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Abstract 
Reuse in software development is not only to carry out the same processes over and over 
again, thereby being more efficient, i.e. faster and producing less errors. We call these forms 
shallow reuse, where reuse is mostly in the mind of developers. Deep reuse means to change 
the development process remarkably, because upcoming knowledge makes more or less big 
parts of the development superfluous. Examples are that components and frameworks from 
former developments are used, steps are automated, etc.  

In this article, we try to clarify the difference of shallow and deep reuse. Furthermore, we 
characterize the changes due to reuse on three levels: the new product with an improved form 
of reuse, the change of the development process, and the new parts to be reused in the future. 
A new notation for processes makes the changes and the dependences of subprocesses more 
evident. 

We take the multiphase compiler as the running example, as it is one of the best studied soft-
ware products, a good example for the combination of theory and practice, and also of deep 
reuse forms.  

Key words: implicit (shallow) and explicit (deep) reuse, elaborated reuse forms as table driven soft-
ware approach or generation approach, intelligent architectures, global architecture patterns, multi-
phase compilers and compiler compiler approach, reuse steps: changes of product and process 

1 Introduction 

Shallow reuse means to repeat the development, thereby shortening the time of development 
and increasing its quality. The corresponding steps of improvement are characterized by mod-
els like Capability Maturity Model (abbr. CMM) /PC 95/, namely to use documentation, to 
manage, and to optimize the process. Doing a similar software development task again can 
speed up the productivity. Many other factors also influence productivity and quality /SZ 19/. 
This all is important, but a development process having all these characterizations does not 
change its internal structure radically.  

In shallow reuse, reuse is implicit. The corresponding reuse knowledge is in the minds of de-
velopers, as the way to proceed, an imagination of the form of the result, the experience 
gained from former development processes of a similar system, etc. Reuse mostly makes use 
of copy, paste, and further changes. There is mostly no explicit and important result left for 
influencing the following development processes. Especially, there is no clear improvement 
of development knowledge. 
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This form of reuse is the classical one, and still is the mostly applied approach in companies 
and industry, even if developers are working for a long time in one specific domain, thereby 
producing many similar systems. This form of reuse can be called historical, as to be seen 
from a characterization of the design of Gothic cathedrals (12th to 15th century) and the classi-
fication of reuse forms /Na 19/. There, we already find most of these reuse forms, although 
there was no easy to use and mechanical way for copy, paste, or change at that time. 

In this paper, we go further. Deep reuse means to learn from one development for the next by 
facilitating and automating the development process. This means that reuse results are made 
explicit. This can be easily seen from the changes of the final result and the corresponding 
process transformations. The aim of this paper is to clarify these changes and transformations 
from step to step and to show the tight relations between product and process modifications. 

For this clarification, we use one of the best examples of intelligent development ± the con-
struction of a multiphase compiler. There are also other examples of intelligent development, 
which could have been used, as (i) the development of communication protocols by specifica-
tion and code generation /GG 07/, (ii) the development of control and automation software by 
making use of a predefined set of partial solutions which are graphically composed /WK 16/, 
or (iii) the development of novel tools for software construction in the academic context (/Na 
96/ and also for other engineering domains). 

In the following paper, we use a compact product description. As the architecture of a soft-
ware system is a master document for the whole development process /Na 90-20, Na 03/ we 
use an architectural notation, here in a compact form /Na 21a/, which is influenced by differ-
ent programming languages /Wi 21b/. For the development processes we use a notation /Na 
21d/ which specifies the dependency relations (output of a process ± input in the next process) 
between processes by regarding the purpose of use in the second process. They are called 
Process Interaction Diagrams (PIDs). That makes these dependency relations more specific. 

The example regarded in this paper contains shallow reuse forms at the beginning, before the 
knowledge about reuse is explicitly extracted and applied to form new reuse steps. There, the 
product is changed due to invariant components and frameworks, and the process is partially 
automated (by the generation of software, table-driven approaches, or even generation of ta-
bles). These steps we call deep reuse. 

