
SSELab: A Plug-In-Based Framework for Web-Based Project Portals

Christoph Herrmann, Thomas Kurpick, Bernhard Rumpe
Software Engineering

RWTH Aachen University
Aachen, Germany

http://www.se-rwth.de/

Abstract—Tools are an essential part of every software
engineering project. But the number of tools that are used
in all phases of the software development life-cycle and their
complexity is growing continually. Consequently, the setup
and maintenance of current tool chains and development
environments requires much effort and consumes a lot of time.
One approach to counter this, is to employ web-based systems
for development tasks, because centralized systems simplify
the administration and the deployment of new features. But
desktop IDEs play an important role in software development
projects today, and will not be replaced entirely by web-
based environments in the near future. Therefore, supporting a
mixture of hosted tools and tools integrated into desktop IDEs
is a sensible approach.

In this paper, we present the SSELab, a framework for web-
based project portals that attempts to migrate more software
development tools from desktop to server environments, but
still allows their integration into modern desktop IDEs. It
supports the deployment of tools as hosted services using
plug-in systems on the server-side. Additionally, it provides
access to these tools by a set of clients that can be used
in different contexts, either from the command line, from
within IDEs such as Eclipse, or from web pages. In the
paper, we discuss the architecture and the extensibility of the
SSELab framework. Furthermore, we share our experiences
with creating an instance of the framework and integrating
various tools for our own software development projects.

I. INTRODUCTION

The complexity and the amount of tools that are used in
software engineering projects are still increasing massively.
As the tool infrastructures become more and more complex,
their installation, maintenance, extension, and re-use get time-
consuming and cost-intensive.

With advances in the areas of server virtualization and
cloud-computing, one trend to alleviate this problem is using
web-based systems in all phases of the software development
life-cycle [1]. The benefits of centralizing tool infrastructures
as hosted services are a simplified administration and deploy-
ment of new features and tools. Another advantage is the
possibility to integrate legacy tools into modern tool chains.
This is essential in an industrial context, where legacy tools
are prevalent [2].

The trend towards adopting server-based systems can also
be observed in the area of desktop systems. For example,
employing virtual machines for software development en-
sures that all developers work with a consistent environment

and do not have to spend much time on its setup [3]. These
virtual machines can be deployed on the developers’ local
computers, but can also be hosted on server clusters with the
developers connecting to them by remote desktop sessions.

Another approach to utilize the capacity of server infras-
tructures are web-based platforms or IDEs such as Eclipse
RAP, which attempt to substitute rich client applications
with browser-based clients. Consequently, web-based IDEs
require that most of the artifacts the developers work with
are hosted on a server as well.

Overall, these trends show that in the future an increasing
amount of software development tools will run on server
machines, either completely or partially. Nevertheless, desk-
top IDEs are still relevant today and will probably not be
replaced completely by web-based IDEs in the near future,
but need to be regarded as an efficient means to develop
software [1]. Therefore, utilizing a combination of hosted
core infrastructure tools and IDE integration of tools with
higher demands on interactivity is still a reasonable approach
for current software development projects [4].

In this paper, we present the SSELab, an extensible
application framework for web-based project portals that
allows a plug-in-based integration of development tools as
hosted services. The framework was designed with the goal
to migrate more tools from the desktop to the server, to take
advantage of the available processing power of current server
infrastructures and to ease the administration of development
tool chains. The contribution of this work is the definition of
an architecture for a framework that allows the integration
of tools on the server-side. Especially tools that have mainly
been designed for desktop systems can be migrated to
a server-based environment. Furthermore, the framework
allows to access these hosted tools from modern IDEs, such
as Eclipse, from command line applications, or even from
web pages. In addition to the architecture, we present our
experiences with creating an instance of the framework and
list some requirements for the efficient integration of tools.

The remainder of this paper is organized as follows. In
Section II, we give an overview of the architecture of the
SSELab. Section III describes the extension points of the
framework and Section IV presents our experiences with
creating an instance of the framework. Section V discusses
related work and Section VI concludes the paper.

