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Abstract: Architectural modeling is an integral part of modern software development.
In particular, diverse systems benefit from precise architectural models since similar
components can often be reused between different system variants. However, during
all phases of diverse system development, system variability has to be considered and
modeled by appropriate means. Delta modeling is a language-independent approach
for modeling system variability. A set of diverse systems is represented by a core sys-
tem and a set of deltas specifying modifications to the core system. In this paper, we
give a first sketch of how to apply delta modeling in MontiArc, an existing architecture
description language, in order to obtain an integrated modeling language for architec-
tural variability. The developed language, ∆-MontiArc, allows the modular modeling
of variable software architectures and supports proactive as well as extractive product
line development.

1 Introduction

Today, modeling of software architectures is an integral part of the software development
process [MT10]. Dividing a system into small manageable parts provides an overview
of the system structure, subcomponent dependencies, and communication paths. Archi-
tectural modeling allows reasoning about structural system properties in early develop-
ment stages. Reusing well-defined modular components reduces development costs and
increases product quality. Especially embedded system architectures have to be carefully
designed, because resources like bandwidth or memory are restricted, product quantities
are high, and faults that are detected late are extremely expensive.

Diversity is prevalent in modern software systems, in particular in the embedded systems
domain. Systems exist in many different variants simultaneously in order to adapt to their
application context or customer needs. Software product line engineering [PBvdL05] is
a commercially successful approach to develop a set of systems with well-defined com-
monality and variability. Product line engineering benefits from architectural modeling,
since common components can be reused in different system variants. However, in order
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to develop a software product line, system variability has to be considered in all phases of
the development process, including architectural modeling. This means that the variability
of the architectures in different system variants has to be modeled by appropriate means.

Delta modeling [CHS10, SBB+10, Sch10] is a transformational approach to represent
product variability. It combines the modular representation of changes between system
variants with expressive means to capture the influence of product features. In delta mod-
eling, a set of diverse systems is represented by a designated core system and a set of deltas
describing modifications to the core system to implement further system variants. A partic-
ular product configuration is obtained by applying the changes specified in the applicable
deltas to the core system. The concepts of delta modeling are language-independent.

In this paper, we apply delta modeling to represent variability in software architectures
that are described by the existing architecture description language MontiArc [HKRR11].
MontiArc is designed to model architectures for asynchronously communicating (logi-
cally) distributed systems. In order to express variable MontiArc architectures by delta
modeling, the modification operations that can be specified in deltas over architecture de-
scriptions will be defined. An architectural delta can add, remove and modify components
and alter the communication structure between these components. This reflects the vari-
ability that is induced by different product features. By applying a sequence of deltas to
the MontiArc description of a designated core architecture, MontiArc descriptions for ar-
chitectures of other product variants can be obtained. The resulting modeling language for
architectural variability, ∆-MontiArc, provides means to modularly specify architectural
variability by defining architectural deltas.

∆-MontiArc supports the proactive and extractive development [Kru02] of software prod-
uct line architectures. Hence, it can be used methodologically as an incremental variability
model where components are added or replaced by refined and enhanced versions. This is
in contrast to annotative approaches [ZHJ03, Gom04, CA05], where a model containing
all possible variants is stripped down for a particular feature configuration. Furthermore,
existing legacy applications can be transformed into a product line by specifying the ar-
chitectural deltas that are required to describe the complete product space.

2 Architectural Modeling with MontiArc

Architecture description languages (ADLs) [MT00] support the modeling, design, analy-
sis, and evolution of system architectures. In ADLs, architectures are generally described
in terms of components, connectors and communication relationships. ADLs facilitate a
high-level description of the system structures in a specific domain and support reasoning
about structural system properties [GMW97].

The textual ADL MontiArc [HKRR11] is designed for modeling distributed information
flow architectures in which communication is based on asynchronous messages. It is de-
veloped using the DSL framework MontiCore [GKR+08] that supports the agile develop-
ment of textual domain-specific languages. Following [MT00], architectural components
in MontiArc are units of computation or storage defining their computational commitments
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Figure 1: Architecture of the IntervalControl

via interfaces. Theses interfaces are the only interaction points of components to provide
clear concepts of interaction between entities of computation [BS01].

