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The borders of my language are the borders of my world.
L. Wittgenstein

1 Introduction

Using models is one of the primary techniques to understand and engineer the
world. Modeling is by far not an invention of software engineering. All engineering
disciplines use models to describe a system under development before actually
building it. A model is used to get a shared understanding of the system and also
to analyze whether the system will have the desired properties after building it. The
term “model” dates back to the twelfth century, where a model meant to be a 1:10
version of a cathedral or dome, allowing a customer to “walk through” the building,
to understand whether size, light effects, impressiveness, or other properties will be
achieved, but also to understand whether the building will be statically save.

Models are not only used as a prescription of a system to be built. Models
are also used in science to understand the existing world in a descriptive form.
Already the ancient Greeks and Egyptians have built models of their worlds,
including mathematical laws and a calendar system to predict the monsoon—it is
barely imaginable that a pyramid could be built without extensive prior modeling.
Archaeologists believe that cave paintings were used to teach younger tribal
members hunting herds of wild animals. These paintings are models of hunting
scenes. In social communities we learn role models for our behavior. We also get
executable models in forms of recipes for preparing meals or construction manuals
for assembling furniture.

Models appear in a plethora of forms. They can describe structural or behavioral
aspects, interactions, and geometry, or they can be used as recipes for processes.
Models can be quite informal and self-explanatory (e.g., cooking recipe, furniture
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construction manual) or have a rather formal appearance and a well-defined
mathematical theory (e.g., differential equations for physics simulations).

With all this different forms of models in society, science, and engineering, it is
not surprising that computer science developed its own idea of helpful models to
design and understand software systems.

However, software is different from any other physical system that engineers
would want to build. First of all, software per se has no physical manifestation.
This leads to a number of characteristics for software itself as well as for
software production and development processes. Obviously, production completely
vanishes, when software can be downloaded and built on a push-button basis (or
even automatically). There is no need for a physical manifestation of a factory
for assembling individual software products during a rather expensive process.
Therefore, software development is always a process of invention and stabilization
until the final version is developed.

Because of its immaterial nature and the knowledge about its context, software
itself is (or at least it embodies) a model of the elements that it deals with.
A “Person” object is actually an abstraction of a real Person, containing only
the relevant information about the person. But software is complex and thus
needs engineering techniques. The two main classical techniques are “divide
and conquer” in various forms: The software system is divided in subsystems
and finally components. The development process is divided in phases, focusing
on different artifacts, and iterations, allowing to start small and to improve the
software in manageable steps. Early phases, such as understanding the problem (also
called requirements elicitation), structuring the problem (also called requirements
specification and high-level architecture definition), as well as precisely specifying
the desired solution in smaller chunks (e.g., use case definition), do not result in
programming artifacts but require various forms of models.

The Unified Modeling Language (UML) [39, 43, 44] was developed two decades
ago to provide a standardized framework for this purpose. It includes and standard-
izes preexisting modeling approaches and languages and adds new ones. The UML
has 13 sublanguages in total that are applicable for a variety of purposes. However,
it is difficult to say whether the UML, as a general-purpose modeling language, is
the appropriate language for all use cases or where it should be improved or where
language concepts should be removed or added.

The UML, its many predecessors, and its foundations in modeling techniques
based on formal methods, such as finite automata [24], entity relationship mod-
els [9], and others, demonstrate that computer science has not only invented
its own forms of models but also made its forms of models explicit through
defining modeling languages. Only if a modeling language is defined explicitly and
precisely enough, which includes syntax, semantics, and the clarification about the
pragmatic forms of use [22], then the language is usable for communication, shared
understanding between humans, and also amenable for intensive tooling, such as
checking semantic differences [30, 31] or consistency analysis [32].

In general, MBSE includes all development processes that use explicit models
in artifacts, both for internal communication as well as for communication with a
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computer. The latter is intended for detailed analysis, simulation, productive or test
code generation, interpretation, and configuration.

Subsequently, this chapter first clarifies in more detail what MBSE is and what
the most popular modeling languages are in Sect. 2. Afterwards, we discuss its
current failures and achievements in Sects. 3 and 4 to conclude with an outlook
of the future of MBSE in Sect. 5.

