
Abstraction and Refinement in Hierarchically
Decomposable and Underspecified

CPS-Architectures

Bernhard Rumpe, Andreas Wortmann

Software Engineering, RWTH Aachen University, Aachen, Germany

Abstract. Model-driven development of cyber-physical systems (CPS)
requires modeling techniques based on a well-founded theory that sup-
ports addressing development techniques, such as decomposition, refine-
ment and the different notions of time required by its components. Based
on an elaborated theory for the modeling of underspecification with re-
spect to nondeterminism, hierarchical composition, refinement that is
compatible with composition, and finally proven correct evolution pat-
terns, we discuss how such a theory can be practically applied for the
development of CPS. Through an orchestrated efficient simulation, we
can identify potential bottlenecks, function failures, hardware risks, etc.
early. All models as well as the simulation take advantage of the composi-
tionality and the timing refinement properties of the theory. In summary,
we discuss how the elaborated theory shapes the simulation and the re-
sults.

1 Motivation

Rigorous model-driven development requires a well-defined set of integrated
modeling notations that allows to define a set of possible implementations as
well as a well-founded theory that is able to capture important aspects of the
system while at the same time. It should (a) be as abstract as possible, (b) allow
to specify known properties and to leave unknown properties unspecified, and
(c) assist the core techniques in a development process.

A typical development process today has to provide various forms of under-
specification to allow describing known properties and open issues, to support
refinement along the development process from abstract requirements to very
fine-grained technical specifications, and to compose specifications. It is not the
composition itself, that is of prime importance, but the ability to decompose
the problem, solve the smaller problems independently through a chain of re-
finements, and ultimately compose the solutions. This in particular implies that
decomposition and refinement must be compatible. This full compatibility of the
composition and refinement is important, because only then a decomposition of
the problem leads to component specifications that can be independently devel-
oped and refined. Ultimately, their implementations can be composed being sure
that the properties specified originally still hold.

[RW18] B. Rumpe, A. Wortmann:
Abstraction and Refinement in Hierarchically Decomposable and Underspecified CPS-Architectures.
In: Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Springer, 2018.
www.se-rwth.de/publications

There are not many theories that can serve as the foundation for the de-
velopment of systems, which potentially consist of a physical and a software
part, are inherently distributed, and need to cope with a dynamically chang-
ing context, while having to fulfill tasks under given time constraints. Much has
been said and written about cyber-physical systems (CPS) [33,34] and how those
systems can be described and developed [13,16,30]. Only few theories, such as
Focus [8] and consideration of superdense time [36,39], can actually serve the
challenges discussed above. The more development techniques a theory assists,
the more complex it necessarily has to be. Many earlier theories, such as CSP [25],
CCS [43], Petri Nets [49], or the π-calculus [44] yield specific advantages, but
unfortunately yield shortcomings in other techniques. Especially the existence of
techniques for decomposition and refinement as well as their compatibility are
crucial.

In this article, we summarize stream based theory, that emerges from Fo-
cus [5,8,31,52] and has been elaborated by Manfred Broy and his group over
several decades in a larger set of publications. Model-driven development [15,65]
can facilitate engineering of CPS [29], but requires implementing the underlying
theory properly. Consequently, we also present how the theory is implemented
in a tool suite called MontiArc [9,18,20], that allows to model various aspects
of CPS and to simulate CPS with a focus on the interactions within and to
the systems context. We briefly discuss, how this theory and its techniques for
time and time refinement are realized and we sketch, how MontiArc models are
used for example in robotic applications [24,51]. The key idea of the orchestrated
efficient simulation that MontiArc provides, is to early identify potential bottle-
necks, function failures, hardware risks, etc. All models as well as the simulation
take advantage of the compositionality and the timing refinement properties of
the theory.

In the following, Section 2 summarizes parts of the Focus theory, before
Section 3 presents the MontiArc tool suite with its architecture description lan-
guage and simulation framework. Afterwards, Section 4 discuss the benefits of
this approach and Section 5 highlights related work. Section 6 concludes.

2 Theory of Streams

This section contains a condensed form of stream theory. Literature, such as
[7,8,52] gives more detailed motivation and discussion of the properties. Ulti-
mately, employing stream theory as the foundation for model-driven development
enables modeling architectures for software-intensive CPS as depicted in Figure 1
under consideration of time as required by its different components.

2.1 Streams and Stream Processing Functions

We consider components that only interact through explicit, directed, and typed
communication ports. Such a component can be atomic or decomposed into sub-
components. When composing components, ports are connected through directed
channels.

BumperBot

IntegerUltraSonic BumpControl

controller

Timer(5) Boolean

TimerCMD

data dist

signal alarm

cmd cmd

UML/P class
diagram type

composed
component

incoming Port cmd
of type TimerCMD

outgoing port cmd
of type TimerCMD

connector of
type TimerCMD

MA

parametrized subcomponent
right of component type Motor

subcomponent controller
of component type BumpControl

Motor

left(10)

Motor

right(20)

Direction

cmd

Translator

trans

Navigation

dir

Fig. 1. A MontiArc software architecture of a mobile robot. The composed component
BumperBot contains four sub-components of different types to read sensor data, in-
terpret it, and actuate two motors. The robot explores uncharted territory and avoids
obstacles in the process.

A channel observation is modeled as stream Mω of finite or infinitely mes-
sages over a message alphabet M . Progress of time is modeled by an explicit
X (called “tick ”) message assuming that each occurrence of the message de-
notes the start of the next time slice. Thus Mω

X describes a timed observation
of a certain time interval (count the ticks!). A complete observation therefore
has to contain infinitely many ticks. Within a time slice any finite sequence of
messages including the empty sequence may occur. This models the order of
messages, but abstracts away from the concrete time. Time synchronous sys-
tems are modeled as N → M , which is the core embedding in the AutoFocus
tool suite [2,6,3,26,27,28]. If messages are optional, N→M ∪{⊥} is used and ⊥
is a pseudo message describing the absence of a real message.

There are various forms of mappings of one timing domain into the other
as well as many operations on streams [52]. It is possible to choose the form
of streams that fit the modeling interests best, but we mostly use Mω in the
following. In [52], we also embed dense time [39] and Edward Lee’s superdense
streams [35,36] into the framework.

Ticks partition time into slices, each with a finite sequence of events. The se-
mantics of integrated behavior thus follows the concept of superdense time [39,35],
which, distinguishes between a discrete “time continuum” (the global Focus
time) and “untimed causally-related actions” (a behavior model’s actions within
the time slice of a component).

One stream describes one behavior observation. A specification of allowed
behaviors is therefore described by a set of streams in ℘(Mω). It is a general
principle to use sets as a mechanism for specification and especially underspec-
ification, because using a set we can precisely define the allowed properties.

Furthermore, consistency of a specification corresponds to non-emptiness of a
set and refinement of a specification corresponds to set inclusion. A set A refines
another set B exactly, if A ⊆ B. Refinement thus is transitive and reflects that
the more information we have the less (mis-)behaviors are possible.

