
Till Temmen1, Max-Arno Meyer1, Louis Wachtmeister2,
Mohammadsadegh Zabihi3, Christopher Kugler3, Sebastien Christiaens3,

Bernhard Rumpe2, Jakob Andert1

1 Teaching and Research Area Mechatronics in Mobile Propulsion (RWTH Aachen University),
Forckenbeckstraße 4, 52074 Aachen, Germany

2 Chair of Software Engineering (RWTH Aachen University), Ahornstraße 55, 52074 Aachen,
Germany

3 FEV.io GmbH, Neuenhofstraße 181, 52078 Aachen, Germany

Further development of vehicles into software-defined products is in-
creasingly influencing vehicle approval [1]. In particular, approval procedures
are required for updates to homologation-relevant software, such as automated or
autonomous driving functions. Appropriate solutions such as the "Digital Loop"
showcase [2] focus primarily on virtual homologation methods. The verification
in such procedures requires complete traceability from legal requirements to ad-
justments in the software architecture and functionality as well as to derived test
cases and the tested digital twin. When applied to automated driving functions,
scenario-based methods and a high degree of automation due to the scope of test-
ing are also required.

This contribution uses the automated driving function Automated Lane Keeping
System (ALKS) to show how software extensions can be formally specified using
the scenario and model-based systems engineering method CUBE based on legal
requirements. The scenario, requirements and architecture specification using
Systems Modelling Language (SysML) can then be used for the implementation
in the vehicle and in the Digital Twin as well as for homologation. In addition,
the automatic derivation of machine-readable, homologation-relevant test scenar-
ios and test cases from the specification model is shown. The test specification
generated in this way can be used directly for simulation-based tests and vehicle
tests. The use of the procedure in the homologation of software updates enables
complete traceability with reduced specification and testing effort at the same
time.

 Model-based Systems Engineering (MBSE), Scenario-based Sys-
tems Engineering (SBSE), Virtual Homologation, SysML, autonomous driving
functions

[TMW+24] Temmen, Till and Meyer, Max-Arno and Wachtmeister, Louis and Zabihi, Mohammadsadegh
and Kugler, Christopher and Christiaens, Sebastien and Rumpe, Bernhard and Andert, Jakob:
Application of Model-Based Systems Engineering Methods in Virtual Homologation Procedures for Automated Driving Functions.
In: Automatisiertes Fahren 2024, Heintzel, Alexander (Eds.), pp. 1-14,
DOI 10.1007/978-3-658-45196-7_1, Springer Fachmedien Wiesbaden, Frankfurt, 2024.

2

Homologation procedures are time consuming and costly. This is due to the fact that
for every new feature all tests must be reperformed to ensure that the complete system
still fulfills every necessary regulation. To accelerate the process, the Digiloop project
was established [2]. The idea is to virtualize and streamline the homologation process.
This can be done by introducing cutting-edge engineering methods, like for example
Model and Scenario based Systems Engineering [3, 4]. In this context, the CUBE
method is used (cf.

Fig.) that extends related methods such as SMArDt [5], or SPES [6, 7]. In the variant

3

Fig. presents, CUBE defines two dimensions of transforming the view onto the sys-
tem – decomposition and abstraction. In the different levels of abstraction, the perspec-
tive shifts from a black-box to a white-box view. In the dimension of decomposition,
the system is deconstructed into sub-systems, where different elements of the system
can be allocated to features. By combining both dimensions of variation, it is possible
to trace requirements from use cases to activities of a system, but also across different
layers of decomposition [8, 9]. Using this approach, it is possible to identify homolo-
gation relevant changes to the system, perform analysis of relevant scenarios for retest-
ing, and ultimately define new testcases automatically. For the definition of use cases,
activities, and corresponding diagrams the Systems Modeling Language (SysML) is
used [10, 11].

4

 Cube Methodology [9]

The procedure shall exemplary be further illustrated in the following chapters. In the
example an Automated Lane Keeping System (ALKS), which has several potentials to
increase the road safety [12], is the object of the homologation procedure. It is assumed
that the system has already been approved for a maximum velocity of 60 km/h under
UNECE R157 [13] and shall now be extended with functionalities to fulfill the regula-
tion for a velocity of up to 130 km/h. These new requirements are an input to the first
decomposition level and mark the starting point for the definition of additional use
cases and scenarios. Based on the use cases, less abstract SysML activity diagrams are
designed, which specify the behavior of the system based on the use cases. The behavior
is split into features and the different actions are allocated to domains. This procedure
is repeated for the next decomposition layer to give a more fine-granular view of the
system. Various modeling tools can be used for this approach e.g., Enterprise Archi-
tect [14].