2 Model-Based Software Engineering

MBSE is a software development process that aims to tackle increasing software
development complexity by using abstraction and automation [5]. Abstraction is
achieved by employing suitable models of (parts of) a software system. Automation
systematically transforms these models into executable source code. The term model
is considered as a high-level abstraction in textual or graphical notation. Even
though its meaning is not clearly defined (cf. [45]), we understand a model that
is used in MBSE as follows:

Definition 1 (Model [12]) A model is an abstraction of an aspect of reality (as-is
or to-be) that is built for a given purpose.

In general, models can be distinguished into prescriptive and descriptive models
depending on their purpose and use [17]. The primer describe an original that is
created from the model. The latter describe an original to better understand it. Dis-
regarding this classification, each model has to be written down in order to be useful
for MBSE. This already implies that models in MBSE have finite representations,
either in textual or graphical notation. Specifying models can either be done using a
general-purpose modeling language (GPML) or a domain-specific language (DSL).

Definition 2 (Modeling Language [12]) A modeling language defines a set of
models that can be used for modeling purposes. Its definition consists of (a) the
syntax, (b) the semantics, and (c) its pragmatics.

While modeling languages are usually not tailored to a particular domain but
rather address general-purpose concepts (e.g., the UML [39]), a DSL uses wording
and concepts from the domain of interest. Hence, we understand a DSL as follows:

Definition 3 (Domain-Specific Language [11]) A DSL is a language that is
specifically dedicated to a domain of interest, where a language is understood as
a means for communication between stakeholders using a restricted amount of
sentences.

A DSL targets at bridging the gap between problem and solution space [11] and
is, generally, more restrictive than a GPML. DSLs usually drop Turing complete-
ness and often allow fully automated formal verification of the (domain-specific)
properties of interest. This is hardly feasible using Turing-complete general-purpose
programming languages (GPLs).
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2.1 Unified Modeling Language and Systems Modeling
Language

A standardized language family for software development is the Unified Modeling
Language, which is standardized by the Object Management Group [39]. The UML
offers a wide portfolio of mainly graphical (but also textual) languages to model
software systems [51]. An overview of all diagram types is shown in Fig. 1.

While the primary focus of the UML targets at software systems’ design, another
popular language (the Systems Modeling Language (SysML)) aims to provide a
similar set of modeling languages for the design of systems [48]. It is based on
the UML 2 and, hence, uses some diagrams with particular extensions for system
design. In addition, the SysML provides the requirement diagram type, which is not
part of the UML, to address requirements engineering. An overview of all supported
diagram types is shown in Fig. 2.

2.2 Constructive Model Use: Interpreters and Code Generators

One major goal of MBSE is to model a software system or parts of the system by
abstract models describing a subject of a particular problem domain. Models are

Fig. 1 Overview of UML diagram types
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Fig. 2 Overview of SysML diagram types

Fig. 3 Overview of different scenarios for using models in MBSE to generate system or test code

then used constructively for different aspects of a software system. This is achieved
by developing and employing code generators as well as model interpreters to reflect
the models’ meanings in a system, which is potentially still under development.

A code generator takes models as input and produces (parts of) a software
system [42]. Assuming code generator’s correctness, the intended benefit is to
reduce the costs for developing the system by hand. As models typically omit certain
details, the generated code typically has to be complemented with handwritten code
that the model abstracts from. This can either be done on the generated source code
level (e.g., [21]) or on the input model level (e.g., UML/P [45]).

Figure 3 gives an overview of how UML models can be employed in MBSE. For
example, UML class diagrams can be used to generate system code, which is source
code used in production. Another example are UML object diagrams that can be
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used to define test cases and generate test code (cf. [44]). The main part of both
examples is formed by a code generator to systematically transform a model into
executable source code.