It is not the channel that is of primary interest, but the component and its
behavior. The signature of a component is a pair (I,O) of port names from
P describing the input and the output. Each port p ∈ P is typed by the set
of messages Mp. An observation set of channels I ⊂ P then is described by a
type-preserving mapping of each i ∈ I to Mω

i . In short, this mapping is called
−→
I .

The behavior of a component can then be modeled as a mathematical object
of sort

−→
I →

−→
O that maps input behaviors to output behaviors. Please note, that

this function completely embeds temporal behavior, because the mapping does
not map a single message but has the full observation on its inputs available to
determine the full observation on the outputs. However, to be implementable a
component may not predict the future, i.e., the output in one time slice may not
depend on the input of a later time slice. In the untimed case, monotonicity and
continuity, and in the timed case, weak and strong causality, are mathematically
precise constraints that describe if a function is realizable. Fortunately, the forms
of streams defined above each form a well-founded CPO (complete partial order)
based on prefix ordering that allows defining these constraints.

A realizable function of sort
−→
I →

−→
O describes exactly one possible imple-

mentation of the component. We call those stream processing functions. Again,
we generalize to specifications by using the power set construction, regarding
each component specification as element of ℘(

−→
I →

−→
O). Refinement again is

defined as subset.

2.2 Composition

Several techniques for modification for components exist, such as renaming ports
or hiding output ports, but of particular interest is composing two component
specifications, denoted with ⊗. Specification composition is defined by point-
wise specification of functions and two functions f, g are connected through the
channels with same names (and inverted directions). f ⊗ g basically is func-
tion composition and thus very well understood. Its new output signature is
O = Of ∪ Og and input I = (If ∪ Ig) \ O and thus does not hide connected
channels.

Other forms of composition include explicitly named pairs of channels that
shall be connected, automatic hiding of connected channels, as well as special-
ized variants, such as parallel and sequential composition or feedback. All are
grounded on the same composition principle. As composition is associative and
commutative, it can be generalized to composing any forms of architectures.

Composition is well defined in each of the individual streams’ domains. And
because it is defined pointwise for specifications, properties of the resulting com-
posed specification can be inferred from properties of the individual specifica-

f ⊗ g

g

f

Fig. 2. General form of composition.

tions. For example, the composition is a consistent specification exactly when
both components have a consistent specification.

But most importantly, composition and refinement are compatible, i.e., given
three specifications S, S′, T , where S′ is a refinement of S, then

S′ ⊆ S −→ S′ ⊗ T ⊆ S ⊗ T.

Therefore, refinement of any decomposed component leads to a refinement of
the overall composition. Refinement means that details on the implementation
are decided and more information added and thus less behavior possible. The
compatibility of refinement with composition means that once the system is
decomposed, each component can be developed and refined independently.

Because decomposition can be applied hierarchically, a complex CPS can be
decomposed into individual, atomic, and manageable components.

2.3 Description Styles For Components

A mathematical theory such as streams for describing CPS needs to be backed up
by more pragmatic styles of denoting specifications. The stream theory does not
directly qualify as a specification technique, but serves as a semantic domain [23]
for an appropriate set of concrete modeling notations.

Neither infinite streams, nor stream processing functions, nor sets over both
should directly be used in mathematical definitions. Instead a structural model-
ing technique should be available to define the internal decomposition of compo-
nents. A hierarchy of such structural decompositions finally leads to an architec-
ture comprising ports, channels, components and their composition. MontiArc’s
main modeling sublanguage allows to describe system architectures based on
streams. Message types and potentially other, internally used, forms of types
must be defined using an appropriate data structure language, e.g., UML class
diagrams [17,59]. Behavior of components can be defined in a relational form,
using for example the assumption/guarantee style composed of two logic specifi-
cations [8], where the assumption restricts the allowed input and the guarantee
relates input to output.

Idling
/ dir = FORWARD

/ dir =

RIGHT

AvoidingExploring

dist ≥ 10

/ dir = FORWARD

/ dir = RIGHT

/ dir = LEFT

dist < 10

/ dir = BACKWARD

dist < 10

/ dir = BACKWARD

Turning

Right

Turning

Left

/ dir = FORWARD

/ dir =

FORWARD

un
d
er

sp
ec

if
ic

at
io

n:
fr

ee
 c

h
oi

ce
 o

f
tr

an
si

ti
on

Fig. 3. State machine describing the behavior of the BumpControl component of the
BumperBot software architecture (cf. Figure 1).

State Machines. Today, state machines are used in various forms, which in-
clude Statecharts [21,22], finite or infinite automata, Büchi automata [63], I/O-
automata [1,37], or I/Oω-automata [52,58,57] allow to describe behavior in a
stepwise manner, based on an internal state. Dependent on the form of the state
machine, different specific properties, such as liveness or completeness, can po-
tentially be described. The important concept of underspecification, which we
above realize through power sets, can partially be used within the automaton
language directly, using alternate transitions. Indeed is nondeterminism in the
state machine specification technique perfectly corresponding to underspecifica-
tion in the development process and if the developer does not decide, which of
the alternatives to be taken, actually the implementation may choose nondeter-
ministically.

Figure 3 depicts a state machine leveraging nondeterminism to specify the
behavior of the component BumpControl of the BumperBot software archi-
tecture illustrated in Figure 1: based on stimuli received through input dist,
it describes how the systems explores an area until finding an obstacle (states
Exploring and Avoiding). Afterwards it can drive backward, turn left, or
turn right (states Avoiding, Turning Left, and Turning Right) until it
selects to continue exploring. All decisions following entering state Avoiding
are based on nondeterministic choice, which is suitable to underspecify CPS
properties in different design stages.

I/Oω automata are still not a concrete modeling language, but are concep-
tually rather close. Such an automaton is a tuple (S,Min,Mout, δ, I) with a
potentially infinite set of states S, input and output alphabet Min and Mout, a
state transition function δ ⊆ S ×Min × S ×Mω

out and initial state and output
pairs I ⊆ S×Mω

out. An I/Oω automaton can easily be mapped to a set of stream
processing functions [57].

If the automaton is total, then the component specification is consistent (i.e.,
a nonempty set of functions). If the automaton is deterministic, then exactly one
function is in the semantics. If the automaton is not total, then several choices,
such as error completion, full underspecification or ignoring input messages that
cannot be handled are available. This all holds for the untimed and timed cases.

Furthermore, there are a larger set of modifications on automata available,
such as removing one of several alternate transitions or splitting states, that by
application are correct refinements [52,58]. These modifications allow an evolu-
tionary development of atomic component specifications. One of the advantages
of state machines is that they can always be directly interpreted as implemen-
tation (with more or less choices) and thus used in simulations.

Architectures. The composition operation ⊗ allows to build hierarchically
composed systems. To explicitly understand the architecture, it can be modeled
explicitly. A static architecture is minimally modeled by (A, sub, σ, β), where A
denotes the set of components (respectively component identifiers), sub : A →
℘(A) the hierarchy of compositions, for a ∈ A, σ(a) = (Ia, Oa) is the signature
of the component and β(a) denotes a behavioral specification of the component
in form of a set of stream processing functions ℘(

−→
Ia →

−→
Oa). Signatures as well as

behavior can now be derived bottom-up through the composition operator as well
as specified top-down using for example functional or state based specifications.