978-1-4673-1820-4/12/$31.00 c© 2012 IEEE TOPI 2012, Zurich, Switzerland61

[HKR12] C. Herrmann, T. Kurpick, B. Rumpe
SSELab: A Plug-In-Based Framework for Web-Based Project Portals
In: Proceedings of the 2nd International Workshop on Developing Tools as Plug-Ins (TOPI 2012) at ICSE 2012, June 3, Zurich, Switzerland, 2012.
www.se-rwth.de/publications

CpD

database

base back-end

base plug-in API

base plug-in system

ostp back-end

ostp plug-in API

ostp plug-in system

social back-end

social plug-in API

social plug-in system

sselab front-end

 sselab core

 sselab web admin client

 batch client

 Eclipse client

Figure 1. Architecture of the SSELab

II. ARCHITECTURE OF THE FRAMEWORK

The SSELab has been designed to be both, an extensible
framework and a ready-to-use web-based project portal. It
consists of several components that are depicted in Figure 1,
which shows the architecture in a UML component diagram
(CpD). The central component of the SSELab is the front-
end, which manages the different back-ends and the clients
for the users and the administrators of the portal.

The back-ends are responsible for the configuration and
execution of the integrated tools. In the current version of
the SSELab three different types of back-ends are available.
Each one supports tools from one of the categories described
below. In the following discussion and the rest of this paper,
these tools are also called services to emphasize the fact that
they are integrated into the SSELab as hosted services.

• The base back-end allows the integration of web-based
or server-based applications which are usually core
infrastructure tools in software development projects.
Therefore, they are called base services. Examples for
tools in this category are revision control systems, bug-
tracking tools, continuous integration servers, and wikis.
These tools are mostly designed as server-based appli-
cations and are used as hosted services in development
projects. Consequently, the characteristics of these tools
are that they need a server infrastructure to run, usually
provide their own user interface, and their own user
management. They can either be used by web-browser
or by stand-alone or IDE integrated clients.

• Tools that take a set of files as input and produce a set of
output files can be integrated into the SSELab utilizing
the ostp1 back-end. Examples for such tools are code
generators or file-based conversion tools. In most cases
such tools are used locally as desktop or command

1Ostp used to be an acronym, but is no longer meant as one and will
probably be replaced by a more meaningful name to identify file-based
transformation tools.

line applications and possibly allow IDE integration.
Another characteristic of these tools are the various
parameterization options.

• The social back-end allows the users of the SSELab to
connect to social networks and to import their profile
information stored at these sites into their SSELab
profile. The motivation for this category of services
is to use social data to foster communication and team
building. The availability of personal information in
project portals, such as hobbies and interests, might
help to build trust among co-workers and enhances the
collaboration in distributed development projects [9].

All three back-end types have been designed based on the
same concepts and consequently have a uniform architecture
and runtime environment. They differ in the details of their
implementation and the offered APIs for the development
of services, which have been tailored towards each service
category. A fundamental concept in the design of the back-
ends is the utilization of plug-in systems. All back-ends use
a plug-in system based on the OSGi specification [5] as
runtime environment. Accordingly, the components of the
back-ends shown in Figure 1, together with their runtime
dependencies as well as the service plug-ins that integrate
specific tools, are executed in an OSGi container. In addition,
a Java web service stack and a HTTP server have been
deployed in the container. This allows the back-ends to act
as servers by publishing a web service interface that can
be called by the front-end components. Furthermore, the
mechanisms of the OSGi container allow the management
of service plug-ins at runtime.

The front-end of the SSELab is the central web-based
component for the administration of the system. It controls
the interaction of all other components and manages the
users, their projects, the back-ends with their installed service
plug-ins, and the available clients. The features of the front-
end can either be used by browser or by one of the clients,
that communicate with it using the published web service
interfaces. The front-end has been developed using the Java
EE technology stack, it runs in an application server, and
uses a database to store the relevant data. As previously
mentioned, the communication of the front-end and the back-
ends is also based on web service technologies. Therefore
the front-end and the back-ends can be distributed among
several servers and do not have to run on a single machine.

Most of the functionality of the SSELab is accessible
through a web browser. But especially when working with
files, using a browser is neither convenient nor efficient.
Therefore, we developed different clients for the SSELab
that can be used in various contexts. E.g., the client for
administrative tasks allows the installation or the update
of service plug-ins, and the clients for the users allow the
execution of ostp services. There are different command line
clients available as well as a client for Eclipse to demonstrate
the integration into a modern IDE.

