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Abstract—In this paper the extension of an intelligent compo-
sitional verification framework for cyber-physical systems is pre-
sented and the capabilities of accompanying underspecification-
refinement steps by verification are demonstrated on a represen-
tative example of a flight guidance system. Formal knowledge
representation using higher-order logic and intelligent reason-
ing is shown to be applied to software engineering problems
to perform correctness proofs, execute symbolic tests or find
counterexamples. The theorem prover Isabelle is a mature and
fundamental tool, which allows to represent knowledge as a
collection of definitions and theorems and reason about systems.
To increase the usability, an architecture description language
(ADL) coupled with a code generator from the ADL to Isabelle
is used. These and the rapid increase of computation capabilities
suggest that a prominent application for reducing certification
costs of critical systems such as intelligent flight control systems
or assistance systems for air or road traffic management is not
far in the future.

I. INTRODUCTION

The complexity of safety-critical systems is increasing in the
avionics and other fields and new technologies like unmanned
flying vehicles are rapidly introduced into the market. These
bring new challenges to certification processes. While trying
to maintain high system reliability, the scalability of traditional
quality assurance methods such as testing and reviewing is not
ideal and causes considerable amount of costs [1].

If requirements were to be specified in a formal way, one
could reason about them and thereby replace or complement
many tests (please see also the conclusion for a more detailed
discussion). Abstract Interpretation [2], [3] is a static analysis
technique which has been applied in avionics. It does acts
rather on code-level (in contrast to the approach of this paper,
which handles requirements on all abstraction levels.) While
having good automation, Abstract Interpretation is usually
targeted on very specific artifacts and usually requires some
manual expertise to discharge false positives. Model Checking
[4] also has been applied to small and middle sized systems.
But it does suffer from the well-known state-explosive problem
when trying to handle larger systems. While hardware is
better handled, the complexity of verifying software increases

exponentially with the size of the (state space of the) system
(while e.g. in theorem proving this growth is rather linear [5]).

Meanwhile, artificial intelligence fields such as logic and
knowledge representation have also been applied successfully
in software engineering. When representing knowledge by
logic, theorem proving is then reduced to intelligent rea-
soning. So by creating a knowledge base for safety-critical
systems, automatic reasoning becomes possible by reducing
verification into applying AI techniques such as metaheuristic
(proof-) search techniques. Same holds for error detection;
a counterexample-finder takes as input a system model, (the
negation of) a property, and error detection is reduced into a
search problem (and in case of an error the trace-path of this
search is returned as a malicious input). In a time of increasing
computational power, these techniques open up possibilities to
maintain manageable certification costs.

Common ADLs used for model-based development avionics
are AADL [6], SysML [7], Simulink [8] etc. SCADE [9]
(based on the dataflow language Lustre [10]) is used by Airbus
[4] coupled with a model checker. In comparison, our ADL
presented in this paper is extended to be able to handle
not only SCADE-like time-sensitive deterministic systems
(such as our previous automotive case study in [11]), but
also (higher-level predicative-oriented and lower-level state-
oriented) underspecification and refinement.

For the incorporation of analysis tools in their life-cycle
processes, companies such as Airbus and Dassault Avionics
have identified a number of requirements [9], [12]:

• Soundness
• Ability to be integrated into the certification standards

conforming process
• Cost Savings
• Deliver correctness by construction
• Scalability: Compositional Verification
• Expressivity of Specification Language
• Timing aspects and underspecification refinement
• Usability by normal software engineers on normal ma-

chines
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The Chair for Software Engineering at the RWTH Aachen
University has been conducting research for many years us-
ing its language workbench MontiCore [13] for developing
domain-specific languages (DSLs) and also performing model
transformations. A model transformation could be for example
a refinement [14] of an underspecified model into a more
specified one in the same modeling language, or a code
generator mapping a model from a domain-specific front end
language into an equivalent model in an analysis tool (e.g. a
model checker or a theorem prover).