It is possible, to use several specification techniques describing different as-
pects of the same component. Dependent on the form of development process,
it may make sense to start with an incomplete assumption/guarantee specifica-
tion, complete it into a state machine and then hierarchically refine the structure
and decompose the overall behavior into a number of interacting components.
Semantically, we always know, whether the development steps have been cor-
rect, because either they are refinements or we can compare the semantics of a
composed architecture and the semantics of a state machine on the basis of the
sets of stream processing functions that they define.

2.4 Refinement

It is worth to have a deeper look at refinement. Refinement is defined as relation
between mathematical models that exhibits useful properties. Model B gener-
ally is a refinement of A, when implementations allowed by B are all correct
implementations of A. In its simplest form, A and B are sets of implementa-
tions themselves and refinement is realized by the subset equation. This holds
for stream specifications as well as for specification of components, which are
sets of stream processing functions.

The notion of refinement can be extended in two ways: (1) instead of using
a pure semantic relation, constructive transformation techniques are defined,
and (2) if the signature of the components changes then signature mappings for
abstraction and refinement need to be added.

Constructive transformations T can be used instead of using a pure semantic
relation R(., .). They by definition lead to the appropriate refinement. That
means for all models A we have R(A, T (A)). A sequence of transformations
always leads to a refinement of the system. As a consequence, refinement needs to
be transitive. The refinement techniques need to be chosen and defined according
to the methodical steps that the developer needs. While the refinement relation
is defined in a general form concrete transformation steps should be handy,
simple and understandable and thus many kinds of small transformation steps
are useful.

Refinement of State Machines through Transformation. We demonstrate
the general principle of constructive transformations for refinement on the al-
ready mentioned refinement concept for state machines as defined in [58]. We
repeat the list of concrete refinement steps from [52] in Table 1.

Table 1. Refinement transformations preserving or refining semantics of automata
models A = (S,Min,Mout, δ, Init) to T (A) = (S′,M ′

in,M
′
out, δ

′, Init′)

Transformation Condition & Description
Init′ ⊆ Init Removing initial non-determinism
δ′ ⊆ δ Removing non-deterministic transitions (with same input in

same state); constraint: only for reduction of nondeterminism
δ′ ⊇ δ Add transitions: removing partiality of accepted input; con-

straint: not allowed to introduce alternatives to existing tran-
sitions

S′ ⊆ S, δ′ ⊆ δ Removing states not reachable with any finite or infinite transi-
tion sequence

S′ ⊇ S Adding states
S S′ S replaced by S′ with a total, surjective relation that respects

δ′ from S to S′ (adapting δ′ and Init′)
Init Init′ Changing initial state where initial output is infinite
δ δ′ Changing destination state where output is infinite
Min ⊆M ′

in Extending input alphabet: semantics preserved for inputs ofMω
in

that do not contain any of the new messages
S′ = S⊥, δ ⊆ δ′ Chaos complete: adding error state⊥, making transition relation

total using target state ⊥, and allowing any output
δ ⊇ δ′ Compactify: transforming transitions with infinite output to

self-loops

In each case T (A) is a refinement of the original state machine A, if we ensure
that the context conditions (i.e., well-formedness rules and the application rules
for the transformation) are met. Refinement here means, that the semantics
JAK and JT (A)K, which of both sets of stream processing functions, are in the
appropriate relation: JAK ⊇ JT (A)K.

As discussed, (S,Min,Mout, δ, Init) is still not a concrete modeling syntax,
but it exhibits many more concepts of a concrete modeling language. It will
therefore be easier to map a concrete state machine modeling language to these
concepts and then understand, what the appropriate evolution steps on state
machines are to ensure refinement.

Refinement of Architectures. There also is an evolutionary calculus avail-
able that allows to modify the given structure of a decomposed component in a
controlled way, such that the overall behavior defined by the outside specification
is not altered or only refined, when modifying the component internally [47,48].
We call this glass-box refinement. This contrasts both, the black-box refinement,
where only specifications are considered, as well as the decomposition refine-
ment, where a black-box is decomposed into an architecture of communicating
components using a composition operator.

A decomposition refinement actually is a modification of the architecture
(A, sub, σ, β) in such a way that a so far atomic component a ∈ A becomes
decomposed by a set of new components. Glass-box refinement allows to modify
components and their interconnections and thus leads to calculus like the one
presented in Table 2, taken from [47,48], where also the context conditions are
precisely defined.

In addition, the papers [40,41,50,55] also have explored to use architecture
definitions as incomplete views. That means while syntactically equivalent to
an architectural definition, the view only depicts certain components, omits un-
interesting channels and also boundaries, how these components are embedded
into an architecture. A view based specification therefore corresponds well to
the independent modeling of a feature in a high-level form independent of any
technical architecture. And those features can in the development process be
merged into a complete architecture allowing, e.g., an efficient form of variant
management. Again a variety of refinement techniques are possible on views.

Refinement of Component Signatures using Mappings. If the signature
of the discussed components change or the set of messages in a set of streams
changes, then the specifications are not directly comparable. This happens at
many architectural modifications, e.g., if new inputs or outputs are added or a
port is renamed. In this case an abstraction mapping and a representation map-
ping — we call them α and ρ — are necessary to relate the two specifications
respectively their semantics. Details of these mappings differ depending on the
form of refinement. Again it is mandatory that signature refinements are tran-
sitive, which is achieved through function composition on chains of refinement
and abstraction mappings.

As simple refinement for two sets of messages M , N is defined using an
injective ρ : M → N and α(ρ(m)) = m for m ∈ M . Then ρ is an encoding
of the old messages into a potentially more technical representation and α is
the corresponding abstraction. All messages in N \ ρ(M) are not needed and

Table 2. Refinement transformations preserving or refining semantics of architecture
models S = (A, sub, σ, β) to T (S) = (A′, sub′, σ′, β′)

Transformation Condition & Description
β′(a) ⊆ β(a) Behavioral refinement of the specification for component a ∈

A, usually under an invariant Φ that is valid on any system
execution that has this architecture.

A′ = A ∪N Architectural decomposition of an atomic component a ∈ A, i.e.,
sub(a) = ∅, by a set of new components N 6∈ A, where sub′(a) =
N , sub′(N) = ∅ and sub′ = sub otherwise.

σ′
o(a) = σo(a) ∪ {c} Adding output channel to a component that has previously been

hidden internally i.e., c ∈ σo(sub(a)).
σ′
o(a) = σo(a) \ {c} Removing an output channel that is not used by sibling compo-

nents, nor further exported, i.e., for parent p with a ∈ sub(p):
c 6∈ σi(sub(p)) and c 6∈ σo(p).

σ′
i(a) = σi(a) ∪ {c} Adding input channel that is now available, but unused.
σ′
i(a) = σi(a) \ {c} Removing an input channel of a component. This is only allowed,

when the component does not rely on the input channel under
an invariant Φ. This can either be checked syntactically (absence
of use of c) or needs a proof.