62

III. EXTENSIBILITY OF THE FRAMEWORK

Due to the framework approach, the extensibility of the
SSELab is an essential concept that is reflected in the design
of all components. The decoupling of the front-end from the
back-ends and the clients, as well as the usage of plug-in
systems, allows to extend the SSELab in several ways.

A. Development of New Back-End Types

In the previous Section II, we have described the three
supported back-end types. The creation of new back-end
types is possible but currently requires an extension of
the front-end components. The reason for this is that the
services of each category are used in different contexts.
For example, base services are used in the context of
projects, i.e. they are configured for each project and all
project participants get access to the services based on their
specific role in the project. On the contrary, ostp services
can be used independently of a specific project because their
execution does not require storing state information between
consecutive invocations. Social services are only used by
each user individually in the context of a profile.

Consequently, extending the SSELab with a new back-
end type requires knowledge of the front-end code and its
extension to support the new service category in a user-
friendly way. Simplifying the development of new back-end
types is still an area of improvement, but not a pressing
issue, because in our experience, new back-end types are
not required on a regular basis.

B. Deployment of Back-End Instances of Existing Types

The front-end supports an arbitrary number of instances
of the three back-end types. At runtime, an administrator
can register new instances with their unique URL in the
front-end. The management of the back-ends is based on
the concept that all instances of one specific type offer
exactly the same web service interface. The front-end only
uses these interfaces for the communication with the back-
ends, if at least one back-end has been registered. As a
result, the deployment of the front-end is decoupled from
the deployment of the back-ends.

The management of the back-end instances at runtime
requires mechanisms that ensure a consistent state among all
instances. For this reason, the front-end stores a reference
state for all back-end types including the installed service
plug-ins with their dependencies. Therefore, the front-end
can restore a consistent state, if necessary. This may either
be relevant after a failure or misconfiguration of a back-end
or if a new back-end instance has been deployed and needs
to be initialized.

C. Integration of Tools with Service Plug-Ins

The most important extension point of the SSELab is
the possibility to integrate development tools with service
plug-ins. Each tool that should be integrated in a specific

version needs its own plug-in. But before the plug-in can
be developed, the integration of the tool has to be prepared.
The necessary steps for this vary depending on the service
category as well as the features and interfaces of the tool.

• To integrate tools as base services, the required server
infrastructure has to be installed, their configuration has
to be automated, their user interface may need to be
customized and the user management has to be adapted
to use the security mechanisms of the SSELab.

• Most of tools in the ostp service category are designed
for local usage. Their integration needs a server-based
installation of the tool. The ostp back-end supports
several ways to invoke a tool, e.g., by calling a Java API,
if it is Java-based, by starting a process on the back-
end host, or by calling a web service. Additionally, the
parameterization of the tool needs to be mapped to the
mechanisms of the SSELab.

• Social services integrate features of social networks.
Therefore, the authentication of a user at the social
network has to be supported as well as the automated
fetching of profile information by API calls.

After the integration of a tool has been prepared, the
service-plug-in can be developed. All back-ends of the
SSELab define a Java-based framework that encapsulates all
the OSGi-specific implementation. A developer only needs
to subclass a class from the corresponding plug-in API and
implement or override its methods. Afterwards, the code
needs to be packaged in a jar-file, which can be uploaded
by an administrator over the web pages of the front-end.

D. Service-Specific Clients
The SSELab comes with a set of clients either for

administrative tasks or for using the integrated services from
the command line or from within Eclipse. The clients for
administrative tasks are primarily designed to allow the
automation of these tasks. An example for this is the scripted
installation of a tool and its plug-in as part of a build
or release process. The clients for using the services are
primarily designed to be an alternative to browser-based
clients in order to overcome the limitations when dealing
with the input and output files of ostp services. Therefore,
not all service categories are supported by these clients as
discussed below.

• Base services can either be used by web browser or have
many ready-to-use clients available. As the SSELab was
designed to support existing clients, we have not seen
the need to develop custom clients for base services.