In principle, for any DSL one can create a knowledge base
and reason about it in a logic language. In this paper this is
demonstrated on the example of an architecture description
language (ADL) for cyber-physical systems (called MontiArc
[11], [15]) coupled with a code generator from the ADL into
the knowledge base (here theorems in Isabelle). The added
value demonstrated in this paper is accompanying step-wise re-
finements during the design-lifecycle of safety-critical systems
by verification to reduce certification costs. The knowledge
base consists in the encoding of generic dataflow-oriented data
structures, functions and theorems for reasoning in the theorem
prover Isabelle [16]. The semantical [17] underpinning of
MontiArc is FOCUS [18], a dataflow-based methodology for
the stepwise development and refinement of systems. If the
behavior of a component is described by a MontiArc automata
with input/output, it is implementable (also called realizable)
per construction. For further discussions about foundations
of our methodology, please read also [11]. The semantics of
(non-deterministic) components are (sets of) stream processing
functions [14]. The unique selling point of FOCUS compared
with other concurrents such as π-calculus [19], CSP [20]
or Petri nets [21] is that refinement is fully compositional.
Thus, one can decompose a system, refine each component
separately e.g. until an implementation, and then be sure that
after composing back the new system will be a refinement
of the old one, thus sparing associated testing and integration
costs. It also allows leveraging proof reuse (as will be shown
in the running example section II-G or section II-I).

The contribution of this work is the extension of logic-
based a knowledge representation for an automatic reasoning
approach aiming at reducing certification costs of safety-
critical systems. This is demonstrated through accompanying
the refinement of different abstraction levels of underspecifi-
cation (see fig. 1) by verification. The full compositionality of
refinement of FOCUS is leveraged for the step-wise refinement
of a representative example of a pilot flying system (in this
cyber-physical system the bus component is hardware and the
flight guidance component is software).

On a more detailed level, this includes:
• Extending an ADL and its knowledge base for enabling

higher-level history-oriented requirement specification.
• Extending an ADL and its knowledge base for enabling

refinement of history-oriented requirement specifications
into lower-level (closer to implementation, yet still not
necessarily deterministic) state-based requirement speci-
fications.
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Fig. 1. Certification Activities (Letters = Sections in Chapter 2). The denoted
activities are shown to be handled by our methodology and thus save a lot of
test and review costs.

• Extending an ADL and its knowledge base for en-
abling refinement of lower-level non-deterministic state-
oriented requirement specifications into another state-
oriented specification by means of transition-refinement
and state refinement.

• Extending counterexample-finding capability for design
error detection.

• Optimizing signatures of key structures in the knowledge
base to increase the automation degree and reduce the
needed user-expertise (consisted in rewriting the encoding
with total functions instead of partial functions (such as in
[22]), thus making automatic proof finding much easier)

• Integration of an abstraction mechanism called locals,
which improved the efficiency of the code generator
about 10 times and enables thus an easier-qualifiable code
generator from the ALD to the theorem prover.

• Discussing at what extend such a knowledge representa-
tion approach can scale to meet industrial requirements,
documented in a table in the conclusion after the evalu-
ation and consideration of the lessons learned.

• Providing an Integrated Verification Environment created
with Visual Studio Code for the integration of all the
artifacts of the framework (see Appendix).

The rest of the papers consists in the following: The next
chapter describes a typical avionics software development
activity, where step-wise refinements of underspecification
accompanied by verification is presented on the example
of a flight guidance system (adapted from a collaboration
between NASA and Rockwell Collins [23], we handle the
more involved asynchronous case).



II. RUNNING EXAMPLE

General Approach
In this section we present the development of a pilot

flying system (PFS) with two flight guidance systems (FGSs)
in a refinable, decomposable fashion, adapted from [23].
While in [23] different levels of abstractions are handled
with different techniques (theorem proving, model checking,
abstract interpretation), we demonstrate to be able to handle all
abstraction levels by our framework. The red-colored letters
(fig. 1 extracted from certification activities of DO-178C)
correspond to the sections of the next chapter. During the
formalization of informal requirements, errors in a first version
of the higher-level requirements are detected (red-letters B, C),
and then repaired (letters I, H). The system to be developed
is depicted in fig. 3. The tool chain is described in fig. 2.
The components of the system transmit potentially infinite
sequences of messages called streams over its channels [18].
Time-synchronous streams are used to model time-sensitive
behavior. As described previously in [11], this can be realized
through extending the message alphabet by ∼ to denote that
no data is transmitted in a time slot. Timing granularity can
be set at wish depending on the system to be modeled (e.g.
in the case of the flight guidance system below, one time unit
represents 1 millisecond).