A′ = A ∪ {a} Adding a component a is always uncritical. The component may
be added at any level of the hierarchy and read all available
channels. It’s output isn’t used (yet) and thus the modification
is uncritical. (sub′ includes a, β′ extended on a as well)

A′ = A \ {a} Removal of a component a is allowed, when the component has
no impact, i.e., doesn’t emit any channel – σo(a) = ∅ – or it’s
channels are not used anymore (see removing output channels).

A′ = A \ {a} Expanding component structure of a ∈ A, where sub′(p) =
sub(p) \ {a} ∪ sub(a), leading to an expansion of the internal
structure of a into it’s father component p.

A′ = A ∪ {a} Folding a sub-component structure by introducing new compo-
nent a ∈ A and embedding a subset C ⊆ sub(p) in component
a, for instance, sub′(p) = sub(p) ∪ {a} \ C and sub(a) = C.

should therefore not occur in system executions. However, components may react
robustly on those messages, for example by ignoring them.

Components a using M as input on a port p may be refined accordingly.
With ρc(a) and αc(a), we denote the specifications resulting from the signature
change of component a induced by ρ and α. Because specifications are sets of
stream processing functions, ρc and αc are mappings between sets, resulting
in αc(ρc(a)) = a. The latter equality ensures the faithfulness of the encoding
representation.

There are many possible forms to extend encodings. We, for example, can
use a surjective, but not necessarily injective abstraction α, allowing that many
messages in N represent the same abstract message in M . Then ρ is a relation,
but still (α⊗ ρ)(m).

We could represent an abstract message in M by a sequence of messages
in N . This can be described by ρ : Mω → Nω and again α(ρ(s)) = s for
s ∈ Mω. Again, the encoding does not discuss, what happens with illegitimate
sequences of messages, i.e., s 6∈ ρ(Mω), which gives additional freedom when
further refining the resulting specification. However, illegitimate sequences of
messages should not even occur in a system execution, because through proper
refinement of an architecture, the emitting component obeys the same encodings
as the receiving component.

If the encoding covers even several channels, e.g., when mapping an 32-bit
integer into 32 separate binary channels, then ρ and α will be applied on sets of
channels.

Through these various generalizations and the possibility to build chains of
encodings ρ1(ρ2(...)), we finally are able to map abstractly defined components to
concrete components and relate their specifications in in form of an U-simulation
(see [4]). U-simulation uses the idea that the input is mapped down via ρ to a
concrete representation and the output is mapped back via α: The refinement
of component a is therefore ρc(a) = α ◦ a ◦ ρ. This technique is useful, when a
single component is to be refined and shall be used in the original, unchanged
context.

If a complete architecture is to be refined, then it is sufficient to define repre-
sentation mappings for all channels using ρ and apply the representation map-
ping to all components in an architecture. However, ρ also needs to have an
inverse relation with certain properties, to ensure that an encoding is complete
and faithful. [4] calls this refinement under the representation specification ρ or
downward simulation. In that article, upward simulation and U−1-simulation are
defined also.

Relatively simple forms of refinement, namely the renaming of a channel or
the replacement of a set of messages by an equivalent one are easily subsumed
under these forms of interaction refinement. Several of the above discussed glass-
box modifications for a given architecture can also be derived by applying ab-
straction and representation mappings on the architectures.

Refinement of Time. Time is a very special concept. It is worth to take a
deeper look at the possibilities of modifying specifications, that incorporate time.
Above we introduced the tick X to model the progress of time. Precisely, in a
stream two consecutive ticks represent the beginning and end of a time slice. All
time slices in a stream are of equal length, although we do not necessarily need
to know the length explicitly. Furthermore, in all streams on all channels ticks
model the same progress of time.

Initially, the tick was introduced mainly to model delay. With the tick it
became possible to describe, for example, the merge function inductively, which
previously was not possible. When real-time functions became more important
e.g., in the domain of CPS, the tick was also used to represent equidistant
progress of time. Formally, the tick is handled like any other message in a stream,
which means that stream processing functions may react on progress of time.

In particular, we may model timeouts by counting the ticks, which implements
clocks.

Timed streams, therefore, have a very similar power of description compared
to the concept of superdense event structures [35,36]. All messages within a time
slice are known to consecutively follow each other, but nothing is said about the
actual progress of time between them. While in the superdense event structure
[36], each event has a precise time stamp, in streams only the time slice (and the
relative order of events) are known. If real-time comes into play, but the exact
timing is not necessary, it should be possible to define time slices small enough
to accommodate timed behavior specifications. This abstraction might be useful
in specifications especially for underspecification.

Assuming, that a given specification uses a time slice of size t. When refining
the specification to be able to more precisely describe expected behavior, we
might be interested in refining time as well, splitting each time slot into n sub-
slots. Formally, such a refinement is defined by an abstraction mapping α :
Mω

X → Mω
X that filters each consecutive n − 1 ticks, while emitting each n-th

tick. The representation ρ is therefore a relation allowing many different forms
of splits for the time slice, i.e., injecting ticks at different places in a stream.
Time refinement can also be chained, allowing a hierarchy of time slices.

For simulation purposes, it is interesting to relax the constraint that all ticks
model the same time slices. First, we may use channels, where the observed be-
havior differs from channel to channel. We may even allow timed and untimed
channels within the same architecture, which allows us to model system struc-
tures and component behaviors as abstract as desired. Formally, we assume a
minimal and potentially very small time slice t that is available in the whole
system. Each channel is then accompanied with a natural number n (or ∞) de-
scribing the size of its time slice as multiple n ∗ t. For a simple mathematical
description, we may use Xn to denote ticks on a channel with multiplicity n.

A component can then accept a variety of timed channels, allowing to be
internally decomposed into sub-components of different (synchronous) clocks as
well as introducing specification components the main purpose of describing how
timing behavior is handled.

There is a lot more theory available, e.g., there are interesting techniques
to refine time in a state based specification, where each transition describes an
event (including timing events) or describes a time slice [57,4].

Equipped with the above summarized theory, we are in the following looking
at the simulation environment provided by MontiArc and how several of the
above described techniques are practically realized.

3 Architecture Models in MontiArc

MontiArc [20,18,9] is an extensible component & connector ADL [42] allowing
to describe the architecture of hierarchically composed components. MontiArc,
furthermore, comprises languages for definition of data types and the behavior or
of components. MontiArc’s components realize stream processing functions that

01

02

03

04

05

06

07

08

09

10

11

12

13

14

component BumpControl {

port

in Integer dist,

in Boolean alarm,

out Direction dir,

out TimerCMD cmd;

automaton {

state Idling / dir = FORWARD;

state Exploring, Avoiding, TurningLeft, TurningRight;

Exploring -> Exploring dist >= 10 / dir = FORWARD;

// ... remaining transitions ...

}

}

MA

DIRECTION

STOP

FORWARD

BACKWARD

LEFT

RIGHT

CD

TimerCMD

START

STOP

PAUSE

embedded I/O automaton
describing component behavior

textual representation
of component interface

Fig. 4. Textual representation of the component BumpControl controlling the behav-
ior of the BumperBot architecture using an embedded I/Oω automaton emulating the
behavior depicted in Figure 3.

can implement the above discussed timing paradigms. All MontiArc languages
are realized as textual modeling languages with the MontiCore [32] language
workbench, which supports MontiArc’s language extension mechanisms [9]. Mon-
tiArc and its variants have been applied to the software engineering of automo-
tive software [19], cloud systems [45], and robotics applications [51] in indus-
trial [24] and academic contexts [53,54].