As an example of a system architecture description in MontiArc, we use an excerpt of an
embedded windshield wiper system. The architecture is graphically represented in Fig-
ure 1. The component IntervalControl receives an interval selection from the driver
and emits a command WipeCmd to control a connected wiper actuator. It is hierarchically
decomposed into a subcomponent IntervalCmdProcessor named icp that calcu-
lates the desired wiper behavior based on the selection and the vehicle speed. In MontiArc,
a subcomponent is either an instance of a component referenced from a separate model,
or a local component definition (similar to a private inner classes in object-oriented pro-
gramming languages). The interface definition of the component IntervalControl
contains an incoming port IntervalSelection, an incoming port vs, and an outgo-
ing port WipeCmd. All ports are connected to the subcomponent icp using connectors.
Ports and subcomponents obey an implicit naming rule. If the used type is unique in the
current component definition, the usage of an explicit name is optional and the artifact is
implicitly named after its type.

Listing 1 shows the textual description of the above described architecture (cf. Figure 1)
in MontiArc syntax. Components are organized in packages (l. 1). A component defini-

1 package wipe;
2

3 component IntervalControl {
4 autoconnect port;
5

6 port
7 in IntervalSelection,
8 in VehicleSpeed vs,
9 out WipeCmd;

10

11 component IntervalCmdProcessor icp;
12

13 connect vs -> icp.VehicleSpeed;
14 }

Listing 1: Structural component IntervalControl in MontiArc syntax
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tion consists of the keyword component followed by its name and curly brackets that
surround the component’s architectural elements. As in the graphical notation, the com-
ponent’s interfaces are described by ports (ll. 6-9). The keyword port and the direction
(in or out) are followed by a communication data type and the port’s name (optional).
Subcomponents that instantiate other component definitions are created with the keyword
component followed by the subcomponent’s type and an optional name (l. 11). Subcom-
ponents that define an inner component are created with the same component definition
syntax as described above.

MontiArc offers several mechanisms to connect subcomponents: the autoconnect
port (l. 4) statement automatically connects all type-compatible ports with the same
name. If the autoconnect statement is parametrized with the keyword type, ports with
the same type are connected. Using this mechanism, the connector from the outgoing port
WipeCmd of component icp to the outgoing port WipeCmd is created in the example.
If it is not possible to create all connections automatically as uniquely identifying names
may not be always given, explicit connections can be created using the connect state-
ment (l. 13) connecting one source port with one or more target ports. If a target or source
port belongs to a subcomponent, it is qualified with the subcomponent’s name. Implicit
connectors can always be redefined by explicit connector definitions.

3 Delta Modeling

Delta modeling [CHS10, SBB+10, Sch10] is a transformational approach for modular
variability modeling. The concepts of delta modeling are language-independent. A delta-
oriented product line is split into a core model and a set of model deltas that are developed
during domain engineering [PBvdL05]. The core model corresponds to a product for
some valid feature configuration. The core model can be developed according to well-
established single application engineering principles or derived from an existing legacy
system. The variability of the product line is handled by model deltas. The model deltas
specify modifications to the core model in order to integrate other product features. The
modifications comprise additions of modeling entities, removals of modeling entities, and
modifications of modeling entities by changing the internal structure of these entities. The
model deltas contain application conditions determining under which feature configura-
tions the specified modifications have to be carried out. These application conditions are
Boolean constraints over the features in the feature model and build the connection be-
tween the feature model and the variability of the product artifacts. A model delta does
not necessarily refer to exactly one feature, but potentially to a combination of features
which allows handling the influence of feature combinations to the artifacts individually.
The number of model deltas that have to be created to cover the complete product space
depends on the desired granularity of the application conditions.

A model for a particular feature configuration is obtained by delta application. The mod-
ifications specified by the model deltas which have a valid application condition for the
respective feature configuration are applied to the core model. To avoid conflicts between
modifications targeting the same model entities, a partial order between the model deltas
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can be defined that determines in which order the model deltas have to be applied if applied
together. The partial order captures the necessary dependencies in order to guarantee that
for every feature configuration a unique model can be generated. Furthermore, the partial
order ensures that a model delta is applicable to the core model or an intermediate model
during delta application. Applicability requires that added model entities do not exist and
removed and modified entities exist. An intermediate model during delta application may
not be well-formed according to the well-formedness rules of the underlying modeling
language. However, after all applicable model deltas are applied, the resulting product
model must be well-formed.

4 Architectural Variability Modeling in ∆-MontiArc

In order to make the ADL MontiArc presented in Section 2 more amenable to product line
engineering, we apply delta modeling presented in Section 3 to MontiArc. This results
in the architectural variability modeling language ∆-MontiArc. The modification oper-
ations that can be specified in model deltas in ∆-MontiArc allow the addition, removal
and modification of all architectural elements of MontiArc, i.e., subcomponents, associ-
ated ports and connectors. The replace operation substitutes a subcomponent by another
subcomponent with the same interface. This allows changing the internal realization of a
subcomponent.

