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ABSTRACT
Embedded software systems, e.g. automotive, robotic or
automation systems are highly configurable and consist of
many software components being available in different vari-
ants and versions. To identify the degree of reusability be-
tween these different occurrences of a component, it is nec-
essary to determine the functional backward and forward
compatibility between them. Based on this information it
is possible to identify in which system context a component
can be replaced safely by another version, e.g. exchanging
an older component, or variant, e.g. introducing new fea-
tures, to achieve the same functionality.

This paper presents a model checking approach to de-
termine behavioral compatibility of Simulink models, ob-
tained from different component variants or during evolu-
tion. A prototype for automated compatibility checking
demonstrates its feasibility. In addition implemented op-
timizations make the analysis more efficient, when the com-
pared variants or versions are structurally similar.

A case study on a driver assistance system provided by
Daimler AG shows the effectiveness of the approach to au-
tomatically compare Simulink components.

1. INTRODUCTION
The establishment of a software product line introduces

an additional dimension of complexity to the general diffi-
cult tasks to design and maintain larger software systems.
As consequence maintaining a larger software product line,
thereby handling different versions and variants of software
components, is an even more complex task. During the
evolution and maintenance of a software product line the
knowledge about compatibility relations between different
versions and variants of specific software components can be
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very helpful to answer questions like: can a newer version or
variant be introduced in an old context? Under which cir-
cumstances is it possible to replace a newer but erroneous
component by an older version? Does an older component
still need to be maintained or can it be replaced in every
available system context?

In the context of the automotive domain previous work [29]
describes the compatibility information of components (back-
ward, upward, and full compatibility) and their notation in
a tabular format. Engineers use this information to derive
whether for a specific system configuration compatibility is-
sues regarding interface or functionality arise.

Given two components C0 and C1 with compatible inter-
faces, C1 is backward compatible to C0 if and only if the
behavior of C0 is a subset of C1, i.e., the functionality of C0
is contained in C1. Upward compatibility is the inverse rela-
tion of backward compatibility: C0 is upward compatible to
C1 if and only if the behavior of C0 is a superset of C1. Full
compatibility is provided if both is the case. Since upward
compatibility is the inverse of backward compatibility, in the
latter we focus only on calculating backward compatibility.

Nevertheless the provided compatibility relations between
components had been derived by experts. The manual anal-
ysis of behavior compatibility can be error-prone and time-
intensive. This paper proposes a model checking approach
to pairwise compute compatibility for different versions or
variants of components. Interface compatibility is a precon-
dition for behavior compatibility. Engineers can provide a
mapping between corresponding compatible ports, and com-
patibility of the mapping and component interfaces can be
checked syntactically. If the two compared components are
not backward compatible, then the approach provides input
sequences producing different component output sequences.
This makes the compatibility answer comprehensible to en-
gineers and helps to identify the source of incompatibility.

The approach is implemented in a prototype that takes as
input two Simulink models that may consist of the follow-
ing Simulink library categories [24]: Discrete, Logic and
Bit Operations, and Math Operations as well as Ports &
Subsystems and Signal Routing with Boolean, enumera-
tion, and integer variables (may be bundled by bus objects).
The prototype produces a compatibility statement and, in
case the components are incompatible, an input sequence
witnessing the incompatibility. An extension of the tool al-
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lows to check backward compatibility when the interfaces
are not equivalent but the new component has additional
inputs that can be replaced by constant values. Three ef-
fective optimizations help to efficiently analyze compatibil-
ity. These are detection and pruning of common subsys-
tems, separate analyses per outport, and pre-computation
of reachable state space.

The outline of the paper is as follows: Sect. 2 repeats
background of SMT solvers, simulation preorder relations,
and state space explosion. It gives an overview of the tech-
nologies underlying the prototype implementation: Mon-
tiCore [16], MontiArc [15], and MontiArcAutomaton [31].
While Sect. 3 presents a basic approach checking backward
compatibility; Sect. 4 describes additionally implemented
optimizations and extensions making the basic algorithm
more suitable in a product line environment. Sect. 5 evalu-
ates and discusses the concept by testing behavioral compat-
ibility for different components of a driver assistance system
provided by Daimler AG. Sect. 6 compares the presented
concept to existing approaches used in model-checking tools
and for model comparison. The paper finishes with a con-
clusion of the presented concept and tool chain.

2. FOUNDATIONS
This section gives a basic introduction to input/output

extended finite automata (I/O-EFAs), the state space ex-
plosion problem, the simulation preorder relation, and Sat-
isfiability Modulo Theory (SMT) checking as well as to the
tools and frameworks underlying for the developed proto-
type.

2.1 Input/Output Extended Finite Automata
Following [37, 32], an input/output extended finite au-

tomaton (I/O-EFA) is a tuple A = (S, s0, D, d0, U, Y, E),
where

• S is the set of states with initial state s0 ∈ S,
• D is a set of internal variables with initial values d0,
• U and Y are sets of input and output variables, and

• E is a set of transitions oe
[ge(d,u)]−−−−−−−−−−−−−−−→

{y=he(d,u);d=fe(d,u)}
te from

oe ∈ S to te ∈ S, with guard condition ge ⊆ D × U ,
output function he : D × U → Y , and data update
function fe : D×U → D all depending on the current
variable values d ∈ D and input u ∈ U .

