
Applying Product Line Testing for the Electric Drive System
Rolf Ebert∗

Development Electric Drive, BMW
Group, Munich, Germany

www.bmw.de

Jahir Jolianis
Development Electric Drive, BMW

Group, Munich, Germany
www.bmw.de

Stefan Kriebel
Development Electric Drive, BMW

Group, Munich, Germany
www.bmw.de

Matthias Markthaler
Development Electric Drive, BMW

Group, Munich, Germany
RWTH Aachen University, Software
Engineering, Aachen, Germany

www.bmw.de

Benjamin Pruenster
Development Electric Drive, BMW

Group, Munich, Germany
www.bmw.de

Bernhard Rumpe
RWTH Aachen University, Software
Engineering, Aachen, Germany

www.se-rwth.de

Karin Samira Salman
Development Electric Drive, BMW

Group, Munich, Germany
www.bmw.de

ABSTRACT
The growth in electrification and digitalization of vehicles leads
to increasing variability and complexity of automotive systems.
This poses new challenges for verification and validation, identified
in a Product Line Engineering case study for the electric drive
system. To overcome those challenges we developed a Product
Line Testing methodology called TIGRE. In this paper, we present
the TIGRE methodology. TIGRE comprises the identification and
documentation of relevant data for efficient product line testing
and the application of this data in the test management of an agile
project environment. Furthermore, we present our experiences
from the introduction into a large-scale industrial context. Based
on our results from the introduction, we conclude that the TIGRE
approach reduces the testing effort for automotive product lines
significantly and, furthermore, allows us to transfer the results to
untested products.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
Product Line Engineering, Product Line Testing, Software Product
Lines, Automotive Industry

∗The authors list is in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3336318

ACM Reference Format:
Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin
Pruenster, Bernhard Rumpe, and Karin Samira Salman. 2019. Applying
Product Line Testing for the Electric Drive System. In 23rd International
Systems and Software Product Line Conference - Volume A (SPLC ’19), Sep-
tember 9–13, 2019, Paris, France. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3336294.3336318

1 MOTIVATION
The automotive industry is facing several challenges ranging from
the growing complexity of systems and software [13] to a costumers
demand for a shorter time-to-market [34]. To overcome those "au-
tomated, connected, electrified and service" challenges the BMW
Group set up a strategy [3]. One important part of this strategy is
the electrification of the drive system. In the past, the development
of the electric drive system focused on individual derivates, e.g.,
the i3 and the i8. This focus changed and by the year 2025, a broad
portfolio of approx. 25 derivates will be electrified [2].

The combination of variants of hardware, software, functional-
ities, time deviations, and other characteristics exponentially in-
creases the scope to be tested. The combination possibilities enable
the BMW Group to offer more customized products. At the same
time, it challenges the validation and verification of the products.
Approaches to deal with these challenges are Product Line Engi-
neering (PLE) and Software PLE, respectively [8].

There is a lack of Software PLE experience reports from the
industry [29]. The few industrial Software Product Line Testing
(PLT) approaches focus on solving narrow research challenges
instead of the whole product line process [28]. Hence, there is a
lack of evidence about the transformation of an application-oriented
Verification and Validation (V&V) to PLT in an industrial context.

In a case study for the electric drive system we identified indus-
trial V&V challenges and compared them to existing PLE concepts.
Based on the investigation’s results, we developed a methodology,
called Testing IntelliGent, non-Redundant and Efficient (TIGRE).
Hence, our contributions are

[EJK+19] R. Ebert, J. Jolianis, S. Kriebel, M. Markthaler, B. Pruenster, B. Rumpe, K. S. Salman:
Applying Product Line Testing for the Electric Drive System.
In: International Systems and Software Product Line Conference (SPLC'19), pp. 14--24, ACM, Paris, Sep. 2019.
www.se-rwth.de/publications/

https://doi.org/10.1145/3336294.3336318
https://doi.org/10.1145/3336294.3336318
https://doi.org/10.1145/3336294.3336318

• an approach to introduce PLT-methodologies into agile de-
velopment processes

• TIGRE, a methodology for efficient testing of an automotive
product line

The particular goal of TIGRE is to reduce redundant testing effort
by intelligent planning and reporting of the test execution.

In the following, Section 2 introduces the electric drive system,
before Section 3 presents the challenges related to V&V of this
system in the industrial context. Section 4 presents TIGRE and
Section 5 presents the results of our case study and lessons learned.
Afterwards, Section 6 highlights related work. Section 7 discusses
TIGRE and Section 8 concludes.

2 THE ELECTRIC DRIVE SYSTEM
To electrify a wide range of vehicles until 2025, the BMW Group
developed the fifth generation of the electric drive system [2]. This
fifth generation shows the typical characteristics of a product line.
The following section introduces the most relevant characteristics.

2.1 Hardware-Components and
Communication Busses

The fifth generation of BMW Group’s electric drive systems com-
prises several hardware components. These components commu-
nicate over different bus systems. Most prominent are the highly
integrated electric drive component, including the electric machine,
transmission and power electronics, the battery system and the
charger unit with Alternating Current (AC), Direct Current (DC)
and DC/DC converter [2]. Each component is available in differ-
ent variants. Hence, the system can be modified to suit all sorts of
different installation spaces and power requirements.

2.2 Software-Functions and Parameters
The current electric drive system provides more than 60 software
intensive functionalities, which are distributed over various hard-
ware components. This distribution may vary for different vehicle
derivates 1. Among the main functionalities, e.g., torque, and energy
management, plug-in charging of the electric vehicle is one with the
highest degree of variability. Reasons are, e.g., country-specific legal
requirements, grid voltages, charging standards, derivate specific
vehicle architectures and optional equipment. There are different
means to realize this functional variability in the software: One pos-
sibility is to implement different software variants; more precisely
separate pieces of software, which are implemented in parallel. An-
other possibility is to have only one piece of software but a flexible
parameter-set for each functional variant [41].

A future challenge is that proprietary embedded systems be-
come linked to other systems that are more flexible, interactive,
networked and seamlessly connected to Cyber-Physical Systems [7].
One of the first functionalities affected by this trend is the charging
functionality. The coming into effect of the ISO15118 [36] sets the
foundation for Vehicle-to-Grid functions and wireless high-level
communication between the vehicle and the charging station [27].

1 In the automotive industry, the configuration of a vehicle in a vehicle family is
referred to as a derivate or model. The BMW 7 Series vehicle family, for example, is
configured as a limousine derivate, long version derivate, hydrogen drive derivate, and
hybrid derivate.

Summing up, each derivate comprises multiple variants, which
differ in hardware, software, and the respective functionalities.

2.3 Development Process
In previous generations, the development process of the electric
drive system focused on single derivates. For each derivate there
existed dedicated responsibilities and artifacts like project plans,
requirements, architectures, and test specifications, e.g., test cases,
test plans, and test reports. Hence, transforming the system into
a product line means the development process has to be changed.
The following two prerequisites have already been established and
must be taken into account.

Functional- and Requirements-Based testing. Concurrently with the
development process, the emerging functionalities are tested to
their requirements. The Specification Method for Requirements,
Design, and Test (SMArDT) supports the process [10, 11].

Agile Sprints. At the BMW Group, software and system devel-
opment are based on agile methods, e.g., Scrum and Large-Scale
Scrum [18, 37]. According to these agile methods, new hardware
and software are developed and integrated into sprints. Each sprint
contains a specification, a development, and a testing phase.