• The clients of the SSELab for using services are
primarily designed for ostp services, because these
services integrate tools that are normally used locally.

• The social services are used in the context of user
profiles. Using a web browser is common and efficient
and sometimes even mandatory. Therefore, we have not
created custom clients for this service category as well.

63

(a) SSELab preference page with available ostp services (b) SSELab menu entry with MontiCore service

Figure 2. Generic Eclipse client for ostp services

In conformance with the fundamental concepts of the
SSELab, the clients have been designed to be usable out-of-
the-box in different contexts and to be extensible by service-
specific clients. For example, the Eclipse client can be used to
invoke any installed ostp service. Consequently, the interface
of this client is generic in order to support all services. Figure
2 shows two screenshots of the client. Figure 2(a) depicts
the preference page after the authentication of a user. All
available ostp services are shown with their name, version,
and description. From this list the user can select the services
he wants to use. A service can then be invoked by clicking
on a project, folder, or file in Eclipse and by selecting the
corresponding menu entry. The menu is shown in Figure 2(b)
with an entry for the MontiCore service. After the menu entry
has been selected, a wizard appears that allows the user to
specify parameter values, the output directory, and any other
necessary data for the service invocation.

The Eclipse client can be used to execute all available
ostp services. But its user interface does not include service-
specific features and may not support a service in the most
efficient way. Therefore, it can be extended by service-
specific clients. In the following Section, we give an example
for this based on the MontiCore tool.

IV. CREATING AN INSTANCE OF THE FRAMEWORK

We have deployed an instance of the SSELab framework at
http://sselab.de. It is used by our chair for teaching, research,
and industry projects and by other chairs of our university.
In the following, we give an overview of some services we
have already integrated or are working on at the time of
writing. Some of the currently available base services are
summarized in the following list.

• Subversion and Git as revision control systems.
• Trac as project management and bug tracking tool.
• MediaWiki as wiki-engine.
• WebDAV-based storage service.
• Feedback Service, a service that allows customer feed-

back from within a developed product.
• Jenkins as continuous integration server.
• Nexus as repository manager.
• Wordpress as blogging tool.

Most of the following ostp services we have integrated, are
tools that we develop at our chair as part of our research
projects.

• MontiCore, a framework for the development of textual
domain-specific languages (DSLs).

• MontiArc, a framework for modeling and simulation of
distributed information flow architectures.

• MontiWIS, a framework for generation of web informa-
tion systems using class and activity diagrams.

• XML Schema Generator, a service that generates a XML
Schema Definition from a set of XML documents.

• WikiBot, a service that allows to download and to upload
articles from and to wikis.

At the time of writing, the social back-end has just recently
been developed. We have created plug-ins for the following
social networks. This initial selection mostly has technical
reasons, as these networks provide different APIs.

• Google
• LinkedIn
• Myspace
The SSELab instance we have deployed for our needs,

mostly targets development projects with agile development

64

CpD

database

ostp back-end

ostp plug-in API

ostp plug-in system

sselab front-end

 sselab core

 sselab web

 Eclipse client

MontiCore Eclipse

MontiCore generator

MontiCore plug-in

MontiCore generator

optional
dependency

(b)

(a)

Figure 3. Integration of MontiCore into the SSELab

processes using nightly builds, continuous integration, test
metrics, etc. But the framework itself does not impose any
specific development process, but can be tailored to support
any development process by the integration and combination
of services. In addition, we also have used this instance for
other project types successfully, e.g. for project acquisition,
to write books and theses.

A. Integration of MontiCore

In this section, we briefly present the integration of
MontiCore [6] as ostp service. MontiCore itself has been
created at our chair and is a framework for the development
of domain-specific languages (DSLs). The DSL is defined
by an extended grammar format and MontiCore generates
components for processing the documents of the DSL.
Examples for these components are parser, AST classes,
symbol tables or pretty printers. Additionally MontiCore
provides IDE integration for Eclipse.

