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Further development of vehicles into software-defined products is in-
creasingly influencing vehicle approval [1]. In particular, approval procedures 
are required for updates to homologation-relevant software, such as automated or 
autonomous driving functions. Appropriate solutions such as the "Digital Loop" 
showcase [2] focus primarily on virtual homologation methods. The verification 
in such procedures requires complete traceability from legal requirements to ad-
justments in the software architecture and functionality as well as to derived test 
cases and the tested digital twin. When applied to automated driving functions, 
scenario-based methods and a high degree of automation due to the scope of test-
ing are also required. 

This contribution uses the automated driving function Automated Lane Keeping 
System (ALKS) to show how software extensions can be formally specified using 
the scenario and model-based systems engineering method CUBE based on legal 
requirements. The scenario, requirements and architecture specification using 
Systems Modelling Language (SysML) can then be used for the implementation 
in the vehicle and in the Digital Twin as well as for homologation. In addition, 
the automatic derivation of machine-readable, homologation-relevant test scenar-
ios and test cases from the specification model is shown. The test specification 
generated in this way can be used directly for simulation-based tests and vehicle 
tests. The use of the procedure in the homologation of software updates enables 
complete traceability with reduced specification and testing effort at the same 
time. 
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Homologation procedures are time consuming and costly. This is due to the fact that 
for every new feature all tests must be reperformed to ensure that the complete system 
still fulfills every necessary regulation. To accelerate the process, the Digiloop project 
was established [2]. The idea is to virtualize and streamline the homologation process. 
This can be done by introducing cutting-edge engineering methods, like for example 
Model and Scenario based Systems Engineering [3, 4]. In this context, the CUBE 
method is used (cf. 

Fig. ) that extends related methods such as SMArDt [5], or SPES [6, 7]. In the variant 
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Fig.  presents, CUBE defines two dimensions of transforming the view onto the sys-
tem – decomposition and abstraction. In the different levels of abstraction, the perspec-
tive shifts from a black-box to a white-box view. In the dimension of decomposition, 
the system is deconstructed into sub-systems, where different elements of the system 
can be allocated to features. By combining both dimensions of variation, it is possible 
to trace requirements from use cases to activities of a system, but also across different 
layers of decomposition [8, 9]. Using this approach, it is possible to identify homolo-
gation relevant changes to the system, perform analysis of relevant scenarios for retest-
ing, and ultimately define new testcases automatically. For the definition of use cases, 
activities, and corresponding diagrams the Systems Modeling Language (SysML) is 
used [10, 11].  
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 Cube Methodology [9] 

The procedure shall exemplary be further illustrated in the following chapters. In the 
example an Automated Lane Keeping System (ALKS), which has several potentials to 
increase the road safety [12], is the object of the homologation procedure. It is assumed 
that the system has already been approved for a maximum velocity of 60 km/h under 
UNECE R157 [13] and shall now be extended with functionalities to fulfill the regula-
tion for a velocity of up to 130 km/h. These new requirements are an input to the first 
decomposition level and mark the starting point for the definition of additional use 
cases and scenarios. Based on the use cases, less abstract SysML activity diagrams are 
designed, which specify the behavior of the system based on the use cases. The behavior 
is split into features and the different actions are allocated to domains. This procedure 
is repeated for the next decomposition layer to give a more fine-granular view of the 
system. Various modeling tools can be used for this approach e.g., Enterprise Archi-
tect [14].   

The first step in the process is to formalize the regulations and add use cases for the 
new regulation [4], A new functionality is an automated Lane Change, which is de-
manded by the UNECE R157 [13]. This function can be addressed by the use case 
shown in 
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Fig.  - “perform regular Lange Change Procedure (LCP) including a Lane Change 
Maneuver (LCM)”. To enable traceability to additional requirements that are not con-
cerned with the system’s functionalities and describe characteristics concerning the sys-
tem performance, specific qualities, or constraints [15] the diagram in 

Fig.  marks these use cases with the stereotype boundary condition. This type of use 
case does not describe the behavior of the system, but rather processes or properties 
which must be fulfilled. For the derivation from the actual regulation, a connector with 
the stereotype “deriveReqt” is used. For the connection of the boundary condition use 
case to the lane change use case, an include relationship is used.  

 Example for formalization of requirements and linking to use cases 

To introduce tests that serve the purpose of validating that all use cases are addressed 
by the system, logical scenarios can be defined. These logical scenarios [16] describe 
the overarching state space, which is the ODD. The definition of scenarios is based on 
six layers of information, which are also used in the open file formats OpenDRIVE and 
OpenSCENARIO [17, 18, 19]. These formats define both the static and the dynamic 
environment.  
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After defining a logical scenario, it can be attached to certain use cases by include 
or extend relationships [4]. This is done by using composite diagrams (see 

Fig. ). In the example the scenario “SC_0001_perform regular Lane Change Procedure 
(LCP) including a Lane Change Maneuver (LCM)” is included by a use case that ex-
tends the base use case of performing a Dynamic Driving Task (DDT). The new sce-
nario only represents a part of the ODD “ODD_L1_Vehicle_0001_Automated Lane 
Keeping System (ALKS)”. This is shown by the connector with the generalization ste-
reotype. 

The regulation demands that a lane change maneuver shall only be possible if certain 
conditions are fulfilled. This can be tested with a specific lane change scenario. This 
specialized scenario “SC_0006_R157_lane change test” is also shown in 

Fig.  with the scenario “SC_0001_perform regular Lane Change Procedure (LCP) in-
cluding a Lane Change Maneuver (LCM)” being the generalizing scenario. An alloca-
tion process like this is needed to specify which scenario needs to be executed to vali-
date the system under test. 
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 Attachment of scenarios to use cases 

Following the CUBE Method, SysML activity diagrams are created based on the 
use-cases (Stakeholder Value), which define the second level of abstraction – Operating 
Principle. This level describes how the different parts of the system interact. [8] 

Based on these activities, the system can be further decomposed, where the different 
actions can serve as a starting point for defining use cases for the second layer of de-
composition.  