3 CHALLENGES IN THE ELECTRIC DRIVE
SECTOR

With the fifth generation of the electric drive system, a powerful
product line has been established. This product line is the basis for
developing derivates.

To handle the product line and its derivates, processes and arti-
facts have to be introduced, since this cannot be handled efficiently
with the traditional application-oriented methods. One suitable
methodology field is PLE and Software PLE, respectively. This sec-
tion presents the main challenges, which we identified in a case
study with the support of domain experts at the BMWGroup. These
challenges need to be addressed by the PLE approach in the auto-
motive industry.

Establishing Domain and Application
Engineering (CH01)
To deploy PLE strategies, it is crucial to establish a common under-
standing of the difference between domain and application engi-
neering. In [33] these terms are defined as follows:

Domain Engineering is the process of PLE in which the com-
monality and the variability of the product line are defined
and realized.

Application Engineering is the process of PLE, in which the
applications of the product line are built by reusing domain
artifacts and exploiting the product line variability. In the
automotive context the applications are derivates or sub-
systems of derivates. In a subsystem, like the electric drive
system, we also call applications products.

Common Platform The common platform contains all ele-
ments from which the products can be built.

2

Traditionally the development of the electric drive system at the
BMW Group is application-oriented. This is because in the begin-
ning, when demand for E-Mobility was not as high as today, the
BMW Group focused on two vehicle types, the i3 and the i8. Hence,
one of the main challenges in establishing domain engineering is to
reveal and document the explicit elements of the common platform.
This documentation has to include the element dependencies and
variabilities. The information has to be extracted from the existing
application-specific artifacts and expert knowledge. In addition, the
existing processes and artifacts for applications have to be adapted.

Using Synergies of the Product Line for V&V
(CH02)
With the increasing number of variants and the combination of
variants, the testing effort for the electric drive system expands
exponentially. Since the products have a high degree of reuse of the
common platform elements, testing each single variant combination
is not necessary. There are synergies between the products. The
challenge is to reveal them, and by doing so enable intelligent test
planning, which leads to an efficient V&V of the electric drive
system.

V&V of Product Lines in an agile development
process (CH03)
In an agile development process, each sprint needs a suitable test
plan for integration testing. The test plan has to consider the nec-
essary test runs for all testing activities during the sprint. The test
plans must not be separate for each derivate. Furthermore, the test
plan has to ensure that all variants of the derivates are sufficiently
tested and there are no gaps or redundancies. The test runs of the
test plan must be distributed among the available test platforms in
a way that no conflicts arise, e.g., two test runs on the same test
platform at the same time. The challenge is to include all necessary
information in the test plan, while being prepared for unforeseen
events.

Various Testing Objectives. The purpose of testing may differ in
each sprint. Depending on the changes in hardware, software and
the status of the project, different test goals will be focused, e.g.,

• Verification of new functionality
• Verification of new maturity levels with more robustness
• Verification of bug fixes
• Regression testing of unchanged functionality
• Focus on a special variant or derivate, e.g., if it is close to
start-of-production or before a specific milestone like ho-
mologation of new components, variants or derivates

In each agile sprint, there is a limited testing time. Since the num-
ber of variants increases exponentially, it is not feasible to increase
the test resources in the same way. Hence, it might not always be
possible to execute all available test cases for each variant in every
cycle. It is, therefore, necessary to exploit synergies between the
products to efficiently use existing resources.

Flexibility of the Test Plan. Even if a test run is perfectly planned,
unplanned obstacles can occur during a sprint, e.g., delayed delivery
or damage of software, components or test platforms. To use the

remaining testing time efficiently, short-term changes in the test
plan must be possible at any time.

Reporting the Test Results (CH04)
Another challenge is reporting test results to the common platform
and derivate management. Besides the high expectations regard-
ing quality, the electric drive system needs to ensure safety. The
management and domain experts demand specific reports to the
results of the test execution. These reports have to be relevant to
derivate-focused management and to the common platform man-
agement. In contrast to the other challenges, CH04 is focused on an
automotive specific subject. Automotive-specific, since the product
(electric drive system) is always integrated into a specific derivate
and additional safety reporting is required for each derivate.

4 INTRODUCTION OF PLE METHODOLOGIES
IN AUTOMOTIVE TESTINGWITH THE
TIGRE APPROACH

In this section, we propose the TIGRE approach to introduce PLE
methodologies in the automotive industry and examined the testing
process of the electric drive system. TIGRE targets the design of
test plans for product lines in a non-redundant and efficient way.
Hence, TIGRE targets the challenges of Section 3.

4.1 Phase one aims at the initial identification and documen-
tation of relevant data for PLT.

4.2 Phase two focuses on the usage of this data for testing
activities during each agile sprint.

4.1 Identification of the relevant data for PLT
The first phase of TIGRE addresses the establishment of Domain
and Application Engineering (cf. CH01). This phase needs a high
initial effort. Yet, once it is established the activities only have to
be repeated in case of changes. Figure 1 gives an overview of the
necessary artifacts.

.

Application Engineering

Project Plan:
Test Platform Configuration

Project Plan:
Product Configuration

Test Plan
Generation

Project Plan:
Common Platform

Requirements Design

Domain Engineering

Generic Test Cases
& Test Case Validity

Test Platform
Configuration

Test Runs

Artifact Process

Product
Configuration

derive

transform to

referenced by

Common
Platform

Test Execution &
Test Reporting

Figure 1: Artifacts and their relations in domain and appli-
cation engineering

The process of domain engineering comprises the common plat-
form and the corresponding project plan, requirements, design,
generic test cases, and test case validity. The process of application
engineering comprises the product configurations and test plat-
forms with their respective project plans, and test runs. All those

3

application engineering artifacts are used for test plan generation
in the second phase (cf. Section 4.2). The following sections explain
each artifact in detail.

4.1.1 The Common Platform. Defining the common platform is
the key element for all further activities. The common platform
contains all elements from which the products can be built. Each
element is described as a variation point according to the Orthog-
onal Variability Model (OVM) [33]. There are several variants for
each variation point. The defined elements of the common plat-
form will subsequently be referred to in all further artifacts, like
requirements, design and test specifications, project plans, and for
the configuration of the products (see Figure 1).

The high degree of variability in hardware, software, and func-
tionality of the electric drive system results in a large number of
variation points. These variation points can be clustered into sev-
eral groups, which we named sub-platforms. As a result, we defined
the following sub-platforms:

• A platform of distributed functionalities
• A platform of hardware components
• A platform of software and parameters
• A platform of further characteristics, which give extra infor-
mation about the electric drive system

Figure 2 illustrates the sub-platforms, including examples for
their content. The sub-platform Functionality contains one
variation point (triangle in Figure 2) for charging functionality
(CHGE). CHGE has the variants (square) charging with AC, charg-
ing with DC and inductive charging (IND). The sub-platform
Hardware comprises the variation points high voltage battery
(HV-Battery), with the variants A and B, the electric motor,
transmission and power electronics (abbreviation Power Electronics
and Electric Machine (PEEM)), with the variants small S, medium M
and large L, and the charging unit (CU), with two variants
for high power charging (High) and low power charging (Low).
The sub-platform Software contains the variation points Charg-
ing Unit Software (CU-SW) and the PEEM Software (PEEM-SW).
Each variation point has two variants, i.e., SW-A and SW-B. The
sub-platform Characteristics comprises one variation point,
the charging type (CHGE Type). The CHGE Type represents
four different charging standards. The charging standard Type-1
is an American standard for AC-charging [19], Type-2 is a Euro-
pean standard for AC-charging [21, 22], Combined Charging
System (CCS) is an international standard for combined AC-
charging and DC-charging [23], and CHDMO is a Japanese standard
for DC-charging [20].

