
Code Generator Composition for Model-Driven
Engineering of Robotics Component &

Connector Systems

Jan Oliver Ringert1,2?, Alexander Roth1, Bernhard Rumpe1,
Andreas Wortmann1

1 Software Engineering
RWTH Aachen University

http://www.se-rwth.de/
2 School of Computer Science

Tel Aviv University
http://www.cs.tau.ac.il/

Abstract. Engineering software for robotics applications requires multi-
domain and application-specific solutions. Model-driven engineering and
modeling language integration provide means for developing specialized,
yet reusable models of robotics software architectures. Code generators
transform these platform independent models into executable code spe-
cific to robotic platforms. Generative software engineering for multi-
domain applications requires not only the integration of modeling lan-
guages but also the integration of validation mechanisms and code gen-
erators. In this paper we sketch a conceptual model for code generator
composition and show an instantiation of this model in the MontiArc-
Automaton framework. MontiArcAutomaton allows modeling software
architectures as component and connector models with different compo-
nent behavior modeling languages. Effective means for code generator
integration are a necessity for the post hoc integration of application-
specific languages in model-based robotics software engineering.

1 Introduction

Software engineering for robotic systems is inherently complex due to the het-
erogeneity of the systems and their challenges from various domains (e.g., nav-
igation, sensor fusion, manipulation). Thus, robotics software is usually devel-
oped by teams of domain experts with different views and understanding of
the systems functionality. This leads to hardly reusable software limited to spe-
cific platforms [8, 17]. To enable the reuse of functionality and subsystems, the
structuring and composition mechanisms of component-based software engineer-
ing have been applied to robotics software [4, 12]. These approaches are mainly
based on the exchange of source code components and thus tied to specific plat-
forms and general-purpose programming languages (GPL). The application of

? J. O. Ringert acknowledges support from a postdoctoral Minerva Fellowship, funded
by the German Federal Ministry for Education and Research.

[RRRW14] J.O. Ringert, A. Roth, B. Rumpe, A. Wortmann:
Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems.
In: MORSE 2014 - 1st International Workshop on Model-Driven Robot Software Engineering, pages 66-77,
York, Great Britain, Volume 1319 of CEUR Workshop Proceedings,
Eds.: U. Aßmann, G. Wagner, CEUR-WS.org, 2014.
www.se-rwth.de/publications

2

GPLs often does not reflect the problems from heterogeneous domains faced in
the development of robotics systems.

Model-driven engineering (MDE) is an approach to reduce the conceptual
gap [5] between problem domains and software engineering. Models allow domain-
specific software descriptions reflecting the heterogeneity of the developed sys-
tem and its concerns. In combination with powerful code generators models may
serve as primary development artifacts which increases the software’s compre-
hensibility and reuse on different platforms.

We have combined MDE and software language engineering based approaches
with concepts from generative software development in a versatile framework for
robotics applications development. MontiArcAutomaton [14,15] is an extensible
framework that allows to model robotics applications as hierarchically compos-
able components with well-defined interfaces that embed problem specific model-
ing languages for component behavior. MontiArcAutomaton comprises powerful
code generation facilities for the transformation of models into executable code
for various robotics target platforms.

Language integration in MontiArcAutomaton is enabled by the MontiCore
domain-specific language workbench [10]. MontiCore provides comprehensive
language composition mechanisms supported by its symbol table and code gen-
eration frameworks [16,21]. We have presented the language composition mech-
anisms used by MontiArcAutomaton in [11].

The easy integration of modeling languages demands for integration mecha-
nisms of corresponding code generators. Challenges are the coordination of mul-
tiple code generators each responsible for specific models or parts of models. This
includes the selection of code generators supporting a common target platform,
to handle language restrictions a code generator might impose, and to propagate
necessary generation context information between generators. Integrating code
generators should require no modification of the participating generators.

In this paper we sketch a conceptual model for code generator composition
and show its instantiation in the MontiArcAutomaton framework. We introduce
MontiArcAutomaton in Sect. 2 and state and illustrate the problem of code
generator composition in Sect. 3. Section 4 describes our solution and Sect. 5
describes an implementation in MontiArcAutomaton. We discuss related work
in Sect. 6 and future work in Sect. 7. Section 8 concludes this contribution.

