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Abstract
The composition of different source artifacts is a fundamental mech-
anism formodularization and reuse inmany software languages and
essential for separating distinct concerns and building reference-
able libraries. This form of composition relies on importing for-
eign artifacts, i.e., including code, models, and concepts. Although
importing artifacts is a concept found frequently in software lan-
guages, especially programming languages, there are different ways
of doing so. Current realizations are highly verbose, and there is no
uniform application concept for imports within the modeling dis-
cipline. In this paper, we analyze different approaches to realizing
imports for software languages and identify their advantages and
drawbacks. Based on this information, we elaborate on the benefi-
cial features of different modeling circumstances. This collection
supports future import realizations for languages by guiding the
selection of the correct technique concerning different goals and
corresponding features.

CCS Concepts
• Software and its engineering → Abstraction, modeling and
modularity.
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1 Introduction
Model-driven engineering (MDE) [52] has become increasingly pop-
ular over the last few decades. In overall systems engineering, as
well as specific application domains such as avionics [34], automo-
tive [5], and robotics [64], models are increasingly established and
are gradually becoming the central development documents that
steer the development process. Models are abstract representations
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of an entity or a state of affairs used for a specific purpose [53],
such as analysis or synthesizing executable program artifacts [63].
Typically, they correspond to modeling languages that define the
set of valid sentences and provide corresponding tooling for pro-
cessing, such as parsers, well-formedness rules, code generators,
or interpreters [8]. The discipline for developing such languages,
irrespective of whether for classical programming or modeling, is
called software language engineering (SLE) [36]. New techniques
and procedures are conceived in this domain to efficiently design,
implement, maintain, evolve, and compose languages.

Modeling languages are continuously evolving [17], and their
development process has matured with the establishment of so-
phisticated language workbenches [15]. Likewise, their application
in a wide variety of disciplines is growing. Current modeling lan-
guages, such as UML [46], SysML [47], or its successor, SysML
v2 [49], follow the path paved by programming languages over
the past decades and support the separation of concerns [31, 39]
by providing means to split functionalities into distinct artifacts.
However, since these individual artifacts relate to each other and
interact, they must be able to refer to each other. In programming,
cross-referencing was developed for this purpose, which allows
elements of other artifacts to be accessed externally. Additionally,
import statements allow for pointing at these external entities and
thus achieve inter-artifact operability [19].

In contemporary programming languages (e.g., Java [2], Python
[58], C# [28], C++ [56], etc.) and generally in developing large
software systems, the partitioning of source code into separate
artifacts is widespread. Separation of source code is common in
object-oriented programming [55], where individual instantiable
classes can or must be outsourced to dedicated artifacts. Further-
more, the resulting modularization enables the establishment of
libraries, fostering software component reusability and increasing
development efficiency and quality [21]. Prominent modeling lan-
guages or language families, such as UML [46] and SysML [47], also
adopted this notion, providing concepts for incorporating external
elements. SysML v2 [49], in particular, is prominent in this respect,
as it not only specifies the concept of imports andmodel libraries but
also provides a suitable implementation within the pilot implemen-
tation1. Such concepts for imports and cross-referencing of artifacts
are also occasionally employed by other modeling languages (e.g.,
architecture description languages [18, 26]). Additionally, some lan-
guage workbenches such as Xtext [16], MPS [61], or MontiCore [29]
also come with language components and techniques that facilitate
realizing imports.

Despite numerous implementations in programming languages
and different adaptations in modeling, these realizations are signifi-
cantly different conceptually and in terms of their technical details.
1https://github.com/Systems-Modeling/SysML-v2-Pilot-Implementation
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Thus, these individual solutions have different implications, advan-
tages, and disadvantages. Therefore, for many modeling languages,
engineers must often develop import statement concepts largely
from scratch again and evaluate the various scenarios and applica-
tion use cases. This paper aims to analyze existing approaches and
facilitate future decisions on the type of imports. We explore dif-
ferent import practices from programming and modeling, classify
them, and highlight their benefits and weaknesses. Thus, the main
contributions of this paper are:

• An analysis of the different features of import statements
based on applied languages from programming andmodeling

• An assessment of the implications with (dis-)advantages of
the various mechanisms with respect to different modeling
situations

The remainder is structured as follows. In section 2, we introduce
the background knowledge on the topic. In section 3, we consider
related work and the state of the art concerning import statements.
In section 4, we elaborate on the different features and facets of im-
ports and provide an overview of how these mechanisms function
and what they are precisely referencing. We evaluate the extracted
features in section 5 and indicate useful application scenarios. Fi-
nally, in section 6, we discuss our findings, and section 7 concludes.

2 Background
Our work is mainly focused on import statements for modeling
languages. Therefore, we introduce the corresponding basic termi-
nology and concepts on cross-referencing, importing, and basics
on modeling languages.