4.1.2 Dependencies within the Common Platform. As described
in [33] there exist certain dependencies between the elements of
the common platform. These dependencies need to be analyzed
and documented in order to show valid combinations. Figure 2
illustrates an example of such dependencies: The charging types
Type-1, Type-2, and CCS require the functionality AC. The AC
functionality requires a CU and an HV-Battery in any variant.
The CU requires a CU-SW in any of the available variants.

4.1.3 Requirements, Design and Test Specification. The defined ele-
ments of the common platform shall be referred to in the require-
ments, design and test specifications during domain engineering.

For the electric drive system, this is done according to SMArDT:
Model-based requirements and design artifacts are elaborated for
each functionality of the common platform. Moreover, the artifacts
contain information about functional variability. An example of the
functional variability is the different behavior of the AC-Charging
functionality for the charging standards Type-1 and Type-2.

Based on the SMArDT methodology, generic test cases are gen-
erated for each functionality [10, 11]. A generic test case corre-
sponds to a domain test case [33]. Hence, a domain test case can
contain variability and should allow efficient reuse in application
testing. The set of domain test cases has to cover all functional
variants. To realize this, we either define different test cases for
each variant or one test case with variable parameters. Since this
methodology for test case creation has already been established and
published [10, 11], we will not go further into detail. We assume
the resulting artifacts are available to the testing activities.

4.1.4 Test Case Validity. The test case validity is an attribute of
each generic test case which indicates for which objects the test
case is valid and executable.

In the past, due to the application-oriented approach, the test
case validity has been documented through an attribute listing for
all relevant derivates. With the increasing variability, this is not
applicable anymore, because:

• Each derivate may comprise different variants (product con-
figurations) and a test case may not be valid for each variant

• The test case would be executed for each derivate once and
there would not be any use of the synergies between the
derivates

Therefore, TIGRE comprises a PLE concept of expressing the test
case validity based on the defined elements of the common plat-
form. This allows us to use the synergies of the product line as
required in CH02 and reduce testing effort. Instead of performing
the test case for each derivate separately, we perform it depending
on the common platform elements, which are stated in the validity
expression. If the elements are reused by several derivates, the test
result is valid for all those derivates. We want to emphasize that
this holds for integration testing. Hence, not all components and
sub-systems are integrated into the derivate yet. For feature inter-
actions to be tested, this approach refers to the system tests that
follow the integration test.

A generic test case can be valid for several variants of elements
of the common platform. Hence, two different scenarios for the
execution are possible:

• The test case must be performed with several runs, one for
each variant it is valid for

• The test case must be performed with only one run for any
variant it is valid for and the result can be transferred to the
other variants it is valid for

The second scenario allows us to reduce testing effort again and
therefore contributes to CH02. In both scenarios, each test run can
be performed with a different parameterization, depending on the
validity of the test case.

For the test case validity, we use information provided in the
requirements and design specifications as well as domain experts
assessments. The transparency, why a test case needs several runs, is

4

PC-1: … & CCS & AC & CU-Low & PEEM-S & …
PC-2: … & Type-2 & AC & CU-Low & PEEM-M & …
PC-3: … & CCS & DC & CU-Low & PEEM-L & …
PC-4: … & CCS & DC & CU-Low & PEEM-S & …

Generic Test Case Product Configuration of the Electric Drive System Test Platform Configuration

Derivate 1
Derivate 2

variant ofTest_Plug_Unlock:
[{AC & (Type-2 | CCS)} + {DC & CCS}] & (vCU-Low)

TB1: …Type-1 & AC & CU-Low & PEEM-S & …
TB2: …CCS & AC & CU-Low & PEEM-M & …
Veh.1: …CCS & DC & CU-Low & PEEM-L & …
Veh.2: …CCS & AC & CU-Low & PEEM-S & …

Z

Common Platform

1...1

Functionality Hardware Software Characteristics

excludes_v_v

requires_vp_vp

1...1

requires_v_v

ORTHOGONAL VARIABILITY MODEL

requires_v_v
requires_v_v

requires_v_vp
requires_v_vp

referenced by referenced by referenced by

VP
CU
SW

B
V

A
V

VP

CU

Low
V

High
V

L
V

M
V

S
V

VP

PEEM
1...3

VP
HV

Battery

B
V

A
V

IND
V

DC
V

AC
V

VP

CHGE
1...3

CHDMO
V

CCS
V

Type 2
V

Type 1
V

VP
CHGE
Type

1...1

VP

PEEM
SW

B
V

A
V

1...1

Figure 2: Example of artifacts of the common platform, generic test case, product configuration and test instace configurations

increased compared to a derivate relationship. The test case validity
is stored as an attribute of the generic test case. We can change and
improve it throughout the development process of the product line.
This allows us to take advantage of lessons learned and document
the expert knowledge in a reasonable way (cf. CH01).

To use the test case validity for the planning of the test execution
and reporting, it is documented in a specific notation. To express
the explained scenarios for test case validity, a notation with logical
expressions is feasible. In addition to being machine-readable, this
logical expression must also be readable by domain experts, test
experts and managers. Therefore, the syntax should be minimalistic
in order to facilitate readability and interpretation.

In particular, we identified the need to expand the test case va-
lidity expressions by equivalence classes. An equivalence class is a
set of variants which a generic test case is valid for. This specific
set states that we need only one run of the test with any represen-
tative of the equivalence class. The result of this single run can be
transferred to all other members of the equivalence class.

In the following, we explain the Operator-Name, the Operator-
Symbol, the Operator-Description and the Operator-Example used
in our specific notation.

• Symbol: |
Name: logical OR
Example: A | B
Description: The test case is valid for A and B, it must be
executed once for a product containing either A or B and
the result can be transferred to all other products containing
A or B. This operator is used to express equivalence classes.

• Symbol: &
Name: logical AND
Example: A & B
Description: The test case is valid for A and B, it must be
executed once with a product containing A and B.

• Symbol: {...}+{...}
Name: Separate-Runs-Operator

Example: {A} + {B}
Description: The test case is valid for A and B, it must be
executed twice, once with a product containing A and once
with a product containing B.

• Symbol: ∀
Name: All-Operator
Example: ∀Variation-Point-X
Description:The test case is valid for all variants of Variation-
Point-X, it must be executed separately for each variant.

As an example, we use a generic test case concerning the unlock
functionality of the charging plug. The following expression shows
its validity attribute (cf. Figure 2) i.e., Test_Plug_Unlock:

[{AC & (Type-2 |CCS)} + {DC & CCS}] & (∀CU-Low)

With this validity attribute, we conclude that we need two sep-
arate runs of the test case Test_Plug_Unlock. One test run with
a product containing the variants AC, and either Type-2 or CCS
and another run with a product containing the variants DC and
CCS. The expression (Type-2 | CCS) forms an equivalence
class. Both runs have to be executed with a CU-Low variant. The
all-operator states that all versions of CU-Low have to be tested
separately. This will be explained in detail in Section 4.1.7.