Nothing of the reuse steps explained in this paper is new. However, the paper delivers a new 
characterization of reuse. Especially, it makes clear that deep reuse is what we should look 
for when building systems for a long time. The paper is also a plea for deep reuse in industry, 
as such deep reuse is mostly applied only in academic ecosystems. 

This paper is not a survey on the broad field of software reuse, or of the different aspects of 
reuse, or of the vast amount of literature on software reuse. For a first view see /Co 98, LS 09, 
ICSR/. Instead, this article takes just one interesting example and characterizes two forms of 
reuse (what is usually done vs what could have been done), by giving interesting characteriza-
tions of the product and the process in the second case in form of different steps of reuse. 
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2 The Example: A Multiphase Compiler 

We assume that the programming language to be compiled belongs to the class of clearly-
defined, strongly-typed languages, with many forms of syntactical checks at compile time. 
Compilation by a multiphase compiler (see e.g. /AS 06, Sc 75, WG 84/) is done in steps 
(phases), see fig. 1 for a corresponding sketch of an architecture diagram: scanning, parsing, 
context sensitive analysis (also called static semantics), intermediate code generation, optimi-
zation, addressing / target code generation, and post optimization.  

All these steps are represented as functional components, more likely as composed subsys-
tems than atomic modules. The underlying structure is functional composition: splitting a 
complex function component into simpler functional components executed one after the other, 
using intermediate data structures, see again fig. 1.  

Scanning is analysis on the lowest level of syntax, reading text input and building up lexical 
units (tokens), as identifiers, word symbols, delimiters, or literals. Parsing means to analyze 
token sequences whether they reflect the context-free syntax, e.g. an assignment consists of a 
name on the left hand side, an assignment symbol, an expression on the right hand side, and a 
semicolon at the end. Context sensitive analysis checks for consistency of parts, which may be 
far away from each other, as declaration and application, and so on. The left part including 
intermediate code generation is called the front-end (being programming language depend-
ent), the right part is called the back-end (being target machine dependent).  

Fig. 1.a reflects the structure of the compiler after several iterations. From version to version 
the compiler structure became clearer, the compiler development was more efficient in devel-
opment time and quality (less number of errors/ mistakes), and the compiler runtime as well 
as the runtime of compiled code was improved. Possibly, the compiler was developed in two 
versions, as a students¶ compiler for fast compilation and an optimized compiler for deliver-
ing runtime-efficient code. The compiler structure was possibly applied for compilers of dif-
ferent languages, for different versions of the same language, or for different target machines 
in a software house specialized on compilers. 

Compilation of a programming language is a specific and clearly describable problem, to a 
big part formally. It was studied for a long time in the 60ies to 80ies /Wi 21a/ by some of the 
brightest persons of Computer Science. Underlying there is a specific problem: precise de-
scription of input (language), output (machine), and of every internal part. There are no vague 
parts like ³The system must have a nice user interface´, ³the system must use that and that 
given big component or technology´, ³the systems must run in the following specialized tar-
get environment´, ³the system must fulfill that hard efficiency requirements parameters´, etc. 
The knowledge how to write a compiler grew over time, from well-understood handwriting 
/Sc 75, Wi 77/to refined forms in later times using automatisms, see below. 

That is why we find clear solutions and a theory on which solutions are based /AS 06, WG 
84/. Compiler writing is one of the best examples we have in Informatics for combining theo-
ry and practice. Of course, not every problem, to be solved by a software system, has the 
above nice features. However, when building similar systems for a certain application domain 
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and for a long time, you will always detect different forms of reuse, of classical reuse and of 
deep reuse, if you have time, money and good people. Quite probably, not the whole program 
system might make use of intelligent reuse forms. But you find them at least in certain parts 
of the system. 

