Measuring the Ability to Form a Product Line
from EXxisting Products

Christian Berger, Holger Rendel, Bernhard Rumpe
RWTH Aachen University
Department of Software Engineering
Aachen, Germany
www. se-rw h. de

Abstract—A product line approach can save valuable resources authors of [7] mention scoping as one aspect in number of
by reusing artifacts. Especially for software artifacts, the reuse steps when establishing a product line.
of existing components is highly desirable. In recent literature, patrics for evaluating product line architectures are dis-
the creation of software product lines is mainly proposed from d i | blicati Th th fr8
a top-down point of view regarding features which are visible cussed In _Severa_ publications. e au_ ors of [§] p_rOpO_se
by customers. In practice, however, the design for a product SOme metrics which are based on provided and required in-
line often arises from one or few existing products that descend terfaces of components. However, these metrics are useful for
from a very first product starting with copy-paste and evolving opject-oriented architectures only. A very formal specification
individually. In this contribution, we propose the theoretical basis ¢ 5 product line architecture is given in [9] where parts of the

to derive a set of metrics for evaluating similar software products . .
in an objective manner. These metrics are used to evaluate the architecture are treated as processes. In [10], some metrics are

set of products’ ability to form a product line. proposed to evaluate the quality of a product line which can

Index Terms—software product line; software metrics; mea- only be applied for an existing product line with an already
surement; software architecture existing variability model.

The VEIA-project [11] also proposes very detailed metrics

. INTRODUCTION AND MOTIVATION for product line architectures. Based on a function net and

Recent literature regarding the creation of software produectfeature model, these metrics measure the effort to integrate
lines often proposes to use end-user visible characteristiggecific features into the product line. The use of function nets
of several products which are referred to as features [{jhich define views on a so-called 150%-model of a product
[2]. In most cases, common and variable attributes of a setalso discussed in [12].
of products are identified and a feature model is created
[3], [4]. This is a high-level view and supports a top-down
method for implementing product lines which bases on theln this section the theoretical basis for measuring the ability
assumption that the code structure can and will be organizgida set of products to form a product line is outlined.
according to the identified features. In practice, however, Therefore, a sefP containingn similar productsp; ...p,
often happens that a product line is only set up after one igrevaluated. Herein, the tersimilar needs to be precisely
even several similar product variants are implemented. Henoefined by a set of metrics which evaluate the considered
it is inevitable to not only look at the desired features bytroducts in an objective manner.
also at the existing implementation to identify potential for . o
reuse. Therefore, a bottom-up method is necessary to Idok SPeCifying Similar Product Sets
especially at the implementation of these artifacts to identify As exemplarily shown in Fig. 1, a sé; of threesimilar
commonalities and differences which either support or prevgrmoductsp;, ps, andps is shown for evaluatings’s product
the setup of a product line from a set of similar products. line-ability. In this figure, three different classes naméd

In the following we present an approach which uses tie, and Cs; of relations between two or more products are
software architecture and existing software artifacts of a setafalyzed:C; describes the relation between two products,
similar products to evaluate their potential to form a produ€t. describes the reusability relation for commonly available
line. This approach bases on a set of metrics for measuring tfats for a specific product, arf¢s describes the reusability’s
so-calledproduct line-abilityof the considered set of productsbenefit ratio for shareable parts for a specific product.

For evaluating a given set of similar products, each product
Il. RELATED WORK is decomposed inté = 1...n so called reasonablatomic

The authors of [5] and [6] describe the importance gjiecesc,, ; for a concrete produgi; which is self-contained
product line scoping which is a top-down view on a produend reusable We refer to these asomponentsas defined in
line. Reusable assets of existing products can be identified [}

a product vs. feature-matrix which can be implemented usingTo perform a decomposition, all componenig ; must
different methodologies like generative programming [3]. Thiee identified and formally specified. Thus, we propose an

I1l. M EASURING THEPRODUCTLINE-ABILITY

[BRR10] C. Berger, H. Rendel, B. Rumpe.

Measuring the Ability to Form a Product Line from Existing Products.

In: Proceedings of the Fourth International Workshop on Variability Modelling of Software-intensive Systems (VaMoS).