The semantics of components are sets of stream processing
functions mapping input channel histories to output channel
histories and are hierarchically decomposable [11].

One-directional channels connect components by transmit-
ting input and output messages. In the PFS, messages sent
between the FGSs are transmitted by hardware buses. Each
FGS outputs a pair of booleans where the first boolean denotes
the liveness of the system and the second boolean is used as
an acknowledgement bit. Clocks restrict the other components
behavior by sometimes forcing them to output the last message
and not reacting to its input in any way. The system is
visualized in fig. 3.

For each component (hardware and software), HLRs and
LLRs were created. When verifying compliance (say between
HLR and SysReqs), the HLRs of all components in the
software architecture are proven to fulfill all SysReqs. We
demonstrate to handle in the following a few representa-
tive certification activities. In our knowledge representation
approach, certification credits concerning ”‘verifiability”’ of
requirements (see fig. 1) are generally claimed by having used
a formal language for the specification, and ”‘accuracy”’ is
claimed by having formal proofs.

A. System Requirements (SysReqs)

The system requirements (SysReqs) are largely adapted
from [23]. By formulating them as Object Constraint Language
(OCL) (see [11], [24]) constraints, these can be inputted to the
tool chain together with the MontiArc system model. It is then
checked whether the system model fulfills the requirements.
The first 5 SysReqs are similar to the 5 SysReqs from [23] (see
also Appendix). We give the first SysReq in natural language.

SysReq1: At least one side is the active pilot flying side.

Fig. 2. Verification tool chain comprised of two stages: MontiArc frontend
and Isabelle backend. Specifications are modeled in MontiArc, transformed
to equivalent Isabelle representations, then semantically mapped to Stream
Processing Functions and their properties are checked highly automatically.

Below is the first SysReq also as an OCL expression. It is
formulated in the context of the general component structure
from fig. 3 and addresses the streams by their port name:

f s t c1 [ n ] or f s t c3 [ n ]

The OCL expression consists of elements known from
first-order logic. Ports are named after the connected channels
from fig. 3. A syntactic extension allows to obtain the nth
element (point in time) of the stream flowing in the channel
c1 as c1[n]. The translation as Isabelle theorem looks alike
(variables are per default universally quantified). The first
item of a tuple is returned by fst.

Furthermore, we define a safety-critical sixth SysReq infor-
mally.

SysReq6: Pressing and holding the transfer switch c5 for
10 milliseconds always switches the inactive flying side, if
the inactive component received the last transfer switch input
and the system is in a stable state (see also section C for the
architecturial contex).

B. High-Level Requirements’ (HLR’)

The engineer now tries to develop high-level requirements
for each sub-component, so that the overall system require-
ments can be fulfilled. First, we introduce the high-level
requirements of the clocks (corresponding in fig. 1 to HLR’):

component C l o c k U n f a i r S p e c {
t iming sync ;

port
out boolean c l k 1 ;

spec {
/ / o u t p u t s an i n f . l ong boo l s t r e am
c l k 1 . l e n g t h ( ) = INF

}
}

The bits on the clocks output stream determine whether
its associated component is active (executing) or not. The
ADL MontiArc is used to define the high-level requirements
(HLRs)of the clock component. This is a component with
one output and no input channel. First, the timing of the
clock is defined. The keyword sync indicates weak-causal
and causalsync strong-causal time-synchronous components
(causality captures realizability in time sensitive modeling,
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Fig. 3. An architecture of the pilot flying system (PFS), sufficient for
correctly synchronizing the pilot flying sides and the other mentioned system
requirements. clk1 etc. denote the channels that have clocks as sources, c1
etc. refer to the other communication channels, L-FGS denotes the left flight
guidance system, RL-Bus denotes the bus from right to left.

[11]). Weak-causality enforces that the production of an output
at a point in time t does not depend from an input arriving after
the point in time t. Strong-causal components have to define
an initial output and delay interaction by 1 time unit. They
are needed for well-defined semantics in feedback loops. The
behavior is specified as a high-level predicate (spec stands
for specification). Inside the spec section, requirements to
the boolean output stream clk can be formulated as OCL
expressions. The length function obtains the length of a
stream and INF represents infinity.

The HLRs for the Buses and FGSs are defined similarly.
This paper lists only the LLR’ as supplementary material in
fig. 7.