The underlying data structures are (i) the list of lexical units (tokens) for the input text 
streams produced by Scan, (ii) the abstract syntax tree, produced by Parse, the program graph 
(syntax tree together with symbol list, or attributed syntax tree), and so on. 

Fig. 1.b contains the process to develop the compiler according to fig. 1.a. We assume that the 
language L and the target machine M are determined. 
In the requirements part we collect information for the language, the target machine, and cor-
responding compiler techniques. This information is passed forward. 
Then, the Realization process starts. All of the output info of Collect_Info goes to Build_Arch. 
There, we design the compiler, see again fig. 1.a: the control component, the different func-
tional parts and the data structure components of the bottom, and see corresponding processes, 
for design and realization. The corresponding information of the language (grammars) is for-
warded as constraints to the corresponding phases of the front-end. The lexical syntax goes to 
Scan, the context-free syntax to Parse, etc. The information corresponding to compiler tech-
niques is forwarded to all phases and, especially, to basic_Layer. The information correspond-
ing to the target machine is forwarded to the back-end components.  
We do not regard the internal structure of the subsystem components, by reasons of simplici-
ty. All the components identified in the architecture, have to be implemented. Afterwards, the 
component Int integrates the results.  

Fig. 1.c delivers the captains for fig. 1. We denote the different aspects of the processes (fig. 
1.c right), which allows to make the dependency relations between processes to be more pre-
cise. Fig. 1.c. left explains the notations used in the architecture. 

          a) 
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Fig. 1: a) The architectural structure of a multiphase compiler and b) its development process 
(after several iterations), c) captains for parts a) and b) 

To explain the notational elements of the architecture in fig. 1.a: fo stands for an object com-
ponent of functional nature, ado for an abstract data object, or adt (abstract data type) in case 
of separate compilation, i.e. more than one compilation unit can be compiled in one compila-
tion run. Local (thin) and general (double lines) usability indicate specific or general usability. 
The components of the front-end are language specific, those of the back-end machine specif-
ic.  

We denote elementary processes of fig. 1.b by an octagon, hierarchical processes by a net 
inside an octagon. The dependency of subprocesses is specific, see the following explanations 
and /Na 21d/. 

3 The Compiler after Detection of Standard Structures 

Fig. 1 is the last form of implicit (shallow) reuse, having the corresponding knowledge only in 
mind. However, it is also the beginning of explicit (deep) reuse, as indicated in fig. 2.a by 
different colors. 
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The global structure of the compiler (in blue) is invariant, it is a global build plan or a global 
design pattern, going here down only to the level of subsystems. The control component 
Contr (green) is invariant and can be used in every compiler, the functional components 
(black) are internally different, from language to language. 

Even more, at the bottom of the architecture diagram of fig. 1, we see data exchange compo-
nents (again green), which form a reusable basic layer of data structures. This layer can im-
mediately be reused in the next compiler project, as long as the functional structure of the 
compiler remains the same. For the basic layer, we have a series of implemented and ready to 
use components, which can be reused. Internally, they should be adaptable, to be connected 
to the underlying and specific file systems of the development environments. Again, the com-
ponents are more subsystems than modules (so-called entry-collection subsystems /Na 21a/). 

Putting together: The diagram of fig. 1 contains a standard structure for compilers of the 
above language class, a framework as a global pattern (in blue), where we find reusable com-
ponents (in green). For the components of the phases we have to deliver specific components 
(design and implementation, in black). The components in green for control and for the basic 
layer of data structures can directly be used for the next compiler, they are already imple-
mented. So, we have a plan to reuse (framework) and also different components, which are 
ready to be reused. The basic data structures for data exchange have a universal form for 
multiphase compilers. 

Now, we start the development of the next compiler and reuse what we have identified, see 
fig. 2.a. The remaining parts to be developed are highlighted in black, the parts already carried 
out are drawn in green. Only the phase components have to be designed and later implement-
ed, the rest is already done (components Ctrl and basic layer for data structures). The global 
build plan is the same. 

