
APPLIED MODEL-BASED CO-DEVELOPMENT FOR
ZERO-EMISSION FLIGHT SYSTEMS BASED ON SYSML

Hendrik Kausch1, Kristiaan Koppes2, Lukas Netz1, Patrick O’Brien2,
Mathias Pfeiffer1, Deni Raco1, Matthias Radny2, Amelie Rath1, Rebecca Richstein2,

Bernhard Rumpe1

1RWTH Aachen University, Chair of Software Engineering, Aachen, Germany.
2Airbus Aerostructures GmbH, Hamburg, Germany.

Abstract
In context of the BMWK LuFo Project "APPLIED MODEL-BASED CO-DEVELOPMENT FOR ZERO-
EMISSION FLIGHT SYSTEMS", a model-based methodology applied in avionics is presented. SysML is used
as modeling language and for automatic model analysis. A case study on a data link uplink feed system
demonstrates our model-based approach for specifying and verifying safety and security properties. The key
feature of the underlying formal dataflow theory compared to competitors is that refinement is compositional.

Keywords: Trustworthy AI, Co-Development, Model-Driven

1 INTRODUCTION
The AMoBaCoD project ("Applied Model-based
Co-Development for Zero-Emission Flight Sys-
tems") works towards finding an approach for
co-development in engineering using model-based
methods. The goal is to collaboratively develop a zero
emission demonstrator aircraft and test the applicabil-
ity of the model-based systems engineering (MBSE)
approach. Modern aerospace systems combine both
software parts and hardware parts. Their specifica-
tion was typically done separately, posing challenges
for their integration related to compatibility, safety, and
security. Co-development [1], sometimes referred to
as co-design or integrated design aims to remedy
this problem. Typically, informal system requirements
are developed iteratively over many granularity lay-
ers towards a design, e.g., mechanical structures. In
co-development, a system design is derived using
generic components, i.e., components that are nei-
ther assigned to hardware nor software. The generic
components are then assigned to software and hard-
ware. Model-driven systems engineering (MDSE) is
an enabler for co-development, as the specification
of systems requires specification techniques and lan-
guages that are hard- and software-agnostic. An
approach where refinement is compositional is highly

desirable, i.e., when parts are refined separately,
then the reassembled system should be a correct
refinement of the original system.

However, the introduction of MBSE poses chal-
lenges. Especially for complex systems, such as
modern airliners, the application of the MBSE method
represents a major initial entry challenge. Airbus em-
ploys SysML-based modeling solutions from Dassault
Systèmes. But creating the necessary and extensive
system models with SysML is very time-consuming,
especially at the beginning. Potential long-term ad-
vantages must thus outweigh this additional effort.
Artificial intelligence (AI) systems promise interesting
new capabilities with regard to system specification. If
the initial modeling workload can be reduced through
AI, the probability of making MBSE accessible for
complex overall aircraft systems will increase.

Integration and use of AI systems in Aerospace
Engineering, structural analysis and manufacturing
has the potential to disrupt existing processes in un-
foreseen ways. However, the safety-driven nature of
this domain demands that AI systems meet the high-
est standards of trustworthiness, explainability, and
traceability to ensure safety, robustness, and regu-
latory compliance. Trustworthiness is paramount in
the development of flying structures, as AI models
must handle complex data, coming from numerous

Deutscher Luft- und Raumfahrtkongress 2024
DocumentID: 630489

doi: 10.25967/6304891CC BY 4.0

[KKN+24] H. Kausch, K. Koppes, L. Netz, P. O’Brien, M. Pfeiffer, 
D. Raco, M. Radny, A. Rath, R. Richstein, B. Rumpe: 
Applied Model-Based Co-Development for Zero-Emission Flight Systems Based on SysML. 
In: Deutscher Luft- und Raumfahrtkongress (DLRK 2024), 
Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V., Oct. 2024.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25967/630489


sources. Moreover, the ability to trace data origins is
crucial for justification. Explainability is critical for en-
suring that AI-driven decisions are transparent and
justifiable. In Aerospace Engineering, where safety is
crucial, engineers must be able to trace AI decisions
back to specific data inputs and model processes.
Besides gaining regulatory approval, there is the as-
pect of public trust in AI systems, which includes the
demonstrated ability to meet industry standards and
safety protocols. In the case of large language model
(LLM), traceability can be obfuscated by the trained
model. This leads to challenges in keeping the digital
thread whole.