C. Software Architecture and Lower-Level Requirements’
(LLR’)

In fig. 3 each component is represented by a named box.
The channels describe the internal interaction between the
components. The incoming and outgoind channels are the
global in- and outputs of the PFS. Small boxes represent the
ports of a component. Our scalable vector graphics (SVG)
generator draws figures based on MontiArc models. Such
visualization is a powerful tool to gain overview and improve
the communication, especially in the early stages of the
development process.

Here, each of the 4 clocks is connected to one of the non-
clock components to model their non-deterministic behavior.
On a ”‘False”’ clock output signal, each non-clock component
does not react to its input and simply repeats the last output.
Input channel c5 transmits the transfer switch status, c1 is the
output of the L-FGS system and c4 its input from the RL-Bus
etc.

The complete system can be decomposed into sub-
components hierarchically [15]. After the translation into
Isabelle code, the composition operator ⊗ connects the in-
and output channels of two components by its names (for

some technical details concerning the knowledge base see
[25]). The following composition correctly defines the system
model because the composition operator is commutative and
associative (thus making the composition order irrelevant)
[26].

FGSL ⊗ FGSR ⊗BusLR ⊗BusRL ⊗ clk1 ⊗ clk2 ⊗ clk3 ⊗ clk4

After defining the Pilot Flying System as a composition
of its sub-components, we define the low-level requirements
of the sub-components. The unfair clock has to output non-
deterministicially true or false (input and transition guards can
be modeled in MontiArc [15], but are not present in this
component). A graphical representation of the automata is
given in fig. 4 and the textual version is:

component ClockUnfa i rAu toma ta {
t iming sync ;

port
out boolean c l k 1 ;

automaton {
/ / one s t a t e
s t a t e S i n g l e ;
i n i t i a l S i n g l e ;

/ / o u t p u t s t r u e or f a l s e i n e v e r y s t e p
S i n g l e −> S i n g l e / { c l k 1 = t rue } ;
S i n g l e −> S i n g l e / { c l k 1 = f a l s e } ;

}
}

Timing and interface of the component are defined similar
to section II-B. The automata then specifies the behavior in
a lower-level, yet still non-deterministic fashion. States are
defined in the first line of the automata body. The second
line sets the initial state of the automata. Following the state
specifications, the automata transitions and the output and
state-change behavior are defined on a step-by-step basis.

D. Compliance of LLR’ to HLR’ and HLR’ Consistency

The consistency of a specification is defined as the existence
of at least one implementation that satisfies the specification.
The consistency of our HLR’ can be shown as follows: First
prove the compliance of LLR’ to HLR’ (i.e., LLR’ refines
HLR’). Then show that an implementation of LLR’ exists.
For the later, consider that LLR’ (e.g. of the clocks) are non-
determinsitic (total) automata, and can easily be converted
to an implementation (deterministic automata) by removing
transitions responsible for non-determinism. Next, we focus
on compliance of LLR’ to HLR’.

For this, the LLR’ MontiArc automata is translated to an
Isabelle automata and further transformed to (sets of) stream
processing functions. The HLR’ spec is directly transformed
to (a set of) stream processing functions. The transformation
from automata to stream processing function (SPF) is defined
as a (greatest) fixed point calculation of the corresponding
functional [14]. Now, a theorem can be formulated in OCL by
the user, stating: LLR’ refines HLR’. This is translated into
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Fig. 4. The unfair clock outputs non-deterministically booleans

the following Isabelle theorem, where the Isabelle-semantics
of a MontiArc construct is abbreviated by J...K):

theorem
”JClockUnfa i rAu toma ta K⊆ JC l o c k U n f a i r S p e c K”

So refinement is reduced to a set-inclusion of SPFs.
This theorem is proven by showing that every SPF from
JClockUnfairAutomataK outputs a bool stream that is infinitely
long, thus satisfying the OCL requirement in the spec-behavior
of ClockUnfairSpec. All other components consistencies are
proven similarly and follow the overall tactic to show the
fulfillment of all specification properties. Since the other
components are deterministic, their semantics contains exactly
one SPF. In order to increase automation of reasoning over
(sets of) stream processing functions, abstract (case-study-
independent) theorems have been proven in the knowledge
base [25].