2 MontiArcAutomaton

MontiArcAutomaton [14,15] is an extensible modeling language and framework
for the generative model-driven engineering of robotics applications. The model-
ing language MontiArcAutomaton is a component and connector (C&C) archi-
tecture description language (ADL) [19] which extends the ADL MontiArc [7]
with component behavior modeling. The logical architecture of robotics applica-
tions is described as the hierarchical composition of components that encapsulate
the system’s functionality. Components are either atomic or composed: atomic
components define behavior via an embedded behavior modeling language or

3

a component implementation in a general-purpose programming language. The
behavior of composed components emerges from the subcomponents and their
interaction. Components interact by sending messages via directed connectors
that connect typed input and output ports of components. Types of ports are
either defined via class diagrams or Java classes. Communication in MontiArc-
Automaton is based on the Focus [3] framework for interactive distributed sys-
tems and supports different timing paradigms.

The concept of encapsulation from C&C ADLs allows not only a logically
distributed development and a physically distributed computation model but
also the composition of component behaviors independent of their behavior de-
scription. MontiArcAutomaton exploits the C&C encapsulation mechanism and
allows the embedding of arbitrary modeling languages into components for pro-
viding the most suitable behavior description language per component.

We have developed MontiArcAutomaton using the domain-specific language
workbench MontiCore [10] and its language integration mechanisms. The con-
crete and abstract syntax of a textual MontiCore modeling language is defined
in an extended context free grammar format. From these grammars, MontiCore
generates infrastructure to parse models of this language into their abstract syn-
tax trees (ASTs). Checks of the well-formedness of models of a language, called
context conditions, are implemented in Java [21]. MontiCore languages are tex-
tual modeling languages. An integration with the Eclipse Modeling Framework
allows also the development of graphical editors for editing MontiArcAutomaton
models.3

MontiCore supports language embedding, language extension, and language
aggregation [11,21] to compose new languages from existing ones. These modular
language composition mechanisms are supported by a sophisticated symbol table
framework that enables the definition and adaptation of language symbols for
integrating information and checking context conditions rules across embedded
and imported models. MontiCore allows the easy development of code generators
using the FreeMarker4 template engine to process abstract syntax trees and code
templates written in a target language [13,16].

In previous works we have developed the MontiArcAutomaton modeling lan-
guage with embedded I/Oω automata and I/O tables [15]. Various code gener-
ators allow the deployment of MontiArcAutomaton models to different robotics
platforms [14, 15]. With the integration of additional languages to model com-
ponent behavior the post hoc composition of code generators has become a
prevalent challenge.

3 Problem Statement and Example

MontiArcAutomaton allows to embed application-specific behavior modeling lan-
guages into components to facilitate the development of flexible, reusable, yet

3 Video of an editor for synchronous graphical and textual editing of MontiArc-
Automaton models: http://www.monticore.de/robotics/

4 Website of the FreeMarker Java template engine: http://freemarker.org/

4

specific robotics applications. While the ability to use specific behavior modeling
languages allows to develop specific applications, the encapsulation of models in
components with well-defined and stable interfaces allows to modify component
internals easily, e.g., to replace the specific behavior modeling language, while
retaining a stable architecture.

Engineering C&C applications with the flexibility of arbitrary embedded be-
havior modeling languages demands for approaches to generate code from het-
erogeneous models. As languages and code generators can be integrated into
MontiArcAutomaton post hoc, code generators have to be composable to allow
black-box integration. Each composable code generator produces only parts of
the overall generated software system. A framework to support code generator
composition has to provide a mechanism to configure C&C applications with dif-
ferent code generators. Realizing composition of code generators requires support
for code generator reuse, the ability to handle code generators that are agnostic
of any component structure specifics (e.g., how port or connectors work), and
dependency management between different code generators.

3.1 Example

A software engineer is responsible for the development of a controller for a robotic
arm. The robot assists a physically disabled person in a kitchen environment to
operate a toaster. The robot is supposed to place bread in a toaster, operate the
toaster, and deliver the toast to a nearby plate. The software engineer models
the architecture and controller behavior platform independently using Monti-
ArcAutomaton with embedded I/Oω automata and RobotArm (RA) programs.
The latter describe motion of the arm in terms of defined locations and gripper
commands.5 The engineer embeds the existing language RA into the MontiArc-
Automaton framework using the language integration mechanisms of MontiCore.
The software architecture of the robot is depicted in Fig. 1. The component
Controller receives distances and toast color from attached sensors. The I/Oω

automaton modeling the behavior of Controller translates these inputs into
commands for the ToasterController, which starts and stops the actual
toaster, and the component ArmController, which actuates the robotic arm
to pick up and deliver toast. The behavior of component ArmController is
modeled as a set of RA programs.