ICB Research Report No. 37, Institute for Computer Science and Business Information Systems, University of Duisburg-Essen, 2010.
www.se-rwth.de/publications

Productp,

Fig. 2. An exemplary components’ graph for six componeiitsL, M, P,
Q, and R. The solid edges represent required communicative depeigde
while the dotted edges represent optional ones. In this pleaft’ sends the
same message tb and P; L sends an empty message/tp and thus simply
calls it. Moreover,K sends a message 19 consisting of two data fields.

Productps Productps setC, of optionalcomponents, recursive backtracking is used
Fo 1 E o1 ating - dugs g for all incident edges of an initially given set of comporent
1g. 1. Xample for evaluating ree similar proauets, p2, and ps. 3 HeE
The circles indicate the set of components for each progictienotes the Therefore, a_” prOdUCt.S compor_lents are initially addedhi®
complementary set of components for produstwithout the setsB, A, and SetC,. Starting at a given required set of componefits,,
lﬁ- A d”e”mes the set th'?omponem,s WL“Ch afel shared {amltl)ngdalhqmec:d from the considered product which can be for example some
thus, al components in this intersection have at least aasyua y I entical .
signature.B denotes all components which are shared onlpbyndps; C components for an actugtor, all edges to ad!a(.:em companent
and D are calculated in an analog mannét, Cz, andCs denote different are analyzed. If a required edge is found it is added’to
classes of relations. which itself is analyzed recursively until all dependemfuized
components are found. This set is finally subtracted fteyn
. . For example in Fig. 2 starting ap, the following sets are
annotated, directed graphi,; for productp; which reflects calculated:C, = K,L,M,Q,R andC, — P. The afore-

the derlJergdelnc[eslbetween all pon_wpor]l;efjtg Wh'ﬁh. cgnf_ford mentioned algorithm does not identify isolated components
example be logical or communicative. The graph is defined g8, e they do not contribute any reasonable data and thus,

shown in Eq. (). their relevance should be analyzed precisely.

B. Metrics for Evaluating the Product Line-Ability

G _(V’ E) @ For evaluating the product line-ability of a setofsimilar
Vo= products, the sets?,, ,...C,. , and Cp, ,...Cp, , With
E = VxVxP(S)xA vn @ Cp, = Cp, »UC,, , are calculated. Now, these sets
S = idx {N,R,[TYPE],...} can be evaluated according to Fig. 1. Therefore, different
A = {01 intersections between all sets are calculated which are tose
' ’ evaluate different ratios and relations. For the sake oftg|dt
As shown in Eq. (1), the directed annotated gragh is assumed that the denominator would not be 0 which means
consists of a set of ordered pairs of edges like, = that two products do not share any components and thus, their

(c1,c2,(id, Z),0) € E. Each edge describes a formal deComparison is not meaningful.
pendency between the source componéntand its target
componente; which reflects either a formal method call or
a directed communication between compon@ntind c,. In
the former case, it describes the required signafilia the
target component for a successful method call, in the latter
defines a message which is sent fromto ¢, containing the
specified data ir5. Components without any dependencies are In Eg. (2), the Size of Commonalitys shown which is
so-calledisolated components. calculated from setd in Fig. 1 containing the number of
The setA can be used to defineequired and optional identical components. It can be calculated by comparing the
components within a product; a value btlefines an optional components’ signatures: Two components are syntactieatid
while 0 defines a required dependency. The former definedigal if they have the same signatureS6Cis 0, no commonly
component which is inherently necessary to fulfill a protuctreusable components could be identified. This comparison is
so calledbasis functionality while the latter adds further calledsyntactical signature identitwhich is at leashecessary
functionality like convenience functions; if unspecifiethe but not sufficient Therefore,semantic signature identitfor
edge is regarded asquired two components must additionally be ensured which can be for
In Fig. 2, a graphical representation of the aforemention&§ample be evaluated automatically by using the compaosent’
definition for the graph is shown for a product of six compdest suites in an entangled manner which have to ensure path
nents is shown. Herg,, = K, L, M, Q describes one path of coverage at least.
requiredcomponents, whilg,, = K, P,) describes one path
of optionalones. For calculating the sét. of requiredand the

Size of Commonality.