Components, such as BumperBot of Figure 4 directly correspond to sets
of stream processing functions. MontiArc architectures support refinement and
composition. The outermost component BumperBot defines the system bound-
ary and through instantiation relations and establishment of connectors between
its subcomponents defines a software architecture in the sense of (A, sub, σ, β)
(cf. Section 2.3). With MontiArc, A is the set of components transitively used
by the outermost component, sub is characterized by the instantiation relation
of the contained components, σ is defined by their incoming and outgoing ports,
and β is defined by the behavior models employed by the instantiated compo-
nents. To this end, MontiArc components yield interfaces of typed, directed input
and output ports through which they receive and emit streams of messages to
from and to the environment (ll. 2-6). Components also are either composed or
atomic: composed components comprise connectors that realize aforementioned
communication channels (cf. Section 2.1) and through which they define their
sub-components’ composition (cf. Section 2.2). Atomic components feature local
variables and an I/Oω automaton describing component behavior (ll. 8-13). An
I/Oω automaton comprises a finite set of states (ll. 9-10), initial variable val-
ues, a set of initial states with optional outputs (l. 9), and a set of transitions
(ll. 11 ff). Every transition has a source state, a pattern of values read on input
ports (inputs) and local variables, a target state, values written to output ports

incoming

«interface»

IPort
«interface»

IComponent
*outgoing

*
*

subcomponents receiver

1..*

�

RTE-CD

BumpControl Dir CmdAlarmDist
BumpControl

Behavior

incomplete

GEN-CDcomponent
implementation

component
behavior

(e.g., automaton)

1

1 111

User RTE

generated
code

Fig. 5. Quintessential interfaces of MontiArc’s run-time environment and how they are
related to the generated implementation of component BumpControl of Figure 1.

(outputs), and values assigned to local variables (assignments). Inputs, outputs,
and assignments may refer to values read from input ports and to values of
variables. Embedding other behavior modeling languages is possible [51]. For
detailed definitions and well-formedness rules see [20,56].

3.1 Transforming MontiArc Models to Executable Java

MontiArc leverages MontiCore’s template-based code generation framework [60]
to translate component models into executable Java artifacts. To this end, Mon-
tiArc parses textual models into abstract syntax trees (ASTs), checks their well-
formedness, and applies FreeMarker [62] templates to transform ASTs into Java
classes that are compatible to a run-time environment featuring component sim-
ulation. This section illustrates this transformation and the next section presents
how the Java classes are employed for simulation.

The code generator of MontiArc aims to minimize memory footprint of ar-
chitectures and operates in the context of a run-time environment (RTE) that
provides functionality required by every generated architecture. To this end, it
provides various interfaces that generated component code as well as parts of the
RTE rely upon. Its quintessential interfaces for describing component structure
are IComponent and IPort, which are implemented by generated component
implementations and their ports as depicted in Figure 5.

Components interact with their environment through sets of incoming and
outgoing ports only and can comprise sub-components (composed components
only) or behavior implementations (atomic components only) that realize, for
instance, the embedded automata. Each emitting port is connected to a set of
receiving ports. This conforms to the Focus property that a sender can transmit
data to multiple receivers. As sending ports are directly connected to receiving
ports, MontiArc does not require to reify connectors (channels) as Java classes.
This reduces the number of required objects at runtime and increases schedul-
ing flexibility. Component implementations take care of creating and initializing

their sub-components hierarchically according to the corresponding architecture
model.

At the core of MontiArc’s simulation capabilities is its scheduling infras-
tructure, which enables simulation of hierarchical architectures of components
following different timing paradigms. Each component may carry its own sched-
uler. Default schedulers are provided, which interact in such a way, that time
progress is ensured and all messages are scheduled in their time slot.

Figure 6 depicts its infrastructure but omits the associations already de-
picted in Figure 5. Aside from IComponent and IPort, the schedulers use the
following classes and interfaces:

– Interfaces IOutPort and IInPort: Both interfaces implement IPort and
enable component developers to send and receive messages respectively.

– Interface ISimComponent provides two methods to the scheduler to ac-
tivate components. Via method handleMessage(port, message), the
scheduler invokes processing the passed data message on port port. The
method handleTick() to make a component increase its internal clock
and emit √ messages on each outgoing port.

– Abstract class AComponent serves a common superclass for generated com-
ponent classes (such as BumpControl) and comprises the component name
as well as an error handler.

– Interface IOutSimPort provides methods to register receivers (i.e., estab-
lish connectors).

– Interface IInSimPort enables to setup the containing component and re-
lated scheduler to outgoing port instances.

– Additional scheduling-related methods to manipulate the state of ports are
provided but omitted in the Figure (e.g., put to sleep, wake up, etc.).

– Interface IScheduler features the setupPort(inPort) method to set
up a concrete scheduler and the registerPort(inPort, msg) method
to trigger scheduling of a certain port and message.

– Interface IPort unifies the use of incoming and outgoing ports throughout
the generated architecture.

– Interface IForwardPort defines incoming ports for decomposed compo-
nents and forwards messages to the connected incoming ports of the corre-
sponding sub-components.

– Class Port is the default port implementation for simulation. To conserve
memory, Port instances are created for incoming ports of atomic compo-
nents only. Through IPort, instances of the connected incoming ports can
be used as outgoing ports and dedicated objects for outgoing port are un-
necessary.

Leveraging interfaces to describe MontiArc’s scheduling facilitates extending
its simulator for different scheduling purposes and timing paradigms. The next
section describes how this infrastructure is employed to realize various timing
paradigms with MontiArc.

The default scheduling can be individually replaced by specific schedulers,
that either know more about the implementation and the order of how messages

�

«interface»

ISimComponent

handleMessage(port, message)

handleTick()

«interface»

IOutPort

send(message)

«interface»

IComponent

setup(scheduler, errorHandler)

«interface»

IInPort

accept(message)

«interface»

IScheduler

registerPort(inPort, msg)

setupPort(inPort)

AComponent

name

errorHandler

«interface»

IInSimPort
«interface»

IOutSimPort
«interface»

IForwardPort

«interface»

IPort

Port

receiver

1..*

receiver

2..*

1 *

**

1 1

setup(com, sch)

RTE-CD

Simulator RTE

User RTE

Fig. 6. Quintessential classes and interfaces of MontiArc’s simulation run-time envi-
ronment as presented in [18].

are processed, or can for example in the simulation be used to experiment with
different possible orders to understand how parallel processing respectively in-
terleaving affects the overall outcome. Default scheduling is underspecified in the
order of executing the messages (within a given time frame).