Simulations and tests are critical for both calcu-
lating and validating designs during the development
of mechanical structures. These processes must fol-
low a clear, justifiable chain of reasoning to meet the
stringent standards set by aeronautical authorities,
which are predominantly safety-driven. For instance,
when new structures are subjected to various criti-
cal load scenario calculations, the resulting reserve
factors for each structure must be carefully deter-
mined. Each step in the process has to be justified
to ensure compliance. Fully automated solutions of-
fer advantages, but only if each intermediate result
can be transparently shown and explained, ensuring
every outcome adheres to the safety and regulatory
standards. Unlike more traditional machine learning
approaches, modern AI systems, such as those used
for structural simulations and optimization, often op-
erate as black boxes, obscuring the logic behind
their decisions. In structural analysis, explainability
becomes crucial for engineers who need to justify AI-
generated predictions or decisions regarding stress
distribution, material deformation, or load capacity.
For instance, if an AI recommends design changes
or alterations in manufacturing processes to optimize
the performance of an aircraft component, engineers
must be able to explain the reasoning behind the AI’s
recommendations clearly.

Not only safety, but also security needs to be de-
signed into avionics to demonstrate not just the initial
airworthiness, but also the maintenance of continu-
ous airworthiness and protection from unauthorized
interaction. Seven levels of security trustworthiness
(Evaluation Assurance Level) [2] are used for system
classification with respect to criticality. A high criti-
cality raises the demands on the depth to which the
manufacturer must describe and test their product.
The highest level (so called level 7/7+) requires formal
correctness arguments and is used in extremely high-
risk situations, in particular when the high value of the
goods justifies the higher costs. Formal model anal-
ysis has been applied successfully in other domains
such as automotive [3, 4] or avionics [5].

The AMoBaCoD project is driven by the question
“How do we want to use MBSE for future aircraft de-
velopment?” and will investigate various steps in the
product development of aircraft systems, such as the
creation and management of requirements, the de-
velopment and evaluation of solution concepts, and
the detailed design of products and manufacturing
systems using collaborative MBSE methods.

Contribution
AMoBaCoD uses model-driven engineering to
counter increasingly complex systems and enable
co-development. To more efficiently create models
and aid engineers, an AI model creator (chatbot)
is presented. Because the aerospace industry has
particularly stringent requirements on safety and
security, the need for a trustworthy AI is established.
Model analysis, specifically formal verification, is in-
troduced as a means to check model correctness. To
analyze the models, a precise, mathematical mean-
ing (semantics) is required. A suitable formalism is
established. A case study on a data link uplink feed
system demonstrates our model-based approach for
specifying and verifying safety and security prop-
erties. A formal verification toolchain is leveraged
to process and check models for correctness. The
key feature of the underlying formal dataflow the-
ory compared to competitors is that refinement is
compositional.

2 CO-DEVELOPMENT
Co-development of distributed systems [1, 6, 7],
i.e., systems consisting of multiple subsystems, is
achieved by first specifying generic, i.e., neither hard-
ware nor software, components. The act of specifying
these components is called co-specification and en-
tails specifying both their interface and their behavior.
These generic components can be further decom-
posed to build an architecture. In the partitioning
phase, the atomic, i.e., not further decomposed, com-
ponents are finally allocated to hardware or software.
Allocations thus mark the mode of implementation.
Co-development presents challenges such as find-
ing a suitable specification mechanism as well as the
integration of co-developed system parts.

Specification mechanisms need to accurately rep-
resent, i.e., create a model of, system requirements
and system designs. They also need to be able
to establish traceability, i.e., provide means to con-
nect design decisions with requirements and vice
versa. Schobbens et. al. [1] propose the use of
algebraic notation to model both hardware (VHDL
programs) and software (C code). This idea is not
new as formalisms such as Communicating Sequen-
tial Processes (CSP) ([8, 9], as used in e.g. [10]),

Deutscher Luft- und Raumfahrtkongress 2024

2CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


Calculus of Communicating Systems (CCS) [11], π-
calculus [12], Ptolemy [13], Temporal Logic of Ac-
tions (TLA) [14], Petri Nets [15] or FOCUS [16, 17]
all follow this same principle. Such mathematical
underpinnings are favorable because they support
important aspects of system development, such as
non-determinism/underspecification, a notion of be-
havioral refinement, time-sensitive specifications, and
hierarchical decomposition. Decomposition is espe-
cially useful to facilitate the specification of complex
systems. Integration of parts is a major challenge for
distributed system design. To be able to efficiently
verify the correctness of such decomposed systems,
a compositional1 verification, i.e., co-verification, is
highly desirable.

3 TRUSTWORTHY AI
Trustworthy AI is a term addressing the data privacy,
explainability, accountability, and robustness of AI and
its products and services [19, 20]. All data submitted
to a trustworthy AI, be it during training or use, re-
mains private. Products and decisions of the AI are
analyzable and it is possible to disclose and justify ra-
tionale. This includes the ability to explain outcomes
to the user when/directly after they are produced, but
also all other stakeholders, e.g. regulators, at a later
date. Inevitable erroneous outputs are also explain-
able and there exist ways of correcting them. Harsh
working conditions, such as erroneous or even mali-
cious input, do not lead to unforeseen consequences.
Data privacy can be achieved. Fallback to non-AI
tools and services like human experts provides ro-
bustness. Following this definition, a trustworthy AI
is similar to a trustworthy colleague. One would ex-
pect their colleague not to tell secrets (data privacy),
be able to justify their work (explainability), be ac-
countable for made mistakes (accountability), and
be robust to stressful situations (robustness). Failing
to meet any of the criteria would render a person
untrustworthy.