4.1.5 Product Configurations. The specific products are managed
within the application engineering. A major principle of PLE is
that the products are composed of a combination of the reusable
elements of the common platform. The specification of the variation
points, including their dependencies, enables the generation for
possible product configurations.

To set up a complete product configuration, we consider all
variation points of the common platform and decide whether they
are present or not. If a variation point is present we select at least
one of the possible variants. This is in accordance with the defined
dependencies and restrictions, as described in Section 4.1.2.

5

The resulting product configurations are stored in a database.
Each configuration is mapped to the derivate where it is present.
Figure 2 shows four examples for parts of test-relevant Product
Configurations (PC) and their mapping to product, e.g.,

PC − 2 : ...& Type-2 & AC & CU-Low & PEEM-M &...

In the context of product configuration (cf. PC-2), it is a list of
the elements that make up the product. Similar to the test platform
configuration the elements are connected with the symbol &.

4.1.6 Test Platform Configurations. Similar to the product con-
figurations, the test platform configurations are expressed by the
common platform elements. A test platform is a test bench or ve-
hicle where a test run can be executed. This expression of the test
platform configuration allows easy matching of test case validity,
product configurations, and test platforms when planning the test
execution. Examples for test platform configurations are depicted
in Figure 2. Test Bench 1 has the following configuration:

TB1 : ...& Type-1 & AC & CU-Low & PEEM-S &...

4.1.7 Project Plans. As a prerequisite for planning the test execu-
tion for agile sprints, not only variability in space but also variability
in time has to be considered. The variability in time is the existence
of different versions of an element of the common platform that are
valid at different times [33]. The variability in space is the existence
of an element in different shapes at the same time. Therefore, for
each variant of the common platform, we have to define whether it
is available and in which version, for each specific sprint. An exam-
ple is depicted in Figure 3. The example shows the different versions
of the hardware component variants CU-Low and PEEM-S during
four successive sprints. Moreover, it illustrates, in which sprints the
functionality AC is available. In sprint 1, both component variants
are available in version 1 (v1), but AC is not present. In sprint 2,
CU-Low is available in v2, while PEEM-S is still available with v1
only. In this sprint, the AC-functionality is present for the first time.
From now on it will be available in all further sprints. In sprint 3,
CU-Low is available in v3 and PEEM-S in v2. In sprint 4 CU-Low
is available in v4 and PEEM-S in v3. We call this the project plan
of the common platform.

Project Plan of the Common Platform

CU-Low

PEEM-S

AC

Product 1 (Derivate 1)

Milestone Time Period

Project Plan of the Products

Sprint 1 Sprint 2 Sprint 3 Sprint 4

V2 V3 V4V1

V1 V2 V3

NO YES YES YES

Product 2 (Derivate 2)

CU-Low: V1

PEEM-S: V1

AC: NO

CU-Low: V2

PEEM-S: V1

AC: YES

CU-Low: V2

PEEM-S: V1

AC: YES

CU-Low: V3

PEEM-S: V2

AC: YES

CU-Low: V1

PEEM-S: V1

AC: NO

CU-Low: V1, V2

PEEM-S: V1

AC: YES

CU-Low: V3

PEEM-S: V1

AC: YES

CU-Low: V4

PEEM-S: V3

AC: YES

Figure 3: Simplified example of a sprint schedule

To define, which version of a variant is integrated into a product
for each agile sprint, a project plan for products is necessary as well.

Figure 3 illustrates, which versions of CU-Low and PEEM-S have
to be tested for product 1 and product 2 during the four sprints. It
also shows which products include the AC-functionality and in
which sprint it will start to be present. Based on project decisions
the following scenarios for integrating available versions from the
common platform to products are possible:

• A newly available version in the common platform might be
integrated at a later sprint for a special product. For example,
in sprint 3 there is a v2 available for the PEEM-S. However,
none of the product integrate it in this sprint.

• For one product, there might be two valid versions of the
same variant at the same sprint. For example in sprint 2,
product 1 uses both versions v1 and v2 of the CU-Low.

Thus, it is possible that different versions of one product configura-
tion have to be tested separately during one sprint. As an example,
we take the product configurations, which have been defined in the
previous section (cf. Figure 2). If we want to test them in sprint 2,
we have to consider the relevant versions defined for sprint 2 in
the project plans (cf. Figure 3). This leads to the following sprint-
relevant product configurations:

PC-1: CCS & AC & CU-Low-v1 & PEEM-S-v1 &...
PC-2: Type-2 & AC & CU-Low-v1 & PEEM-M-v1 &...
PC-3: CCS & DC & CU-Low-v1 & PEEM-L-v1 &...
PC-4: CCS & DC & CU-Low-v2 & PEEM-L-v1 &...
PC-5: CCS & DC & CU-Low-v1 & PEEM-S-v1 &...

These sprint-relevant product configurations have to be consid-
ered during the planning of the test execution in the second phase
of this approach.

There is also a project plan of the test platforms, which reveals
the versions that will be available on the test platform at a certain
sprint. From this project plan, the sprint-relevant test platform
configurations can be determined with the same method.

4.2 Testing the Product Line in Agile Sprints
The second phase of TIGRE focuses on the planning of the test exe-
cution and the reporting of test results. It addresses the challenges
CH02, CH03, and CH04.

Figure 4 gives an overview of this phase. In the beginning, rele-
vant information of the before established artifacts is gathered. The
data of each artifact are combined to generate a test plan for the
test execution. The test plan has to comprise (1) the necessary runs
of a generic test case, (2) the product configuration each run has
to be performed with, and (3) the test platform each run has to be
performed on.

Generic Testcase
+ Test Case Validity

Product Configurations
+ Project Plan

Test Instance Configuration
+ Project Plan

Test Strategy

Test Plan
Generation

Test Plan Test
Execution

Test Report

Artifact Process Document referenced byStep

Figure 4: Overview of the interconnected artifacts for the
test plan generation

6

To optimize the test plan, different test strategies can be applied
to the generation process. In each agile sprint, a suitable test strategy
is selected to fulfill a specific testing objective. After the generation
of the test plan, the tests are executed and the test results are re-
ported. In the following sections, we provide a detailed explanation
of the test plan generation and the reporting of test results.

4.2.1 Generating the Test Plan. The generation of the test plan can
be divided into three steps.

Step 1. In step 1, the test runs that are relevant for a specific
sprint have to be determined. To do this, we filter the project plan
for all functionalities that are present in the specific sprint. Based
on these functionalities, we choose the related test cases.

For each generic test case, we evaluate the validity attribute to
identify which variants need separate runs of the test case. This
results in a number of possible test runs. In this way, we transfer
the generic domain test case to several test runs for application
testing. This step corresponds to the binding of variability [28].