I/O-EFAs are a formalism expressive enough for repre-
senting Simulink models [37]. Internal variables are intro-
duced for DataMemory or UnitDelay blocks and also indi-
rectly for predefined components such as EdgeRising or Flip-
Flop. The I/O-EFA in [37] also contains symbolic in- and
outputs for continuous calculations, e.g. integration with
dynamic intervals. Since this paper only handles discretized
models, e.g. integration with predefined intervals, the I/O-
EFA definition in this paper omits all symbolic variables.

An I/O-EFA without internal variables D and having out-
put functions hS for each source state instead of every tran-
sition is an input/output transition system (I/O-TS) [37].

Transforming an I/O-EFA to an I/O-TS means that every
state will be replaced by a set of new states representing
every combination of this state with its variable values. The
unfolding of variables into the state space (also known as
state space explosion problem [4]) is a limiting factor for the
type of variables supported by this approach. All variable
domains have to be finite.

Without loss of generality, each guard condition in every
I/O-EFA and every I/O-TS in this paper will become true
for at least one input value u ∈ U .

2.2 Simulation Preorder Relation
Intuitively, the existence of a simulation preorder between

two I/O-TS A and B means that for the same input: (1) the
set of all sequences of B’s transition executions is a superset
of all sequences of A’s transition executions, and (2) both
having an identical output [12].

Formally, a simulation relation for I/O-TSs A and B with
sets of states SA and SB , and sets of transitions EA and EB

is a binary relation R ⊆ SA × SB , where if (a, b) ∈ R, and

transition a
[ga(u)]−−−−→ a′ ∈ EA is enabled for an input u ∈ U

then A and B produce equivalent output for states a and

b (ya ≡ yb) and there exists a transition b
[gb(u)]−−−−→ b′ ∈ EB

enabled by u such that (a′, b′) ∈ R. For two deterministic
I/O-TS the simulation relation can be computed starting
from the initial states.

In this paper a component C1 is backward compatible to
C0 if for their corresponding I/O-TS C1 and C0 the start
states of C0 are in a simulation relation with the start states
of C1. This means that C1 does produce the same output
sequence as C0 for any given input sequence.

Since all Simulink numeric values will be internally stored
as a bitsequence, every Simulink simulation execution of dis-
cretized models belongs to Mayr’s (1, 1)-PRS class [25] of
deterministic finite-state process rewrite systems. Therefore
(strong) bisimularity and (deterministic) simulation preorder
of two Simulink components are always decidable [1]. To
check enabledness of transitions for inputs an algorithm needs
to compare guard functions. A convenient means for com-
parison are SMT solvers.

2.3 Satisfiability Modulo Theory solvers
Satisfiability Modulo Theory (SMT) solvers extend propo-

sitional satisfiability solvers with specialized theory solvers
[27]. Theories relevant for computing simulation relations
of I/O-TS of Simulink components are, e.g., (non-) linear
arithmetic and integer arithmetic, which allow SMT solvers
to check equality of discrete or real-valued functions.

This prototype tool presented here uses Microsoft’s Z3
SMT solver, which won the SMT-Comp in 2011[9]. [8] shows
that in the category “non-linear integer arithmetic with un-
interpreted sort and function symbols as well as quantifiers”
(UFNIA) the Z3 solver is the best and fastest one in 2014.
The presented prototype uses uninterpreted functions to find
variable assignments making SMT expressions valid.

2.4 MontiCore, MontiArc, and MontiArcAu-
tomaton

MontiCore is a framework for developing textual domain
specific languages [16]. Features of MontiCore include lan-
guage inheritance and embedding. This allows modularizing
and easily reusing already defined languages such as mem-
bers of the UML/P [33] family.

MontiArc is a domain specific language to model compo-
nent and connector architectures [15]. In MontiArc a com-
ponent contains input and output ports as well as a behavior
description. Common data types such as String, Integer,
Boolean, etc. are supported as data types of ports.

MontiArcAutomaton (MAA) is an extension of MontiArc
which allows modeling the component behavior with au-
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tomata [31]. The MAA syntax allows defining states, vari-
ables, and transitions with guards, output, and variable as-
signments using an expression language similar to Java.

The MAA modeling language follows the I/Oω [32] para-
digm. The syntax of the MAA language family subsumes
the I/O-EFA’s as well as the I/O-TS’s syntax. Therefore
the prototype uses MAA to represent these automata.

3. BACKWARD COMPATIBILITY CHECK
Based on the foundations, this section can now describe

the basic approach for checking backward compatibility of
Simulink components. The approach is implemented in a
prototype tool with additional optimizations and advanced
features presented in Sect. 4.

The prototype hides the theoretical background on model
checking from engineers and developers. Its focus lies on
friendly usage. A developer only selects two Simulink models
to compare and the prototype carries out the check fully
automatically.
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Figure 1: Activity to check backward compatibility.

