
Black-box Integration of Heterogeneous
Modeling Languages for Cyber-Physical Systems

Markus Look, Antonio Navarro Perez, Jan Oliver Ringert, Bernhard Rumpe,
and Andreas Wortmann

Software Engineering
RWTH Aachen University
http://www.se-rwth.de/

Abstract. Robots belong to a class of Cyber-Physical Systems where
complex software as a mobile device has to fulfill tasks in a complex
environment. Modeling robotics applications for analysis and code gen-
eration requires modeling languages for the logical software architecture
and the system behavior. The MontiArcAutomaton modeling framework
integrates six independently developed modeling languages to model
robotics applications: a component & connector architecture description
language, automata, I/O tables, class diagrams, OCL, and a Java DSL.
We describe how we integrated these languages into MontiArcAutomaton
a-posteriori in a black-box integration fashion.

Keywords: CPS, Language Integration, Modeling Languages, Software
Architecture Modeling

1 Introduction

Robots are a class of Cyber-Physical Systems (CPS) [5] where complex software
has to fulfill tasks in a continuous environment. A successful robotics application
has to consider different aspects of hardware and software: ranging from spatial
properties of the robot to kinematics and hardware drivers to the software ar-
chitecture and the behavior of the system. MontiArcAutomaton [8,9] integrates
six independently developed, heterogeneous modeling languages:

– the MontiArc architecture description language [2] to model the software ar-
chitecture of the system as (atomic and decomposed) components, connected
with unidirectional connectors via their typed ports;

– I/Oω automata [11,7] and I/O tables [10,14] to model the behavior of atomic
components;

– UML/P class diagrams (CD) [12,13] model data types of ports and variables;
– the UML/P Object Constraint Language (OCL) [12,13] and a Java Modeling

Language (Java ML), to model guards on I/Oω automata transitions.

MontiArc, I/Oω automata, I/O tables, CD, OCL, the Java ML, and Monti-
ArcAutomaton are implemented as MontiCore [4] languages in form of context-
free grammars with context condition checks. MontiCore facilitates language

[LPR+13] M. Look, A. Navarro Pérez, J. O. Ringert, B. Rumpe, A. Wortmann:
Black-box Integration of Heterogeneous Modeling Languages for Cyber-Physical Systems.
In: GEMOC Workshop 2013 - International Workshop on The Globalization of Modeling Languages,
Miami, Florida (USA), Volume 1102 of CEUR Workshop Proceedings, Eds.: B. Combemale, J. De Antoni, R. B. France, CEUR-WS.org, 2013.
www.se-rwth.de/publications

http://www.se-rwth.de/

integration with a compositional symboltable framework – the Extensible Type
System (ETS) [15] – which provides mechanisms for language aggregation (the
MontiArcAutomaton language family aggregates class diagrams), language in-
heritance (MontiArcAutomaton extends MontiArc), and language embedding
(I/Oω automata embed Java and OCL). Crucially, this framework supports an
a-posteriori integration of languages in a black-box integration fashion.

In this short paper we give an overview of a specific case of language composi-
tion for robotics applications. Comparisons of MontiCore’s language composition
and integration mechanisms with related approaches are presented in [4,15].

Fig. 1 illustrates MontiArcAutomaton’s language integration mechanisms on
the model of a simple robot. The robot drives forward until it approaches an
obstacle, it then drives backwards, rotates, and drives forward again. Decompo-
sition and interfaces of the components of BumperBot are modeled using the
concepts inherited from MontiArc. The behavior of the component BumpCon-
trol is modeled with an I/Oω automaton, where two transitions are guarded with
embedded OCL expressions. The behavior of the component Timer is modeled
as an I/O table and the behaviors of components wrapping hardware are im-
plemented in the target platform language. The types of component ports and
automaton variables are modeled in a class diagram.

BumperBot
distance

Timer(500)
timer

UltraSonic
sensor

Integer

signal

Motor(RIGHT)
rightMotor

cmd

cmd
right

left

timer

signal

cmd

/ right: STOP,
 left: STOP

[ocl: distance < 1]
/ right: FWD,
 left: FWD

[ocl: distance < 5]
/ right: BWD
 left: BWD
 timer: START

signal:ALERT
/ right: FWD,
 timer: START

signal: ALERT
/ left: FWD

driving

turning

idle
backing

BumpControl
controller

Transistion triggered by
input ALERT on port signal

after driving backwards

Component instance
timer of type

Timer instantiated
with 500ms

Input port signal
of component

controller

Component behavior defined
by an I/Oω automaton

cmd var t signal next t

START * SLEEP 0

? t < 500 SLEEP t+1

? t = 500 ALERT 0

…

Component behavior
defined as an

I/O table

Component instance
sensor of type

UltraSonic Connector of
type MotorCmd

between
the ports right

and cmd

Port distance
of type Integer

«enum»
MotorCmd

STOP
FWD
BWD

«enum»
TimerCmd

START
STOP

Decomposed component of type
BumperBot defined with MontiArc

Output port left
of component BumpControl

Enumerations
modeled with
UML/P class

diagrams

MotorCmd

TimerCmd

OCL constraint
as transition guard

Motor(LEFT)
leftMotor

«enum»
TimerSignal

ALERT
SLEEP

«enum»
MotorSide

LEFT
RIGHT

MAA

Fig. 1. The MontiArcAutomaton model of a robot integrating five modeling languages.

