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Abstract— Agent-based simulation is an important testing
tool for the development of autonomous vehicle software. Simu-
lators enable engineers to test autonomous driving behavior in
virtual environments, which is cheaper, faster, and safer than
using a physical vehicle. An important aspect of autonomous
driving software is its real-time capability, i.e. its ability to react
to unforeseen events and new sensor inputs within a very short
amount of time to prevent accidents. In this paper, we present
a modular agent-based simulator architecture, which not only
simulates the physical behavior of the vehicle, controlled by
the software under test, but also its electrical/electronic (E/E)
network. In particular, each ECU is simulated using a hardware
emulator, which enables us to test the software as if it is run
on the actual target hardware. Furthermore, the hardware
emulator estimates the execution delays for the software under
test, which enables more realistic approximations of the real
behavior. In an evaluation example we analyze empirically
how well the timing estimates reflect the reality. We show that
modeling the memory hierarchy and instruction decoding has
a crucial effect on the precision of this estimation.

I. INTRODUCTION

Software errors in autonomous vehicles can lead to severe
consequences. In addition to the financial consequences of
an accident, in extreme cases such errors can lead to the loss
of human life1. Accordingly, it is essential to extensively test
the software of autonomous driving vehicles in advance of
their use on the road. Simulations offer a useful environment
for such testing, as simulations not only provide reproducible
results, but are also typically less expensive than testing with
real vehicles.

For testing purposes, simulations contain a real system
under test that is connected to a simulated environment. The
real system does not have to be a complete autonomous
vehicle, but can also be a software, a model, or a piece of
hardware. Simulators are often categorized using the type
of real system that they provide an environment for. These
categories are called X-in-the-loop, where X represents the
real system, e.g., software-in-the-loop, model-in-the-loop,
or hardware-in-the-loop [1]. For example, in a hardware-
in-the-loop simulation could use a real vehicle controller
that interacts with a simulation that provides, e.g., sensor
inputs. Since autonomous vehicles must share the road with
other vehicles, simulators for autonomous vehicles must
also be able to represent the interaction between multiple
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entities making decisions independently. Simulations that can
represent such independent actors are called agent-based.

While simulations are useful for testing software, they
naturally abstract from the real world, since simulations only
recreate the real world. Such abstractions can falsify the
results of the simulation. Therefore, it is necessary to ensure
that the results of a simulation are as close as possible to
the results of a real world test. An important factor in this
abstraction is the time consumed by hardware to execute a
piece of functionality. For example, if an autopilot software
can reliably calculate steering commands but takes two
minutes for each calculation, it might not be useful in the real
world. For such calculations, simulations can use hardware
emulation to calculate the time consumption for executing
a function on a specified hardware [2]. Albeit modelling
some parts of the hardware, their approach ignores some
important factors that contribute to the time consumption of
executing instructions. In this paper we extend their approach
by emulations for a memory cache hierarchy and instruction
latency respecting the operands of an instruction. Thereby,
we can improve the accuracy of the emulation.

II. RELATED WORK

There are many approaches to emulating particular parts
of automotive systems, e.g., batteries [3] or power-line com-
munication [4]. For autonomous driving, it is crucial that
the processor can calculate driving commands fast enough
to safely drive the vehicle to its destination.

The estimation of whether a processing is fast enough to
execute a task in a given time is often based on the so-called
worst case execution time (WCET). The WCET is often
used in static or dynamic program analysis to estimate if the
software can be executed fast enough. aiT [5] builds a control
flow graph from the software to be analyzed. After building
the control flow graph, aiT analyzes the used memory ranges
of instructions that access memory and uses that information
for an analysis of which accesses are cache hits/misses and
how the program behaves based on its processor pipeline.
This analysis is then used to calculate the WCET. If the
WCET is based on measurements, it is important to also
consider the probability with which the WCET might be
exceeded [6]. For a simulation of multiple autonomously
acting vehicles, such an analysis is likely infeasible as the
number of paths a program can take through the control flow
graph is very high. Compared to such static analyses, our
approach is better suited for the testing use case as we only
analyze concrete executions of the system under test.
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Fig. 1. MontiSim uses a discrete event framework to model communication between dynamic constituents of the vehicle.