Model-Driven Approach
As size and complexity of manufacturing systems are
continually growing, building, updating, and maintain-
ing them becomes increasingly challenging. To man-
age complex systems effectively, appropriate mech-
anisms such as divide-and-conquer or suitable mod-
eling techniques are essential. Models relate to an
original entity that they represent. But, models do not
capture every attribute of the original. Models abstract
certain aspects as needed for specific use cases.
Models thus serve as substitutes under specific con-
ditions. Abstraction to focus on key aspects is what

1Carnab introduced compositionality as Frege’s principle [18, p. 120-121].

enables modeling to be such an effective tool against
complexity. Model quality has also been shown to
have an impact on product quality [21, 22].

To design and develop large manufacturing sys-
tems, we propose the use of model-driven techniques
whereby requirements and designs are expressed
using models. The de-facto standard modeling lan-
guage for systems engineering is SysML [23]. We
propose the use of the newest version, SysML v2,
because SysML v1 is no longer actively developed2.

Conversational AI for Model Creation
While modeling provides many benefits, manual
model creation requires expert knowledge of the
modeling notation. A SysML v2 model creator (chat-
bot) was thus developed to aid engineers in the
modeling process. The conversational AI is able to
create, modify, and analyze SysML v2 textual models.

The concept of utilizing natural language for gen-
erating code or models has been investigated in
several studies, highlighting its potential in bridging
the gap between domain experts and developers [24–
28]. We used a limited amount of examples to teach
OpenAI’s ChatGPT4 LLM the rules for SysML v2.
A refined Few-Shot Learning Approach [29] was
providing the LLM with a fixed set of example con-
versations of users asking for models or explanation
thereof. Further instructions were added to improve
the reliability of the output [30]. A prototype of the
trained chatbot is openly available3. Next to OpenAIs
LLMs, open source models can be constrained to
only produce output in a given modeling language.
The approach described in [31] is capable of reliably
producing models for a given DSL while running on
local hardware.

Towards Accountability
AI-generated models are generally not trustworthy. To
achieve trustworthiness, the chatbot’s accountability
needs to be tackled. This can be done by verifying the
output, i.e., the models, using formal model analysis.

The aerospace industry has successfully adopted
formal methods [32] for verifying properties at the
code level, using model checkers and abstract inter-
pretation, e.g. for worst-case execution time analy-
sis [32, 33], which is also regulated by EUROCAE
ED-216, or for replacing testing efforts for certain
properties [32]. Testing as a method for verifying sys-
tem correctness can only address a finite number
of cases. Systems with numerous components and
states, especially those operating over long periods,
can easily surpass the capabilities of exhaustive test-
ing. Formal methods offer a solution to this limitation.

2https://www.omgsysml.org/news-articles.htm
3https://chatgpt.com/g/g-3DkGCDlNM-sysml-v2-model-creator

Deutscher Luft- und Raumfahrtkongress 2024

3CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


Effective use of formal methods requires models
to have precise, mathematical meaning (semantics).
But model notation, i.e., syntax like SysML v2, has
no inherent semantics. We thus propose to use FO-
CUS because, compared to its competitors, FOCUS
has the property that refinement is fully composi-
tional [17, 34]. This means that if a system design
has been decomposed and the parts were refined
separately, then the reassembled refined parts are by
design a correct refinement of the original system de-
sign. FOCUS is widespread in industry and has been
used in a range of consortia projects for the devel-
opment of distributed cyber-physical systems (BMBF
projects [7, 35, 36]4).

An Accountable Toolchain
While the chatbot can create SysML models based on
given informal requirements, it currently cannot distin-
guish correct from incorrect models. This means that
it may classify correct models as incorrect (false neg-
ative) or classify incorrect models as correct (false
positive). The chatbot thus cannot be held account-
able for its products.

We propose the use of an automatic model ana-
lyzer (the MontiBelle framework [34]) as an oracle for
model correctness. For a model to be correct, it first
has to be valid with regard to the modeling notation,
i.e., the syntax. We call this syntactical correctness.

To better grasp the difference between syntax and
semantics, consider the following example. The En-
glish sentence "Wingspan must below 5m" is syntacti-
cally incorrect, as the verb "to be" is needed. Similarly,
the use of incorrect keywords in SysML renders mod-
els syntactically incorrect. Compared to syntax, the
meaning of something depends on interpretation, i.e.,
semantics. We call this semantical correctness. The
English sentence "Wingspan must be below 3m but
above 5m", while syntactically correct, is semantically
incorrect. Examples for semantical properties are
consistency and redundancy. Consistency of require-
ments is defined as the ability to provide a compliant
realizable system design. An example of an incon-
sistent set of requirements is "wingspan < 3m" and
"wingspan > 5m" as there is no wing design fulfilling
both requirements.