A MontiCore [GKR+08] grammar defining the syntax of ∆-MontiArc is shown in List-
ing 2. Based on MontiCore’s reuse mechanisms, the existing MontiArc grammar can be
extended by the MADelta production defining model deltas for MontiArc descriptions.
The production ArcElement for representing architectural elements, like components,
ports, or connectors, in MontiArc is also reused. A model delta in ∆-MontiArc starts with
the keyword delta (l. 2) followed by the name of the delta. Using the optional after
clause (l. 3), a partial order on the application of model deltas can be defined. The keyword
after is followed by a list of model delta names. The defined model delta has to be ap-
plied after the listed deltas during delta application, if the deltas are applied together. The
keyword when is followed by a logical constraint (l. 5) which defines the application con-
dition of the model delta. The Constraint production represents Boolean constraints
over the feature model and is omitted for space reasons. The changes of a MontiArc ar-
chitecture specified by a model delta are defined using the production MADeltaBody
(l. 7) which may contain an optional (?) ExpandAutoConStatement and an ar-
bitrary number (*) of statements defining modifications of architectural elements. The
ExpandAutoConStatement (ll. 20-21) triggers the MontiArc autoconnect mecha-
nism after the application of delta modifications. The interface Statement is imple-
mented by several productions that allow modifying, adding, or removing ArcElements
from the target model (ll. 11-16). The ReplaceStatement (ll. 17-19) removes a sub-
component oldComp and replaces it with a new subcomponent newComp.

A ∆-MontiArc product line model consists of the core model which is a standard Mon-
tiArc architecture for the core feature configuration and a set of model deltas specfied
using the above syntax. A MontiArc architecture for a particular feature configuration is
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1 MADelta =
2 "delta" Name
3 ("after" predecessors:QualifiedName
4 ("," predecessors:QualifiedName)? )?
5 "when" Constraint MADeltaBody;
6

7 MADeltaBody = "{" ExpandAutoConStatement? Statement* "}";
8

9 interface Statement;
10

11 ModifyStatement implements Statement =
12 "modify" ArcElement ";";
13 AddStatement implements Statement =
14 "add" ArcElement ";";
15 RemoveStatement implements Statement =
16 "remove" ArcElement ";";
17 ReplaceStatement implements Statement =
18 "replace" oldComp:ArcReference
19 "with" newComp:ArcReference ";";
20 ExpandAutoConStatement =
21 "expand autoconnect;";

Listing 2: MontiCore grammar for the ∆-MontiArc language

obtained from a ∆-MontiArc product line model as follows: First, determine the model
deltas that have a valid application condition in the when clause for the given feature con-
figuration. Second, find a linear order of the applicable deltas that is compatible with the
partial order of delta application specified in the after clauses. Third, apply the modi-
fications specified in the model deltas one by one in the given order to the core model. If
the expand autoconnect statement is provided, matching ports are connected using
the autoconnect mechanism, after the architectural modifications specified in the delta.

In order to ensure that the application of every model delta is defined, the following con-
ditions must hold for each model delta during delta application. In the current stage of
language definition, we use a rather restrictive approach. (1) A subcomponent named sc
must not be added to component c, if c already contains a subcomponent named sc. (2) A
port named p must not be added to component c, if c already contains a port named p. (3)
A connector with the target port tp must not be added to component c, if c already contains
a connector with the target tp, or if tp does not exist (as a port in c or a port in a subcompo-
nent of c). (4) An architectural element named ae must not be removed from component
c, if c does not contain an architectural element named ae. A port named p must not be
removed from component c, if c containts a connector with p as its source or target. (5) A
subcomponent named sc must not be removed from component c, if c contains a connec-
tor that has a port that belongs to sc as its source or target. (6) An architectural element
named ae must not be modified, if an architectural element named ae does not exist. (7)
The operator replace can only substitute a subcomponent sc1 of component c with a
subcomponent sc2 (specified by the Target construct), if sc2 has the same interface like
sc1. The new component sc2 will be connected as the component sc1.
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Figure 2: Feature model for the IntervalControl

1 delta DRainSensor when Rain_Sensor {
2

3 expand autoconnect;
4

5 modify component IntervalControl {
6 add port in RainSensorStat;
7 add component RainEval;
8 };
9

10 modify component IntervalCmdProcessor {
11 add port in RainIntensity;
12 };
13

14 }

Listing 3: Model delta adding the Rain Sensor feature

Example To illustrate architectural variability modeling using ∆-MontiArc, we transform
the component IntervalControl presented in Section 2 into a product line of simi-
lar components. The product line of similar components can be described by the feature
model shown in Figure 2. All components have a mandatory feature Interval which al-
lows selecting the interval for the windshield wipers. Optional features are
Vehicle Speed which adjusts the wiping speed based on the vehicle speed and a
Rain Sensor which determines the wiping based on the current rain intensity. As core
model for the delta-oriented product line, we choose the component IntervalControl
shown in Listing 1 implementing the the features Interval and Vehicle Speed.