While Fig. 1 gives a graphical overview of the used models, the concrete,
textual models used to model the CPS are provided in the ReMoDD repository1.

1 http://www.cs.colostate.edu/remodd/v1/content/black-box-integration-
heterogeneous-modeling-languages-cps-supporting-materials

Within this paper and with the concrete models attached we show how the three
mechanisms for integrating modeling languages are used within the MontiArc-
Automaton modeling language to describe the multiple aspects of a robotics
application. In the next sections we introduce the three language integration
mechanisms used and show how these are realized in the MontiCore framework.

2 Language Integration Mechanisms

MontiCore offers three distinct mechanisms for integrating heterogeneous lan-
guages: embedding, aggregation, and inheritance. For a detailed explanation of
these mechanisms see [4,15]. All mechanisms have different benefits in varying
application scenarios, which will be presented in this section.

For MontiArcAutomaton we chose to model components and embedded au-
tomata in a single modeling artifact, as shown in Fig. 1. This is a tighter coupling
than a definition in separate artifacts as, for instance, done when using UML
component diagrams and UML class diagrams [6]. We believe that the syntactic
integration helps to prevent inconsistencies when evolving either the structure
of a component or its behavior [3].

(a) (b) (c)

AST of second
language AST of first

language

ASTs of
embedded
languages

Extended AST
nodes of sublanguage

Fig. 2. The resulting abstract syntax trees (ASTs) when using (a) aggregation, (b)
embedding, and (c) inheritance. Aggregation results in separate ASTs for each model.
Embedding results in a single AST with subtrees embedded at the leaves of the host
language. Inheritance results also in a single AST containing extended nodes of the
sublanguage.

Language Aggregation: When modeling robotics applications, different
orthogonal aspects, like the definition of a common type system as a class di-
agram and its usage, need to be expressed by an aggregated set of languages
for specific purposes. Each aspect is modeled within a single artifact written
in a specific language thus producing separate abstract syntax trees (ASTs) as
shown in Fig. 2. This approach is used to aggregate the heterogeneous languages
as shown in Fig. 3 and enables establishing a knowledge relationship between
the models in terms of references.

Language Embedding: Language embedding offers using different lan-
guages within the same model. MontiCore allows the definition of external non-
terminals within a grammar which allows for binding nonterminals of other
grammars to these external nonterminals and thus embedding (parts of) the
language. The AST in turn consists of objects belonging to the respective lan-
guages as shown in Fig. 2. This mechanism is especially useful when modeling

different paradigms, e.g., embedding a language for modeling behavior in a lan-
guage for modeling structure. We use this for embedding, e.g., I/Oω automata
in the MontiArcAutomaton language, as shown in Fig. 3.

Language Inheritance: Language inheritance can be utilized to refine or
extend an existing language. MontiCore allows inheriting from existing nonter-
minals thus enabling extension of those languages as shown in Fig. 2. For the
MontiArcAutomaton language we extended the language MontiArc by new non-
terminals that allow the definition of embedded I/Oω automata and variables as
shown in Fig. 3. This approach is especially useful to reuse existing concepts of
the super language while extending it by new concepts.

MontiArcAutomaton Family

MontiArcAutomaton

Commons

I/O -Tables I/Oω -Automata

Types

UML/P

CD

Java ML

…
OCL

MCG

MontiArc

Fig. 3. An overview of the MontiArcAutomaton integration. Rounded corners show
language aggregation. All other boxes show languages. Dashed arrows mark language
embedding. Solid arrows mark language inheritance. The CD language is part of both
the UML/P and the MontiArcAutomaton family aggregation.

3 Realization

In MontiCore, the integration of languages is implemented through the Exten-
sible Type System (ETS) sub-framework. To that end, ETS provides various
concepts and extension points that support an a-posteriori integration of aggre-
gated, embedded and inherited languages in a black-box integration fashion.

The core elements of an ETS-based implementation are namespaces, sym-
boltables, and entries. Their structure, construction, and integration are the key
aspects of an implementation of integrated languages.

Entries are descriptions of model elements and implemented as subclasses
of an abstract base class. For instance, ComponentEntry instances describe the
essence of component type definitions (e.g., BumperBot, BumpControl). Entries
can be nested into each other and reference each other even if the model elements
they describe are not part of the same model. This reference mechanism is, in
addition, subject to visibility rules that reflect the modeling language visibility
policies. For instance, the interface of component types is visible to other models,
whereas its internal structure is not. Thereby, the structure of entries resembles
the essential structure of integrated models.

Namespaces, symboltables, resolvers, and entries are, among other modules
not mentioned in this paper, custom implemented by a developer for single mod-
eling languages via extension points in the ETS framework [15]. Crucially, these

implementations are encapsulated modules that can be integrated with each
other without a need for invasive modifications. To this end, the ETS provides
several means that allow an a-posteriori integration of modeling languages, based
on any combination of language aggregation, embedding, and inheritance.