The default scheduling is also able to manage cycles of communicating com-
ponents. Such a cycle needs to be broken up in order to allow progress. In
accordance to the theory of Section 2, we break each cycle at components that
are strongly causal. Strong causality means that the output of a time slice is
determined by the inputs of the previous time slice, which means that the com-
ponent introduces delay, and the calculation of the following components can
start already based on the predetermined result of the strongly causal compo-
nent. If there is a cycle where no component is a strongly causal, the feedback
composition will not be well-defined and the simulation would correspondingly
get stuck (respectively issues a halting error).

The scheduling order of messages introduces certain form of nondeterminism
that may for example occur, if several messages in different channels arrive in the
same time slot and are individually processed based on a potentially changed
internal state. Introducing our own schedulers allows to control this form of
nondeterminism. Furthermore, for an intensive set of tests of the component
interaction, different schedules should be experimented with.

The very same challenge occurs, if the component itself is underspecified,
allowing different potential implementations. This is for example the case for

nondeterministic state machines, where alternative transitions can be taken with
different reactions and different target states. For an extensive simulation, this
form of nondeterminism is also to be controlled and scheduled using different
alternatives. A typically possible way to control these forms of nondeterminism
is to externalize the choice. I.e. instead of nondeterminism, the choice can be
controlled by an additional external oracle, which may for example be a stream
of binary suggestions. I.e. mathematically, we replace and set of stream process-
ing functions ℘(

−→
I →

−→
O) by a single deterministic function with an additional

input channel
−→
B ×

−→
I →

−→
O). The binary decisions B can be extended to finite

or even unbounded choice if necessary. A given architecture can be adapted ac-
cordingly, such that each underspecified component and each scheduler receive
appropriate oracles. The adapted architecture can be well used for extensive
tests in simulations.

3.2 Simulating Time in MontiArc Architectures

Simulating time of logically distributed and concurrent components in a single
thread requires explicit scheduling, where the schedulers are responsible for mes-
sage processing and the simulation of time. As discussed above, each component
can yield an individual scheduler and a larger variety of scheduling schemes is
possible. Each scheduler decides which sub-component executes next and the
schedulers synchronize incoming data and ticks received on the incoming ports
of components. One strategy is to merge incoming events to a simulated timed
input trace. This trace is then propagated to scheduled components, which in-
ternally process each event and also process timing progress through X-events.

As different applications favor different communication timing strategies –
embedded applications might favor global clocks whereas cloud systems might
benefit from event-driven communication – MontiArc supports all paradigms of
time described in Section 2. As complex architectures can be composed from
components realizing different time paradigms, MontiArc supports registering
different schedulers for each composed component. It also provides a default
scheduler supporting all three timing paradigms through temporal unification.
This is presented in the following.

The foundation of MontiArc simulations are the timed streams discussed
in Section 2. The timing paradigm of a component determines how the tick
messages and data messages of those streams are translated to events, which
are propagated to the component implementation. For composed components
comprising sub-components of different timing paradigms, the distinct timing
behavior is unified to the underlying timed stream paradigm automatically. This
entails not forwarding time events to untimed components and forwarding only a
single message per time interval to time-synchronous components. Where special
translations between different timing paradigms of sub-components are required,
the models have to be adapted to enable proper interaction. This can be achieved
by introducing upscaling and downscaling sub-components [8] that translate
between different timings in terms of a behavior refinement and serve as adapters
between sub-components with different time paradigms.

Component

Scheduler
Specific
Event

Creation

input streams
timed input

trace

〈 a, √, b, √, d, √, e 〉

〈 √, √ 〉

〈 √, c, √ 〉

〈 a, √, c, b, √, d 〉

Timed Comp.
Implementation

Time-Synchronous
Component

Implementation

Untimed Comp.
Implementation

〈 a, √, c, b, √, d 〉

〈 a, c, b, d 〉

〈 〉

a

⊥

⊥

b

⊥

c

timed event
trace

time-synchronous
event trace

untimed event trace

Fig. 7. Unification of time-synchronous streams, timed streams, and untimed streams
into timed input traces.

MontiArc’s default scheduler unifies time in composed components as de-
picted in Figure 7: upon receiving a bundle of streams of the component to be
scheduled, the scheduler synchronizes these streams into a timed input trace. For
each completed time interval in all received input streams, a time event (√) is
present in the produced input trace produced by the scheduler. All data events
are propagated to the component’s input trace in order of their occurrence also.
The scheduler then uses the timed input trace to trigger the scheduled compo-
nent. Time events are raised at the component using its handleTick()method,
data events are raised using its handleMessage() method. The Specific
Event Creation part of a component then creates timing paradigm specific
events that are passed to the concrete implementation of a component.

Unless modeled differently, MontiArc components communicate in a timed
fashion. Timed components react to the progress of time as well as data messages
on each incoming port. Hence, timed components can produce arbitrary many
output messages in a single time slice. Their output is produced in the same
time interval in which the triggering input occurred. The Specific Event
Creation of timed components forwards the received timed input trace from
the scheduler to the component implementation. Hence, the timing domain spe-
cific event trace directly corresponds to the timed input trace.

Time-synchronous components process up to one input event per time slice
and also send up to one message per outgoing port as a reaction to the received
input event. Input events of time-synchronous components are tuples holding
exactly one message (which may be the empty message ⊥) per input channel.
The propagation of messages from timed input streams to time-synchronous
event traces defines the semantics of time-synchronous components operating
over timed streams. The Specific Event Creation takes care of creating
corresponding tuples to liberate component developers from addressing synchro-
nization.

Untimed components are unaware of timing events, but react to data events
only. To this end, the Specific Event Creation filters the tick (√) mes-

sages produced by the scheduler as part of the timed input event trace and
forwards the result to untimed components accordingly.

Components receiving streams of any timing paradigm can refine the time
indicated by these streams as required through decomposing time slices into
smaller slices processed by their subcomponents as presented in Section 2.4.
This corresponds to subcomponents operating in a superdense time where the
time continuum can be decomposed until (through architecture decomposition)
atomic component perform multiple untimed causally-related actions in a single
time slice. Details on realizing the different timing paradigms in MontiArc [20,18]
as well as its implementation and tutorials1 are available.

One of the big advantages ofXs in the simulation are that the modeled time in
the simulation becomes explicit and thus is decoupled from the time necessary to
execute the simulation. The simulation can therefore run much larger time frames
than it needs to execute the simulation, e.g. necessary for climatic simulations,
or vice versa can simulate very tiny timeslots, such as typical for physical atomic
processes. Furthermore, when distributing the simulation to many computational
cores, then individual cores can run different time frames and can even partially
look far into the future, as long as they don’t rely on other older parts of the
simulation from other cores.

With code generation, hierarchical component instantiation, and extensible
scheduling for different timing paradigms in place, MontiArc is suitable to ad-
dress many challenges arising from engineering software-intensive CPS.

4 Discussion

MontiArc supports simulating logically distributed systems of stream processing
functions according to different timing paradigms. This enables exploring and
validating MontiArc architecture in an agile way. Together with its extensible
ADL MontiArc is suitable for rapidly prototyping system models.