Figure 5 illustrates the calculated test runs for the validity at-
tribute of the example generic test case presented in Figure 2. For
the calculation, we also considered the available variant versions
in sprint 2 (cf. Figure 3). Figure 5 depicts four separate test runs
derived from the test case Test_Plug_Unlock (cf. Figure 2):

Run-1: AC & (Type-2 | CCS) & CU-Low-v1
Run-2: AC & (Type-2 | CCS) & CU-Low-v2
Run-3: DC & CCS & CU-Low-v1
Run-4: DC & CCS & CU-Low-v2

The first two test runs contain an equivalence class. To plan
the test run for execution, we have to select one representative of
the equivalence class. The decision for a suitable representative
must be supported by the test strategy. Based on our analyses of
frequent testing objectives during an agile sprint, the following test
strategies meet our needs:

Random: For each equivalence class, we select a random rep-
resentative.

Exclusion We define certain variants that should not be se-
lected as a representative for an equivalence class.

Preference We define one or more specific variants that are
preferably selected as a representative for an equivalence
class.

History-Based For each equivalence class, we select a repre-
sentative which has not been selected in the past.

Maximal or Minimal Variation For all equivalence classes,
we select the representatives so that we receive the minimal
or maximal possible number of different representatives.

Combinatorial Interaction Testing (CIT) CIT [12] enables
the selection of a subset of products, which most likely re-
veal the faults caused by interaction. The representatives are
selected so that relevant combinations of variants occur, but
not all possible combinations. Hence, the testing effort can
be reduced.

For our example, we select a history-based strategy and assume
that CCS has been executed last time, so now we select Type-2.
This means that the first test run will be executed for a product

containing AC, Type-2, and CU-Low-v1. The result will be trans-
ferred to all products, which include these variants and also to all
products with CCS, AC, and CU-Low-v1.

As shown in Figure 5, each test run inherits a part of the logical
validity expression from its parent generic test case. Since this
validity expression consists of elements of the common platform, it
also represents a part of a possible product configuration. Thus, we
call the test runs validity expression a sub-configuration.

Step 2. In step 2, we extract the sprint-relevant product configu-
rations as described in Section 4.1.7. In our example, the resulting
configurations are depicted in Figure 5. Subsequently, we assign
the sub-configurations of the test runs to the sprint-relevant product
configurations (see (A) in Figure 5). This can lead to different results:

• If there is no product configuration containing a certain sub-
configuration, the test run must be deleted. In our example,
this is the case for the test run 2.

• If there is exactly one product configuration containing a
certain sub-configuration, the test run must be executed with
this configuration. This is the case for the test run 4.

• If there is more than one product configuration containing a
certain sub-configuration, the test run can be performed on
any product configuration. The test result can be transferred
to the other product configurations. This refers to CH02. In
the example, this holds for the test run 3.

In the last case, we must select one product configuration for the
execution. To support a reasonable decision-making, the test strate-
gies defined in step 1 can be used again.

In the example, we use a test strategy that selects the PEEM-L
variant with preference. As a result, product configuration 3 will be
assigned to test run 3.

Step 3. In step 3, we determine the sprint relevant test platform
configurations as described in section 4.1.7 and allocate the test
runs to test platforms. To do this, we compare the selected product-
configurations of each test run with the sprint-relevant test platform
configuration (see (B) in Figure 5). If a test platformwith the required
configuration is available, the triple (test run – product configu-
ration – test platform) can be assigned to the test plan. If no test
platform is available, we consider the following alternatives:

• If the test run contains an equivalence class, we could take
another representative

• If a test run’s sub-configuration is present in several product
configurations, we can select another product configuration

• If none of the above alternatives led to a result, we have to
show the gap in the test report

For the first test run of the example in Figure 5, we recognize that
there is no test platform with a sub-configuration AC & Type-2.
Therefore, we select the other representative of the equivalence
class and plan the run AC & CCS at test bench 2 (TB2).

Figure 5 shows the resulting test plan. It contains all test runs that
need to be executed. For each test run, the product configuration
and the test platform for the test execution are provided.

4.2.2 Reporting the Test Results. After the execution of the planned
test runs, the test results are reported. Hence, we generate dedi-
cated test reports for the common platform and the commercially

7

Test Runs + Sub-Configurations Sprint-relevant Product Configuration Sprint-relevant Test Platform Configuration

 Test_Plug_Unlock Run-1: AC & (Type-2 | CCS) & CU-Low-v1
 Test_Plug_Unlock Run-2: AC & (Type-2 | CCS) & CU-Low-v2
 Test_Plug_Unlock Run-3: DC & CCS & CU-Low-v1
 Test_Plug_Unlock Run-4: DC & CCS & CU-Low-v2

 PC-1: … & CCS & AC & CU-Low-v1 & PEEM-S-v1 & …
 PC-2: … & Type-2 & AC & CU-Low-v1 & PEEM-M-v1 & …
 PC-3: … & CCS & DC & CU-Low-v1 & PEEM-L-v1 & …
 PC-4: … & CCS & DC & CU-Low-v1 & PEEM-S-v1 & …
 PC-5: … & CCS & DC & CU-Low-v2 & PEEM-L-v1 & …

 TB1: … & Type-1 & AC & CU-Low-v1 & PEEM-S-v1 & …
 TB2: … & CCS & AC & CU-Low-v1 & PEEM-S-v1 & …
 Veh.1: … & CCS & DC & CU-Low-v1 PEEM-L-v1 & …
 Veh.2: … & CCS & DC & CU-Low-v2 & PEEM-L-v1 & …

BA
Test Plan

 Test_Plug_Unlock Run-1: PC-1 & Test-Bench-2
 Test_Plug_Unlock Run-3: PC-3 & Vehicle-1
 Test_Plug_Unlock Run-4: PC-5 & Vehicle-2

Test Plan Generation

Step

mapped to

Figure 5: Example of the test plan generation, for a single generic test case, with consideration of the test strategy

relevant products and derivates, respectively (cf. CH04). These re-
ports provide different views on the test results. Hence, different
Stakeholders in the Company get a precise overview of the test
results, edited/prepared for their specific view. Those views are
automatically derived from the existing test results. The first re-
port lists each test run result, showing the sub-configuration, it
was executed with and the configurations where the result can be
transferred. The product specific report lists only those test run
results that are valid for a sub-configuration of this products. For
each test run, we report whether it was executed with this product
or transferred from the execution with another product.

5 CASE STUDY AND LESSONS LEARNED
FROM EMBEDDING PLT INTO THE
AUTOMOTIVE INDUSTRY

After defining the main process and input artefacts, the proposed
approach was applied during a pilot phase. The aim of the pilot
project was to show the applicability in an industrial environment.
Furthermore, the pilot phase already involved members of vari-
ous teams and helped to spread the basic knowledge about PLE
fundamentals and the methodologies.

In the beginning, the relevant data for PLT was elaborated as
described in Section 4.1 of the TIGRE approach. Since there was no
specific tool support, the complexity for the pilot phase was kept as
low as possible. For an integration phase of the electric drive system
seven representative drive system functionalities were chosen. For
each of those functionalities all the linked test cases were imported
from application lifecycle management tools. Hence, we received
163 generic test cases in total. We chose three derivates for which
the pilot phase should provide test results. Based on the defined
elements of the common platform we derived the sprint relevant
product configurations. Although the amount of variation points
in the characteristics sub-platform was low, we identified 30 sprint
relevant product configurations for the three derivates.

5.1 Pilot phase
The goal of the pilot phase was the manual creation of a test plan
for the chosen integration phase. In order to generate the test plan,
the following artifacts were created:

• The sprint-relevant product configurations, based on inter-
views with experts and the information contained in several
databases.