As an alternative to code generators, interpreters can be used to execute models.
Interpreters are kinds of software systems that operate on models in context
of a running system, that is, they interpret models based on a system’s state.
As the system state may change (possibly also during the interpretation of a
model), the result from interpreting the same model may differ between successive
interpretations. In contrast to code generation, model interpretation relies on a
virtual machine that is aware of the semantics of the model. When executing
a model by interpretation, a model interpreter evaluates the model and executes
the corresponding virtual machine commands. Such approaches are known from
scripting languages such as Python or Ruby, even though they do not conceptually
differ from the underlying programming paradigm and are programming languages,
too.

Some major benefits of code generation over interpretation are that (a) generated
source code is easier to understand than interpreter logic, (b) generated source code
can be optimized for different target platforms, and (c) code generators are easier
to start with and to maintain because of existing code generator frameworks. In
contrast to code generation, the major benefits of model interpretation are as follows:
(a) changes in a model do not require code generation and, hence, allow higher
agility in development, (b) changes to a model can be made at runtime and are
directly reflected by the interpreter [10], and (c) it promises to be more flexible
than code generation. Stated differently, code generation is typically performed at
design time, before compile time, whereas model interpretation is typically done at
runtime.

2.3 Benefits and Drawbacks of Using Models Constructively

Models explicitly describe a particular subject from the domain of interest and
implicitly describe (parts of) a system for solving the problem the model describes.
This implicit description is made explicit by code generators or interpreters.

Figure 4 illustrates the relations between models, the domain-specific problems
they describe, and the solutions for solving the problems. Each model explicitly
models (parts of) a domain-specific problem. When using the model constructively,
it also implicitly relates the parts of the solution to the parts of the problem it
describes. A code generator explicates this relation by defining the translation rules
from the model to a representation in the solution space (typically GPL code) for
solving the parts of the problem described by the model. Similarly, an interpreter
explicates the description by defining the necessary steps for executing the model at
runtime to solve the parts of the problem the model describes.
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Fig. 4 Relation between
domain-specific problems,
models addressing the
domain, and solutions to the
problems

As models are intended to be more abstract than the subject they describe
(problem space), models are also considerably easier to understand than the parts of
the system they describe (solution space). They simultaneously serve as system doc-
umentation (solution space description) and primary development artifacts (problem
space description). This avoids redundancies between system documentations and
inconsistencies between documentations and implementations. Constructive use
of models further significantly reduces the cost of system evolution: Adjusting a
model can be carried out more effectively than adjusting the system it describes,
which should be much more complex in comparison to the model. A model’s
syntax is typically expressed in the terminology of its application domain. With this
understanding and assuming meaningful code generators, the impact of changing
the content of a model is more coherent than to directly modify source code.

On the other hand, the initial cost for using models constructively is high:
Designing a modeling language requires a detailed understanding of the problem
domain (problem space) the language targets at. This understanding may be split
among different stakeholders, which need to be intensively consulted to develop the
modeling language as suitable as possible. Code generator or interpreter developers
must additionally bring expertise in solving the problems described the modeling
language. In summary, this requires a detailed understanding of the following
aspects:

1. The parts of the problem domain that can be described using the modeling
language (problem space)

2. The modeling language itself (model space)
3. How the models relate to the parts of the problem domain they describe (relation

between model and problem, i.e., explicit description)
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4. The solution space for solving the subjects described by models conforming to
the language (solution space)

5. How to solve the problem described by a model using the provided solution space
(relation between model and solution, i.e., realization of implicit description)

Thus, for applying constructive MBSE successfully, expertise in the solution space
as well as the problem domain and knowledge about solving problems described by
models is required prior to code generator or interpreter development. As models
may describe nontrivial circumstances in complex domains, code generator or
interpreter development may require highly skilled personnel.

On the contrary, in traditional software engineering projects, the model space
and, therefore, the relations between models and problems as well as solutions do
not exist. In such projects, it is easier to adapt to changing requirements (changes in
the problem space) as these only require to adapt the solution. In MBSE projects,
where models are used constructively, changes of the problem space may require
costly adaptations of the model space as well as the relations between the model
space and the other two spaces. With the increasing shift to agile development
methodologies, dynamically changing requirements become a standard.