The MontiArc simulation realizes the Focus architecture and communica-
tion model. Outgoing ports directly transmit messages to connected incoming
ports and records of these transmissions correspond to Focus streams that de-
scribe the timed communication between sender and receiver. As the MontiArc
simulation aims to minimize the memory footprint of architectures at runtime
and streams are rarely needed during the execution of a simulation, streams are,
by default, not recorded to reduce the amount of allocated memory. However,
for analysis and testing, the relevant ports can be flexibly replaced with test
ports that explicitly record transmitted messages in a stream data structure for
analysis during or after the simulation execution.

Despite the simulation being executed in a single thread with synchronous
blocking method calls, atomic components can be implemented in an event-
based fashion. To this end, the MontiArc runtime system prescribes interacting
interfaces for components and ports that enable its schedulers to stimulate com-
ponents with incoming events. Although the message transmission and event
1 See http://www.monticore.de/languages/montiarc/

http://www.monticore.de/languages/montiarc/

propagation by the scheduler require some real time, no simulation time has
passed when the control flow returns to a component. Consequently, MontiArc’s
simulation is logically asynchronous and event-based, which is suitable to a wide
range of software-intensive CPS.

5 Related Work

A study on architecture description languages discovered over 120 different lan-
guages for different kinds of systems operating in different domains [38]. Of these,
various languages serve modeling the structure and behavior of software-intensive
CPS, including automotive systems [12], avionics [14], consumer electronics [64],
and robotics [61]. The languages focus on different aspects and challenges of
architecture engineering from academic and industrial perspectives. Overall, ar-
chitecture description languages rarely are grounded in a well-defined theory.
Many prominent ADLs rely on theories realized implicitly through their tooling.

In contrast, AutoFOCUS 3 [26] is a tool suite for developing reactive embed-
ded systems that also bases its semantics on Focus [8]. In contrast to MontiArc,
AutoFOCUS 3 cannot leverage the language composition of an underlying lan-
guage workbench and, hence, does not feature MontiArc’s powerful language
embedding mechanisms [9]. Further prominent examples of ADLs with well-
founded semantics are the π-ADL [46], LEDA [10], and PiLar [11], all of which
rest on the π-calculus [44], which lacks the powerful properties of Focus regard-
ing composition of refined components.

6 Conclusion

We have presented how the Focus theory of stream processing functions can be
leveraged to facilitate the model-driven development of cyber-physical systems
through early simulation under consideration of different timing paradigms. To
this end, we summarized refinement and composition in Focus and showed how
automata can employ underspecification to support model-driven specification
in early design stages. Based on this theory, we presented the MontiArc archi-
tecture modeling tool suite and explained how its code generation and simula-
tion capabilities support engineering software-intensive cyber-physical systems
with underspecification and different timing requirements through simulation.
We believe that this combination of well-founded theory and practical modeling
technique facilitates software engineering of cyber-physical systems.

References

1. de Alfaro, L., Henzinger, T.A.: Interface Automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001)

2. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: Tool-
ing Concepts for Seamless, Model-based Development of Embedded Systems. In:
8th International Workshop on Model-based Architecting of Cyber-physical and
Embedded Systems. pp. 19–26 (2015)

3. Bauer, A., Romberg, J., Schätz, B.: Integrierte Entwicklung von Automotive-
Software mit AutoFocus. Informatik - Forschung und Entwicklung 19, 194–205
(2005)

4. Broy, M.: (Inter-) Action Refinement: The Easy Way. In: Program Design Calculi,
pp. 121–158. Springer (1993)

5. Broy, M., Dederich, F., Dendorfer, C., Fuchs, M., Gritzner, T., Weber, R.: The
Design of Distributed Systems - An Introduction to FOCUS. Tech. rep., TUM-
I9202, SFB-Bericht Nr. 342/2-2/92 A (1993)

6. Broy, M., Huber, F., Schätz, B.: AutoFOCUS – Ein Werkzeugprototyp zur En-
twicklung eingebetteter Systeme. Informatik-Forschung und Entwicklung 14(3),
121–134 (1999)

7. Broy, M., Rumpe, B.: Modulare hierarchische Modellierung als Grundlage der
Software- und Systementwicklung. Informatik-Spektrum 30(1), 3–18 (Februar
2007)

8. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

9. Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe, B., Wortmann,
A.: Systematic Language Extension Mechanisms for the MontiArc Architecture
Description Language. In: Modelling Foundations and Applications (ECMFA’17),
Held as Part of STAF 2017. pp. 53–70. Springer International Publishing (2017)

10. Canal, C., Pimentel, E., Troya, J.M.: Specification and Refinement of Dynamic
Software Architectures. In: Software Architecture: TC2 First Working IFIP Con-
ference on Software Architecture (WICSA1) (1999)

11. Cuesta, C.E., de la Fuente, P., Barrio-Solórzano, M., Beato, M.E.G.: An “abstract
process” approach to algebraic dynamic architecture description. The Journal of
Logic and Algebraic Programming (2005)

12. Debruyne, V., Simonot-Lion, F., Trinquet, Y.: EAST-ADL—An architecture de-
scription language. In: Architecture Description Languages, pp. 181–195. Springer
(2005)

13. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber–physical systems. Proceed-
ings of the IEEE 100(1), 13–28 (2012)

14. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley (2012)

15. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Re-
search Roadmap. Future of Software Engineering (FOSE ’07) (2), 37–54 (may
2007)

16. Giese, H., Rumpe, B., Schätz, B., Sztipanovits, J.: Science and Engineering of
Cyber-Physical Systems (Dagstuhl Seminar 11441). Dagstuhl Reports 1(11), 1–22
(2012)

17. Group, O.M.: OMG Unified Modeling Language (OMG UML), Infrastructure Ver-
sion 2.3 (10-05-03) (2010)

18. Haber, A.: MontiArc - Architectural Modeling and Simulation of Interactive Dis-
tributed Systems. Aachener Informatik-Berichte, Software Engineering, Band 24,
Shaker Verlag (September 2016)

19. Haber, A., Rendel, H., Rumpe, B., Schaefer, I.: Evolving Delta-oriented Software
Product Line Architectures. In: Large-Scale Complex IT Systems. Development,
Operation and Management, 17th Monterey Workshop 2012. pp. 183–208. LNCS
7539, Springer (2012)

20. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of In-
teractive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,
RWTH Aachen University (February 2012)

21. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput.
Programming 8, 231–274 (1987)

22. Harel, D., Pnueli, A.: On the development of reactive systems, pp. 477–498.
Springer-Verlag New York, Inc., New York, NY, USA (1985)

23. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Computer 37(10), 64–72 (October 2004)

24. Heim, R., Mir Seyed Nazari, P., Ringert, J.O., Rumpe, B., Wortmann, A.: Modeling
Robot and World Interfaces for Reusable Tasks. In: Intelligent Robots and Systems
Conference (IROS’15). pp. 1793–1798. IEEE (2015)

25. Hoare, C.A.R.: Communicating sequential processes. In: The origin of concurrent
programming, pp. 413–443. Springer (1978)

26. Hölzl, F., Feilkas, M.: Autofocus 3: A scientific tool prototype for model-based
development of component-based, reactive, distributed systems. In: Proceedings of
the 2007 International Dagstuhl Conference on Model-based Engineering of Em-
bedded Real-time Systems. pp. 317–322. MBEERTS’07, Springer-Verlag, Berlin,
Heidelberg (2011)