• The generic test cases with their validity attributes.
• The sprint-relevant test platforms with their configurations
and availability.

After collecting all of the necessary data, exemplary test sets were
created following the proposed approach in section Section 4. The

result of the pilot phase has been a significant reduction of test
runs, compared to just multiplying all of the test cases with the
number of sprint-relevant product configurations.

Executing each test case once for each product configuration
would result in the multiplication of 163 test cases with the 30
product configurations. However, not all of those 4.890 runs would
be reasonable to be executed, since there exist synergies.

Applying the TIGRE methodology, we could reduce the number
of necessary test runs to a total of 326 runs, which covers all of the
sprint-relevant product configurations for the electric drive system.
Furthermore, we were able to trace our results back to all variants
and expose those which had not been explicitly tested.

5.2 Lessons learned from applying the
methodology

Creating a test plan with a generally defined methodology aims to
improve the traceability, reproducibility and optimization of the test
plans over time. However, collecting all of the relevant information
and combining them was a challenging task.

The generation of the three above mentioned artifacts required
access to various tools and expert knowledge as well. The agile
development requires agile tools for data maintenance. Project
decisions obtained during meetings are traditionally documented
in various independent tools and transfered to the actual database in
a second step. In this transfer process information could get falsified
or even lost. Moreover, specialized tools are often only accessible
and understood by experts. Hence, we collaborated closely with
those experts. The effort was worth it, since we stored the expert
knowledge in tools. Now, all of the expertise can be reused easily
and even if there is a personnel change.

Though others see a big challenge in the acceptance of PLE with
its development structure [9], TIGRE was welcomed with interest
by all involved domain experts, testing experts and managers.

Because of the high complexity of the electric drive system,
manually generating a test plan was not feasible with reasonable
effort. Hence, the implementation of such a methodology with
modern tools is necessary.

6 RELATEDWORK
In the past twenty years, several literature reviews have been con-
ducted on PLT, analyzing a number of research approaches in
this field. However, in the research field of PLE, the number of
studies facing the scale testing of Product Lines in the industry is
low [14, 28, 29].

8

The Software PLE investigation [29] reviewed 276 studies with
the scope of identifying test strategies, which facilitate fault detec-
tion and reduce the effort for quality assurance. The study consid-
ered studies between 1998 and 2013. Only 6% refer to industrial
practices and 8% are industrial studies. The investigation concludes
that Software PLE studies can be categorized in "selection of prod-
ucts" to test and "actual test of products". However, only in the
year 2013 there were studies found taking into consideration both
processes. CIT (cf. Section 4) is also seen as a principle to reduce the
testing effort and targets the challenges of CH02 and CH03. The
fundamental assumption of CIT is that most of the errors are caused
by a single value or the interaction of two input values [12]. The
study [29] identified CIT as the most common approach to reduce
testing effort through the selection of products. Hence, TIGRE also
comprises this optimization technique.

Apart from one study validated in an industrial context, all other
approaches were evaluated in research groups. In the field of test
case generation, test case selection and test inputs [29] could not
find any available tools. Moreover, the literature review provided
no information about studies concerning the test management, test
plan generation or test reports.

In [14] a systematic mapping study on Software PLT is presented.
Test organization, test processes, and test management are pointed
out as relevant fields. The majority of the studies provide proposals
for the established challenges in PLT. Nevertheless, only 17% of the
studies present the usage and evaluation of the proposed methods.
Hence, most of the proposed methodologies assume the existence
of idealistic inputs and state clear requirements for the approaches,
i.e., complete variability models and properly linked information
in the overall development process. In an industrial environment,
those methodologies have to prove that they work under industrial
circumstances. Those applicable test methodologies and strategies
are hard to find [14].

Another survey [28] compared and analyzed the contributions
of eight software product line specific approaches. The survey
provides a framework of relevant artifacts for the overall Software
PLT process. The framework enables categorizing and analyzing
existing researches, as well as the identification of open research
opportunities. The most relevant revealed research opportunities
for our research are:

• Criteria for test case selection to reflect the decision on vari-
ability resolution and application-specific variability

• Coverage mechanism to determine test case creation, test
selection, and execution approaches.

• Reusing or/and modifying test assets for application-specific
testing

The framework neither details the artifacts nor explains the ar-
tifact’s interaction for direct and profitable industry application.
Agile methods are not considered. The conclusion of [28] is that
most of the approaches focus on narrow Software PLT research
challenges. Hence, the approaches do not provide a holistic soft-
ware product line process from the beginning until completion.
Furthermore, the survey stated that only marginal research on how
to reduce redundant testing effort by PLT techniques exist. This
reduction of redundant testing effort by PLT is one of the most
important challenges we address in this paper.

Besides the aforementioned literature reviews, several PLT stud-
ies address parts of challenges mentioned in Section 3. The method-
ology and tooling described in [35] are based on feature models
and focus on Software PLE. The extensive approach tackles the
challengesCH1,CH2, andCH4. It distinguishes between the prob-
lem domain and the solution domain. The problem domain, which
is represented in feature models, expresses similarities and vari-
abilities. Hence, the stakeholders’ requirements emerge from this
domain. The solution domain, a hierarchical structure, consisting
of elements of the architecture, satisfy those requirements. Thus,
this hierarchical structure comprises the variation points and the
connection of the solution and problem space. The language re-
sulting from the approach expresses constraints, restrictions, and
moreover calculations. Similar to our specific notation the language
uses operators, e.g., REQUIRES, IMPLIES, and CONFLICTS, in
combination with logical operators, e.g., AND and OR, but with a
different interpretation, not in context for testing. The approach
focuses on software, hence its testing framework is mainly designed
for software tests. As such, we did not find applicable solutions
for our specific agile test plan generation. Still, the tool provides a
well-developed language and its infrastructure provides a large set
of extensions and interfaces.

The study [15] introduces a product line application in the auto-
motive industry and presents approaches to meet the challenges of
the "mega-scale" product line. The challenges CH01 and CH03 are
also identified and necessary measures are presented. Mentioned
challenges are product complexity, a high number of variants in
automotive applications, feature interactions, the size of the com-
panies, the traceability, and the consistency throughout the life
cycle. We have faced those challenges in our study as well. To pro-
vide solutions to the architectural decomposition, involved roles in
the development and the necessary organizational adoptions are
discussed. Despite an overview of the PLE development process,
the study does not cover details concerning the test process i.e.,
test management and test reporting. The subsequent study [41]
enhances the predefined "mega-scale" product line challenges with
challenges addressing CH02. Furthermore, the approach takes ad-
vantage of system modeling and feature models. However, no ap-
plicable solutions for Software PLT, i.e., the test plan generation
and reporting of test results (CH04) are presented.

In [17] the challenges of testing the weapon system using PLE
approaches and a commercial PLE tool are presented. The study
refers toCH01,CH02, andCH03. In order to start testing activities
so-called ’branching’ is necessary. Thus, a copy of the actual work
is done and this release is used as a stable basis for testing activities.
If necessary changes to the copy must be done, a strong discipline
regarding the changes on the copies is required. Event branches
are also created, as during the development of the product line also
products must be generated at specific points in time. Although
the approach tackles testing under time pressure, the variation of
the environment under consideration is comparatively low to the
automotive industry. Hence, the presented "copy-approach" is not
sufficient for the complexity of the electric drive system. Further-
more, besides capturing the results in a database, the approach does
not detail the reporting of the results.