It might be interesting to note that compared to [11], the
largest part of the generator has been moved inside Isabelle.
This keeps the inter-language transformation from architecture
description language (ADL) to Isabelle minimal (about 10
times less compared to [11]). This was achieved by integrating
the concept of locales [27]. The whole tool chain becomes thus
easier qualifiable due to the axiomatic and conservative nature
of Isabelle (please note that the translation from a DSL into
a logical language needs in general to be qualified, and is
usually performed by testing it for a representative collections
of models).

E. HLR’ Compliance with SysReq

The next important step is to check the fulfillment of the
system requirements. HLR’ fulfills the first 5 SysReqs, but
not the 6th. The proofs that HLRs comply with the 5 SysReqs
is generally history-oriented (reasoning over infinite streams).
Meanwhile, tools like quickcheck and nitpick were integrated
in our tool chain and can be used to automatically search
for counterexamples. Quickcheck originates from Haskell and
is a test-based tool that needs an executable implementation
from which it generates Haskell code and is fast [28]. Nitpick,
on the other hand, is a SAT-solving based tool that is able
to find even infinitely long stream-counterexamples, and also

reason over not-necessarily-executable specifications [29]. A
counterexample for the 6th SysReq would be e.g. the following
streams on channels c5 and clk3:

streamc5 = False1 • True11 • False∞

streamclk3 = True1 • False11 • True∞

The • infix is used for stream concatenation, whereas i-fold
repetition is formalized as i. The stream True∞ for example
is an infinitely long stream of messages True. Obviously, the
assignment does not contradict the HLR’ of the clock (random
trues and falses). But the system does not change the flying
side after pressing the button for 10 milliseconds (SysReq 6),
as the clock blocks any reaction for 11 time-units. Thus, a
new and sufficient HLR has to be formulated.

The infrastructure for finding counterexamples in our tool
chain has been extended by identifying and inserting (done
as described e.g. in [28]) fitting lemmas into the transformed
Isabelle encoding. These lemmas are essential not only to
counterexample-finders, but also facilitate automatic proofs
and general transparency of the encoding.

F. Refinement of HLR’ to HLR

As one may notice, one does not have to come up with an
entirely new HLR. With only a slight refinement of HLR’,
the 6th SysReq can be fulfilled. The new clock specification
(HLR) is obtained by adding the following OCL-predicate into
the spec-body of the ClockUnfairSpec:

f o r a l l n in n a t .
e x i s t s m in n a t .

n < m && m < n+10 && c l k [m] ;

The new HLR restricts the clocks to output at least one
true every 10 milliseconds. The new specification is called
fair clock and also translated to Isabelle. After generating
the corresponding set of stream processing functions for HLR,
”HLR refines HLR’” is reduced to a set-inclusion proof.

theorem
”JC l o c k F a i r S p e c K⊆ JC l o c k U n f a i r S p e c K”

The signatures of the involved functions are identical, and
the predicate of HLR is a slight sharpening of the predicate
of HLR’ (by the added OCL-requirement in section II-F),
and thus the refinement proof is easily found automatically.
Since all SPFs from ClockFairSpec output an infinite stream
of booleans, the only requirement of the ClockUnfairSpec is
already met.

G. Refinement of LLR’ to LLR

Similar to above, one does not need to come up with an
entirely new LLR (for the clocks) out of their HLR, but
can instead refine the almost-successful LLR’ just enough to
comply with the HLR. A new LLR for the fair clock is defined
as a non-deterministic automata (see fig. 5) using a finite timer
to force at least one true every 10 milliseconds:



Fig. 5. Fair clock with counter

One can save certification costs (of proving compliance
of LLR with HLR and SysReq all over again) by proving
that LLR is a refinement of LLR’, and then reasoning that
the already proven properties (LLR’ refines HLR’ and HLR’
fulfills almost all SysReq) will also hold for LLR. This means
one only needs to prove the missing 6th SysReq.