To generate executable code from the architecture, the software engineer has
to provide a code generator for the embedded RA language which translates
RA commands into code for the target platform. This code generator can be
selected from a library of existing code generators or newly developed. Finally,
the generator has to be integrated into the framework, such that it is executed
whenever a component with RA programs is processed.

5 A video of the robotic arm: http://www.monticore.de/robotics

5

UltraSonic

Sensor

Color

Sensor

Controller
color

Arm

program

ToastServiceRobot

ack

Toaster

Controller

event command

define home 0deg down;

define toaster 120deg 20cm;

program PickupFromToaster {

move up;

open;

move toaster;

close;

move up;

}

...

MAA

distance

Fig. 1: Architecture of the ToastServiceRobot with embedded RobotArm programs.

4 Code Generator Composition

In this section we propose an approach to code generator composition on a con-
ceptual level. First, we describe code generator interfaces that support generator
composition as motivated in Sect. 3. Second, we sketch the process of code gen-
erator composition and execution of the composed generators using information
from code generator interfaces.

To achieve generator composition, each code generator explicates all informa-
tion necessary within an interface. This interface is used during code generator
orchestration to configure and execute the code generator. Definition 1 lists the
elements of a code generator interface.

Definition 1 (Code Generator Interface). A code generator interface con-
tains the following elements:

1. Input language: The language or language fragments the generator processes.
2. Input language constraints: A generator may restrict the processable models

via generator-specific context conditions.
3. Output representation: The output representation states the language and

format of the output.
4. Execution information: Defines how a generator is executed.
5. Artifact dependencies: A generator may produce code that depends on ex-

ternal libraries, runtimes, or code produced by another code generator. Such
artifact dependencies have to be explicitly stated in order to satisfy depen-
dencies of generated artifacts.

6. Generation context information: Additional information provided or required
at generation time.

Multiple generators are composed to generate code for models of the soft-
ware of a robotic system. The composition of code generators is described in an
application configuration model which contains a selection of all code generators
involved. It may also contain a configuration of generation context information

6

Application

Configuration

Model

configures calls

Generated

Output
Artifacts

Code Generator

requires

*
Generator Orchestrator

*

requires

*

Generator Interface
uses

produces

Fig. 2: Overview of code generator composition with generator interfaces.

for code generators. Composing generators according to a configuration model
requires the orchestration of all selected code generators. Such an orchestration
requires (a) to check that all required information is provided and (b) to compute
an execution order of the code generators.

If for each code generator all required generation context information is pro-
vided by the selected code generators and an execution order can be computed,
then the code generator composition can be performed. However, the execution
order of the code generators is influenced by the dependencies described by the
generation context information. There are two types of dependencies. First, a
code generator may require generation context information from another code
generator. Second, a code generator may use the output of another code genera-
tor. Both types of dependencies imply that the code generator providing required
information or output is executed first. However, in some cases it is possible that
an execution order cannot be computed. In this case the code generators cannot
be composed.

Our concept of code generator composition is presented in Fig. 2. An ap-
plication model configures a generator orchestrator. The generator orchestrator
uses the generator interface of each code generator to check for dependencies
and computes an execution order. Finally, the generator orchestrator calls each
code generator according to the computed execution order.

5 Realization in MontiArcAutomaton

The MontiArcAutomaton implementation of the conceptual model presented
above comprises an implementation of generator interfaces, which is facilitated
by a configuration language that generates interface implementations, an appli-
cation configuration to declare compositions of code generators, and an orches-
trator performing the composition.

5.1 Generator Interfaces in MontiArcAutomaton

Based on the concrete requirements for code generators in MontiArcAutomaton
we refine the code generator interfaces defined in Def. 1. The C&C nature of
MontiArcAutomaton, suggests separate interfaces for component generators and
component behavior generators. As MontiArcAutomaton relies on factories for

7

«interface»

IBehaviorGenerator

String getRuntime()

Class getResponsibleAST ()

void configure(List<IBehaviorGenerator> b,

IFactoryGenerator f)

String getMainTemplate()

Set<ContextCondition> getContextConditions()

void setAST(ASTNode ast)

«interface»

IFactoryGenerator

«interface»

IGenerator

void configure(String package,

String filename,

String product,

String realProduct,

Set<String> generics

Set<String> imports);

String getRuntime()

Class getResponsibleAST ()

void configure(String packageName,

String filename,

IFactoryGenerator f,

Set<String> imports);

CD

* 1

«interface»

IComponentGenerator

Fig. 3: Generator interface hierarchy of MontiArcAutomaton.

component and component behavior instantiation, factory generators are mod-
eled as well. Component generators process the MontiArcAutomaton language
and behavior generators process the respective embedded behavior modeling
language (Def. 1, Item 1) possibly restricted by additional context conditions
(Def. 1, Item 2). The classification in three generator kinds determines the out-
put format of the generators (Def. 1, Item 3).