Listing 3 shows the model delta DRainSensor adding the Rain Sensor feature.
The model delta adds a new component RainEval and an incoming port RainSensor-
Stat for the input from a rain sensor. Furthermore, an incoming port RainIntensity
is added to the component IntervalCmdProcessor receiving the output from the
component RainEval. The connections between the added components and ports are
created by the expand autoconnect statement. Applying the delta DRainSensor
to the core model results in a system with all three features.

In order to obtain a system which only realizes the mandatory feature, we have to pro-
vide a model delta that removes the feature Vehicle Speed. This delta DRemSpeed
is shown in Listing 4. It removes the ports VehicleSpeed from the sub- and supercom-
ponents of the core model. The associated connector is also removed due to the usage of
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1 delta DRemSpeed when !Vehicle_Speed {
2

3 expand autoconnect;
4

5 modify component IntervalCmdProcessor {
6 remove port in VehicleSpeed;
7 };
8

9 modify component IntervalControl {
10 remove port in VehicleSpeed;
11 };
12

13 }

Listing 4: Model delta removing Vehicle Speed feature

expand autoconnect. In order to obtain the fourth possible system variant, realizing
the feature Rain Sensor, but not the feature Vehicle Speed, both model deltas have
to be applied the core model.

5 Related Work

Existing approaches to express variability in modeling languages can be classified in
two main directions [VG07]: annotative and compositional approaches. Annotative ap-
proaches consider one model of all products of the product line. Variant annotations, e.g.,
UML stereotypes [ZHJ03, Gom04] or presence conditions [CA05], define which parts
of the model have to be removed to derive a concrete product model. The orthogonal
variability model (OVM) [PBvdL05] captures the variability of product line artifacts in a
separate variability model where artifact dependencies take the place of annotations. In the
Koala component model [vO05], the variability of a component architecture that contains
all possible components is expressed by explicit components, called switches. Switches
select between component variants in different system configurations playing the role of
annotations. Compositional approaches associate model fragments with product features
that are composed for a particular feature configuration. In [HW07, VG07, NK08], models
are constructed by aspect-oriented composition. In [AJTK09], model fragments are com-
posed by model superposition. In feature-oriented model-driven development [SBD07],
a product model is composed from a base module and a sequence of feature modules.
Additionally, model transformations [HMPO+08, JWEG07] can represent variations of
models, e.g., in [TM10, WF02], architectural variability is captured by graph transforma-
tion rules. Delta modeling [CHS10, SBB+10, Sch10] can be seen as a transformational
approach which provides a modular definition of transformations dependent on feature
configurations.

For architectural variability modeling in [MKM06], a resemblance operator is provided
that allows creating a component that is a variant of an existing component by adding,
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deleting, renaming or replacing component elements. The old and the new component can
be used together to build further components. Instead, in delta modeling, the existing com-
ponent is destroyed since a complete model of the resulting architecture will be generated
by delta application. In [HvdH07], architectural variability is represented by change sets
containing additions and removals of components and component connections that are ap-
plied to a base line architecture. Relationships between change sets specify which change
sets may be applied together similar to application conditions of model deltas. However,
the order in which change sets are applied cannot be explicitly specified. Conflicts be-
tween change sets have to be resolved by excluding the conflicting combination using a
relationship and providing a new change set covering the combination which may lead to
a combinatorial explosion of change sets to represent all possible variants.

6 Conclusion

In this paper, we have presented a first version of ∆-MontiArc to support the flexible mod-
ular modeling of architectural variability by extending the existing ADL MontiArc with
the concepts of delta modeling. In order to guarantee the the uniqueness of the result-
ing artifacts we plan to apply the criteria given in [CHS10] to ∆-MontiArc. We expect
to get more experience from case studies to investigate how to optimize this integration
and compare it with other similar approaches. We are in particular interested in restricted
forms of modifications that add and refine architectures. An appropriate refinement calcu-
lus for this is given in [PR99]. Additionally, we aim at developing a tool infrastructure for
∆-MontiArc. Common language artifacts, like symbol tables, context condition checkers
and model editors, as well as a generator that creates a MontiArc model for a particular
feature configuration by delta application have to be developed. ∆-MontiArc is a promis-
ing language for modeling architecture evolution since delta modeling is flexible enough
to deal with anticipated and unanticipated variability.
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