Related work examined the combination of simulation
and hardware emulation in various domains. For example,
[7] provides a simulation of power grids that incorpo-
rates a library of emulated field-programmable gate arrays
(FPGAs). In [8], the network simulator ns-3 is extended
with a measurement-based emulator of wireless open access
research platform (WARP) boards. In [9], a rotor blade is
emulated as part of a wind turbine simulator. While hardware
emulation and simulation have been combined in various
other simulators, emulating the processing hardware of the
vehicle to increase the validity of driving simulations did
not receive enough attention. With a similar goal as our
approach, [10] presents a hardware-in-the-loop simulator for
autonomous driving. By incorporating real hardware in the
simulation, their approach does not have to verify that the
execution matches the execution time on a real device.
In [11], a vehicle-in-the-loop simulator is presented that
incorporates a test vehicle connected to a simulated envi-
ronment. However, using real hardware limits the number of
tested vehicles in both of these approaches to the available
hardware. Using an emulation, our approach is only limited
by the amount of available processing resources. If the
simulation is executed as a service [12] in cloud systems,
this effectively means the number of tested vehicles is only
limited by the cost limit. The cost for this scalability is,
however, the need for a thorough validation of the emulation.

III. MONTISIM TOOLCHAIN

MontiSim is an agent-based intelligent transportation sys-
tem (ITS) simulator for the testing of autonomous driving
software [12]–[14]. This means, each vehicle in the sim-
ulation is an entity with its own perception of the world
(created by its respective sensors) and its own intelligence
controlling the actuators. The driving intelligence, i.e. the
software under test, is an exchangeable component and can

be plugged in before the simulation. Such a component has
to fulfill a particular interface, but can otherwise be any
piece of software mapping the sensor signals of the vehicle
to actuator commands. The interface requires an init()
function which is called at start up, an execute() function
which is called each time the simulated hardware is ready
to execute code, setters to provide sensor values to the
autopilot and getters to read the resulting actuator commands.
The component modeling framework EmbeddedMontiArc
[15] [16] supports the automated generation of MontiSim
interface code and provides means for behavior modeling,
including deep and reinforcement learning [17] [18] [19].

To make the data processing and data transmissions, e.g.,
between sensors and the autopilot, more realistic in terms of
delays, sensors, transmission channels, and electronic control
units (ECUs) are modeled as components and attached to
the vehicle’s E/E system. The E/E system and components
attached to it follow a discrete event simulation approach.
Whenever MontiSim advances its time, a time event is
created and dispatched to all listeners. Sensors, actuators,
busses, and ECUs are informed and check whether there are
tasks for them to complete. For instance, a sensor readout
might need to be sent to the autopilot ECU. Instead of
accomplishing the transmission directly, the transmission
component in charge, e.g., a bus, estimates how long the
transmission should last and schedules delivery for the corre-
sponding point in time. Once this point in time is reached, the
data is copied to its recipient. The overall idea of event-driven
message passing is depicted in Fig. 1. This way, complex
data transmission is taken into account and influences the
execution of the autopilot accordingly. While the discrete
event simulation is going on, the host simulator is blocked
and will not advance time further until all components have
finished their event scheduling and/or data processing. This
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Fig. 2. Activity diagram: the core discrete-time simulator (left lane)
simulates the physical world. Advancing time results in an event which
the E/E architecture (middle lane) and the hardware emulator (right lane)
need to process for each vehicle before the core simulator can proceed.

ensures that the simulation results are by no means influenced
by the executing host hardware or the operating system and
are completely reproducible.

One of the most interesting components in the E/E network
of a MontiSim vehicle and also the main subject of this work
is the hardware emulator. The hardware emulator component
represents an ECU and runs the software under test. In case
of multiple ECUs, multiple hardware emulator instances can
be attached to the E/E network.