Generator execution information is provided by the generators in terms of
the main template which the MontiCore code generation framework processes
(Def. 1, Item 4). This template may call other templates and call Java code for
complex calculations. All generators generate code conforming to a runtime envi-
ronment they depend on (Def. 1, Item 5). The runtime environment determines,
e.g., the scheduling of components. Generators in MontiArcAutomaton do not
explicate further artifact dependencies as MontiArcAutomaton utilizes the del-
egator pattern [6] to integrate accordingly generated behavior implementations.
Generation context information (Def. 1, Item 6) is provided to the generators at
runtime and contains e.g., the AST of the processed model.

An overview of the concrete generator interfaces implemented for Monti-
ArcAutomaton is displayed in Fig. 3. Every generator usable with MontiArc-
Automaton implements an interface extending IGenerator. Thus, each gen-
erator can be parametrized with an AST node and provides at least its main
template and its context conditions to the infrastructure. Generators for compo-
nents and component behavior implement the interfaces IComponentGenera-
tor and IBehaviorGenerator respectively. These interfaces explicate which
AST types they can process.

Additionally, all generator interfaces define a method to configure() which
is interface specific and defines the generation context information required. Gen-
erators for component behavior, e.g., expect to receive the package name of the
containing component, the name of the artifact to be created, a factory gener-
ator, and the imported compilation units. The latter is required as embedding
behavior into components produces integrated artifacts without distinction be-
tween the imports of the component and the imports of the behavior.

8

GeneratorConfiguration

1 generator RobotArmPython {
2 interface generators.IBehaviorGenerator;
3 template robotarm.Main;
4 ast robotarm.ASTRobotArmProgram;
5 runtime runtimes.pythontimesync;
6 }

Listing 1: The generator configuration for the RobotArm generator describes
that it implements the interface IBehaviorGenerator and provides static
information.

5.2 Modeling Generator Interfaces

To facilitate the creation of code generator interfaces we have developed a mod-
eling language for generator interfaces. Each code generator used with Monti-
ArcAutomaton models how it is executed, which AST it processes, and which
interface it implements in a single generator configuration model per generator.
Listing 1 shows the model of the RA generator from the example in Sect. 3.1.
This model describes that the generator implements the interface IBehavior-
Generator and provides information accessable via this interface. The Monti-
ArcAutomaton toolchain transforms these models into actual implementations
implementing the interfaces.

The concrete implementation of the interface IBehaviorGenerator for
the RobotArm generator from the example given in Lst. 1 provides implementa-
tions for all methods of IGenerator and IBehaviorGenerator and returns
the static generator information from the model where applicable (e.g., getRe-
sponsibleAST() returns an instance of the type specified behind ast in l. 4
of Lst. 1). The MontiArcAutomaton orchestrator can refer to these implemen-
tations via the implemented interfaces and compose generators as necessary.

5.3 Application Configuration and Generator Execution

Given a set of generators for component structure, behavior, and factories, an
application has to specify which of these are to be used. This is modeled as the
application configuration model. Listing 2 shows the application configuration for
the toaster robot application. The model references a single component generator
(l. 2), a single factory generator (l. 3), and two behavior generators - one for
RA programs and one for I/Oω automata (l. 4). An application configuration
references at least a component structure generator and may reference additional
behavior and factory generators.

Code generation in MontiArcAutomaton starts with the orchestrator process-
ing the application configuration and loading the configuration of the referenced
generators. As the order of generator execution is implicitly given by the C&C
nature of MontiArcAutomaton, first the referenced behavior generators and the

9

ApplicationConfiguration

1 application ToasterRobotApplication {
2 componentgenerator ComponentsPython;
3 factorygenerator FactoryPython;
4 behaviorgenerators RobotArmPython, IOAutomatonPython;
5 }

Listing 2: Application configuration model for the toaster robot application
using the RA generator for component behavior.