Figure 1 shows the proposed toolchain: Humans
input informal requirements into the chatbot. The
chatbot produces SysML v2 textual models. Refine-
ment links between components of different gran-
ularity levels and decomposition relations between
components of the same granularity level establish
traceability from system designs to their origin re-
quirements. For traceability and model management
(navigation, etc.), we created an Formal Integrated

4https://spesml.github.io

Development Environment (F-IDE). The models are
loaded into the F-IDE.

The F-IDE automatically encodes the models into
theorem prover syntax [4, 37]. These theorems in-
clude system encodings and theorems with outstand-
ing proofs, so called proof obligations. The proof
obligations result from traceability links. The F-IDE
automates proof finding for these proof obligations.
At the same time as proof finding, counterexample
finders try to falsify the claims. The result is either a
formal proof, a counterexample, or neither (timeout).
In the latter case, no statement on correctness can be
made, neither positive nor negative. A theorem prover
expert may be able to manually help along the proof
finder. Testers could write additional tests in hopes of
demonstrating the incorrectness of claims. In case a
proof was found, the models produced by the chatbot
are found to be correct and are safe to use for fur-
ther development. In case of counterexamples, these
examples can be turned into tests. While the design
models are reworked, these tests should be run reg-
ularly. Once no more tests fail, the verification can be
re-attempted.

The (potentially repeated) application of this
toolchain results in verified system design models.
As no partition needs to be done, this approach is
inherently compatible with co-development. Models
produced by the chatbot whose correctness is dis-
proven by counterexamples need to be reworked or
discarded.

Aerospace Case Study
An MDSE generative-AI approach can for example
be used in the development of avionics systems [38].
The development of an avionics data link is used
as an example [39–41]. This Data Link Uplink Feed
(DLUF) system is representative for safety-critical,
time-sensitive systems in the avionics domain and will
be used to demonstrate the capabilities of our ap-
proach to trustworthy AI. The DLUF system should
enable components using a wireless connection (e.g.
between an Unmanned Aerial Vehicle (UAV) and its
ground station) to transfer prioritized data packets.
Co-development is required as the DLUF system con-
sists of hardware, i.e., the UAV, and software, i.e.,
prioritization protocol.

One of the 18 total requirements, the non-
starvation (or liveness) property, required the use
of formal methods. It was derived a.o. from a se-
curity requirement, namely the need to prevent a
denial-of-service attack by an overflow of low-priority
messages. This property could not be tested for,
as it required checking an unknown and potentially
infinitely long time frame. It had to hold for the over-
all system and could not be sufficiently verified by
only checking properties of the system’s parts, but

Deutscher Luft- und Raumfahrtkongress 2024

4CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


AI
Model Creator

Informal 
Require-

ments

Monti
Belle

Models
Generator

System
enco-
dings

Proof
obliga-tion

Proof
obliga-
tions

Theorem
prover

Automation

✓

✗

Formal Proof

Counter Example

Figure 1 Proposed toolchain combining AI model creator (chatbot) with automatic model analyzer as an accountability gate.

required the integration of all artifacts into a single
coherent claim.

DLUF could previously be modeled in two ways.
Either in SysML v2 directly or in Cameo Systems
Modeler as fig. 2 shows. From Cameo, the model
could then be exported to SysML v2 textual notation
through a custom plugin.

First, the chatbot is fed the informal non-starvation
system requirement. The chatbot’s response begins
with a minimal explanation as to the output’s struc-
ture. It explains that it first defines a system con-
text (i.e., a box with inputs and outputs). The non-
starvation is then enforced using constraints. Next,
it begins listing a complete SysML model. Figure 3
shows the chatbot in action after the initial user query
demanding a DLUF system with provision of priori-
tization and non-starvation. The chatbot is then fed
the remaining 17 informal system requirements. The
chatbot is able to update its previously created model,
i.e., it keeps track of context.

When fed information from external analysis, such
as the error report of a syntax checker, the chatbot
can correct syntactical errors. The created model in-
cluded a transition which wrongfully started not with
a state but rather an action. We told the chatbot that
in the specific transition, the keyword first should
be followed by a state. The chatbot responded with
a thank you, followed by a short summary of our
request. It then concluded with an updated SysML
model where exactly the mentioned error was fixed.
Similarly, the chatbot can improve models if the de-
sign doesn’t satisfy the system requirements.

The chatbot can answer questions regarding the
task at hand, e.g., questions about the model, and
general questions, e.g., questions about SysML.
When asked what a packet type with star-cardinality
(Packet[∗]) meant within the model, it explained the
respective concepts from the SysML language, i.e.,
types and cardinalities (multiplicities). It gave ex-
amples on how to use them and summarized how
Packet[∗] was used in the SysML model previously
created by the chatbot. It also compared the star-
cardinality with other cardinalities ([1], [0..1], [1..∗]).
When more generally asked what a transition was, it
seemed to summarize the documentation, listed key

features of transitions, gave examples, mentioned the
visual representation, and summarized its answer.