Fig. 1 gives an overview how backward compatibility state-
ments of Simulink models are derived. First, it is necessary
to define the context of the component to identify the re-
quired functionality. Based on this information necessary
in- and outgoing ports are identified. Second, interface com-
patibility between the two models is checked: interface com-
patibility is a necessary condition for behavioral backward
compatibility. The prototype assumes the existence of a
mapping between ports of the two models. Mappings are
mostly computed based on port names.

Third, the prototype translates each Simulink model un-
der comparison to an I/O automaton via a construction in-
spired by [37] (see Subsect. 3.1 and Subsect. 3.2).

Finally, a detailed behavioral compatibility check is per-
formed (see Subsect. 3.3). The prototype checks for a sim-
ulation relation between the I/O automata derived in the
previous step. If such a relation does not exist, a counter
example for backward compatibility is produced.

3.1 Transforming Simulink Models to Control
Flow Graphs

The computation of a control flow graph (CFG) is an in-
termediate step from Simulink models to I/O-EFA automata
in the translation of [37]. This step is repeated here to
make the paper self-contained and explain the implemented
optimizations. The CFG obtained from a Simulink model
represents the execution of atomic blocks and the resulting
changes of signals.

Simulink’s simulation cycle consists of three steps: initial-
ization, output calculation and variable update. Initializa-
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Figure 2: Internal of a FlipFlop block (outgoing port
Not_Q is omitted).
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Figure 3: Extracted control flow of Fig. 2’s FlipFlop
based on Simulink simulation scheduling order.

tion is performed only once, while output calculation and
update of internal variables are performed in each simula-
tion cycle for all Simulink blocks with the proper frequency.
The transformation identifies atomic Simulink blocks inside
the hierarchy and transforms these into a set of calculation
steps, one step for each atomic block. To combine different
atomic blocks a connection rule is applied. In this step the
different states for each single block are concatenated based
on Simulink’s sorted order index [24] of the model. Thereby
the simulation cycle is considered by first concatenating the
output calculation transitions before the update transitions.
To extract enabled subsystems a conditioned rule is applied.
This rule introduces more complex branches into the control
flow as it introduces nodes whose transitions lead to different
target nodes. One cyclic execution of the CFG represents
one simulation step of the transformed Simulink model [37].

As an example consider the component FlipFlop shown
in Fig. 2 and its CFG shown in Fig. 3. Nodes in the CFG
are labeled with signals they assign. The Simulink scheduler
starts with blocks Zero_R and One_S (upper part of Fig. 2).
The CFG starts with assignments to the output signals of
these blocks (suffix _out in Fig. 3). Next the block Unit-
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Delay is executed. Afterwards the CFG branches on the
conditional value assignments of block Switch_S and after-
wards of the block Switch_R. Finally, an update of the in-
ternal variable UnitDelay_internal of block UnitDelay is
performed in the last node of the simulation cycle.

3.2 Transforming CFGs to I/O-Automata
After the CFG extraction, a dependency analysis of as-

signments in the CFG is used to obtain output and variable
assignments at the end of every execution cycle. From these
assignments an I/O-EFA is constructed. The I/O-EFA is de-
terministic and has only a single state. Every execution of a
transition corresponds to the execution of a complete cycle
in the CFG. The state space of the automaton is encoded
via internal variables.

For the CFG of component FlipFlop all propagated vari-
able assignments are shown in the comment boxes for each
node in Fig. 3. Assignments that depend on inputs or the
value of local variables are guarded, e.g., the assignment
Switch_S_out = true is guarded with the input signal S_out.
All transitions as well as the outport and internal variable
assignments are derived from the bottom most propagated
variable assignments (bottommost comment boxes in Fig. 3).
In this example, the local variable UnitDelay_internal al-
ways stores the last output value, and the condition as well
as the assignment do not change. In general, conditions and
assignments can change or more than one internal variable
can be involved calculating the outgoing port. The corre-
sponding state space is encapsulated in the corresponding
guard conditions and related internal variable assignments.
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Figure 4: Extracted I/O-EFA of Fig. 3.

The prototype requires an I/O-TS to calculate a simu-
lation relation in the next step of checking backward com-
patibility. The translation from I/O-EFA to I/O-TS unfolds
internal variables into states. In addition state-based output
functions are defined based on the outputs in the I/O-EFA.

Since Microsoft’s Z3-Solver is able to handle ite (if-then-
else) expressions, the output function of the resulting I/O-
TS is a concatenation of ites where the I/O-EFA’s guard
condition is in the if part, the I/O-EFA’s transition expres-
sion in the then part and the else part contains the next
ite-condition.

3.3 Simulation
The algorithm determining the backward compatibility is

based on the simulation preorder definition of I/O-TS in
Subsect. 2.2. Fig. 5 illustrates this algorithm (B is simulated
by A) consisting of four key parts: 1⃝ Testing whether the
state pair (a, b) have already been visited by the algorithm;
if it is so nothing has to be done. This way the algorithm
also terminates for I/O-TS containing loops. 2⃝ Checking
whether the output function of the states being in relation
are equivalent for inputs of B. 3⃝ Taking a specific transition
of the actual state in B, determining possible input values
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Figure 5: Activity Diagram of Simulation preorder
algorithm. Bold words are OCL/P [33] keywords.
satisfying the guard condition of this transition, and looking
for transitions of actual state in A being activated by these
input values. 4⃝ Checking whether all successor states based
on the selected transitions are also in simulation preorder
relation; the algorithm calls itself recursively.