IBehaviorGenerator

comply

Generator

Templates

Application MontiArcAutomaton

IComponentGenerator

IFactoryGenerator

Generator Configuration

Language

Generator

Configuration

Model

call

create

Application Configuration

Model

use

call

read

Orchestrator

Software Architecture

*

Generator Configuration

Generator

ToastServiceRobot

UltraSonic

Sensor

Color

Sensor

Controller

ArmToaster

Controller
define home 0deg down;

define toaster 120deg 20cm;

program PickupFromToaster {

move up;

open;

move toaster;

close;

move up;

}

...

GeneratorConfiguration

Fig. 4: Relations between applications using generators, the interfaces provided by
MontiArcAutomaton, and the orchestrator performing the generator composition.

referenced factory generator are instantiated. Parametrized with these, the ref-
erenced component generator is instantiated. Afterwards, the orchestrator calls
the main template of the component generator. The component generator tra-
verses the AST of the architecture and thus also visits component behavior AST
nodes. For each behavior AST node the responsible generator is configured with
current AST generation context information and its main template is called with
the AST node of the embedded behavior language.

Figure 4 shows the resulting relations: Applications consist of a software ar-
chitecture, and an application configuration model. The application configura-
tion model references the component, behavior, and factory generators required
to build the software architecture of the project. To be processable by the orches-
trator, referenced generators implement the appropriate generator interfaces.

6 Related Work

The presented approach for code generator composition is based on explicit gen-
erator interfaces, code generator orchestration, and application configuration.
This approach is a first step towards a comprehensive approach for code gener-
ator composition and is closely related to modular code generator design.

10

The GenVoca model is an approach to build software systems generators
based on composing object-oriented layers [1,2]. Different layers can use control
blocks to exchange information. In contrast to this approach, we do not focus
on a layered architecture of a code generator but an infrastructure for code
generators composition.

The application building center is a multi-purpose modular framework for
modeling software systems [18]. Genesys is an extension that allows to develop
service-oriented code generators [9]. Each code generator represents a service
that can be composed with other services. Information exchange is managed by
using shared memory communication. Our presented approach is similar if we
consider code generators to be services with interfaces. However, our approach
introduces a broader generator interface to regard input language, output repre-
sentation, input language constraints, execution information, artifact dependen-
cies, and generation context information. This information is used to manage
the execution and composition of the code generators.

Code generator composition using aspect-orientation at the artifact level has
been described in [22]. The authors assume that a code generator produces oper-
ationally complete code fragments that are merged by a code fragment weaver.
Additionally, in feature-oriented model-driven development (FO-MDD), multiple
code generators are used to produce a software product line [20]. Composition of
code is achieved after code generation by manually writing glue code. In contrast,
we do not consider manual artifact composition but focus on an infrastructure
to compose code generators. We nevertheless consider composing generated ar-
tifacts relevant for reusing code generators and will address this topic in future
work.

7 Discussion and Future Work

We have presented a conceptual approach for composition of code generators
based on the notion of generator interfaces. The ideas are implemented within
the MontiArcAutomaton toolchain to enable post hoc embedding and use of
new component behavior modeling languages. To broaden its applicability this
approach requires future work on syntax, methods, and technical solutions.

Composition of arbitrary code generators without assumptions on their ac-
tual integration is harder to realize than for C&C ADLs. In general, generator
composition demands a more expressive composition configuration than the ap-
plication configuration presented above. For instance, the orchestration of the
code generation process may require a code generator to be executed multiple
times for every input model or to fill extension points provided by another gener-
ator under certain conditions. Moreover, execution of a code generator may not
be triggered by a model type but by selecting a code generator for a particular
set of input models. A generic model to configure an application has to express
such process information and constraints. Thus, future research will look into
modeling these aspects.

11

The generator composition illustrated above assumes that the orchestration
of generators reflects the language embedding for component behavior. Other
language integration mechanisms, such as language aggregation or language in-
heritance [11] will require a more complex orchestration. The generator for an
inheriting language might, for example, require the generator for the inherited
language to be executed first, such that the latter only generates additional arti-
facts for the model elements introduced by the inheriting language. Future work
will therefore examine the notion of generator extension points as well.

Finally, modeling language composition mechanisms have lead to language
reuse and language libraries. We hope to gain similar libraries and advantages
from facilitating code generator composition.

8 Conclusion

We have motivated the need for generator composition in robotics and sketched
a concept for code generator composition. This concept is based on explicit
code generator interfaces and configuration models. The interfaces enable code
generators to define information required for composition. A code generator or-
chestrator composes and executes the code generators. We have illustrated our
implementation for the C&C modeling language family MontiArcAutomaton.
Although the implementation relies on various assumptions implied by the lan-
guage workbench MontiCore and the C&C nature of MontiArcAutomaton, we
belief that these translate well into other contexts. There are however open issues
in arbitrary generator composition and we have identified possible extensions of
generator interfaces and generator orchestrators to be applied in more complex
scenarios.