Figure 3 shows the integration of MontiCore in the SSE-
Lab. Due to space restrictions only the relevant parts of the
SSELab architecture and a minimal set of the actual Monti-
Core components are depicted. The MontiCore generator
together with its runtime dependencies is installed in the ostp
back-end. The MontiCore plug-in uses the ostp plug-in API
to integrate the generator into the SSELab ((a) in Figure 3).
The generic Eclipse client that has been described in Section
III-D can be used to execute the generator. Additionally,
MontiCore itself provides Eclipse integration and contributes
an editor for its extended grammar format with syntax
highlighting, an outline view and menu contributions to
invoke the generator. The MontiCore Eclipse plug-in has
an optional dependency to the MontiCore generator. If this
dependency is available at runtime, MontiCore uses the local
version. If it is not available, MontiCore automatically calls
the ostp service to perform the code generation ((b) in Figure
3). This is handled in a transparent way, so that the users

do not have to use a different workflow. The only difference
is, that for the remote generation an authentication dialog
might pop up if the user has not logged in to the SSELab.

B. Requirements for the Integration of Tools

While creating the instance of the framework, integrating
tools like MontiCore, and extending the framework itself,
we have gathered experience with the integration of software
development tools. In our experience, a lot of tools have been
developed without giving enough attention to an integration
in platforms like the SSELab. In the following, we share
some of our experiences from integrating tools in the
different categories and derive some requirements for a
simpler integration. The steps to integrate a tool in each
category have already been summarized in Section III-C.

Until now, setting up the server infrastructure for base
services has not been an issue for the tools we integrated
into the SSELab. Most of them run in well-established web,
application and database servers. In contrast, the support
for an automated configuration varies among the tools we
integrated. For example, Subversion and Trac offer command
line interfaces and text-based configuration files and thus can
be scripted easily. At the time we integrated MediaWiki and
Wordpress, they focused on a manual installation using a web
form. Hence, automating the configuration of these tools was
unnecessarily complex. Overall, we can derive the following
requirements from our experiences for tools in this category.

• Rely on well-established servers.
• Provide scripts or APIs for an automated configuration.
• Support common authentication mechanisms to allow

single sign-on.
• Provide configurable fine-granular access control for

authorization.

Ostp services are designed for local use, so that their
integration in a server-based environment is usually not taken
into account. Our experience with the integration of tools in
this category led us to the following requirements.

• Ship with a minimal set of runtime dependencies.
• Use a modular design to separate the user interface from

the application logic.
• Provide a command line interface and allow the tool to

run headless even if tool is usually used in a graphical
environment.

• Build the tool with support for multi-thread environ-
ments.

As the social back-end is new, we have not gained as
much experience with the integration of social networks as
we have with the other categories. Some initial requirements
for social platforms are given in the following list.

• Support common authentication protocols.
• Provide a documented API for fetching the data of an

authenticated user.

65

V. RELATED WORK

Nowadays, many popular web-based project portals exist,
such as SourceForge, GitHub, Google Code, Assembla, and
JavaForge. Most of them offer core infrastructure tools as
hosted services, but only limited integration mechanisms for
IDEs [7]. Additionally, there is little information about their
architecture available, as most of them are commercial, so
that a comparison of their design with the architecture of
the SSELab is hard to accomplish.

In [7] different project portals have been surveyed. IBM
Jazz is mentioned as the only portal that supports IDE
integration. Jazz is based on Eclipse – both, its server and
the client – and incorporates collaborative tools into the IDE
[8]. Consequently, Jazz is extensible and based on a plug-in
system on the server-side, which is a fundamental concept the
SSELab as well. There has also been work to integrate social
network information into Jazz. In [9] the authors describe
their work, in which they have added group awareness to Jazz
in addition to the already supported presence and workspace
awareness by integrating the FriendFeed aggregator service.
Some potential limitations of Jazz have been mentioned in
[10]. For example, Jazz imposes certain processes and if
other processes are already in place this may be constraining.
Also, it only works on the Eclipse platform which might be
restricting and can bee seen as vendor lock-in, which is a
risk when choosing a tool integration platform [11].