The communication pattern between the host simulator,
the E/E architecture, and the emulated ECUs resulting from
the event-based architecture described above is sketched in
the activity diagram in Fig. 2. As all discrete-event sub-
simulators, the E/E architecture and the hardware emulator
get notified when time is advanced, i.e. when a new time
step needs to be simulated. The E/E architecture schedules
transmissions of newly seen data, e.g., from sensors to the
autopilot ECU. The data for these transmissions is held back
until the simulation reaches the scheduled point in time for
delivery. Then it passes the data to the intended recipient.
Similarly, the hardware emulator emulates the autopilot
program, estimates the execution duration (cf. Sec. IV for
more details), and remains idle, waiting for the estimated
execution time to pass (in simulation time) until it writes its
result back to the E/E architecture to transmit it to the target
device (e.g., an actuator). While the hardware emulator waits
for the scheduled time step for result delivery to arrive, its
state is set to busy and it does not start new computations.
Once the E/E architecture and the hardware emulator have
finished their time step, control is given back to the host
simulator, which updates its physics and initiates the next
time step.

IV. HARDWARE EMULATION

We base our hardware emulator design on the Unicorn-
based concept presented in [2] and hence omit a detailed
presentation thereof.

However, the framework presented in [2] neglects two
major factors influencing the computation time: the presence
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Fig. 3. High-level overview our cache hierarchy model. Each cache layer
can have an underlying cache layer that takes over in case of a cache miss.

of a cache hierarchy and the decoding of instructions. This
section presents our approach to modeling these two influ-
ences in the hardware emulator.

A. Modeling Cache Hierarchy

The faster the memory, the more expensive and smaller
it is. Therefore, computers rely on architectures in which
several layers of different fast memories work together. The
faster the memory, the less of it is used. Because of the
limited size, not all data that a program might need can be
stored in the fastest memory. Therefore, operating systems
try to predict which data will be needed next. The less likely
it is that data will be accessed, the slower the memory can
be in which the data is stored.

If the processor needs to access a data set, it first searches
in the fastest memory. If the data is not available there,
the next slower memory is searched. This is also called
cache miss. If the data is found, this is called a cache hit.
The concept of storing data in a hierarchy of different fast
memories is called a cache hierarchy.

For the estimation of the time a program needs for its
execution, it makes a huge difference how many cache misses
occur before the data is found with a cache hit. Each cache
miss extends the time until the data can be processed by the
processor. If this cache hierarchy is not taken into account by
the hardware emulator, the time estimates can differ greatly
from the execution time on real hardware.

Fig. 3 shows how we implemented this cache hierarchy
in the hardware emulator. The processor accesses the mem-
ory via a general interface (MemoryAccess). Internally,
this memory can be implemented by several memories
with different timing characteristics. Each of these mem-
ories can also have an underlying cache layer that can
take over a request if the data sought cannot be found
in the current layer. This structure corresponds conceptu-
ally to the technical implementation in the computer. The
SetAssociativeMemory divides the cache into sets of
fixed size where each set can contain one or more cache
lines. In this context, the associativity refers to the number
of cache lines a set holds. In case the requested data
cannot be found in the cache, the request will be forwarded
to the next layer in the cache hierarchy. In contrast, the



RandomAccessMemory is modeled using a fixed access
time as we consider it the last layer in the cache hierarchy.
Additionally, we account for the write-back policies of many
cache hierarchies. If write-back is used, new data is not
immediately written to main memory. Instead, it is only kept
in the cache, i.e., one of the faster parts of the memory.
Accordingly, the cache can have a different value than the
main memory. To prevent the data from being lost, it needs
to be written back to the main memory before invalidating
the cache. We add the time for doing this to the total time
consumption. Other than marking memory as being different
from the main memory, writing to memory is implemented
similar to reading from memory in our model.

B. Modeling Instruction Decoding

Processing an instruction by the processor consists of
three steps, known as instruction cycle: 1) fetch, 2) decode,
and 3) execute. During the fetch step, the processor gets
the next command to be processed from memory. Then,
in the decode phase, the command is interpreted. When
using indirect memory addresses, this may require reading
the real address from a slower memory and copying it into
one of the processor’s registers. Additionally, this phase also
copies memory that is needed to execute the command to the
processor’s registers. Then, in the last step, the command is
executed. The results of this operation may be written back
to memory.