The refinement of LLR’ into LLR is a refinement between
non-deterministic automata. Similar to the refinement between
HLR and HLR’, a theorem in Isabelle can be formulated over
the automata’s semantics:

theorem
”JCl ock Fa i rAu tom a ta K ⊆ JClockUnfa i rAu toma ta K”

This is proven by two simple refinement steps. The first one
is a semantics-preserving state-refinement (through splitting
the one state of LLR’ into 10 by introducing a counter
variable. The set of behaviors remains after this step the
same (does not become strictly smaller yet) [14] (section
5.3.5 and 6.4.3). The state refinement is usally a prelude for
subsequent underspecification-reducing refinement steps, such
as the following. The second and final step is a transition-
refinement [14] (section 6.3.1) by which transitions (respon-
sible for non-determinism), which lead to ”unfair” behavior
(infinite consecutive inactivity clock-signals) are removed.

H. Compliance of LLR to HLR and HLR Consistency

As LLR’ refines HLR’ (section II-D) and LLR refines LLR’
(section II-G), it follows that LLR refines HLR’. Now all that
is left to prove is that LLR satisfies the additional constraints
of HLR (compared to HLR’). This reduces certification costs
for the HLR consistency proof significantly. The property that
the state with counter = 0 is reached after maximal 9 steps
(visible in fig. 5) is sufficient to prove the additional HLR
property easily automatically.

I. HLR compliance with SysReq and Traceability of HLR

As HLR’ is already proven to satisfy all but one SysReq and
HLR is a further refinement of HLR’, we can directly conclude
that HLR also satisfies the first 5 SysReq. We thus focus on

proving the remaining 6th SysReq. This reduces certification
costs of HLR compliance.

Compliance: The compliance with the last SysReq follows
straightforwardly (proof is thus easily found automatically)
from the added OCL-predicate in the spec-body of HLR in
section II-F).

Traceability: Certification credits for the traceability of
HLR is claimed by deleting HLR-predicates (OCL-expressions
from the spec body) one-by-one and proving that each deletion
in isolation already leads to an incompliant system requirement
(one of these cases led to the above mentioned HLR’).

J. Source Code

The non-deterministic clocks can be refined to a determinis-
tic behavior by deleting transitions that offer non-deterministic
choices (e.g. by deleting one of the transitions such as
those occurring in ClockUnfairAutomata). Apart from
the non-deterministic clocks, any LLR of other components
is a deterministic MontiArc model and can be interpreted
as an implementation, since its semantic is a single stream
processing function [14].

K. Compliance of Source Code to LLR

After translating the deterministic components (representing
the source code) to Isabelle, the compliance of source code
with LLR can be proven. The proof is reduced to showing that
the resulting stream processing function (i.e. the semantics of
the deterministic automata) is an element of the LLR semantics
(a set of SPFs). Accuracy and consistency are correct per
construction in the case of a deterministic component. The
compliance of the source code to the software architecture
and to the system requirements holds without further ef-
fort by the unique property of FOCUS, that refinement is
fully compositional. Since the other (non-clock) components
already were deterministic, their compliance with their LLRs
is proven directly.

III. CONCLUSION

In conclusion, the methodology in this paper demonstrated
handling representative scenarios for a verified development
and compositional refinement of safety-critical systems. A
developer can specify either directly using a logic language
(e.g. Isabelle), or using an ADL for distributed systems as
frontend to describe interfaces of the components, their be-
havior and their interaction in a comfortable way. Then the
system model and all desired properties can be then translated
into an equivalent specification in a knowledge base created
in a logic language.

The developed knowledge base for MontiArc is very general
and can be largely reused for creating knowledge bases for
other modeling languages (such as AADL, SysML, SCADE,
Simulink etc.) Keeping FOCUS as semantical underpinning
has the already mentioned advantage that refinement is fully
compositional.

This kind of approach can replace a lot of tests and reviews.
This helps also with requirements involving always/never,



which cannot be exhaustively verified in general by tests.
Please note though that a certain group of tests and reviews can
only be complemented hereby, but not completely replaced, for
instance checking whether:
• requirements formalization is correct (in general compli-

ance between informal and formal models),
• the methodology is justified and appropriate,
• requirements and software architecture are compatible

with the target computer (unless the target environment
is formally modeled),

• a requirement has not been forgotten,
• there is no unidentified dead or deactivated code.
As can be seen in fig. 1, a lot of development and certifi-

cation costs can be saved by omitting coming up with Source
Code’ out of LLR’, since it would not be correct anyway,
because HLR’ are not good enough. One could have even
spared the effort of creating LLR’ by the following reasoning:
HLR’ has to fulfill SysReqs and to be consistent. In our case
we went first for consistency. Instead, by leveraging the higher-
level history-oriented spec-infrastructure of our methodology,
before one takes care of consistency, one could have shown
first that high-level spec’s and the architecture violate SysReqs
(and these kind of proofs are generally history-oriented, thus
much easier than induction-based proofs of inductively, state-
oriented LLR automata proofs [14]). Then one does not need
to prove HLR consistency (which involves coming up with
LLR automata and showing their compliance to HLR), since
they will be not good enough.