SoC= =

n e

1=1...n

M G

1=1...n

+

() Cpiol-

1=1...n

)

Impact of Commonality. to the amount of components which are shared with at least
one other product. The smaller this ratio the greater is this
1oC = M (3) Pproduct’s similarity with other products. In Fig. 1, thistica
SoC is depicted byiR; = —| 22 \(Cry UCa)| for productp,.
In Eq. (3), thelmpact of Commonalityis shown which Chy
relatesSoCto all commonly shareable components. Obviously,
the greater this ratio the more important are the commonly

shareable components. In the following, we apply the aforementioned metrics on
a simplified example from the automotive domain for three
different implementations of a door ECU. The first product as
SoC shown in Fig. 3 has only a lock/unlock functionality which
Co. | (4) locks the d(lzors al(thomahticaIIy at a s;l)eclifi;: vehicles vealoci
. . In Fig. 4, the product has no auto-lock function but power
The ratio in Eq. (4) describes the reusability $6C for windows and a panic button to immediate closing in case
a specific producp;: The greater this ratio the better is its of danger. Finally, in Fig. 5, a component exists to control
reusability. This ratio is denoted b, in Fig. 1. window functions while opening or closing the hood of a
convertible; this system also has an auto-lock functiod. Al
depicted signals have the same type.

IV. APPLICABILITY OF THE METRICS

Product-related Reusability.

PR, = >—

Impact of Product-related Reusability.

ﬂj:l...n CP;‘J‘
IPrR; ToRm (5)

The ratio in Eq. (5) describes the impact of reusability of al
commonly available components related to a specific prod
p; which is also denoted bg- in Fig. 1. Here, the smaller— autolacksignal| Function Alar
IPrR; for productp; the greater is the impact of all commonly
shared components for this product.

Reusability Benefit.

SoC
[Co.n Gy

In Eq. (6), the pairwisely calculateBeusability Benefiis
shown which is denoted by in Fig 1. For example, this ratio
for p; andp; is calculated byA| B The greatest quotient
among all products descrlbes the pair which shares the least
commonly available components and vice versa.

RB;; = (6)

Relationship Ratio.

opencloseFLsignal opencloseFRsignal

|Cp N Gy, |

[Cp UGy, |
In Eq. (7) the rE|at|0nShlp between two pI’OdUCtS s CalcuIE 4. Productpz “door ECU with power windows and a panic button”.

lated which is shown ag’; in Fig. 1. Therefore A together 9 Pz P P

with the number of components which are shareable between

these two products only is related to the joined set of all

remaining components of both products; the gre®& ;

between two productp; and p; the more similar are both

products.

RR,; = (1)

Individualization Ratio.

‘Cpi \ (Uk;pnk;éz Cpk) ‘ . (8)

In Eq. (8), the product-relatdddividualization Ratids cal-
culated which describes the product’s individualizatielated Fig. 5. Productpz “door ECU for convertibles”.

opencloseFLsignal opencloseFRsignal

IR; =

To apply our metrics, we first have to determine the set®mponents which are independent from others. Hence, the

of products and their intersections. For the sake of clattity

product line should be created starting with the prodygts

components are referred to by their abbreviation i.e. FLU fandps; the produci, should be analyzed to identify potential

Function Lock Uniter. Theequired and optional components
of the aforementioned products are shown in Tab. I.

TABLE |
REQUIRED AND OPTIONAL COMPONENTS

[product [| required | optional |
p1 FLP, FLU FAL, FAA
P2 FLP, FLU FAA, FPR, FWU
p3 FLP, FLU | FAL, FAA, FWU, FHC

for refactoring to improve its specific ratio of reusability

V. CONCLUSION

This paper outlined a collection of metrics for measuring
the ability for a product line of a given set of products.
First, the mathematical basis was discussed to summarize
the necessary information without relying on a particular
model which can be code excerpts, UML sequence charts,
or AUTOSAR functional components for example. Using the
mathematical model, several metrics are presented and thei

Now we are able to map these components to the corfgportance and benefit for a product line are considered. In

sponding sets as depicted by Fig. 1 and shown in Eq. (9).

o= 0)
p» = {FPR,FLU,, FWU,}

s = {FWU,, FHC}

A = {FLP FAA}

B = 0

C = {FAL,FLU,,,}

D =0

a simplified example, these metrics are exemplarily used to
show their application.