In 3⃝ the algorithm finds all outgoing transitions, the set
TrAs, of the actual state a satisfying the following proper-
ties: (i) ∀ea ∈ TrAs : ea ∈ a.outTr,

(ii) eb.guard ⇒
(∨

ea∈TrAs ea.guard
)
,

(iii) ∀e′a ∈ TrAs : eb.guard ̸⇒
(∨

ea∈TrAs\{e′a}
ea.guard

)

For deterministic I/O-TSs the set TrAs is unique defined
by (i)-(iii), and can be calculated as shown in the bottom
activity diagram in Fig. 5.

(i) forces the transitions starting from state a (is a⃝). (ii)
says if the transition eb is activated by an input u, then there
must be at least one transition ea also being activated by u
(is d⃝). (iii) forces that TrAs in (ii) contains only a mini-
mum number of a’s outgoing transitions ((iii) is equivalent
to condition c⃝). The optimization b⃝ checks whether there
exists a transition ea covering all activations of eb directly.
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In Fig. 6 I/O-TS A simulates I/O-TS B, and TrAs(b0 →
b1) = {a0 → a1, a0 → a2}, TrAs(b0 → b2) = {a0 →
a3, a0 → a4}, TrAs(b0 → b3) = {a0 → a1, a0 → a2}. B
does not simulate A, because for the transition a0 → a2 no
activiated outgoing transition of b0 for the input u = 70 can
be found (meaning TrBs(a0 → a2) = ∅).

Component B (which behavior is represented by I/O-TS
B) is simulated by component A if and only if the start state
of B (b0) is simulated by the start state of A (a0).
Since the algorithm checks whether b0 is simulated by a0

meaning component B can be replaced by component A, only
the input value ranges of B (u ∈ DomB) arrive at compo-
nents A and B. ya(u) is the output function of a state a under
the input values u ∈ DomB (ya as well as u are vectors).

The counterexample construction creates one possible in-
put stream vector, so that the output streams of both com-
ponents differ at exactly one time slot. Tracking differences
in the Simulink model can be done by using a SignalBuilder
[24] generating this input stream.

4. IMPLEMENTED OPTIMIZATIONS AND
EXTENSIONS

The previous section introduced the basic concept how
behavioral compatibility between two Simulink components
can be evaluated.

This section contains improvements of the basic algorithm
implemented in the prototype for checking the compatibil-
ity of similar components: either by further development
or variation of models. Typically, a common base of the
two compared models can be expected. The common part
is identified and removed in order to decrease the model’s
complexity.

Another optimization uses the relation between in- and
outgoing ports in the CFG to remove unnecessary calcula-
tions and to divide the I/O-EFA calculating all output ports
into several subautomatons handling a subset of the outputs.

The section’s last part introduces an extension to compare
different variants or versions of models where one model’s in-
terface is only a subset of the others interface. The approach
fixes the values on input ports that are only available in one
of the two models (but influence the result of a required
output).
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Figure 7: Implementation: activities to check func-
tional compatibility.

Fig. 7 shows the complete technical view of the different
steps in the currently implemented prototype. All details
of the extra steps such as clone detection, divide I/O-EFA
based on output ports, state space calculation and locking free
ports will be explained in the next subsections.

4.1 Clone Detection and Pruning
The CFG extracted from a Simulink model is the foun-

dation for a first optimization, which aims to reduce the
complexity of the resulting automaton via syntactical or se-
mantical clone detection.

In a first step in the tradition of program slicing [36] the
CFG is analyzed to receive the information which CFG parts
depend on each other. Therefore the control flow is stepwise
traversed and a substitution is performed. This is done by
replacing all known parameter by the corresponding equa-
tion already traversed, similar to symbolic execution [28]. In
addition the related conditions are preserved by performing
a logical concatenation with the guard of the actual tra-
versed transition. The greenish-blue comments in squared
bubble boxes in Fig. 3 show the substitutions for each vari-
able during the CFG’s traversal process of the example from
Fig. 2. The substitution of Switch_R_out exemplary shows
that the complexity of the substitution in general grows ex-
ponentially in the branching levels (cf. path explosion [7]).

After the substitution has been performed, the following
information can be acquired: (1) Internal variables and in-
going ports which are used to update an internal variable.
(2) Internal variables and outgoing ports which are used to
update an outgoing port.

In addition all global variables of the Simulink model
which are just used to ease the modeling of communica-
tion between blocks, and are therefore not representing an
internal state of a block are replaced during the substitu-
tion. By storing all substitutions in each step, it is possible
to compare these substitutions with others extracted from a
second model and therefore perform a syntactical clone de-
tection by simply comparing all guard and assignment pairs
of one internal place holder, internal variable or outgoing
port. There is a high potential for semantical clone detec-
tion on this level, which will be discussed in Sect. 5, as it is
not part of the current implementation.