3 Failures of Model-Based Software Engineering

Even though MBSE promises to reduce complexity and decrease development
time, there are pitfalls and challenges that may lead MSBE projects to fail. In the
remainder of this section, we summarize these pitfalls and challenges.

Creating and Maintaining Code Generators An integral part of MBSE are code
generators for translating models to source code. Current tool support (cf. [15, 36])
enables rapid and easy code generator development for arbitrary models. This
might be true for relatively simple code generators that do not analyze the input
models to adapt the generated source code. However, this situation is different when
code generators become complex. This is often the case when complete software
systems are generated, for example, [28]. In this situation, a code generator has
to be regarded as a complex software system on its own. In some cases, it may
also be a product line (cf. [42]) or needs to process modeling language product
lines [36]. This demands for additional effort to develop and maintain the code
generator because for every change in the input language or the generated source
code, the code generator has to be adapted.

Design and Development of DSLs Each code generator relies on a model, which
is an instance of a particular (or multiple) DSL. Each DSL is specifically tailored
to a particular domain and potentially has to be adapted when reusing it for a
different domain or a different scenario. However, designing and developing a
DSL is, in general, a complex and time-consuming task, which is only partially
supported by design guidelines [25]. This additional development effort has to be
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invested in order to effectively and efficiently employ MBSE. The state of the art in
software language engineering only partially supports reusing parts of preexisting
DSLs and corresponding tooling [36]. While language modularization scenarios for
syntax definitions are widely covered by existing language workbenches [36], tool
composition for processing models (e.g., code generator composition) seems to be
still an open problem [37].

Modeling Needs Domain Knowledge In general, modeling requires a deep
understanding of the modeling language and, more importantly, the domain itself. A
modeler has to understand the requirements and demands of the domain and must be
able to transform them into appropriate models (cf. Sect. 2.3). This task is, generally,
(a) more complex than programming (sequential thinking versus specification-
oriented thinking) and it involves (b) creating concise and possibly underspecified
models, which demands an unconventional thinking process.

Compilers Are Highly Optimized; DSL Code Generators Just Do Their Work
For GPLs, compilers are highly optimized to particular needs, for example, runtime
performance. In contrast, models are processed by code generators or interpreters
(cf. Sect. 2.2). Both are generally not highly optimized. Hence, for particular
types of software systems, for example, high-performance algorithms, a MBSE
approach fails if it does not make use of sophisticated adaptation mechanisms. Such
mechanisms allow to adapt either the code generator, interpreter, or the generated
source code to perform optimization tasks or handle underspecification. However,
even if adaption is possible, the adaption process may still be more expensive (in
terms of, e.g., development time, maintainability, etc.) than writing efficient code
from scratch.

Project Setting Has to Fit MBSE A typical reason for MBSE project failure is
rooted in the nature of the project itself. MBSE software projects are highly effective
for software projects with repetitive and similar tasks. For example, imagine a
software project that defines a REST interface for a particular domain model.
In this project, the technology stack and the definition of a REST interface are
clearly similar. Hence, suitable code generators can speed up development time
by generating the REST interface from the domain model. However, for software
projects without or with only little repetitive tasks—where every part of the source
code is very individual—MBSE fails because it demands a code generator and a
suitable DSL for each particular concern.

Model Tooling Is Not That Elaborated as for Programming (IDEs) The lack
of tooling for model and code generator creation is a major challenge of MBSE.
Even though there are language workbenches (cf. [15, 36]) that support generation
or manual implementation of integrated development environments (IDEs) with
syntax highlighting and auto completion, the resulting tools are not as supportive as
well-established IDEs for GPLs. Furthermore, the tool support has to be maintained
whenever the DSL evolves. A similar situation is also present in the development
of code generators, where suitable adaptation concerns have to be addressed by
additional infrastructures (cf. [21]).
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MBSE and Agility Do Not Yet Work Well Together Agile software development
has shown its effectiveness as a method to tackle complexity and ambiguity of
software projects and to reduce the time to deliver software products. However,
MBSE and agile software development methods are still not yet coalesced and
demand for a combination of plan-driven and agile methods (cf. [27]). More
importantly, the crucial role of model quality and tooling for creating, managing,
and refactoring models is not yet resolved (cf. [8, 26]).