Next, the model’s refinement chain can be auto-
matically verified. The final, most granular design is
shown to be compatible with the first, most abstract
requirement. For this, models created by the chatbot
are loaded into and then verified using the F-IDE.

All resulting proof obligations [22, 39] were veri-
fied, i.e., all proof obligations were met using the F-
IDE (indicated by green light bulbs). Thus, the models
are correctly refined from highest-level requirement to
most granular decomposed design.

Tool-Qualification
The proposed approach aims to reduce the testing
effort by incorporating formal verification. Conse-
quently, this necessitates the qualification of the tool,
e.g., in accordance with RTCA DO-330/EUROCAE
ED-215 standards.

Isabelle is used to prove the functional correct-
ness of DLUF and must therefore be qualified. The
EASA and the theorem proving communities pub-
lished in [42] and particularly [43] how Isabelle proofs
could be certified. In conclusion, Isabelle is one of
the easiest tools to certify because of its axiomatic
structure.

4 DISCUSSION AND LIMITATIONS
The EASA classifies AI tools in three categories,
ranging from the human being augmented by the AI
but firmly in charge (level 1), over a near fifty-fifty
split of control (level 2), up to an AI that is under the
oversight of a human, but otherwise independently
operable (level 3) [44]. While AI advances in recent
years might lead to dream scenarios about advanced
automation, the presented approach is merely a level
1 AI. The human remains in control and actively
queries the chatbot for help. The presented conversa-
tional AI is currently in a prototype stage and could be
improved at multiple stages. A RAG approach could
be added [45] in order to enable referencing and in-
corporating already existing models into the modeling
process.

Deutscher Luft- und Raumfahrtkongress 2024

5CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


Figure 2 Screenshot of the DLUF system in Dassault Systemes Cameo Systems Modeler.

Furthermore, the approach presented here does
not cover all phases of system development. Other
validation, most likely in the form of human review,
must take place to ensure the correct formalization
of informal system requirements. This is an inher-
ent limitation of (current) computer aided requirement
management as machines are (not yet) capable of in-
terpreting human thought. Similarly, while a machine
is able to determine the consistency of formalized
requirements, it is unable to determine the complete-
ness. Human review of both the informal and formal
requirements and their translation is necessary and
cannot currently be replaced by AI tools.

Finally, the development of system design down
to a hardware level could potentially be automated,
e.g., using formalizations of hardware, but is currently
typically a process that involves humans.

5 CONCLUSION
In the context of the AMoBaCoD project, MBSE
applied in aerospace was evaluated. Model-driven
engineering counters the increasing complexity in
aerospace systems and enables co-development.
Adoption cost of MBSE in aerospace as a challenge
was identified and AI chatbot for model creation was
proposed. If the initial modeling workload can be re-
duced through AI, the probability of making MBSE

accessible for complex overall aircraft systems will
increase.

Use of AI in model creation requires analyzable
models and thus clear model semantics for trust-
worthiness, particularly because of stringent require-
ments on safety and security in the aerospace do-
main. A formal dataflow theory was introduced whose
key feature compared to competitors is the composi-
tionality of refinement. A formal verification toolchain
is proposed that formally verifies model correctness.
Model analysis can increase the applicability for the
aerospace industry and thus provides added value.

The applicability to the aerospace domain is
demonstrated using an UAV case study on a DLUF
system. Security properties can be specified at a
higher-level, and the system design can be formally
checked to respect these properties.

Outlook
An AI-supported design process could be further
evaluated using relevant case studies, especially con-
sidering current trends towards fast-paced develop-
ment to take on challenges such as emissions and
zero-E aviation. Feeding an AI the informal system
requirements for a new aircraft has potential to sig-
nificantly speed up the initial design process. Models
could be created rapidly (rapid prototyping). Verifi-
cation results could immediately be fed back to the

Deutscher Luft- und Raumfahrtkongress 2024

6CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


Figure 3 Screenshot of the chatbot creating a SysML v2 textual model for the non-starvation property.

AI-assistant. The design process could be fast-paced
and more agile, as the verification provides account-
ability. The capabilities of LLMs to summarize and ex-
plain could also be leveraged. Feeding the LLM with
aerospace- or even project-specific information such
as a glossary could streamline workflows and min-
imize communication breakdowns. Key challenges
include regulatory compliance, managing unintended
behavior, and optimal performance of AI systems.
Despite the potential in the industry, significant chal-
lenges remain. One prominent issue is the lack of es-
tablished frameworks for AI compliance. EASA’s road
map outlines standards for the Aerospace sector, with
guidelines regarding a high level of transparency in
AI-driven decisions, especially as they begin to is-
sue new guidelines for Level 3 AI systems, which
involve advanced automation, expected by 2025 but
final standards may not be in place until 2028, leaving
a gap in the regulatory framework for AI-driven design
and manufacturing systems.