In [12] a collaborative platform called ProGET is de-
scribed. This platform targets non-programmer researches
and integrates several tools such as phpGroupWare, a mailing
list manager, TWiki, WebDAV-based storage and a reporting
tool. The platform has been created, taking the experiences
from the development of PicoLibre (later renamed to Pico-
Forge) into account. PicoLibre is a collaborative platform
targeted at software engineering projects [13]. Both platforms
have not been built as frameworks, but target projects in a
specific domain, which has been identified as a limitation in
[12]. While designing the SSELab, this has been taken into
account. Therefore, the SSELab framework is not tailored
towards a specific project type.

The authors of [14] discuss an extension of GForge
called Davenport. They have extended GForge in order to
replace its divers protocols (LDAP, SSH, FTP, etc.) with
WebDAV/HTTP. Additionally, they have replaced CVS with
Subversion and made a few other extensions to GForge. In
the future work section of the paper, they state that the IDE
integration of Davenport with Eclipse is a planned feature.
Also, they say that collaborative development environments
should have a pluggable architecture. But at that point in time
this has not been a characteristic of the GForge architecture.

VI. CONCLUSION

In this paper we introduced the SSELab as an extensible
framework for web-based project portals. It allows the
integration of tools for software development as hosted

services using plug-in systems on the server-side. In order to
allow the usage of the services as well as an integration into
modern desktop IDEs, the SSELab provides a set of clients
that can be used in different contexts. This architecture allows
a flexible integration of development tools, whether they are
web-based or desktop systems.

REFERENCES

[1] J. Whitehead, “Collaboration in Software Engineering: A
Roadmap,” in Future of Software Engineering 2007 (FOSE

’07). Washington, DC, USA: IEEE Computer Society, 2007.
[2] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino,

“Collaboration Tools for Global Software Engineering,” IEEE
Software, vol. 27, 2010.

[3] P. Buncic, C. A. Sanchez, J. Blomer, L. Franco, A. Haru-
tyunian, P. Mato, and Y. Yao, “CernVM a virtual software
appliance for LHC applications,” Journal of Physics: Confer-
ence Series, vol. 219, no. 4, Apr. 2010.

[4] G. Booch and A. W. Brown, “Collaborative Development
Environments,” Advances in Computers, vol. 59, 2003.

[5] The OSGi Alliance, “OSGi Service Platform Core Spec-
ification, Release 4, Version 4.3,” http://www.osgi.org/
Specifications, 2011.

[6] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a Frame-
work for Compositional Development of Domain Specific
Languages,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 12, no. 5, September 2010.

[7] J. Cabot and G. Wilson, “Tools for Teams: A Survey
of Web-Based Software Project Portals,” Dr. Dobb’s,
2009, (last accessed on 2012-02-17). [Online]. Available:
http://www.drdobbs.com/tools/220301068

[8] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson, “Jazzing
up Eclipse with Collaborative Tools,” in Proceedings of the
2003 OOPSLA Workshop on Eclipse Technology eXchange.
New York, NY, USA: ACM, 2003.

[9] F. Calefato, D. Gendarmi, and F. Lanubile, “Embedding
Social Networking Information into Jazz to Foster Group
Awareness within Distributed Teams,” in Proceedings of the
2nd International Workshop on Social Software Engineering
and Applications (SoSEA ’09). New York, NY, USA: ACM,
2009, pp. 23–28.

[10] R. Frost, “Jazz and the Eclipse Way of Collaboration,” IEEE
Software, vol. 24, pp. 114–117, November 2007.

[11] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Piattini,
“Tools to Support Global Software Development Processes: A
Survey,” in Global Software Engineering (ICGSE), 2010 5th
IEEE International Conference on. Los Alamitos, CA, USA:
IEEE Computer Society, 2010.

[12] O. Berger, C. Bac, and B. Hamet, “Integration of libre
software applications to create a collaborative work platform
for researchers at GET,” International Journal of Information
Technology and Web Engineering, vol. 1, no. 3, 2006.

[13] E. Cousin, G. Ouvradou, P. Pucci, and S. Tardieu, “PicoLibre:
a free collaborative platform to improve students’s skills in
software engineering,” in IEEE International conference on
Systems, Man and Cybernetics, 2002.

[14] S. Kim, K. Pan, and J. Whitehead, “WebDAV based Open
Source Collaborative Development Environment,” in Proceed-
ings of the 4th ICSE Workshop on Open Source, 2004.

66