From the aforementioned pitfalls and failures of MBSE and from current
research, the main questions to be answered are: What kind of software systems
can effectively be supported by MBSE? What needs to be improved to make MBSE
suitable? Clearly, software language engineering and code generator engineering
needs to improve. This also holds for tooling supporting language reuse and
composition as well as code generator and interpreter composition and creation.
Hence, in the following, we present success stories of MBSE as well as the use
cases’ motivations and achievements with respect to MBSE. These examples are
helpful to understand when MBSE is appropriate and why it is successful.

4 Where Model-Based Software Engineering Is Successful

Example domains where MBSE has proven successful are cyber-physical systems
(CPS) [2] and component-based software engineering (CBSE) [38]. In these
contexts, MBSE has been adopted by means of architecture description languages
(ADLs) [35]. ADLs are special modeling languages providing syntax to describe
the structure of a system under development. Academia and industry produced
over 120 ADLs [29] in context of different domains such as automotive [13],
avionics [16], consumer electronics [53], or robotics [46]. In context of ADLs, code
generators take models describing the structure of a system under development
as input and produce a runtime infrastructure for executing the system. Such
models typically abstract away component implementation details and focus on
the system’s structure, that is, the system’s components and their interconnections.
The implementation of each individual component thus typically has to be imple-
mented by hand. Some ADLs additionally enable to describe component behavior
implementations. Where this possibility is available, it is even possible to generate
complete software systems. Examples for graphical and textual CBSE-related DSLs
are integrated into the AutoFocus [3], MontiArc [6], and Simulink [47] frameworks.

Other example domains successfully employing MBSE that use model inter-
pretation are the domains of software build automation and web development.
Makefiles, for example, are executed by command line interpreters. Web browsers
interpret HTML models as text layout definitions and interpret JavaScript programs,
for instance, to execute a reaction in response to user interaction events.

The neuroscience domain has successfully produced the NestML, which is a DSL
used by neuroscientists for creating neuron models in a precise and concrete syntax
familiar to domain experts [40]. A code generator translates NestML models into
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C++ code that can be dynamically loaded into NEST [20], a simulator for networks
of spiking point neurons. Before integrating NestML, domain experts created new
neuron models for NEST by copy-and-paste from existing models. As neuroscien-
tists are no programming experts, source code redundancy, suboptimal performance,
improper documentation, and reduced maintainability are the consequences [40].
Investigations revealed cases where two different copy-and-paste models shared
more than 90% of their contents [40]. The modeling language and its tools were
well received by domain experts [40]. An evaluation revealing the increase in code
reuse, performance, and documentation as well as the decrease in redundancy is
currently not available.

MBSE has also been successfully applied in context of a customs information
system to describe document verification rules and configuration files [18]. Such
verification rules describe constraints that relate different fields of XML documents.
A compiler translates verification rule models to Java byte code. A requirement on
the verification rule DSL was that its models should be similar to rules expressed
in natural language [18]. This indicates that verification rules are modeled by
nontechnical users.

Another case study reports on successful application of MBSE in context of
service robotics applications [1]. The goal is to achieve separation of concerns
and to ease development of complex service robotics applications by applying
models and code generators. Domain experts model the environment a robot
operates in, robot and world abilities, as well as tasks and goals for the robot to
achieve. The goal is to enable nontechnical domain experts to model the context
of a service robotics application. From such models, generators produce scenario-
specific source code. Robotics experts then complement the generated code with
handcrafted implementations for the world and robot abilities at well-defined places.
Thus, models capture the requirements of a particular instance in the service
robotics domain (robot environment, robot/world abilities), and robotics experts
complement the application with their robotics domain expertise. This ultimately
reduces the costs for developing service robotics applications and enables separation
of concerns.