Modeling tools for SysML v1 such as MagicDraw/-
Cameo Systems Modeler5 or Catia No Magic6 could

5https://www.3ds.com/products/catia/no-magic/cameo-systems-modeler
6https://www.3ds.com/products/catia/no-magic

be integrated into the toolchain because modeling
tools for SysML v2 are not yet established. Previously,
SysML v1 graphical models could be created and
then exported to SysML v2 textual. DLUF for example
was previously modeled in Cameo (fig. 2) and then
exported to SysML v2 through a custom plugin. The
ability to directly create SysML v1 (graphical) models
using AI tools such as chatbots could be a promis-
ing next step. Their underlying data structure is often
a derivative of XML, which is verbose and thus er-
ror prone. The error proneness of generating large
XML files will make it necessary for the chatbot to
be trained to create such XML files. Instead, building
bridges between SysML v1 and v2 seems promising.
It is feasible to translate between the two languages.
One could treat SysML v2 models as ground truth,
while SysML v1 models serve for human interaction
and communication. Existing SysML v1 models could
also be modernized by translating them to SysML v2.

Finally the efficiency gains of our proposed
trustworthy AI assistant need to be quantitatively
measured. Using an established aerospace case
study, two teams could separately be given the
informal system requirements and be tasked with

Deutscher Luft- und Raumfahrtkongress 2024

7CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


Figure 4 Formal-IDE (F-IDE). The left-hand side shows from top to bottom: the list of models, proof obligations, as well as
theorem prover encodings. The right-hand side shows the model editor with a warning displayed as a result of hovering the mouse
cursor over a warning marked with squiggly lines under the model text.

developing and verifying a realizable system design.
Correctness of models as well as development time
could be measured to gauge time and cost savings
for system engineers.

Funding: German Federal Ministry for Economic
Affairs and Climate Action, AMoBaCoD-Project
(Grant No. 20X2201C).

Corresponding Author: raco@se-rwth.de

References
[1] M. Aiguier, S. Béro�, P.Y. Schobbens, An alge-

braic approach for codesign, in Theoretical As-
pects of Computing - ICTAC 2004, ed. by Z. Liu,
K. Araki (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005), pp. 415�430

[2] Common Criteria Management Board (CCMB),
Common Criteria for Information Technology
Security Evaluation, Part 3: Security Assur-
ance Components (2012). URL https://www.
commoncriteriaportal.org/. CCMB-2012-09-003

[3] S. Kriebel, D. Raco, B. Rumpe, S. Stüber,
Model-Based Engineering for Avionics: Will Spec-
i�cation and Formal Veri�cation e.g. Based on
Broy's Streams Become Feasible?, in Proceed-
ings of the Workshops of the Software Engineer-
ing Conference. Workshop on Avionics Systems

and Software Engineering (AvioSE'19), CEUR
Workshop Proceedings, vol. 2308, ed. by S. Kr-
usche, K. Schneider, M. Kuhrmann, R. Hein-
rich, R. Jung, M. Konersmann, E. Schmieders,
S. Helke, I. Schaefer, A. Vogelsang, B. Annighöfer,
A. Schweiger, M. Reich, A. van Hoorn (CEUR
Workshop Proceedings, 2019), pp. 87�94

[4] J.C. Bürger, H. Kausch, D. Raco, J.O. Ringert,
B. Rumpe, S. Stüber, M. Wiartalla, Towards an
Isabelle Theory for distributed, interactive sys-
tems - the untimed case. Aachener Informatik
Berichte, Software Engineering, Band 45 (Shaker
Verlag, 2020)

[5] H. Kausch, J. Michael, M. Pfei�er, D. Raco,
B. Rumpe, A. Schweiger, Model-Based Devel-
opment and Logical AI for Secure and Safe
Avionics Systems: A Veri�cation Framework for
SysML Behavior Speci�cations, in Aerospace Eu-
rope Conference 2021 (AEC 2021) (Council of
European Aerospace Societies (CEAS), 2021)

[6] G.N. Khan, A. Awwal, Codesign of embedded sys-
tems with process/module level real-time dead-
lines, in 2009 International Conference on Com-
putational Science and Engineering, vol. 2 (2009),
pp. 526�531

[7] W. Böhm, M. Broy, C. Klein, K. Pohl, B. Rumpe,
S. Schröck (eds.), Model-Based Engineering of
Collaborative Embedded Systems (Springer, 2021)

Deutscher Luft- und Raumfahrtkongress 2024

8CC BY 4.0

https://www.commoncriteriaportal.org/
https://www.commoncriteriaportal.org/
https://creativecommons.org/licenses/by/4.0/