The first step in the process is to formalize the regulations and add use cases for the
new regulation [4], A new functionality is an automated Lane Change, which is de-
manded by the UNECE R157 [13]. This function can be addressed by the use case
shown in

5

Fig. - “perform regular Lange Change Procedure (LCP) including a Lane Change
Maneuver (LCM)”. To enable traceability to additional requirements that are not con-
cerned with the system’s functionalities and describe characteristics concerning the sys-
tem performance, specific qualities, or constraints [15] the diagram in

Fig. marks these use cases with the stereotype boundary condition. This type of use
case does not describe the behavior of the system, but rather processes or properties
which must be fulfilled. For the derivation from the actual regulation, a connector with
the stereotype “deriveReqt” is used. For the connection of the boundary condition use
case to the lane change use case, an include relationship is used.

 Example for formalization of requirements and linking to use cases

To introduce tests that serve the purpose of validating that all use cases are addressed
by the system, logical scenarios can be defined. These logical scenarios [16] describe
the overarching state space, which is the ODD. The definition of scenarios is based on
six layers of information, which are also used in the open file formats OpenDRIVE and
OpenSCENARIO [17, 18, 19]. These formats define both the static and the dynamic
environment.

6

After defining a logical scenario, it can be attached to certain use cases by include
or extend relationships [4]. This is done by using composite diagrams (see

Fig.). In the example the scenario “SC_0001_perform regular Lane Change Procedure
(LCP) including a Lane Change Maneuver (LCM)” is included by a use case that ex-
tends the base use case of performing a Dynamic Driving Task (DDT). The new sce-
nario only represents a part of the ODD “ODD_L1_Vehicle_0001_Automated Lane
Keeping System (ALKS)”. This is shown by the connector with the generalization ste-
reotype.

The regulation demands that a lane change maneuver shall only be possible if certain
conditions are fulfilled. This can be tested with a specific lane change scenario. This
specialized scenario “SC_0006_R157_lane change test” is also shown in

Fig. with the scenario “SC_0001_perform regular Lane Change Procedure (LCP) in-
cluding a Lane Change Maneuver (LCM)” being the generalizing scenario. An alloca-
tion process like this is needed to specify which scenario needs to be executed to vali-
date the system under test.

7

 Attachment of scenarios to use cases

Following the CUBE Method, SysML activity diagrams are created based on the
use-cases (Stakeholder Value), which define the second level of abstraction – Operating
Principle. This level describes how the different parts of the system interact. [8]

Based on these activities, the system can be further decomposed, where the different
actions can serve as a starting point for defining use cases for the second layer of de-
composition.

After new functionalities are modeled, a delta analysis is performed. The purpose of
the analysis is the identification of changes and measures that must be taken to ensure
that new functionalities work as intended. With this analysis, the testing effort can be
drastically reduced, since not all features are necessarily needed for the new function-
ality. In the case of the homologation of the ALKS for 130 km/h one example is the
turning on of indicator lights. This base functionality of the vehicle doesn’t necessarily
need to be retested, if no new use cases change the functionality itself. Due to the for-
malized and structured way of building traceability and allocation with CUBE and the
modelling in, for example, Enterprise Architect this analysis can be performed effi-
ciently. In the given example, the Lane change functionality had to be added. With the
connections modeled in the SysML use case diagrams, every chain of use cases can be
analyzed across all decomposition layers. This makes it possible to identify the activi-
ties that are affected by the introduction of the new functionality, as shown in

8

Fig. , with all activities marked in blue being relevant for homologation.

 Delta analysis in activity diagram

To automatically generate test cases, two artefacts are necessary. The first thing is
the logical scenario, which represents the state space. The second artefact are SysML
activity diagrams which describes the possible order of actions a system executes

9

during an activity or process [20, 21, 22, 23]. The process is shown in

Fig. [16].

 Artifacts necessary for the generation of testcases [16]

In addition to the behavior of the system the Stakeholder Value holds another im-
portant part of information. Since scenarios define the temporal order of execution in a
test procedure, they are closely linked to SysML activity diagrams and scenarios can
be designed to trigger certain actions of the system. To validate that the system behaves
as expected, it is necessary to define expected values – Key performance indicators
(KPIs) - for the modeled actions. The calculation of the KPIs is directly attached to the
actions [16]. Expected values can be derived from regulations or other sources.