Concerning lessons learned, an interesting observation is
that there are a couple of reasons for preferring the specifica-
tion of components by means of an ADL ideally in a state-
based fashion (coupled with a generator), rather then giving
the user just an encoding of the stream data type and set of
theorems over streams in Isabelle:
• The ADL is for a user more comfortable than writing

recursive (specified typically as least fixed points [30])
stream processing functions in Isabelle.

• The input/output automata of this work are designed
to describe realizable components per construction (and
only these).

• The automata of our methodology are general enough
to represent every realizable stream processing function
(proof in [14]).

Finally, the table in fig. 6 summarizes how the methodology
presented in this paper handles the industrial requirements
described in the introduction. The biggest challenge encoun-
tered is having a proof being found automatically in a large
model. The mitigation of this is an ongoing work consisting
in increasing the number of general theorems over dataflow-
based systems (which are identified intellectually during ver-
ifying case studies), and also exploiting the rapid increase of
computational capability by using a central web-based high-
performance service to perform the proof search.

However the application of reasoning over knowledge bases
is still not mature enough and further research and time will

 

Soundness Established usually by peer reviews, from 1980-now there 
are over 200 papers about FOCUS. 

 
Ability to be integrated into 
the DO-178x conforming 
process 

The methodology replaces or complements many tests and 
supports fulfilling certification requirements. By relocating 
the majority of the code generator internally in Isabelle (we 
aim over >99%), the tool chain becomes easier qualifiable 
due to Isabelle’s axiomatic and conservative nature. 

 
Cost savings 

Replaces traditional verification methods throughout the 
development life cycle, as seen in the running example (also 
see the point below) 

 
 
 
 
Correctness by construction 

Automata Language restricts the user into specifying only 
well-behaved implementable functions (vs expect user to 
write realizability proofs) 
 
Underlying methodology FOCUS: Refinement fully 
compositional – After decomposing a system, refining the 
components separately, and composing back, the new 
system is a refinement of the old one (no new (unwanted) 
behaviors are added, thus sparing test and integration costs) 

 
 
Scalability: Compositional 
verification 

 
Verification: Compatibility of composition with refinement 
allows modularizing and breaking down the proof complexity  
of representative industrial-sized models (as in the running 
example) 

Expressivity of specification 
language 

Automata language can represent all implementable Stream 
Processing Functions (semantical mapping is surjective, 
proof in [9]) 

Timing aspects and 
underspecification 
refinement 

 
Supported as presented in the running example 

 
Usability by normal software 
engineers on normal 
machines 

A user-friendly frontend language and a high-level API in the 
knowledge base helps (for hiding low-level engine concepts)   
 
A large amount of encoded lemmas helps aiming for high 
automation (which implies less user expertise needed) - see 
demo in: https://www.youtube.com/watch?v=krl4Q7MAAlo 

Fig. 6. Industrial requirements

be needed to make it a standard in the tool box of software
engineering development processes.
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APPENDIX

FGS LLR 
BUS LLR 

Fig. 7. Supplementary model: Automata for a Flight Guidance System
component and a Bus. Both MontiArc explicit states (circles) and implicit
states (variables inside the circles) are indifferently translated in Isabelle as
elements of the state space. In the Bus lastOut is a variable to save the last
output message and in is the input message.

SysReq 2..5
• The System is in a stable situation whenever both FGSs

acknowledgements are true. If the system is in a stable
state, then at most one side is the active pilot flying side.

• Pressing the transfer switch changes the inactive side,
if the system is in a stable state and the inactive side
receives the input.

• In the beginning one side has to be the active pilot flying
side. Without loss of generality we choose the left side
to be active. The right side has to be inactive.

• Only switch to inactive side, if transfer switch is pressed.

Fig. 8. Supplementary: Integrated Verification Environment
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