[8] C.A.R. Hoare, Communicating sequential pro-
cesses. Communications of the ACM 21(8),
666�677 (1978)

[9] C.A.R. Hoare, Communicating Sequential Pro-
cesses (Prentice Hall International, Englewood
Cli�s, N.J., 1985)

[10] T. Murray, G. Lowe, On re�nement-closed se-
curity properties and nondeterministic composi-
tions. Electr. Notes Theor. Comput. Sci. 250,
49�68 (2009)

[11] R. Milner, A Calculus of Communicating Systems
(Springer-Verlag, Berlin, Heidelberg, 1982)

[12] J. Parrow, Handbook of Process Algebra (Elsevier
Science, Amsterdam, 2001), chap. An introduc-
tion to the pi-calculus, pp. 479�543

[13] E. Lee, Fundamental limits of cyber-physical sys-
tems modeling. ACM Transactions on Cyber-
Physical Systems 1, 1�26 (2016)

[14] M. Abadi, L. Lamport, Open Systems in TLA,
in Proceedings of the thirteenth annual ACM
symposium on Principles of distributed comput-
ing - PODC '94, ed. by J. Anderson, D. Peleg,
E. Borowsky (ACM Press, New York, New York,
USA, 1994), pp. 81�90

[15] W. Reisig, Petri Nets: An Introduction (Springer,
Berlin, Heidelberg, 1985)

[16] M. Broy, K. Stølen, Speci�cation and develop-
ment of interactive systems: Focus on streams,
interfaces, and Re�nement (Springer, New York,
2001)

[17] M. Broy, B. Rumpe, Modulare hierarchische Mod-
ellierung als Grundlage der Software- und Syste-
mentwicklung. Informatik-Spektrum 30(1), 3�18
(2007)

[18] R. Carnab, Meaning and Necessity: A Study in
Semantics and Modal Logic (The University of
Chicago Press, Chicago, IL, USA, 1947)

[19] I. Saifarchive, B. Ammanath, `Trustworthy AI' is
a framework to help manage unique risk. MIT
Technology Review (2020)

[20] ITU-T, Trustwothy AI. Tech. rep., International
Telecommunication Union, Geneva (2022)

[21] F. Fieber, M. Huhn, B. Rumpe, Modellqual-
ität als Indikator für Softwarequalität: eine Tax-
onomie. Informatik-Spektrum 31(5), 408�424

(2008)

[22] H. Kausch, M. Pfei�er, D. Raco, B. Rumpe,
A. Schweiger, Enhancing System-model Qual-
ity: Evaluation of the MontiBelle Approach with
the Avionics Case Study on a Data Link Up-
link Feed System, in Avionics Systems and Soft-
ware Engineering Workshop of the Software Engi-
neering 2024 - Companion Proceedings (AvioSE)
(Gesellschaft fÃ¼r Informatik e.V., 2024), pp.
119�138

[23] Object Management Group. SysML Speci�ca-
tion Version 1.0 (2006-05-03) (2006). URL http:
//www.omg.org/docs/ptc/06-05-04.pdf

[24] A. Desai, S. Gulwani, V. Hingorani, N. Jain,
A. Karkare, M. Marron, S. R, S. Roy, Program
synthesis using natural language, in Proceedings
of the 38th International Conference on Software
Engineering (Association for Computing Machin-
ery, New York, NY, USA, 2016), ICSE '16, pp.
345�356

[25] M. Ibrahim, R. Ahmad, Class Diagram Extrac-
tion from Textual Requirements Using Natural
Language Processing (NLP) Techniques, in 2010
Second International Conference on Computer
Research and Development (2010), pp. 200�204

[26] X. Pang, Y. Zhou, P. Li, W. Lin, W. Wu, J.Z.
Wang, A novel syntax-aware automatic graphics
code generation with attention-based deep neu-
ral network. Journal of Network and Computer
Applications 161, 102636 (2020)

[27] M.D. Ernst, Natural Language is a Programming
Language: Applying Natural Language Process-
ing to Software Development p. 14 pages (2017)

[28] J.J. Thomas, V. Suresh, M. Anas, S. Sajeev, K.S.
Sunil, Programming with Natural Languages:
A Survey, in Computer Networks and Inventive
Communication Technologies, ed. by S. Smys,
R. Bestak, R. Palanisamy, I. Kotuliak (Springer,
Singapore, 2022), Lecture Notes on Data Engi-
neering and Communications Technologies, pp.
767�779

[29] T.B. Brown, Language models are few-shot learn-
ers. arXiv preprint arXiv:2005.14165 (2020)

[30] B. Wang, Z. Wang, X. Wang, Y. Cao,
R. A Saurous, Y. Kim, Grammar prompting for
domain-speci�c language generation with large
language models. Advances in Neural Information
Processing Systems 36 (2024)