A core mechanism is the adaptation of entries from different languages by
entry adapters. Entry adapters are implementations of the adapter pattern [1].
An entry adapter translates the interface of an entry from one language such that
it corresponds to an interface of an entry from another language. Their common
use case is the translation of a modeled concept between a language that defines
the concept and a language that references it. For instance, port declarations
in components, described by PortEntry, reference a type definition, described
by ArcdTypeEntry, which in our case originates in class diagram models where
types are described by CDTypeEntry. In the implementation of the integration
of these two languages, CDTypeEntry2ArcdTypeAdapter instances adapt class
type entries such that they conform to port type entries. Fig. 4 illustrates this
scenario. In this way, modeling concepts from different languages are integrated.
The ETS framework applies adapters automatically.

Class Diagram

AST

CDTypeEntry

MontiArc

ArcdTypeEntry

Symtab Entries ASTSymtab Entries

Adapter
Adapter

CDTypeEntry2
ArcdTypeAdapter

Provided symbol
table entry

Entry resolved
using adapter

Language composition
specific adapter

Fig. 4. Example of the integration of MontiArc and CDs by adapting CD types to the
MontiArc symbol table.

Beyond this basic infrastructure, MontiCore provides the developer with var-
ious tools and extension points for the implementation of analyses and syntheses
on heterogeneous models. In general, such custom modules are all based on an
implementation of the visitor pattern [1]. These visitors can traverse language-
specific parts of heterogeneous ASTs. Furthermore, they can be combined into
composite visitors for specific compositions of languages. Visitors are, among
other use cases, employed for context conditions, like type checks, and model
transformations as well as for syntheses like code generation. For instance, a
composite code generator executes different code generation components for
components and I/Oω automata while traversing the models of the aggregated
component and automaton languages.

Visitor executions are organized into workflows. Workflows are modules pro-
vided by the developer that are registered for specific (aggregated) modeling
languages. They are automatically executed for every model of that language.
Workflows can refer to information from other models (potentially models of
other languages) by resolving their entries through the ETS framework.

4 Conclusion

Integration of modeling languages facilitates the efficient development of com-
plex software systems. We have illustrated how language aggregation, language
embedding and language inheritance can be used to model both architecture
and behavior of CPS in integrated models. The MontiCore framework supports
the application of these mechanisms in a black-box fashion through its ETS
framework and its workflows and visitors components.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software (Jan 1995)

2. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-
active Distributed and Cyber-Physical Systems. Tech. Rep. AIB-2012-03, RWTH
Aachen (2012)

3. Haber, A., Ringert, J.O., Rumpe, B.: Towards Architectural Programming of
Embedded Systems. In: Tagungsband des Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme. pp. 13–22 (2010)

4. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional de-
velopment of domain specific languages. STTT 12(5), 353–372 (2010)

5. Lee, E.A.: Cyber-Physical Systems - Are Computing Foundations Adequate? In:
Position Paper for NSF Workshop On Cyber-Physical Systems: Research Motiva-
tion, Techniques and Roadmap (2006)

6. OMG: OMG Unified Modeling LanguageTM (OMG UML), Superstructure. Tech.
Rep. formal/2011-08-06, Object Management Group (August 2011)

7. Ringert, J.O., Rumpe, B.: A Little Synopsis on Streams, Stream Processing Func-
tions, and State-Based Stream Processing. International Journal of Software and
Informatics 5(1-2), 29–53 (July 2011)

8. Ringert, J.O., Rumpe, B., Wortmann, A.: A Case Study on Model-Based Develop-
ment of Robotic Systems using MontiArc with Embedded Automata. In: Dagstuhl-
Workshop MBEES. pp. 30–43 (2013)

9. Ringert, J.O., Rumpe, B., Wortmann, A.: From Software Architecture Structure
and Behavior Modeling to Implementations of Cyber-Physical Systems. In: Soft-
ware Engineering 2013 Workshopband. pp. 155–170. LNI, GI (2013)

10. Ringert, J.O., Rumpe, B., Wortmann, A.: MontiArcAutomaton : Modeling Archi-
tecture and Behavior of Robotic Systems. In: Workshops and Tutorials Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA). Karl-
sruhe, Germany (May 6-10 2013)

11. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Doktorarbeit, Technische Universität München (1996)

12. Rumpe, B.: Agile Modellierung mit UML : Codegenerierung, Testfälle, Refactoring,
vol. 2nd Edition. Springer (2012)

13. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
Aachener Informatik-Berichte, Software Engineering, Band 11, Shaker (2012)

14. Thyssen, J., Hummel, B.: Behavioral specification of reactive systems using stream-
based I/O tables. Software and System Modeling 12(2), 265–283 (2013)

15. Völkel, S.: Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener
Informatik-Berichte, Software Engineering Band 9. 2011, Shaker Verlag (2011)

	Lecture Notes in Computer Science
	Introduction
	Language Integration Mechanisms
	Realization
	Conclusion