The development process, shown in fig. 2.b, has also changed remarkably .The process is 
much simpler now. If the language is new, the Collect_Info part has to be done again, mainly 
to pass the corresponding knowledge. If the language is the same (we only want to restructure 
the compiler to make use of reuse), these components¶ results can just be taken. Only the pro-
cesses for developing the phases remain, presented in black, the other parts already available 
are drawn in green. Furthermore, the integration Int has to be done again. 

The upper parts of figs. 1 and 2 show the change of the development product, the lower parts 
of both figures show the change of the development process. The green parts say what we get 
from the last and previous developments, either as product or as process. 

For reasons of simplicity, we concentrate in the following on a apart of the front-end in the 
following explanation. We take the parsing as example. A similar argumentation holds, if we 
would have taken scanning, context sensitive syntax analysis, or intermediate code genera-
tion, assuming we have the same degree of knowledge, see below. Parsing is the phase best 
studied in literature. 
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       a)    
 

        

Fig. 2: The next iteration: a) Standard for the product as framework, reusable Contr, basic 
bottom-layer for data structures, b) realization of the next compiler: corresponding processes 

4 Deep Reuse: Table-driven Approach 

The typical deep reuse steps are explained in the next three sections. For the next two sections 
we take the parser as the running example. Thus, we regard only a cutout of the architecture. 
We assume that the corresponding reuse steps can be taken for all phases of the front-end. 

As example, we look at the hardwired functional component for parsing of above. In the ta-
ble-driven approach, the table describes the behavior of the parser. We need an additional 
component, called driver or interpreter for handling parsing by use of the table. Both together 
have the same functional behavior as the hardwired program component. 

So, the necessary steps are: (a) The driver component development, which is only implement-
ed once for the regarded parsing method (e.g. LL(1) or LALR(1)). Therefore, we show the 
component of the architecture as well as the corresponding subprocess in light brown. They 
can be reused immediately afterwards. Now, (b) we build up the table according to the deter-
ministic context-free grammar. This component and also the subprocess are drawn in black. 
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The steps in direction of reuse and development efficiency are: (i) Driver only once then arbi-
trarily reused. (ii) to build up the table is easier than programming the parser, see fig.3. The 
remaining development step to build up the table. The same approach can be applied for the 
scanner. There, we take a regular grammar or a finite automaton as formal description. 

     

    

Fig. 3: a) Parse is now different, see cutout of the architecture, b) Table-driven architecture, 
process: driver (only once) and table to be developed 

5 Deep Reuse: Generation of solutions 

In fig. 2.a the code for Parse was developed by a human. This person looked on the grammar 
and transformed this grammar into a component, being an analyzer for this grammar. Analo-
gously, in fig. 3 the table, describing the behavior of the analyzer, was produced by a human.  

The tasks to transform grammar either to code or to a table are precise and can be formalized. 
We can solve this transformation by a program. The corresponding approach is called to gen-
erate the result, or automation by generation. The program, which is necessary, is universal 
for the type of grammar. Thus, it has to be developed only once, and it can be used repeatedly. 
In fig. 4.b the corresponding automating process, therefore, is again painted in light brown. 

In fig. 4.a we see the resulting cutout of the architecture. The Par_Dr is reused (green), the 
table Par_Tab is generated now, also green. In both cases, there is no development process. 
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The development of the generator has to be done only once, so it is again painted in light 
brown. 

Fig. 4.b shows the situation generating the parser table. The part already done is shown in 
green. The corresponding driver is available, as having been developed, see fig. 3. The corre-
sponding table is produced automatically by the generator. The generator is already available. 
So, if a corresponding grammar is available, nothing has to be done. Parse is no longer a de-
velopment process, it is an automatic process. 

If the parser code is generated, fig. 4.b is simpler. No driver component is necessary. Again, 
if a corresponding grammar is available, nothing has to be done by a developer, as the parser 
code is generated. The generator (grammar to code) has to be done only once (light brown). 

