, and Steffen Zschaler (eds.)
Composing Model-Based Analysis Tools. Springer, 2021.

[HMR15] Katrin Hölldobler, Pedram Mir Seyed Nazari, and Bernhard Rumpe. “Adaptable
Symbol Table Management by Meta Modeling and Generation of Symbol Table
Infrastructures”. In: Domain-Specific Modeling Workshop. 2015, pp. 23–30. doi: 10.
1145/2846696.2846700.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Workbench Edition
2017. Shaker, 2017. url: http://www.se-rwth.de/phdtheses/MontiCore-
5-Language-Workbench-Edition-2017.pdf.

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. “Software Language
Engineering in the Large: Towards Composing and Deriving Languages”. In: Com-
puter Languages, Systems & Structures 54 (2018), pp. 386–405.

[Jou+06] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez.
“ATL: a QVT-like transformation language”. In: Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages, and applica-
tions. 2006, pp. 719–720. doi: 10.1145/1176617.1176691.

[Kam+17] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. “Reliable and Au-
tomatic Composition of Language Extensions to C: The ableC Extensible Language
Framework”. In: Proceedings of the ACM on Programing Languages 1 (Oct. 2017),
98:1–98:29. doi: 10.1145/3138224.

[Kle08] Anneke Kleppe. Software language engineering: creating domain-specific languages
using metamodels. Pearson Education, 2008.

https://doi.org/10.1016/B978-0-12-805467-3.00012-0
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1145/1176617.1176691
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
https://doi.org/10.1145/2048147.2048156
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/3138224
https://doi.org/10.1007/978-3-319-42061-5_5
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
https://doi.org/10.1145/2846696.2846700
https://doi.org/10.1145/2846696.2846700
https://doi.org/10.1007/978-3-642-21210-9_34

BIBLIOGRAPHY 193

[KPP08] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. “The epsilon trans-
formation language”. In: International Conference on Theory and Practice of Model
Transformations. 2008, pp. 46–60. doi: 10.1007/978-3-540-69927-9_4.

[KV10] Lennart C. L. Kats and Eelco Visser. “The Spoofax Language Workbench. Rules for
Declarative Specification of Languages and IDEs”. In: Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 2010, pp. 444–463. doi: 10.1145/1869459.1869497.

[LDA13] Jörg Liebig, Rolf Daniel, and Sven Apel. “Feature-oriented Language Families: A
Case Study”. In: Seventh International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS. 2013, 11:1–11:8. doi: 10.1145/2430502.2430518.

[MRR15] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. “Management of
Guided and Unguided Code Generator Customizations by Using a Symbol Table”. In:
Domain-Specific Modeling Workshop. 2015, pp. 37–42. doi: 10.1145/2846696.
2846702.

[MRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. “An Extended
Symbol Table Infrastructure to Manage the Composition of Output-Specific Gener-
ator Information”. In: Modellierung 2016 Conference. Vol. 254. Mar. 2016, pp. 133–
140. doi: dl.gi.de/20.500.12116/819.

[Obj12] Object Management Group. OMG Systems Modeling Language (OMG SysML), Ver-
sion 1.3. 2012. url: http://www.omg.org/spec/SysML/1.3/.

[Obj15] Object Management Group. UML 2.5. Tech. rep. formal/2015-03-01. Object Man-
agement Group, 2015.

[VC15] Edoardo Vacchi and Walter Cazzola. “Neverlang: A framework for feature-oriented
language development”. In: Computer Languages, Systems & Structures 43 (2015),
pp. 1–40. doi: 10.1016/j.cl.2015.02.001.

[Voe+12] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. “mbeddr: an
Extensible C-based Programming Language and IDE for Embedded Systems”. In:
Proceedings of the 3rd annual conference on Systems, programming, and applications:
software for humanity. 2012, pp. 121–140. doi: 10.1145/2384716.2384767.

[Voe11] Markus Voelter. “Language and IDE Modularization and Composition with MPS”.
In: International Summer School on Generative and Transformational Techniques
in Software Engineering. 2011, pp. 383–430. doi: 10.1007/978-3-642-35992-
7_11.

[WKV14] Guido H Wachsmuth, Gabriël D P Konat, and Eelco Visser. “Language Design with
the Spoofax Language Workbench”. In: IEEE Software 31.5 (2014), pp. 35–43. doi:
10.1109/MS.2014.100.

https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1145/2846696.2846702
https://doi.org/10.1007/978-3-642-35992-7_11
http://www.omg.org/spec/SysML/1.3/
https://doi.org/10.1109/MS.2014.100
https://doi.org/10.1145/2430502.2430518
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/2846696.2846702
https://doi.org/dl.gi.de/20.500.12116/819
https://doi.org/10.1145/2384716.2384767
https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1007/978-3-540-69927-9_4

	II Case Studies
	Compositional Languages - The MontiCore Approach
	Introduction
	Preliminaries
	Compositional Language Engineering
	Modular Syntax Definition
	Modular Analysis Infrastructure
	Composed Analyses

	Related Work
	Discussion
	Conclusion