JavaSM is a DSL that integrates state machines into Java to develop a command-
and-control simulator [4]. The case study also relies on CBSE and product line
architecture methodologies. The DSL is used for defining and refining state
machines that specify component behavior. State machine-based implementations
are frequently used in this case study. The motivation for developing the JavaSM
is that state machine encodings in pure Java are extremely complex and thus
hard to maintain and understand [4]. The achievement is a complexity reduction
of component specifications: The case study’s result is a more flexible way of
implementing state machine-based simulators than is possible with pure Java
implementations [4]. Hence, the case study is an example of where a DSL eases
software development in a particular use case and hence increases productivity of
developers.

Risla is a DSL for describing products developed in the financial engineering
domain [52]. Financial engineering experts use Risla to model new products. The
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case study’s motivation is to decrease the time needed for introducing new types
of products and to ensure newly developed products are correctly implemented as
intended [52]. The complexity of introducing a new product seems to be based on
the case study’s underlying software system, which is implemented in COBOL. The
second motivation arises since it is only hardly, if even, possible to ensure a software
engineer correctly implements the instructions given by a financial engineer. The
goal is to employ models and code generators such that (1) new products can be
added easily and (2) potential information loss during communication of domain
experts and software engineers is avoided. This ultimately leads to a lower time to
market for new products and eliminates a source for introducing incorrect behavior.

Other examples for well-known successful DSLs commonly used in (computer)
science domains include, among many others, SQL for specifying database queries,
LATEXfor writing documents, and MATLAB [33] for numerical computing and
embedded systems. Other domains where DSLs have been used include artificial
intelligence [34], graphics [14], model checking [23], operating systems [41],
various protocols [7, 49], and video device drivers [50]. Most of these DSLs target
at increasing productivity of software developers and ensuring program correctness.

5 Can We Draw Conclusions?

While MBSE has its drawbacks and failures, it still keeps its promises in some
domains and software projects. In particular, summarizing the reasons for successful
MBSE, we obtain the following indicators:

1. If a company is aware of its software needs to be available in many different
versions and continuously evolves, and development continues for a long time,
then MBSE is helpful. Models then act as abstract specifications for individual
features as well as the overall architecture. Production code and test code
generators are in place to decouple the application from the technology stack and
to embrace variant management. This is achieved by using models as composable
units (features) selected with respect to the needs of each individual product.

2. Domain experts are not necessarily classical software developers (programmers)
but may also be nontechnical stakeholders without programming expertise. Such
experts may prefer to use a DSL or a graphical modeling language rather than a
GPL. In this case, models enable domain experts and users to actively participate
in system development. Domain experts provide domain models to develop the
system and users use models to configure it.

3. If a system is not only composed of software but also of complex hardware,
then there is no alternative to using models for describing the overall system.
Physical models are used by any engineering discipline, to understand a system
under development before building it. If the system’s software part is also to be
understood early, then integrated physical and software models are helpful. The
CPS and Industry 4.0 initiatives are shifting towards this direction.
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4. If a system is grounded on a well-defined theory such as physics, chemistry, or
biology, then scientists developing concrete models of their system under exam-
ination prefer to use models with syntax similar to the underlying mathematical
theory. Such models are preferably used for simulation of real-world phenomena
such as galaxies, climate, brain, chemical molecules, or physical particles.

In reverse conclusion, the overhead for initializing MBSE development processes
often does not pay off compared to the benefits obtained from reusing models and
generators in a modular way. This is the case, for instance, if a developing company
is ensure whether an enhanced variant of an already existing software product needs
to be delivered in a future project. This is often the case in purely software-based
systems as, for example, enterprise information systems and software developed in
web domains.

However, the use of models has still not yet been explored in all potentially
possible domains. There are promising examples, such as nontechnical users
writing Excel formulas without explicitly noticing they are actually programming.
Supporting end users to program in a restricted and controlled fashion could be
supported by appropriate modeling languages.

Like many other new and innovative technologies, MBSE has promised a lot
and has not kept all of its promises. Fortunately, a lot of ideas and techniques
from MBSE can be used for implicit modeling using GPLs. The encoding of state
machines using the state design pattern [19] is such an example.
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