What we have discussed for the parser can also be done for the scanner, here a regular gram-
mar or a corresponding finite automaton is necessary. More generally, it can be done for any 
part of the compiler, which can precisely be described. Such parts of automatable transfor-
mations are more in the compiler front-end than in its back-end. We find such problems also 
outside of compiler construction. Then, if the generator is available, we only have to look for 
a corresponding formal input description. 

    

    

Fig. 4: Automation: Generate code or table, here for the example parsing 
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Summing up sections 4 and 5, we have done another big step in direction of reuse. In the table 
case, (i) the drivers are reusable, after having been developed. In both cases, generated table 
and generated analyzer program, (ii) the generators are reusable, after having been developed. 
Furthermore, automation not only reduces the effort, it (iii) even eliminates the corresponding 
development by a human.  

In the discussion above, we denoted processes or components, where nothing is to do, as a 
previous process delivered a product which can be reused, in a green color. The green color 
shows what has already been done, and what is not necessary to be done again. A green pro-
cess is trivial: The program (component) is available, a driver with a table is available, the 
program or the table has been generated, etc. Therefore, the process just means to take some-
thing out of a library and use it. As an example, look on process Parse of fig. 4.We did not 
introduce trivial processes as distinction to usual processes for characterizing this situation. 

Above, we saw sequences of architectures, the transitions from architecture to architecture 
being defined by a deep reuse step. All these architectures are abstract, i.e. they do not refer to 
technical details of the system to be developed or its environment. Specifically interesting but 
also nontrivial is reuse for embedded systems, as these systems are connected to technical 
details. There, we also have sequences of architectures, but there to transform an architecture 
from an abstract to a concrete form, reflecting the technical details of the system or its envi-
ronment /Na 21b/. 

6 Deep Reuse: Global Reuse Schemes 

The summary of all from above (framework, basic layer, table-driven components, the gen-
eration of components) is called the compiler compiler approach. It is one of the best exam-
ples of deep reuse and also of a close connection of theory and practice. 

It is deep reuse, as in every step of figs. 2, 3, and 4 the development product and its process 
were drastically changed. This reorganization demanded deep understanding (extracting the 
global build plan, extracting reusable control and basic layer, avoiding to program by using a 
table with a driver, avoiding to program or to develop the table by automation through a gen-
erator. Deep reuse does not mean to do it only better again, but to learn and to reorganize the 
product and the process essentially. 

The discussion of above also gives rise to study global reuse patterns. The first is front-end 
reuse. Here, we use the compiler front-end and care about different back-ends for various 
target machines. In this case, the same front-end (for the same language) is used for different 
back-ends (different target machines). The different back-ends have to be developed. 

Analogously back-end reuse means to have different front-ends to be developed (languages, 
here compiler-oriented). Here, the back-end is stable (we have the same target machine). 

A combination of both reuse approaches requires a uniform intermediate language (e.g. graph 
intermediate language), see fig. 5. This is combination called the UNCOL (Universal Com-
puter Oriented (Intermediate) Language) approach /Co 58/, an old and still very important 
idea, which can be used for any translation problem. 
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Using UNCOL reduces the effort and thus is an important and global reuse method: If we 
directly translate n languages and want to have the compiler on m machines, we have a devel-
opment effort for n*m compilers. Using a uniform intermediate code the effort is reduced to 
n+m, a dramatic reduction. Of course, the idea only works for similar translations, in our case 
compiling typed, compiler-oriented languages with a fixed multiphase scheme, and an agree-
ment for a universal intermediate code. 

Above, we mostly had development product reuse: global pattern, basic layer, table and driv-
er, altogether products of subprocesses, which can be used and reduce the development effort. 
Only the generator for code or tables belongs to process reuse, here in a mechanical form.  