One example for where expected values can be derived from are the functional
chains within the system. These functional chains can be retrieved from the defined
SysML activity diagrams by following every possible path of actions the system could
take. It is important to investigate these chains to take for examples decisions into ac-
count, that need to be made to let the system perform a specific behavior. Based on
these specific expected values can be defined. This holds especially true for the ex-
pected values of superordinate actions, which strongly depend on the flow of actions
inside [16].

For the given example of the ALKS extension expected values are formulated in the
regulation. One demand is that a lane change shall only be conducted if the maneuver
would not force another vehicle to break in a way that is dangerous and could cause

10

accidents. To provide a way of validating this demand, a logical scenario with expected
KPIs is given by the regulation. The setup of the scenario is shown in Fig. 6.

 Example of a scenario needed for homologation

The vehicle that is equipped with the ALKS function, the “ego vehicle”, is approach-
ing a slower vehicle in the same lane. Meanwhile, a faster vehicle is driving on the
second lane. Multiple phases are assumed. The first phase is the reaction phase, in
which the vehicle in the target lane maintains a constant velocity (here) for 0.4
seconds. After this short delay the vehicle in the target lane decelerates with a maximum
of . Meanwhile, the ego vehicle keeps its velocity .

It is expected by the regulation UNECE R157 [13] for an ALKS operation (at the

speed of 130), that the distance between the ego vehicle and the vehicle in the target

lane shall always be greater than a required time headway. The required time headway
is defined as the distance that the ego vehicle would travel at a given velocity in 1
second.

11

 Activity relevant for the given homologation scenario and attachment of expected values

In the example model, the necessary calculations are attached to the action, which
analyses the environment to determine if a lane change is possible. This action was
identified as relevant for homologation as part of the delta analysis (see

12

Fig.).

With the addition of the logical scenario, it is possible to generate testcases automat-
ically. For this purpose, a specialized testcase format was developed, which includes
all necessary data about the scenario (static and dynamic), test procedure and expected
values as Pass/Fail criterions [24]. Based on this artefact, simulations can be performed
to validate the system. The generated results together with all other produced artifacts
can then be provided directly to the relevant partner responsible for the homologation
process. In practice, this accelerates the workflow.

This contribution shows how it is possible to use cutting-edge methods to speed up
the homologation processes. To this end, traceability is important. Because of this, the
CUBE Method is used to provide traceability into the decomposition layer as well as
into the abstraction levels of the system. Furthermore, to fulfill additional regulations,
new use cases must be introduced. To allow traceability, the requirements are integrated
into the model in a formalized way. Scenarios which define the ODD or parts of it are
attached to the new use cases with composite diagrams. Based on the new use cases the
second abstraction level Operating Principle can be extended. With these changes to
the system, a delta analysis is performed. The result is a collection of all the changes to
the system and which part of the system must be revalidated for the homologation pro-
cess. This implies that the result also shows which part of the system must not be

13

revalidated, which reduces the test effort drastically. It can also be determined, if sce-
narios can be reused that were defined before the changes to the system.

Based on this analysis, test cases can be generated automatically. two artefacts are
needed. A scenario and expected values (KPIs) of the system, which can be compared
to the actual values while testing. To provide a way of calculating the expected values
a new file format is introduced. These files can be connected to actions in the second
layer of abstraction – Operating Principle.

1. Stokar, R. V.: Accelerated Type Approval by Validating Software Updates. ATZelectronics
worldwide, 15(3), 42-45 (2020).

2. The Digital Loop, 2023, https://www.digi-loop.com/, last accessed on 2024/01/26.
3. Sippl, C., Bock, F., Lauer, C., Heinz, A., Neumayer, T., German, R.: Scenario-Based Sys-

tems Engineering: An Approach Towards Automated Driving Function Development. In:
Proc. 2019 IEEE International Systems Conference (SysCon) (2019).

4. Meyer, M., Silberg, S., Granrath, C., Kugler, C., Wachtmeister, L., Rumpe, B., Christiaens,
S., Andert, J.: Scenario- and Model-Based Systems Engineering Procedure for the SOTIF-
Compliant Design of Automated Driving Functions (2022).