Another approach [6] focuses onCH01 and presents the possibil-
ities of modeling the problem and solution space with tool support.

9

The approach shows the design of the variable architecture and
product derivation. Testing the product line, however, is mentioned
as an open issue of Software PLE. The reduction of the testing effort
is addressed as an issue concerning many product lines.

The approach in [30] targets the challenges of CH02 by reduc-
ing the testing time of cyber-physical-systems. In the first step,
the approach reduces the testing time by selecting and prioritizing
products to be tested. In the next step, multiple testing iterations
are performed. In each iteration, a small number of test cases for
each product is allocated and the test results feedback is taken into
account for the next products and test cases. The approach focuses
on reducing testing time, while test platforms and information
about the product project management are not considered. The test
platforms and the knowledge about availability and deadlines for
each drive system variant are essential for our approach. Further-
more, [30] does not consider the aspect of an agile development
process (CH03) or reporting test results (CH04).

The model-based approach in [38] aims to avoid redundant test-
ing in application engineering (CH02). In order to avoid the execu-
tion of redundant test cases, the approach introduces a dataflow-
based coverage criterion. The approach combines the usage of
feature models and activity diagrams as test models to link data
accordingly. Dependencies between variants are registered using a
dependency matrix. The conclusion of [38] is that there is a high
potential for increasing test efficiency. However, there is a strong
dependency on the implementation of the test cases. Test cases can
cover more branches and more than one dependency. Thus this
dependency influences the efficiency of the approach. In the context
of the electric drive system, the technique of [38] is very interesting
for the generation of test cases from system models. However, this
only covers functional variability. Variability of hardware, software
and time are not considered.

Another approach [32] uses pairwise testing to avoid testing
every possible combination of input values (CH02). The approach
only tests the combination of all pairs. Furthermore, this testing
technique could be transferred from input values to the features in
a product line. The approach uses CIT based on a feature model
of the domain. Based on the dependencies of the features the ap-
proach can achieve a reduction of the test cases. Nevertheless, the
approach does not address our challenges regarding agile process
development and reporting test results.

7 DISCUSSION
Our experiences and conclusions are based on an industrial pilot
project. To introduce TIGRE in the electric drive system, we car-
ried out the work to a large extent manually. Although we only
considered the electric drive system, we still consider the results to
be meaningful because our approach involves relevant domains for
many automotive functionalities, i.e., mechanical, electrical, and
software domain.

We are aware that feature interactions can be a risk of transfer-
ring test results [1, 4, 25, 26, 39, 40]. Nevertheless, it will not always
be possible to perform every test with every product configuration,
because of restricted time and test resources [39]. Therefore, we
have to select the test runs carefully. By documenting the test case
validity, TIGRE supports a transparent and reproducible selection

of test runs. Moreover, due to the high safety requirements in the
automotive domain, possible interactions must be identified before
implementation [24]. Hence, in contrast to the telecommunication
domain, fewer errors are found due to feature tests that were not
already found by functional tests [16]. For feature interactions we
recommend methods in development and specific test cases that
TIGRE can integrate in system testing [1, 5, 25, 31].

We consider CIT for TIGRE, but because of time constraints, we
could not apply the method for the pilot phase. CIT could reduce
our testing effort even further.

In the pilot phase, we derived the information about the validity
expressions manually out of the SMArDT models and by expert
assessments. Despite the high manual effort and the uncertainty
about the correctness of the expert knowledge, the approach lead
to a higher transparency for test case selection. The decisions can
be replicated, discussed and changed by lessons learned.

All the information of existing derivates is stored in a database.
Hence, we did not set up feature models or OVMs for the pilot phase.
Although OVMs and feature models also contain non-existing con-
figurations, we only need real configurations for our test runs. Our
specific notation is simple and exactly adapted to the needs of test-
ing the electric drive system. Due to our specific notation, we could
not use an elaborated existing tool for our approach. Depending
on the type of tool we use, we may transform our notation. Hence,
our generated test plan with its runs only exists in one table form
and has to be transferred to the test management tool in a second
step. The generation of an executable test plan to the defined test
strategy still has to be implemented.

8 CONCLUSION
The increasing number of electrified derivates over the next few
years is urging the BMW Group to develop and apply new method-
ologies. Since the new generation of the electric drive system shows
significant product line characteristics, one approach to maintain
high-quality standards is the use of PLE methodologies.

TIGRE introduces PLE methodologies to the integration testing
of the electric drive system. It comprises several artifacts that need
to be established in domain and application engineering. These
artifacts facilitate the planning of an efficient test execution with
reduced test effort. Thus, we demonstrate a procedure to optimize
the assignment of domain test cases, product configurations and
test platforms.

In a case study with seven representative functionalities of the
electric drive system, we reduced the redundant testing effort from
4.890 test runs to 326 test runs for one agile sprint phase. More-
over, we are able to transfer the test results from tested product
configurations to other non-tested product configurations. Hence,
the TIGRE methodology allows to take advantage of product line
synergies and reduces test effort. It is capable of increasing the
efficiency, traceability and transparency for the integration test of
the electric drive system.

ACKNOWLEDGMENTS
We thank all participating experts who have supported our work,
shared their knowledge and evaluated the TIGRE methodology.

10

REFERENCES
[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and

Thomas Stifter. 2018. Testing autonomous cars for feature interaction failures
using many-objective search. In Proceedings of the 33rd ACMIEEE International
Conference on Automated Software Engineering, Marianne Huchard (Ed.). ACM,
[S.l.], 143–154.

[2] Matzner Angelika. 28.12.2018. Interview: Stefan Juraschek, Vice
President Development Electric-Powertrain. https://www.
press.bmwgroup.com/global/article/detail/T0288899EN/interview:
-stefan-juraschek-vice-president-development-electric-powertrain?language=
en

[3] Simon Anika. 07.09.2017. Statement Harald Krüger, Chairman of the Board of
Management of BMW AG, IAA Preview 2017: Press Release. https://www.press.
bmwgroup.com/global/article/

[4] Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave. 2014. Feature
Interactions: The Next Generation (Dagstuhl Seminar 14281). Dagstuhl Seminar
14281 (2014).

[5] Sebastian Benz. 2010. Generating Tests for Feature Interaction. Dissertation.
Technische Universität München, München.

[6] Danilo Beuche and Mark Dalgarno. 2007. Software product line engineering with
feature models. Overload Journal 78 (2007), 5–8.

[7] Manfred Broy, María Victoria Cengarle, and Eva Geisberger. 2012. Cyber-Physical
Systems: Imminent Challenges. In Large-scale complex IT systems, Radu Calinescu
and David Garlan (Eds.). Lecture Notes in Computer Science, Vol. 7539. Springer,
Berlin, 1–28.

[8] Paul Clements and Linda Northrop. 2002. Software product lines: practices and
patterns. Vol. 3. Addison-Wesley Reading.

[9] Paul C Clements. 2015. Product Line Engineering Comes to the Industrial Main-
stream. In INCOSE International Symposium, Vol. 25. Wiley Online Library, 1305–
1319.

[10] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny
Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and
Andreas Wortmann. 2019. SMArDT modeling for automotive software testing.
Software: Practice and Experience 0, 49 (2019), 301–328.