The time needed to execute a command is already repre-
sented by the Unicorn emulator that underlies the hardware
emulator of [2]. However, the operands of the instruction
are ignored even though they can influence the timing. To
integrate the operands into the time calculation, we used the
ZyDis2 disassembler library. Using this library, we can get
information about the instruction to be executed. Using the
instruction latencies from [20], we can estimate the number
of CPU cycles needed to execute the decoded instruction.
Knowing the processor’s clock speed, i.e., the number of
CPU cycles per second, we can use this information to
estimate the time it takes to execute the command. Fetching
the instruction from memory is implemented like accessing
the cache hierarchy. Overall, this enables us to estimate the
time needed for executing an instruction more accurately.

Alternatively to the emulation mode described above,
a live measurement mode can be used. In this case, the
autopilot is executed instead of emulated. This has two
disadvantages. First, we can only simulate vehicles with the
same hardware as our host hardware. Testing the autopilot
with other vehicle hardware would require us to execute the
simulation on another physical or virtual machine. Second,
the results are not reproducible and depend on the current
load of the operating system. Recreating exact behaviors can
turn out to be difficult.

The measurement mode can be run in several variants.
First, we can run the autopilot, measure the duration in each

2ZyDis GitHub project. [Online]. Available: https://github.com/
zyantific/zydis Last accessed: 19.01.2022

step, and use the measured value directly. Second, we can
run the autopilot repeatedly, e.g., 100 times, in each time
step and then use the mean value or the empirical WCET.
For real WCET analysis tools such as AbsInt aiT can be
used.

V. EVALUATION

The research questions to be answered in our evaluation
are the following:

RQ1: How well does the proposed emulated memory
model represent real hardware?

RQ2: How accurate does the proposed emulation solution
approximate the real execution time of a given software?

RQ3: How well does the prediction scale for different
applications and different workloads?

RQ4: Is hardware simulation negligible?
The experiments and measurements for the evaluation

were executed on a PC with AMD Ryzen 5 3600 CPU (Zen
2 Matisse architecture) and 16 GB DDR4 RAM with 3000
MT/s. This system will be referred to as real hardware in the
following. The hardware emulator is configured to emulate
the specification of the real hardware. The experiments and
measurements on real hardware that are presented in this
chapter are based on single-core/thread execution, in order
to ensure the same conditions as in the software emulation on
the hardware emulator. The evaluation of the hardware emu-
lator as introduced in Section IV is conducted with regard to
two aspects. First, the hardware events related to the memory
system are collected both on the hardware emulator and
real hardware and compared in order to answer RQ1. While
hardware events can be logged by the hardware emulator
directly, for real hardware we employ the Cachegrind profiler
to do this. Second, the execution time of various algorithms
is estimated using the hardware emulator and the estimates
are compared with runtime measurements on real hardware
in order to answer RQ2 and RQ3.

To validate the behavior of the memory system of the
hardware emulator, we profiled a neural network training
program. To obtain meaningful results, a cache configuration
with smaller L1 Data and L1 Instruction cache size than the
real hardware was used in this experiment. This is due to the
following reason: if the hardware emulator and Cachegrind
are configured according to the specification of the real
hardware, the L1 Data and L1 Instruction cache are large
enough to temporarily save all the data required for the test
application. Thus, there won’t be enough accesses to L2
and L3 caches since most of the cache accesses into L1
cache will result in cache hits. With such a configuration,
it wouldn’t be possible to determine whether the cache
placement/replacement policy behaves correctly in lower-
level caches. Therefore, we decrease the L1 cache size in
order to trigger enough L1 cache misses (e.g. L2 cache
accesses) to profile the memory system behavior in lower-
level caches. The cache configuration for our experiment is
shown in Table I.

The absolute numbers of cache operations differ by the
factor two approximately, possibly resulting from the dif-
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Fig. 4. The two scatter plots illustrate the correlation between measured and estimated execution time for all tested algorithms with various parameters.
The horizontal axes denote the measured WCET (top) and the mean execution time, respectively. The Pearson correlation coefficients shown in the top
left corners of the two plots measure the degree of linearity between the plotted variables. The legend applies to both plots.

TABLE I
REDUCED CACHE CONFIGURATION FOR THE NEURAL NETWORK

PROFILING EXAMPLE.