If a clone is detected, the clone is removed by introduc-
ing a new ingoing port, representing the clone. This ensures
that the value will always be the same for both components.
Its actual calculation is of no importance for checking com-
patibility. If the clone is not an internal place holder or
internal variable, but an outgoing port, the whole port can
be ignored in further steps, as its equivalence and therefore
full compatibility has been proven. If, after a clone has been
removed, some inputs are not referenced anymore, they are
removed. Considering the example from Fig. 8, which rep-
resents two variants of one component, a corresponding syn-
tactical clone detection could easily identify the substitution
of the outgoing port VMax_kmh as a clone. Therefore only the
red marked signal flow has to be evaluated any further.

4.2 Divide I/O-EFA Based On Output Ports

4.2.1 Theoretical Preliminaries
The inspected Simulink models are completely determin-

istic. This results in deterministic CFGs and automata.
A trace of an I/O-TS is a sequence of observed input-
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Figure 8: Identifying syntactical clones based on the
variation path.

output value vectors. If two I/O-TS are not distinguishable
by all traces they produce, they are trace equivalent.

Trace equivalence is black box equivalence [12] that does
not depend on internal states or values of internal variables.
Thus, one large automaton calculating several outputs can
be divided in multiple automata each calculating one output.
This allows a decomposition of the check for trace equiva-
lence of two automata: iff all small automata of both com-
ponents are trace equivalent then the two large automata
of both components produce the same result for identical
inputs on each outport; thus they are also trace equivalent.

To determine whether two small automata A and B are
trace equivalent the algorithm described in Subsect. 3.3 can
be used, because simulation equivalence coincides [12] with
trace equivalence for deterministic automata.

4.2.2 Algorithm
Based on the CFG and evaluating the dependencies be-

tween in- and outgoing ports in Subsect. 4.1, it is possible
to create for each outgoing port one automaton based on
the calculated substitution by building all possible assign-
ment pairs of the outgoing port and its influencing internal
variables.

6/

Figure 9: Theoretical best case dividing automaton.

In the best case illustrated in Fig. 9, where all of the k out-
put ports are pairwise independent from the other’s internal
variables and input ports, an automaton division exponen-
tially reduces the state space of the I/O-TS in O(2k).
In the worst case where all k output ports depend on all

internal variables and input ports, the small automatons
calculating one output port are exactly the same. Thus all
followed operations will be executed k times, and so a linear
computation time overhead (O(k)) arises.

The prototype implements these heuristics. More ad-
vanced strategies could, e.g. analyze the dependencies be-
tween variables, input ports and the outgoing ports after the
CFG has been extracted and the substitution is performed.

4.3 State Space Computation
A third optimization performs an image calculation as pre-

processing step before unfolding the variable values to states
in the transition from I/O-EFA to I/O-TS. The idea will be
explained on a simple automaton, which has one input port
u1 accepting integer numbers in the range [0; 249], one inter-
nal variable d1 having an integer range [2; 100], one output
port y1, only one state A, and two transitions:

A
[u1<d1∧d1≤5]−−−−−−−−−−−−−−−−−→

{y1=5u1+d1;d1=2d1+u1}
A, A

[u1≥d1∨d1>5]−−−−−−−−−→
{y1=3u1}

A.

The second transition does not update any internal vari-
ables and does thus not affect the reachable state space in
the I/O-TS. The data update function of the first transition
is f(d1) = 2·d1+u1 and the guard condition limits the range
of d1 to [2,5] and u1 to [0; d1). The algorithm computes a
mapping M(f) of how internal variables’ old values will be
updated to new values. For the given I/O-EFA the mapping
is M(f) = {2 → {4; 5}; 3 → {6; 7; 8}; 4 → {8; 9; 10; 11}; 5 →
{10; 11; 12; 13; 14}}.

76

$�

$�

$�$� $��$��

$�

$�� $�� $��

Figure 10: Unfolded IO-TS (guard and output ex-
pressions are omitted for clarity).

For the initial variable assignment d1 = 2 the unfolded
I/O-TS as shown in Fig. 10 is created. The computation
of image values of the data update functions in this exam-
ple, has a great impact on the statespace of the I/O-TS.
Unfolding the entire range of d1 ∈ [2; 100] would create
99 states while only ten of them (A2, A4, A5, A8 to A14)
are reachable. In the current prototype, the mapping M(f)
is calculated by “brute force exploration” on GPU chips. A
static guard condition analyzer as preprocessing step mini-
mizes the ranges for the GPU evaluation.

4.4 Extension: Fix Values on Free Ports
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Figure 11: Reduced IO-EFAs of Limiter Function
variants in Fig. 8.

The optimization from Subsect. 4.1 removes all syntacti-
cally identical elements on the control flow graph. Therefore
only I/O-EFA from syntactically different CFGs are gener-
ated for comparison. Fig. 11 displays the reduced IO-EFAs
of the LimiterFunction component: The difference between
both variants is that in the left one the feature sign detection
is enabled and in the right one not.
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This subsection introduces an extension that enables the
comparison of Simulink models with different interfaces. The
simulation algorithm in Subsect. 3.3 only works for similiar
component interfaces. To check backward compatibility of
a component with an extended input interface, additional
inputs might be required.