5. Drave, I., Hillemacher, S., Greifenberg, T., Kriebel, S., Kusmenko, E., Markthaler, M., Orth,
P., Salman, K. S., Richenhagen, J., Rumpe, B., Schulze, C., Wenckstern, M., Wortmann, A.:
SMArDT modeling for automotive software testing. In: Software: Practice and Experience
49.2, 301-328 (2019).

6. Pohl, K., Hönninger, H., Achatz, R., Broy, M.: Model-based engineering of embedded sys-
tems: The SPES 2020 methodology. Springer, Heidelberg (2012).

7. Pohl, K., Broy, M., Daembkes, H., Hönninger, H.: Advanced model-based engineering of
embedded systems. Springer International Publishing (2016).

8. Granrath, C., Kugler, C., Silberg, S., Meyer, M., Orth, P., Richenhagen, J., Andert, J.: Fea-

tems Engineering. 24. 10.1002/sys.21596 (2021).
9. Richenhagen, J., Granrath, C., Gehrt, J., Hake, J., Kugler, C., Mrohs, B., Ligtelijn, H., Hei-

nen, K., Kriebel, S.: E/E industrialization with MBSE for Series Development of Software
Defined Vehicles, 32nd Aachen Colloquium Sustainable Mobility 2023, Aachen (2023).

10. OMG Systems Modeling Language, Version 1.6 ed., Computer software manual (2019).
11. Kautz, O., Rumpe, B., Wachtmeister, L.: Semantic Differencing of Use Case Diagrams,

Journal of Object Technology (2022).
12. Utriainen, R., Pöllänen, M., Liimatainen, H.: The safety potential of lane keeping assistance

and possible actions to improve the potential. In: IEEE Transactions on Intelligent Vehicles
5.4, 556-564 (2020).

13. Addendum 156 – UN Regulation No. 157 Amendment 4 - Uniform provisions concerning
the approval of vehicles with regard to Automated Lane Keeping Systems, United Nations,
2023.

14

14. Model Driven UML Tool, https://www.sparxsystems.de/, Sparx Systems Ltd und SparxSys-
tems Software GmbH (2024).

15. Glinz, M.: On non-functional requirements. In: 15th IEEE international requirements engi-
neering conference (RE 2007), IEEE (2007).

16. Kugler, C., Granrath, C., Pischinger, F., Malvankar, A., Däsch, C., Meyer, M., Andert, J.:
Ausleitung von Testfällen für automatisierte Fahrfunktionen auf Basis semiformaler Sys-
temspezifikation (2022).

17. OpenDRIVE: Concept Document, ASAM e.V., 2020: https://www.asam.net/in-
dex.php?eID=dumpFile&t=f&f=3907&to-
ken=fffa694711f0cd3cc37e61f38587b3a308e9a720, last accessed 2024/01/26.

18. OpenSCENARIO: User Guide, ASAM e.V., 2022, https://www.asam.net/in-
dex.php?eID=dumpFile&t=f&f=4092&to-
ken=d3b6a55e911b22179e3c0895fe2caae8f5492467, last accessed 2024/01/26.

19. Scholtes, M., Westhofen, L., Turner, L. R., Lotto, K., Schuldes, M., Weber, H., Wagener,
N., Neurohr, C., Bollmann, M. H., Körtke, F., Hiller, J., Hoss, M., Bock, J., Eckstein, L.: 6-
Layer Model for a Structured Description and Categorization of Urban Traffic and Environ-
ment," in IEEE Access, vol. 9, pp. 59131-59147 (2021).

20. Ali, J., Tanaka, J.: Implementing the dynamic behavior represented as multiple state dia-
grams and activity diagrams. In: Journal of Computer Science & Information Management
(JCSIM) 2.1, 24-34 (2001).

21. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities. In: Electronic
Notes in Theoretical Computer Science 127.4, 35-52 (2005).

22. Eshuis, R.: Symbolic model checking of UML activity diagrams. In: ACM Transactions on
Software Engineering and Methodology (TOSEM) 15.1, 1-38 (2006).

23. Kautz, O.: Model Analyses Based on Semantic Differencing and Automatic Model Repair.
In: Aachener Informatik-Berichte, Software Engineering, Band 46 (2021).

24. Meyer, M., Christiaens, S., Amit, P.: Datenstruktur zum Testen autonom fahrender Kraft-
fahrzeuge, (2022).