27. Huber, F., Schätz, B.: Rapid Prototyping with AutoFocus. In: Wolisz, A., Schiefer-
decker, I., Rennoch, A. (eds.) Formale Beschreibungstechniken für verteilte Sys-
teme, GI/ITG Fachgespräch. pp. 343 – 352. GMD Verlag (St. Augustin) (1997)

28. Huber, F., Schätz, B., Schmidt, A., Spies, K.: Autofocus — a tool for distributed
systems specification. In: Jonsson, B., Parrow, J. (eds.) Formal Techniques in Real-
Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, vol. 1135,
pp. 467–470. Springer Berlin / Heidelberg (1996)

29. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-
physical systems. In: Wireless Communications and Mobile Computing Conference
(IWCMC), 2011 7th International. pp. 1666–1671. IEEE (2011)

30. Karsai, G., Sztipanovits, J.: Model-Integrated Development of Cyber-Physical Sys-
tems. Software Technologies for Embedded and Ubiquitous Systems 5287, 46–54
(2008)

31. Klein, C., Rumpe, B., Broy, M.: A stream-based mathematical model for dis-
tributed information processing systems - SysLab system model. In: Workshop
on Formal Methods for Open Object-based Distributed Systems. pp. 323–338.
IFIP Advances in Information and Communication Technology, Chapmann & Hall
(1996)

32. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a Framework for Compositional
Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT) 12(5), 353–372 (September 2010)

33. Lee, E.A.: Cyber-physical systems-are computing foundations adequate. In: Posi-
tion Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap. vol. 2 (2006)

34. Lee, E.A.: Cyber physical systems: Design challenges. In: Object oriented real-
time distributed computing (isorc), 2008 11th ieee international symposium on.
pp. 363–369. IEEE (2008)

35. Lee, E.A.: CPS foundations. In: Design Automation Conference (DAC), 2010 47th
ACM/IEEE. pp. 737–742. IEEE (2010)

36. Lee, E.A.: Constructive Models of Discrete and Continuous Physical Phenomena.
IEEE Access 2, 1–25 (2014)

37. Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. CWI
Quarterly 2, 219–246 (1989)

38. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What Industry Needs
from Architectural Languages: A Survey. Software Engineering, IEEE Transactions
on 39(6), 869–891 (2013)

39. Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Hybrid Systems, pp. 4–35.
Springer (1993)

40. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of Component and Connector Mod-
els from Crosscutting Structural Views. In: Meyer, B. and Baresi, L. and Mezini,
M. (ed.) Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE’13). pp. 444–454. ACM New York (2013)

41. Maoz, S., Ringert, J.O., Rumpe, B.: Verifying Component and Connector Mod-
els against Crosscutting Structural Views. In: Software Engineering Conference
(ICSE’14). pp. 95–105. ACM (2014)

42. Medvidovic, N., Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software En-
gineering (2000)

43. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall (1989)
44. Milner, R.: communicating and mobile systems: the π calculus. Cambridge univer-

sity press (1999)
45. Navarro Pérez, A., Rumpe, B.: Modeling Cloud Architectures as Interactive Sys-

tems. In: Model-Driven Engineering for High Performance and Cloud Computing
Workshop. CEUR Workshop Proceedings, vol. 1118, pp. 15–24 (2013)

46. Oquendo, F.: π-ADL: an Architecture Description Language based on the higher-
order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT Software Engineering Notes (2004)

47. Paech, B., Rumpe, B.: State based service description. In: FMOODS ’97: Proceed-
ing of the IFIP TC6 WG6.1 international workshop on Formal methods for open
object-based distributed systems. pp. 293–302. Chapman & Hall, Ltd., London,
UK, UK (1997)

48. Philipps, J., Rumpe, B.: Refinement of Pipe-and-Filter Architectures. In: Congress
on Formal Methods in the Development of Computing System (FM’99). pp. 96–
115. LNCS 1708, Springer (1999)

49. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer Science & Business Media
(2012)

50. Ringert, J.O.: Analysis and Synthesis of Interactive Component and Connector
Systems. Aachener Informatik-Berichte, Software Engineering, Band 19, Shaker
Verlag (2014)

51. Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and Code Generator
Composition for Model-Driven Engineering of Robotics Component & Connector
Systems. Journal of Software Engineering for Robotics (JOSER) 6(1), 33–57 (2015)

52. Ringert, J.O., Rumpe, B.: A Little Synopsis on Streams, Stream Processing Func-
tions, and State-Based Stream Processing. International Journal of Software and
Informatics 5(1-2), 29–53 (July 2011)

53. Ringert, J.O., Rumpe, B., Schulze, C., Wortmann, A.: Teaching Agile Model-
Driven Engineering for Cyber-Physical Systems. In: International Conference on
Software Engineering: Software Engineering and Education Track (ICSE’17). pp.
127–136. IEEE (2017)

54. Ringert, J.O., Rumpe, B., Wortmann, A.: A Case Study on Model-Based Devel-
opment of Robotic Systems using MontiArc with Embedded Automata. In: Giese,
H., Huhn, M., Philipps, J., Schätz, B. (eds.) Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme. pp. 30–43 (2013)

55. Ringert, J.O., Rumpe, B., Wortmann, A.: From Software Architecture Structure
and Behavior Modeling to Implementations of Cyber-Physical Systems. In: Soft-
ware Engineering Workshopband (SE’13). LNI, vol. 215, pp. 155–170 (2013)

56. Ringert, J.O., Rumpe, B., Wortmann, A.: Architecture and Behavior Model-
ing of Cyber-Physical Systems with MontiArcAutomaton. No. 20 in Aachener
Informatik-Berichte, Software Engineering, Shaker Verlag (2014)

57. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, München, Deutschland (1996)

58. Rumpe, B.: Modellierung mit UML. Springer Berlin (2004)
59. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer Inter-

national (July 2016)
60. Schindler, M.: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UM-

L/P. Aachener Informatik-Berichte, Software Engineering, Band 11, Shaker Verlag
(2012)

61. Schlegel, C., Steck, A., Lotz, A.: Model-Driven Software Development in Robotics
: Communication Patterns as Key for a Robotics Component Model. In: Chugo,
D., Yokota, S. (eds.) Introduction to Modern Robotics. iConcept Press (2011)

62. Tedd, L.A., Radjenovic, J., Milosavljevic, B., Surla, D.: Modelling and implemen-
tation of catalogue cards using FreeMarker. Program 43(1), 62–76 (2009)

63. Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical Computer
Science, Volume B, pp. 133–191. Elsevier (1990)

64. Van Ommering, R., Van Der Linden, F., Kramer, J., Magee, J.: The Koala Com-
ponent Model for Consumer Electronics Software. Computer 33(3), 78–85 (2000)

65. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki, K., von Stock-
fleth, B.: Model-Driven Software Development: Technology, Engineering, Manage-
ment. Wiley Software Patterns Series, Wiley (2013)

	Abstraction and Refinement in Hierarchically Decomposable and Underspecified CPS-Architectures