After new functionalities are modeled, a delta analysis is performed. The purpose of 
the analysis is the identification of changes and measures that must be taken to ensure 
that new functionalities work as intended. With this analysis, the testing effort can be 
drastically reduced, since not all features are necessarily needed for the new function-
ality. In the case of the homologation of the ALKS for 130 km/h one example is the 
turning on of indicator lights. This base functionality of the vehicle doesn’t necessarily 
need to be retested, if no new use cases change the functionality itself. Due to the for-
malized and structured way of building traceability and allocation with CUBE and the 
modelling in, for example, Enterprise Architect this analysis can be performed effi-
ciently. In the given example, the Lane change functionality had to be added. With the 
connections modeled in the SysML use case diagrams, every chain of use cases can be 
analyzed across all decomposition layers. This makes it possible to identify the activi-
ties that are affected by the introduction of the new functionality, as shown in 
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Fig. , with all activities marked in blue being relevant for homologation. 

 Delta analysis in activity diagram 

To automatically generate test cases, two artefacts are necessary. The first thing is 
the logical scenario, which represents the state space. The second artefact are SysML 
activity diagrams which describes the possible order of actions a system executes 
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during an activity or process [20, 21, 22, 23]. The process is shown in 

Fig.  [16]. 

  Artifacts necessary for the generation of testcases [16] 

In addition to the behavior of the system the Stakeholder Value holds another im-
portant part of information. Since scenarios define the temporal order of execution in a 
test procedure, they are closely linked to SysML activity diagrams and scenarios can 
be designed to trigger certain actions of the system. To validate that the system behaves 
as expected, it is necessary to define expected values – Key performance indicators 
(KPIs) - for the modeled actions. The calculation of the KPIs is directly attached to the 
actions [16]. Expected values can be derived from regulations or other sources.  

One example for where expected values can be derived from are the functional 
chains within the system. These functional chains can be retrieved from the defined 
SysML activity diagrams by following every possible path of actions the system could 
take. It is important to investigate these chains to take for examples decisions into ac-
count, that need to be made to let the system perform a specific behavior. Based on 
these specific expected values can be defined. This holds especially true for the ex-
pected values of superordinate actions, which strongly depend on the flow of actions 
inside [16]. 

For the given example of the ALKS extension expected values are formulated in the 
regulation. One demand is that a lane change shall only be conducted if the maneuver 
would not force another vehicle to break in a way that is dangerous and could cause 
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accidents. To provide a way of validating this demand, a logical scenario with expected 
KPIs is given by the regulation. The setup of the scenario is shown in Fig. 6. 

  Example of a scenario needed for homologation 

The vehicle that is equipped with the ALKS function, the “ego vehicle”, is approach-
ing a slower vehicle in the same lane. Meanwhile, a faster vehicle is driving on the 
second lane. Multiple phases are assumed. The first phase is the reaction phase, in 
which the vehicle in the target lane maintains a constant velocity (here ) for 0.4 
seconds. After this short delay the vehicle in the target lane decelerates with a maximum 
of . Meanwhile, the ego vehicle keeps its velocity .  

It is expected by the regulation UNECE R157 [13] for an ALKS operation (at the 

speed of 130 ), that the distance between the ego vehicle and the vehicle in the target 

lane shall always be greater than a required time headway. The required time headway 
is defined as the distance that the ego vehicle would travel at a given velocity in 1 
second.  
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 Activity relevant for the given homologation scenario and attachment of expected values  

In the example model, the necessary calculations are attached to the action, which 
analyses the environment to determine if a lane change is possible. This action was 
identified as relevant for homologation as part of the delta analysis (see 
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Fig. ).  

With the addition of the logical scenario, it is possible to generate testcases automat-
ically. For this purpose, a specialized testcase format was developed, which includes 
all necessary data about the scenario (static and dynamic), test procedure and expected 
values as Pass/Fail criterions [24]. Based on this artefact, simulations can be performed 
to validate the system. The generated results together with all other produced artifacts 
can then be provided directly to the relevant partner responsible for the homologation 
process. In practice, this accelerates the workflow.  

This contribution shows how it is possible to use cutting-edge methods to speed up 
the homologation processes. To this end, traceability is important. Because of this, the 
CUBE Method is used to provide traceability into the decomposition layer as well as 
into the abstraction levels of the system. Furthermore, to fulfill additional regulations, 
new use cases must be introduced. To allow traceability, the requirements are integrated 
into the model in a formalized way. Scenarios which define the ODD or parts of it are 
attached to the new use cases with composite diagrams. Based on the new use cases the 
second abstraction level Operating Principle can be extended. With these changes to 
the system, a delta analysis is performed. The result is a collection of all the changes to 
the system and which part of the system must be revalidated for the homologation pro-
cess. This implies that the result also shows which part of the system must not be 
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revalidated, which reduces the test effort drastically. It can also be determined, if sce-
narios can be reused that were defined before the changes to the system.  

Based on this analysis, test cases can be generated automatically. two artefacts are 
needed. A scenario and expected values (KPIs) of the system, which can be compared 
to the actual values while testing. To provide a way of calculating the expected values 
a new file format is introduced. These files can be connected to actions in the second 
layer of abstraction – Operating Principle.  
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