 

Fig. 5: The UNCOL approach as a widely used reuse approach: scheme and effort reduction 
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used for extending a programming language, for porting a compiler, for improving a compil-
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compiler written in Pascal) and a one available compiler written in M for the machine M. 
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Then, after a sequence of human development steps and automatic compilation steps, we get 
the result. We give no explanation here and refer to the literature. The explanation for the ex-
ample µextension of a language¶ in the notation used in this article is given in /Na 21d/. 

7 Further Examples of Deep Reuse 

Further Examples 

Above, we have used the multiphase compiler for classical programming languages as the 
example to demonstrate deep reuse and changes of the corresponding process. We could also 
have taken tools for the software development process. In the academic area, we find novel 
tools on different levels and also their integration in a tool environment (e.g. /Na 99, NM08/), 
which have been realized with deep reuse, quite similar to the compiler example. 

There are further examples for such deep reuse. We find it in the area automation and control 
/HS 19, Po 94/, especially around the IEC 61131 and 61499 norms. There exist libraries of 
predefined functions for controllers and graphical tools to arrange networks of such control-
lers. Building a solution is often just a graphical task, no programming is necessary anymore.  

Another area for advanced software reuse is protocol development for telephone and comput-
er Networks /Ho 91, Sc 96/. There are solutions generated from a protocol specification. Here 
again, no usual programming takes place.  

Further Approaches for Reuse 

There is a branch of software engineering, dealing with families of systems /CN 07, Ja 00, PB 
05, PK09/, not with single systems. Necessary for that is to detect the commonalities and the 
differences between members of the family. They have to be carefully studied and they are 
used for the implementation of the members. That is a big structural reuse advantage com-
pared to program one family member after the other. 

Another branch is domain-driven development /Ev 04/ which means to firstly develop solu-
tions for the domain (knowledge, components, tools) and reuse them for the construction of 
examples of the domain. This intersects with model-driven development /PB 16, PH 12/, 
where the solution is described by models, from which a solution can be derived or in the best 
case generated automatically by a generator.  

In all these approaches mentioned in this section, the early solutions started with hardwired 
programming for examples. Then, in these examples or in the corresponding approaches 
thinking began to avoid doing programming over and over again. The process for getting a 
solution was changed dramatically, and intelligent reuse approaches were used.  

We could have taken one of the above examples or examples of the above approaches to 
demonstrate, what we have shown in this paper for compiler construction: There are different 
reuse steps, which change the product, the process, and which introduce further components, 
basic layers, or generators step by step, ending with an intelligent and deep reuse process.  
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8 Summary, Importance, and Open Problems  

Summary and Lessons Learned 

Above we have seen: Thinking in structures and reuse needs the right level, namely a careful-
ly designed software architecture, which on one hard is precise and clear. On the other hand, 
it is adaptable, i.e. prepared for extensions and changes of functionality, but also for technical 
modifications like exchange of basic components as e.g. basic data structures. Functional and 
data abstraction have to be used. Careful discussions, design experience, and new ideas 
change the way of development. 

Reuse is longtime learning: At the beginning we build several times, get experience, get more 
efficiency ± in time and costs ± from development to development. This was called in this 
paper classical or shallow reuse. Then, we make steps in direction of standardization and pat-
terns, as frameworks and basic layers, so into deep reuse.  

After further experiences and careful discussions deep reuse can continue. This, again, de-
mands for intelligent people and especially for time. The result is a long-term advantage, 
which does not come for free, as shown in this paper for multiphase compilers of classical 
programming languages. This explains that deep reuse is rather seldom in industry, as it costs. 
The advantage, however, is a long-term profit. 

Deep reuse in our in our compiler example means: detailed requirements, a careful architec-
ture (fig. 1), using the right abstractions, furthermore looking for adaptability, for a frame-
work, and a basic data exchange layer (again fig. 1). Afterwards, only the functional layer 
needs to be developed (fig. 2), the other parts remain from the last for future development. 
The next steps are tables for functions and corresponding drivers (fig. 3), generation of code 
or tables (fig. 4). Altogether, this is called the compiler-compiler approach. Global reuse pat-
terns, like the UNCOL approach or bootstrapping, finalize the main sections. 