There are three general possibilities for providing inputs
of extra ports: 1) There exists an adapter component cal-
culating the values for the extra input ports based on the
values of all available input ports. 2) Constant value blocks
will be connected to the extra input ports. 3) Arbitrary (not
constant) values can be connected to the extra input ports,
because the extra ports have no behavioral impact on the
reduced IO-EFA.

In initial experiments, the first option lead to complex
adapter components resulting in a set of non-linear equa-
tions with many undefined functions, where often no solu-
tion could be found by the Z3-solver. The third option has
the advantage that the extra input ports can be left blank
and a direct replacement of the components is possible; but
this leads to the large disadvantage in finding no behavioral
compatible components, since typically all input ports have
impact on the component’s behavior. Thus the concept in
this paper uses the second option as a trade-off.

In the example shown in Fig. 8, after assigning e.g. false
to Sign_b and zero to y1_58, the behavior of the compo-
nents with and without sign detection can be compared.
Since the two automata are equal, the identity relation is
a possible simulation preorder one. Therefore the sign de-
tection component is behaviorally backwards compatible to
the one without sign detection by fixing Sign_b to false
and y1_58 to zero. A more involved example will be used
in the rest of this subsection to illustrate the extension.

A necessary condition of the simulation preorder relation
existence is used to find the constant values for extra input
ports: If all unreachable states of both automata have been
removed and B is simulated by A, then every state of B must
be in relation with at least one state of A. This result follows
directly from the definition in Subsect. 2.2: If state b is
simulated by a and a transition eb goes from b to b′, then
there must be a state a′ and a transition ea (being guard-
compatible to eb as well as) going from a to a′ such that
b′ is simulated by a′. State b is in relation with state a, if
both states have the same output function according to the
ranges of component B.
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Figure 12: Shortened I/O-TS of CruiseCon-
trol_On_Off subcomponent (left: version 3, right:
version 4). Transitions’ guard labels are omitted.

Fig. 12 shows the strongly shortened I/O-TS of version 3
and 4 of the CruiseControl_On_Off subcomponent in the
SPES demonstrator. Both versions have the input ports
ParkingBrake_Active (P), Vehicle_Speed (V), Limiter_-
Active (L) and the output port CruiseControl_Active (C).
Version 4 has the extra input port FollowToStop_Active
(F). The necessary simulation preorder condition“every state
of Version 3 must be in relation with at least one state of

Version 4” requires both state a3 and state b3 being in rela-
tion with either a4 or b4. Eqn. (1) represents this condition
for the following input port ranges: P, L, F are Boolean and
V is an integer between 0 and 250 km/h.

∃F ∈ B : ∀P,L ∈ B, V ∈ [0; 250] :

[C(A3) = C(A4) ∨ C(A3) = C(B4)]∧
[C(B3) = C(A4) ∨ C(B3) = C(B4)] (1)

Using Z3’s (get-model) command applied on the SMT-
Expression in Eqn. (1) returns the constant value assignment
false for F.

If the Z3 solver’s model is empty, then there exist no con-
stant values for the extra ports so that the necessary condi-
tion is satisfied. Thus component A is not behavioral back-
ward compatible to component B.

Since there can be multiple vectors satisfying the neces-
sary but violating the sufficient simulation preorder condi-
tion, the following steps may be repeated: fix the value on
free ports (excluding already tested vectors) and check for a
simulation relation.

This extension allows to do behavioral compatibility checks
of Simulink models where one component interface is a sub-
set of the other’s one.

5. EVALUATION
The evaluation of the proposed concept has been per-

formed on a simplified driver assistance system. This system
is provided by Daimler AG in the context of research project
SPES XT to support evaluation in relation to variability.
Therefore the system focus on representing variability mod-
eling in Simulink while simplifying the concrete functional
behavior. In addition not only different variants of the sys-
tem but also four different versions are provided by Daimler
AG. As the prototype could only support a restricted set
of Simulink blocks, before the prototype implementation we
selected two specific subsystems to be used in the following
case study.

These subsystems fulfill the following attributes: (1) Dif-
ferent variants or versions of the subsystem exist. (2) The
different variants or versions provide positive and negative
compatibility scenarios. (3) Different versions or variants
provide a different level of syntactical equality. (4) The sub-
system contains internal states. (5) The subsystem contains
all elementary block types: Switch, If-else, UnitDelay,
ReadMemory, WriteMemory as well as Boolean and arithmetic
functions.

One of the selected subsystem is the Limiter Simulink
block already illustrated in Fig. 8. It consists of 66 blocks.
The second subsystem is part of the CruiseControl system
(CC) and calculates the CC status (active / inactive). While
the first subsystem is used to analyze the compatibility of
different variants (Limiter with or without traffic sign de-
tection), the second subsystem is used to compare different
versions. The newest version (V4) consists of 33 blocks,
while the oldest one (V1) consists of 26 blocks.

5.1 Results
In the following the results for each step are described

in detail and finally a benchmark for the whole process is
summarized.