Level type Associativity Size Cache Line Size

1 Instruction 2 128 Byte 32 Byte

1 Data 2 128 Byte 32 Byte

2 Shared 8 512 KiB 64 Byte

3 Shared 16 16 MiB 64 Byte

ferences regarding the execution environment of Cachegrind
and the hardware emulator. In order to render the numbers of
hits and misses comparable between the hardware emulator
and Cachegrind, we normalize the results to the total number
of accesses on the respective cache level and platform, i.e.
hardware emulator and Cachegrind. The normalized results
(i.e. hits and misses per access) are summarized in Table II.
The normalized values in each line are similar, indicating
that the hardware emulator can imitate the memory behavior
of the real hardware remarkably well under equal execution
conditions.

To assess the execution time estimation of the hardware
emulator and its scalability, we ran experiments on 11
parameterizable algorithms. The parameters were chosen
to adjust the complexity and hence produce test programs
of different computational loads. The following algorithms
were benchmarked: neural network training, Dijkstra, bubble
sort, mem bench, Fibonacci, Fibonacci dynamic, convo-
lution derivation, convolution Gaussian smoothing, matrix
multiplication, Monte Carlo π, and matrix shuffle. Each
algorithm was run 100 times for each parameter in order to
estimate the mean, median, and WCET. While the original
implementation of the hardware emulator yielded completely
unrealistic results several orders of magnitude higher than the

TABLE II
CACHE EVENT COMPARISON BETWEEN THE HARDWARE EMULATOR AND

CACHEGRIND.

Hardware HW Emulator CachegrindEvents

L1 Inst.
accesses 1 1

hits 0.755 0.769
misses 0.245 0.231

L1 Data
accesses 1 1

hits 0.472 0.452
misses 0.528 0.548

L2 Shared
accesses 1 1 1

hits 0.982 0.997
misses 0.017 0.003

measured results, adding instruction context interpretation
led to a significant improvement of accuracy. Further adding
a memory hierarchy resulted in estimates of the correct order
of magnitude when compared to the measured WCET, i.e.
the longest execution of the 100 runs for a given algorithm
and a fixed parameterization, and measured mean execution
time. The results are depicted in the scatter plots in Fig. 4.
Ideally, the predicted and the measured values would be the
same, hence we use the Pearson coefficient as a measure of
linearity to assess the quality of the predicted values (the
slope is not relevant as it can be estimated and included into
the model). While we observe a very high correlation when
looking into one single algorithm (10/11 algorithms have
a Pearson coefficient > 0.9), the Pearson coefficient drops
to 0.757 and 0.736 for WCET and mean execution time,
respectively, if we mix the data. Hence, while the rough
estimate is still useful, it seems that some operations are
modeled better than others by our emulation concept.

Finally, to illustrate the impact and answer RQ4 we
simulate a trajectory following controller with and without
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Fig. 5. MontiSim screenshot depicting the planned (red), and driven
trajectories of a vehicle. The driven trajectories are depicted in blue and
green for simulation with and without hardware emulation, respectively.

hardware emulation. The resulting trajectories for a simple
scenario are depicted in Fig. 5. The planned trajectory is
depicted in red. The actually driven trajectory is depicted in
blue for a simulation run with hardware emulation turned
on and in green for a simulation where the results of the
autopilot software were available instantly, i.e. neglecting the
hardware induced delays. For better readability, the planned
trajectory is depicted as the middle of the street, while for
the actual trajectories, the controller tries to keep on the
right lane. While in instant mode we can observe a smooth
driving behavior, the hardware emulation mode trajectory
clearly oscillates as the emulated hardware is too slow for
the controller3.

VI. CONCLUSION

In this paper, we presented a modular, event-driven simu-
lation architecture for intelligent transportation systems with
a particular focus on hardware-induced delays. We showed
how reproducible simulation results can be obtained for a
target hardware platform and how timing estimation can af-
fect the functionality of an autopilot under test. The accuracy
of timing estimation was evaluated on a variety of different
pieces of code as well as an actual autopilot controller,
ensuring a wide coverage of machine instructions. While the
estimates did not perfectly match the measurements on real
hardware, there is a clear correlation, enabling the developers
to take hardware delays into account when developing vehi-
cle software. Two challenges arise in our approach: first, a
trade-off between hardware model complexity and accuracy
needs to be found. Second, switching to a new hardware
platform requires the implementation and evaluation of new
hardware models.
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