[11] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Matthias
Markthaler, Bernhard Rumpe, and Andreas Wortmann. 2018. Model-Based Test-
ing of Software-Based System Functions. In 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). 146–153.

[12] Irwin S Dunietz, Willa K Ehrlich, BD Szablak, Colin L Mallows, and Anthony
Iannino. 1997. Applying design of experiments to software testing: experience
report. In Proceedings of the 19th international conference on Software engineering.
ACM, 205–215.

[13] Christof Ebert and John Favaro. 2017. Automotive Software. IEEE Software 34, 3
(2017), 33–39.

[14] Emelie Engström and Per Runeson. 2011. Software product line testing – A
systematic mapping study. Information and Software Technology 53, 1 (2011),
2–13.

[15] Rick Flores, Charles Krueger, and Paul Clements. 2012. Mega-scale product line
engineering at general motors. In Proceedings of the 16th International Software
Product Line Conference-Volume 1. ACM, 259–268.

[16] Brady J. Garvin and Myra B. Cohen (Eds.). 2011. Feature Interaction Faults
Revisited: An Exploratory Study: 2011 IEEE 22nd International Symposium on
Software Reliability Engineering.

[17] Susan P. Gregg, Denise M. Albert, and Paul Clements. 2017. Product Line Engi-
neering on the Right Side of the V. In Proceedings of the 21st International Systems
and Software Product Line Conference-Volume A. ACM, 165–174.

[18] Mathias Heerwagen. 2018. Entwicklung im Wandel Agile Methoden auf dem
Vormarsch. ATZ - Automobiltechnische Zeitschrift 120, 4 (2018), 10–15.

[19] Hybrid - EV Committee. 2017. SAE Electric Vehicle and Plug in Hybrid Electric
Vehicle Conductive Charge Coupler: SAE J1772.

[20] IEEE. 2016. Std 2030.1.1-2015: IEEE Standard Technical Specifications of a DC
Quick Charger for Use with Electric Vehicles.

[21] International Electrotechnical Commission. 2011. Plugs, socket-outlets, vehicle
connectors and vehicle inlets - Conductive charging of electric vehicles: IEC
62196.

[22] International Electrotechnical Commission. 2017. Electric vehicle conductive
charging system: IEC 61851.

[23] International Electrotechnical Commission. 2018. Road vehicles – Vehicle to grid
communication interface: ISO 15118.

[24] Alma L. Juarez-Dominguez (Ed.). 2008. Feature Interaction Detection in the Au-
tomotive Domain: 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering.

[25] Alma L. Juarez-Dominguez, Nancy A. Day, and Jeffrey J. Joyce. 2008. Modelling
feature interactions in the automotive domain. In Proceedings of the 2008 interna-
tional workshop on Models in software engineering, Joanne Atlee (Ed.). ACM, New
York, NY, 45.

[26] Dirk O. Keck and Paul J. Kuehn. 1998. The feature and service interaction
problem in telecommunications systems: a survey. IEEE Transactions on Software
Engineering 24, 10 (1998), 779–796.

[27] Willett Kempton and Jasna Tomić. 2005. Vehicle-to-grid power implementation:
From stabilizing the grid to supporting large-scale renewable energy. Journal of
power sources 144, 1 (2005), 280–294.

[28] Jihyun Lee, Sungwon Kang, and Danhyung Lee. 2012. A Survey on Software
Product Line Testing. In Proceedings of the 16th International Software Product
Line Conference - Volume 1 (SPLC ’12). ACM, New York, NY, USA, 31–40.

[29] Ivan do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and
Eduardo Santana de Almeida. 2014. On strategies for testing software product
lines: A systematic literature review. Information and Software Technology 56, 10
(2014), 1183–1199.

[30] Urtzi Markiegi. 2017. Test Optimisation for Highly-Configurable Cyber-Physical
Systems. In Proceedings of the 21st International Systems and Software Product
Line Conference-Volume B. ACM, 139–144.

[31] Bryan J. Muscedere, Robert Hackman, Davood Anbarnam, Joanne M. Atlee, Ian J.
Davis, and Michael W. Godfrey. 2019. Detecting Feature-Interaction Symptoms in
Automotive Software using Lightweight Analysis. In SANER ’19, Xingyu Wang,
David Lo, and Emad Shihab (Eds.). IEEE, Piscataway, NJ, 175–185.

[32] Sebastian Oster. 2005. Feature Model-based Software Product Line Testing.
International Workshop on Software Product Line Testing 49, 12, 78–81.

[33] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media.

[34] Brian Prasad. 1997. Analysis of pricing strategies for new product introduction.
Pricing Strategy and Practice 5 (1997), 132–141.

[35] pure systems. 2019. pure::variants: Variant Management with pure::variants.
www.pure-systems.com/products/pure-variants-9.html

[36] Jens Schmutzler, Christian Wietfeld, and Claus Amtrup Andersen. 2012. Dis-
tributed energy resource management for electric vehicles using IEC 61850 and
ISO/IEC 15118. In Vehicle Power and Propulsion Conference (VPPC). IEEE, 1457–
1462.

[37] Ken Schwaber and Mike Beedle. 2002. Agile software development with Scrum.
Prentice Hall, Upper Saddle River, NJ.

[38] Vanessa Stricker, Andreas Metzger, and Klaus Pohl. 2010. Avoiding Redundant
Testing in Application Engineering. In Software Product Lines: Going Beyond, Jan
Bosch and Jaejoon Lee (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
226–240.

[39] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E. Herman, and Y. -.
Lin (Eds.). 1989. The feature interaction problem in telecommunications systems:
Seventh International Conference on Software Engineering for Telecommunication
Switching Systems, 1989. SETSS 89.

[40] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. Comput. Surveys 47, 1 (2014), 1–45.

[41] Len Wozniak and Paul Clements. 2015. How automotive engineering is taking
product line engineering to the extreme. In Proceedings of the 19th International
Conference on Software Product Line. ACM, 327–336.

11

https://www.press.bmwgroup.com/global/article/detail/T0288899EN/interview:-stefan-juraschek-vice-president-development-electric-powertrain?language=en
https://www.press.bmwgroup.com/global/article/detail/T0288899EN/interview:-stefan-juraschek-vice-president-development-electric-powertrain?language=en
https://www.press.bmwgroup.com/global/article/detail/T0288899EN/interview:-stefan-juraschek-vice-president-development-electric-powertrain?language=en
https://www.press.bmwgroup.com/global/article/detail/T0288899EN/interview:-stefan-juraschek-vice-president-development-electric-powertrain?language=en
https://www.press.bmwgroup.com/global/article/
https://www.press.bmwgroup.com/global/article/
www.pure-systems.com/products/pure-variants-9.html

	Abstract
	1 Motivation
	2 The Electric Drive System
	2.1 Hardware-Components and Communication Busses
	2.2 Software-Functions and Parameters
	2.3 Development Process

	3 Challenges in the electric drive sector
	4 Introduction of PLE methodologies in automotive testing with the TIGRE approach
	4.1 Identification of the relevant data for *plt
	4.2 Testing the Product Line in Agile Sprints

	5 Case Study and Lessons Learned from embedding PLT into the automotive industry
	5.1 Pilot phase
	5.2 Lessons learned from applying the methodology

	6 Related Work
	7 Discussion
	8 Conclusion
	References