References

1. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. ACM Trans. Softw. Eng. Methodol. 1(4), 355–
398 (Oct 1992)

2. Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M.: The genvoca
model of software-system generators. IEEE Softw. 11(5), 89–94 (Sep 1994)

3. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

4. Brugali, D., Brooks, A., Cowley, A., Côté, C., Domı́nguez-Brito, A., Létourneau,
D., Michaud, F., Schlegel, C.: Trends in Component-Based Robotics. In: Brugali,
D. (ed.) Software Engineering for Experimental Robotics, Springer Tracts in Ad-
vanced Robotics, vol. 30, chap. 8, pp. 135–142. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

5. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. Future of Software Engineering (FOSE ’07) (2), 37–54 (May
2007)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

12

7. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-
active Distributed and Cyber-Physical Systems. Tech. Rep. AIB-2012-03, RWTH
Aachen (february 2012)

8. Hägele, M., Blümlein, N., Kleine, O.: Wirtschaftlichkeitsanalysen neuartiger
Servicerobotik- Anwendungen und ihre Bedeutung für die Robotik-Entwicklung.
Tech. rep., BMBF (2011), http://www.ipa.fraunhofer.de/

9. Jörges, S.: Construction and Evolution of Code Generators: A Model-Driven and
Service-Oriented Approach. LNCS sublibrary: Programming and software engi-
neering, Springer Berlin Heidelberg (2013)

10. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional de-
velopment of domain specific languages. STTT 12(5), 353–372 (2010)

11. Look, M., Perez, A.N., Ringert, J.O., Rumpe, B., Wortmann, A.: Black-box In-
tegration of Heterogeneous Modeling Languages for Cyber-Physical Systems. In:
Proceedings of the 1st Workshop on the Globalization of Modeling Languages
(GEMOC). Miami, Florida, USA (2013)

12. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design Principles of the
Component-Based Robot Software Framework Fawkes, Lecture Notes in Computer
Science, vol. 6472, chap. NFB+10, pp. 300–311. Springer, Darmstadt, Germany
(2010)

13. Ringert, J.O., Rumpe, B., Wortmann, A.: A Case Study on Model-Based Devel-
opment of Robotic Systems using MontiArc with Embedded Automata. In: Giese,
H., Huhn, M., Philipps, J., Schätz, B. (eds.) Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme. pp. 30–43 (2013)

14. Ringert, J.O., Rumpe, B., Wortmann, A.: From Software Architecture Structure
and Behavior Modeling to Implementations of Cyber-Physical Systems. In: Soft-
ware Engineering 2013 Workshop Proceedings. p. to appear (2013)

15. Ringert, J.O., Rumpe, B., Wortmann, A.: MontiArcAutomaton : Modeling Archi-
tecture and Behavior of Robotic Systems. In: Workshops and Tutorials Proceedings
of the International Conference on Robotics and Automation (ICRA). Karlsruhe,
Germany (2013)

16. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UM-
L/P. Aachener Informatik-Berichte, Software Engineering, Band 11, Shaker Verlag
(2012)

17. Schlegel, C., Steck, A., Lotz, A.: Model-Driven Software Development in Robotics
: Communication Patterns as Key for a Robotics Component Model. In: Chugo,
D., Yokota, S. (eds.) Introduction to Modern Robotics. iConcept Press (2011)

18. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-driven devel-
opment with the jabc. In: Bin, E., Ziv, A., Ur, S. (eds.) Hardware and Software,
Verification and Testing, Lecture Notes in Computer Science, vol. 4383, pp. 92–108.
Springer Berlin Heidelberg (2007)

19. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley, 1st edn. (2009)

20. Trujillo, S., Batory, D., Diaz, O.: Feature oriented model driven development: A
case study for portlets. In: Proceedings of the 29th International Conference on
Software Engineering. pp. 44–53. ICSE ’07, IEEE Computer Society, Washington,
DC, USA (2007)

21. Völkel, S.: Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener
Informatik-Berichte, Software Engineering Band 9. 2011, Shaker Verlag (2011)

22. Zschaler, S., Rashid, A.: Towards modular code generators using symmetric
language-aware aspects. In: Proceedings of the 1st International Workshop on Free
Composition. pp. 6:1–6:5. FREECO ’11, ACM, New York, NY, USA (2011)