Deutscher Luft- und Raumfahrtkongress 2024

9CC BY 4.0

http://www.omg.org/docs/ptc/06-05-04.pdf
http://www.omg.org/docs/ptc/06-05-04.pdf
https://creativecommons.org/licenses/by/4.0/


[31] L. Netz, J. Reimar, B. Rumpe, Using grammar
masking to ensure syntactic validity in llm-based
modeling tasks. arXiv preprint arXiv:2407.06146
(2024)

[32] Y. Moy, E. Ledinot, H. Delseny, V. Wiels,
B. Monate, Testing or formal veri�cation: Do-
178c alternatives and industrial experience. IEEE
Software 30(3), 50�57 (2013)

[33] U. Schöpp, A. Schweiger, M. Reich, T. Chup-
rina, L. Lúcio, H. Brüning, Requirements-based
code model checking, in 2020 IEEE Workshop on
Formal Requirements (FORMREQ) (IEEE Com-
puter Society, Los Alamitos, CA, USA, 2020), pp.
21�27

[34] H. Kausch, M. Pfei�er, D. Raco, B. Rumpe,
MontiBelle - Toolbox for a Model-Based Devel-
opment and Veri�cation of Distributed Critical
Systems for Compliance with Functional Safety,
in AIAA Scitech 2020 Forum (American Institute
of Aeronautics and Astronautics, 2020)

[35] K. Pohl, H. Hönninger, R. Achatz, M. Broy (eds.),
Model-Based Engineering of Embedded Systems
(Springer Berlin, Heidelberg, 2012)

[36] K. Pohl, H. Hönninger, H. Daembkes, M. Broy
(eds.), Advanced Model-Based Engineering of Em-
bedded Systems (Springer, Cham, 2016)

[37] H. Kausch, M. Pfei�er, D. Raco, B. Rumpe,
Model-Based Design of Correct Safety-Critical
Systems using Data�ow Languages on the Ex-
ample of SysML Architecture and Behavior Dia-
grams, in Proceedings of the Software Engineering
2021 Satellite Events, vol. 2814, ed. by S. Götz,
L. Linsbauer, I. Schaefer, A. Wortmann (CEUR,
2021)

[38] H. Kausch, M. Pfei�er, D. Raco, B. Rumpe, An
Approach for Logic-based Knowledge Represen-
tation and Automated Reasoning over Under-
speci�cation and Re�nement in Safety-Critical

Cyber-Physical Systems, in Combined Proceed-
ings of the Workshops at Software Engineering
2020, vol. 2581, ed. by R. Hebig, R. Heinrich
(CEUR Workshop Proceedings, 2020)

[39] H. Kausch, M. Pfei�er, D. Raco, B. Rumpe,
A. Schweiger, Correct and Sustainable Develop-
ment Using Model-based Engineering and For-
mal Methods, in 2022 IEEE/AIAA 41st Digital
Avionics Systems Conference (DASC) (IEEE,
2022)

[40] H. Kausch, M. Pfei�er, D. Raco, A. Rath,
B. Rumpe, A. Schweiger, A Theory for Event-
Driven Speci�cations Using Focus and MontiArc
on the Example of a Data Link Uplink Feed Sys-
tem, in Software Engineering 2023 Workshops,
ed. by I. Groher, T. Vogel (Gesellschaft für Infor-
matik e.V., 2023), pp. 169�188

[41] H. Kausch, M. Pfei�er, D. Raco, B. Rumpe,
A. Schweiger, Model-driven development for func-
tional correctness of avionics systems: A veri�ca-
tion framework for sysml speci�cations. CEAS
Aeronautical Journal (2024)

[42] D. Cofer, G. Klein, K. Slind, V. Wiels, Quali�ca-
tion of Formal Methods Tools (Dagstuhl Seminar
15182). Dagstuhl Reports 5(4), 142�159 (2015)

[43] J. Andronick, Please check my 500K LOC of Is-
abelle, in Quali�cation of Formal Methods Tools
� Report from Dagstuhl Seminar 15182 (2015)

[44] EASA, ARTIFICIAL INTELLIGENCE
ROADMAP 2.0. Tech. rep., Cologne, Germany
(2023). URL http://www.easa.europa.eu/ai

[45] N. Baumann, J.S. Diaz, J. Michael, L. Netz,
H. Nqiri, J. Reimer, B. Rumpe, Combining
Retrieval-Augmented Generation and Few-Shot
Learning for Model Synthesis of Uncommon
DSLs, in Modellierung 2024 - Workshopband, ed.
by H. Giese, K. Rosenthal (GI, 2024), pp. 1�15

Deutscher Luft- und Raumfahrtkongress 2024

10CC BY 4.0

http://www.easa.europa.eu/ai
https://creativecommons.org/licenses/by/4.0/

	INTRODUCTION
	CO-DEVELOPMENT
	TRUSTWORTHY AI
	DISCUSSION AND LIMITATIONS
	CONCLUSION