Currently, these metrics are applied at an industrial gtoje
from the automotive domain that should be transformed into a
product line. Here, the goals are to evaluated the proposed
metrics, identify necessary and sufficient commonalities a
well as correlations, and to estimate a set of values which
recommends the creating of a product line. Another goal is
to have a closer look on the models which describe software
artifacts and their transformation into a suitable repmést&on
which we use as basis for the metrics.

The application of different metrics yields the results sum

marized in Tab. Il.

TABLE Il
RESULTS OF METRICS FOR EXAMPLE PRODUCTS

| [al [p1 [p2 [p3 [[pr2] P13] p23]
number of
components 4 5 6
SoC 2
loC 0.5
PrR 0.5 0.4 | 0.33
IPrR 0.33 | 0.33| 0.33
RB 1 0.5 1
RR 0.29 | 0.67 | 0.22
IR 0 0.6 | 0.33

The results show that potential for reusability exists i
general bySize of Commonalitympact of Commonalithas

a value of 0.5 which means that the half of the commo

components are required. The prodggt has to contribute
to the product line because it has the highesiduct-related
Reusability The Impact of Product-related Reusability the

same for all products and thus, no additional recommenalatio
for a specific product to support the aforementioned ratjo

can be deduced. IPrR and IPrR for a specific product are

small the product should not be part of the considered prtoduc

line. The Reusability Benefibf p; and p3 is the smallest
because they share more than only the componentd.of
Besides, these products have also the higlRedationship
Ratiowhich means they share the most common compone
if pairwisely compared and thus, they are suitable for a pcod
line. The ratiolR indicates thap, has the highest amount of

REFERENCES
(1]
[2]

P. Clements and L. Northrofoftware Product Lines: Practices and
Patterns Addison-Wesley, 2002.

K. Pohl, G. Bockle, and F. Linder§oftware Product Line Engineering:
Foundations, Principles, and TechniquesSpringer, 2005.

K. Czarnecki and U. W. Eisenecké&generative Programming: Methods,
Tools, and Applications Addison-Wesley, 2000.

K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson,tiFea
oriented domain analysis (foda) feasibility study,” Teicah Report
CMUJ/SEI-90-TR-21, Software Engineering Institute - CayieeMellon
University, Tech. Rep., 1990.

J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

I. John and M. Eisenbarth, “A decade of scoping - a sufvay,
Proceedings of the 13th International Software Producel@onference
2009.

P. C. Clements, L. G. Jones, J. D. McGregor, and L. M. Nogh
“Getting there from here: a roadmap for software produe &doption,”
Commun. ACMvol. 49, no. 12, pp. 33-36, 2006.

E. Dincel, N. Medvidovic, and A. v. d. Hoek, “Measuringqgatuct line
architectures,” inPFE '01: Revised Papers from the 4th International
Workshop on Software Product-Family Engineering London, UK:
Springer-Verlag, 2002, pp. 346-352.

A. Gruler, M. Leucker, and K. Scheidemann, “Calculatiagd mod-
eling common parts of software product line§bftware Product Line
Conference, Internationalol. 0, pp. 203—-212, 2008.

T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma, “Some metfims
accessing quality of product line architectur€bmputer Science and
Software Engineering, International Conference wol. 2, pp. 500-503,
2008.

S. Mann and G. Rock, “Dealing with variability in arobiture descrip-
tions to support automotive product lines: Specificatiord amalysis
methods,” inProceedings embedded world Conference 208@irnberg,
Deutschland: WEKA Fachmedien, Mar. 3-5, 2009.

H. Gronniger, J. Hartmann, H. Krahn, S. Kriebel, L. Rioardt, and
B. Rumpe, “Modelling automotive function nets with views features,
variants, and modes,” iRroceedings of ERTS '02008.

(4]

(5]

(6]

n

[9]

(10]

[11]

iy