In the first step the control flow extraction is performed.
As can be seen in Tab. 1 the control flow extraction is per-
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formed quite fast from 132ms to 314ms and provides already
a first rough overview on the subsystems complexity: the
Limiter subsystem has nine and the CC has three internal
variables. All three variables of CC are of type Boolean. In
contrast the Limiter subsystem has also floating point vari-
ables, which are accessed via Write and Read blocks. Since
it is possible to interpret these variables as global ones being
modified by other subsystems before accessed by the Lim-
iter, there is no need for internal variables of the analyzed
subsystem anymore. This reduces the state space; the im-
pact of these interpretation will be clear in latter evaluation
parts.

Tab. 1 states for each system the related amount of nodes,
edges and internal variables in the CFG. The fourth column
shows the CFG extraction time in ms. Version 3 of CC and
the different variants of Limiter are of similar size and their
values are omitted in Tab. 1.

nodes edges variables time†

Limiter 67 74 9 314
CC (V4) 34 38 3 142
CC (V1) 27 31 3 132

Table 1: Results of CFG extraction.

In the next step the clone detection is performed and fi-
nally the I/O-EFA is extracted. The results are shown in
Tab. 2

var. trans. subst.† I/O-EFA† sum†

Sum - - 456 6403 6859
Vmax 5 15 456 4744 5200

(6)‡ (50)‡ (74905)‡ (75361)‡

Active 5 2 456 451 907
CCSet 2 2 456 130 586
LimSet 3 7 456 1078 1534

(4)‡ (6787)‡ (6787)‡

Sum (r.) - - 762 1193 1955
Vmax (r.) 0 2 762 1193 1955
Active (r.) 0 0 762 0 762
CCSet (r.) 0 0 762 0 762
LimSet (r.) 0 0 762 0 762
CC(V4) 3 3 135 1239 1374
CC(V1) 3 3 81 3588 3669
CC(r.34) 1 3 166 1839 2005
CC(r.13) 2 3 123 6787 6910

Table 2: Clone detection and I/O-EFA transforma-
tion results. From left: amount of variables and
transitions of the resulting I/O EFA, duration for
substitution and I/O-EFA transformation.

In the I/O-EFA transformation one automaton is created
for each output port of the subsystem. Thus four automata
were extracted from the Limiter subsystem. The first group
of rows of Tab. 2 shows the results for the I/O-EFA transfor-
mation of the Limiter block without any syntactical clone
detection, while the second group represents the results for
a transformation after a clone detection has been performed
(r. stands for reduced). For both subsystems a reduction

†time in ms
‡Clamped values show internal variables not being consid-

ered as global ones.

of variables and transitions could be performed during the
clone detection step, which also significantly reduces the
I/O-EFA transformation step. In addition in the case of the
Limiter subsystem it could already be identified that only
one output port (Vmax_kmh) is influenced by a structural dif-
ference. In addition all internal variables could be removed.
Comparing the interpretation of one floating point variable
as global variable or as internal variable (in brackets), the
transformation complexity already increased significantly.

The substitution is considerably faster than the following
transformation and reductions implied during clone detec-
tion already significantly reduces the general duration.

state trans. img.† TS† sum†

sum - - - - 60434
Vmax 8 72 1497 55886 57383
Active 2 6 110 1330 1440
CCSet 3 3 2 112 114
LimSet 8 40 334 1163 1497

(776962)‡ (-)‡

CC(V4) 8 74 513 3595 4108
CC(V1) 8 56 1138 3356 4494
CC(r.34) 2 6 114 258 372
CC(r.13) 4 16 717 1487 2202

Table 3: Results transformation to transition sys-
tem. From left: amount states and transitions of
the resulting transition system, duration of image
calculation and TS transformation.

In a last step the I/O-EFA is transformed to a transi-
tion system to remove all internal variables. The results are
shown in Tab. 3. As the I/O-EFA of the Limiter subsys-
tem does not contain any internal variables after the clone
detection, only the results for the scenario, where no clone
detection is used is shown.

As can be seen even if the resulting transition systems are
quite small (8 states, 74 transitions) calculating the update
function image and performing the transformation is still
time intensive (up to a minute). The results in brackets
demonstrate that a floating point internal variable could not
be handled in a reasonable time slot. In addition it is shown
that in each case the reduction via clone detection always
reduces the overall transformation process.

port time† result

Sum 41016 T[Sign b = false]/F
Vmax 24624 T[Sign b = false]/F
Active b 1761 T/T
CCSet 1051 T/T
LimSet 13580 T/T
Sum(r.) 644 T[Sign b = false]/F
Vmax(r.) 644 T[Sign b = false]/F
Active(r.) 0 T/T
CCSet(r.) 0 T/T
LimSet(r.) 0 T/T
CC(34) 30113 T[FTS active b = false]/F
CC(13) 14518 F/F
CC(r34) 2869 T[FTS active b = false]/F
CC(r13) 8341 F/F

Table 4: Results of simulation checks in both direc-
tions.
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Finally in Tab. 4 the results of the simulation and the over-
all duration are shown. The boolean expression in brackets
describe the condition under which a compatibility could be
achieved. The variant of the component Limiter with the
sign detection feature is fully compatible to the variant of
the Limiter component regarding all outputs but Vmax. The
calculation regarding Vmax is only upward compatible under
the condition the variable Sign_b is false, which deactivates
the sign detection temporarily. As result the variant with
sign detection can safely replace each variant without the
sign detection feature, if Sign_b is forced to false always.
Similar results are provided for component CC. Between ver-
sion one and version three of component CC exists no com-
patibility, while version four can replace version three safely
as long as the variable FTS_active_b is set to false.