That all did not come for nothing: Hard work was necessary and knowledge to see the long-
term advantages. So, deep reuse methodology is only realistic for stable domains and stable 
problems, from the economy point of view. 

If you look on the product (architecture) and the process, you can easily distinguish between 
shallow and deep reuse: As long as the product and the process remain similar, we have shal-
low reuse (fig. 1). If the product and the process change noticeably and in direction of reuse, 
we have deep reuse (figs. 2, 3, 4, 5). 

Compilers are Important for the Informatics Education 

The compiler is a special case in a specific class of systems, named batch systems. In this 
paper, the specific batch system is the multiphase compilers for classical languages. It has 
nice properties, as no vague and fuzzy aspects occur. The specific class uses functional de-
composition and data abstraction structures for coupling the phases. 

Why are compilers so important for CS education? There is a series of answers: 
- We do not really understand a programming language if we do not see what happens in the 
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compilation process and what happens at runtime. The interesting thing of compilers is that 
they introduce the corresponding administration at compile time for the code, being executed 
at runtime. 
-To say it in other words, we do not understand to program, if we do not have a basic 
knowledge of compilation and runtime systems. 
- It is not very likely that CS students are later busy in a compiler company. This argument 
was used for eliminating compiler construction from many CS curricula. However, this is not 
appropriate.  
- Furthermore, we quite often find translation problems in practice, where it is useful to have 
the corresponding background for solving these problems. The best preparation is to have a 
background in compilers.  
- Compiler construction is the parade discipline for a close connection of theory and practice. 
- Deep reuse demands for a careful discussion how to solve a problem. So, if you want to ed-
ucate your students not only to hack, but to argue and learn, they should learn compiler con-
struction. It would be nice and also important to have more areas, which combine theory and 
practice in a similar way. 
- Tools need precise and formal languages, which demands for syntax, semantics, and prag-
matics knowledge. Although most tools work iteratively and incrementally, the tool develop-
ment process is similar to compiler construction. Compiler knowledge prepares for tool con-
struction. 
- Nearly all of the brilliant ideas to structure software and their architecture - and consequent-
ly also reuse forms - have been developed in compiler construction: framework for global 
patterns, universal structures for data exchange, table-driven approaches, generation ap-
proaches, bootstrapping, etc. So, missing compiler construction means to miss to learn these 
intelligent software construction principles and examples. 

The Big Open Problem: Dissemination of Deep Reuse 

We miss to have more intelligence in software construction. As stated above, the simple reuse 
forms (shallow reuse) are dominating in industrial software development. This is acceptable 
in an ever changing context: Informatics is developing rapidly, extensions of applications 
appear often, using new methods and tools happens frequently, starting new application do-
mains is daily practice, etc. This hinders to think in the long term. Time is hectic ± there is no 
time and money for sustainable development, and there is no corresponding understanding 
and insight at the management level of companies. 

If however, you develop software more often in a stable environment, you should think about 
careful development and intelligent and deep reuse. That needs time, money, and excellent 
developers, but it is worth as long-term investment. Therefore, there is always a weighting 
long-term versus short-term profit. The long-term profit can be enormous. But it does not 
come for free. 

Deep reuse only works for specific classes of software systems. The more specialized and 
precise the class is, and the more you know about this class, the deeper are the results. As al-
ready stated, you need intelligent developers and log-term thinking. 
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In this way, deep reuse contributes to the knowledge of software classes, to deep understand-
ing in your company, and to deep understanding in software engineering subdomains. So, try 
to do and contribute to this way of knowledge acquisition. 

As already argued, families of systems, model-, and domain-driven development are even 
more ambitious problems than single system development. In all these cases, we stay in a cer-
tain domain for a while and we develop different systems for a certain problem. Thus, the plea 
for deep reuse is even more important here.  
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