5.2 Discussion
The prototype only evaluated Simulink models with Inte-

ger, Enumeration or Boolean data types. The same concept
is also possible for Simulink fixed-point [24] data types by
storing the pre- and post-decimal digits of the fixed point
number as two separate integers; a simple example is avail-
able at http://rise4fun.com/Z3/R5Ap. The problem using
fixed-point data types is the dramatically increase of the
state space introduced by these variable types.

As shown in the previous part of this section one main is-
sue is unfolding internal variables, which is directly related
to the state explosion problem. Extending the clone detec-
tion mechanism in the CFG by identifying clones of type
DF3 [13] or even semantic ones based on graph transforma-
tions as in [2] will possibly harness the state space explosion.

Another bottleneck of the algorithm is the image calcu-
lation. The usage of an intelligent evaluation order such as
leftmost outermost together with substitution and graph re-
duction [34] will most-likely improve the image-calculation
of the data update function on the GPU.

Another shortage of the presented concept are the many
Z3 calls (which need on average about 20ms per call) to
check whether the guard conditions of different transitions
can imply each other in the simulation algorithm. Therefore
a classification of the complex guard conditions based on the
rank idea [10] of fast bisimulation would significantly reduce
the number of guards to be compared.

Nevertheless both improvements will not remove the prob-
lem size regarding the state space explosion.

[21] explains how Simulink Stateflow charts can be trans-
formed and integrated into the Simulink CFG in I/O-EFA
syntax. The implementation of this transformation step is
on progress right now. After it is finished variants and ver-
sions of Simulink components with Stateflow charts can be
tested for behavioral compatibility.

6. RELATED WORK
There coexists a lot of work related to our proposal in

terms of definitions of component compatibility, methods to
formalize and compare behavior, works that analyze Simulink
components, and approaches in the context of product line
analysis.

Many types of component compatibility have been defined
for various purposes, e.g., syntactic interface compatibil-
ity [5, 6], behavioral interface compatibility [11, 19], and
various behavior equalities and refinements [6, 20, 30]. This
paper employs an extension of syntactic interface compati-

bility that allows a special case of forward simulation [6], i.e.,
a modified syntactic interface with a mapping between ports
and values. Replacing components requires full behavior
compatibility. Many formalisms have notions of refinement
similar to compatibility [6, 20, 30] that handle underspecifi-
cation and uncertainty. For Simulink, component behavior
is deterministic and the simulation relation is equivalent to
trace containment [4].

Various target formalisms have been used to verify Simu-
link component behavior regarding to requirement specifica-
tions. Approaches include translations to (symbolic) model
checkers, colored Petri nets, and I/O-EFA automata [26, 3,
17, 37]. For the purpose of this work a behavior compar-
ison of the formal representation of two Simulink models
is crucial – leading to the choice of I/O-EFA, a translation
inspired by [37], and a simulation relation computation.

We are not aware of related work or any formalization
of Simulink for the comparison of component behavior as
presented in this paper.

A related line of work is semantic model differencing [22,
23, 18]. In semantic model differencing of behavior models,
the result of a comparison is a set of witnesses for differences,
e.g., an execution trace possible in one but not the other [23,
18]. The presented prototype for Simulink models computes
one such trace in case of incompatibility. So far semantic
differencing had not been applied to Simulink models.

The motivation for the comparison of Simulink models
comes from the maintenance and evolution of software prod-
uct lines. Many works analyze properties of products in
product lines [35]. The presented approach is fundamentally
different in that it compares behavior of components that
may replace existing ones across products. Other works on
product lines maintenance propose general refactorings [14]
based on delta operations.

7. CONCLUSION
This paper presented a complete concept how behavioral

compatibility checks of Simulink models can be accomplished.
Thus the behavior of different component variants or ver-
sions can be full automatically compared.

In the introduced concept a lot of effort has been done
to avoid the state explosion. Therefore an approach find-
ing syntactical clones of type DF2 [13] based on the CFGs
in both models as well as unfolding I/O-EFAs to I/O-TSs
based on the GPU’s image calculations of the data update
functions for internal variables has been described.

The evaluation part showed that the elimination of all
possible internal variables (especially floating point ones)
as soon as possible is necessary to keep the generated I/O-
TSs small enough for further model checking analysis. The
comparison of the two models can be performed in a sig-
nificantly lower time period, if larger parts of the extracted
CFGs are syntactical clones. In the context of software prod-
uct line maintenance and evolution compatibilities between
different variants and versions of components, thus similar
models, needs to be considered. As consequence the pro-
posed approach provides best performance in this context.
The evaluation also revealed that it is possible to compare
Simulink components with a common base and containing
about hundred blocks in a few minutes on a commercial
grade computer.
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