2.1 Modeling Languages
For MDE to be applied successfully, models must be unambiguous
and machine-processable. To this end, they correspond to formal-
ized modeling languages that specify the set of valid models and
their explicit meaning. These languages are defined by [10, 11, 25]:
(1) an abstract syntax that describes the internal structure of the
models, stripped of syntactic sugar, (2) a concrete syntax depicting
the actual representation of the models, e.g., textual, graphical, etc.,
(3) a semantic domain that represents the universe into which the
models are mapped [27], and (4) a semantic mapping, giving the
models their actual meaning by linking the syntactic constructs
into the semantic domain.

Such languages can be defined in various ways. Typical ap-
proaches are via (often) context-free grammars (CFGs) [37], meta-
modeling [12, 54], or projectional meta-editing [7]. CFGs enable an
integrated definition of concrete and abstract syntax. Metamodels
only describe the abstract structure of a language. The concrete
(often graphical) representation is created in a second effort via an
editor [41]. Projectional approaches are slightly different by com-
parison. They enable direct manipulation of the internal structure
via projections (textual or graphical). However, these projectional
views must also be defined in advance at the language level.

Regardless of their technological background, all models are
internally represented in the form of an abstract syntax tree (AST).
It only represents the model’s essential structure purged from its

concrete presentation. On the AST, further operations, such as well-
formedness checks [10], model transformations [1, 33], analyses, or
code synthesis via a generator [4, 22, 32, 50] can then be executed.

2.2 Cross-Referencing and Symbol Tables
While input models are parsed internally to ASTs for further pro-
cessing, this alone is generally insufficient. By their inherent na-
ture, ASTs are limited in cross-referencing across this tree structure.
However, since references are necessary in software languages (e.g.,
type usages or function calls), it must also be possible to resolve
such symbolic links across the AST [6]. For this purpose, the notion
of the symbol table [30] has been developed.

Symbol tables are a concept that originated from compiler con-
struction [3], which has been generally adapted for the field of
SLE. Symbols are identified by a unique name [29]. They elevate
the AST into a graph-like structure, which allows efficient cross-
referencing and fast navigation. In general, symbols represent the
essential named constituents of a model, which can be referenced
and accessed internally and externally. In this context, they can
also be augmented with additional information. Overall, symbols
are hierarchically organized in scopes, which span namespaces,
managing external visibility and, thus, accessibility [62]. Modern
language workbenches support resolving via implicit or explicit
realization of symbol tables.

2.3 Import Statements
While symbol management infrastructures enable referencing with-
in an AST, they also allow the establishment of inter-model con-
nections. Symbol tables enable resolving elements across artifact
boundaries using their unique, fully qualified names. In program-
ming languages like Java, this mechanism links modular function-
alities and separates the classes in object-oriented development. A
symbol resolution algorithm enables the resolution of model ele-
ments of a single language and may also support resolution across
language boundaries, thus enabling language aggregation [29].

To facilitate such referencing (or, in some cases, to make it possi-
ble in the first place), import statements [19] have been developed.
These allow pointing at external artifacts or their elements and
thus making them accessible within the namespace of the own
context. This has the effect that referenced symbols in the model
or program code do not have to be addressed as fully qualified but
only need their simple name, which is then completed via the im-
port statement when resolving. Import statements, therefore, act as
access pointers to external sources. Over the past decades, various
realizations of import statements have emerged for a wide range of
software languages. In this paper, we examine their different facets
and features (cf. section 4).

3 State of the Art and Related Work
Various software (especially programming) languages provide im-
port mechanisms with different realizations and implications. The
literature also proposes several approaches and discusses these.
Furthermore, current language workbenches provide different im-
porting defaults for developing modeling languages.
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With the advent of modularization in programming, Felleisen
and Friedman provide a first overview of import (and export) state-
ments in the literature [19]. They argue on the subject of program-
ming languages that modularization also makes sense for smaller
languages. This is a trend that we can also observe in the current
evolution of modeling languages. They use the Scheme program-
ming language [13] to demonstrate how modules can be incorpo-
rated into a software language and how their cross-referencing is
implemented. For this purpose, the term module is first defined as a
set of declarations of functions, constants, and variables, which are
(partially) exposed to the outside and thus made available for exter-
nal use [19]. Elements of such a module are referenced via a unique
module identifier and subsequently imported. The paper also dis-
cusses three different expansion stages of import statements. These
are adapted directly from evaluation strategies for expressions [14]:

Import-by-value addresses the problem that several imported
elements from different modules can have the same name, leading
to clashes in the program code. To tackle this problem, the aliasing
concept is introduced by referencing elements via their export
name in the statement but then renaming them for further use.
This prevents name clashes, as functions, variables, etc., with the
same name can be used via their aliases.

The first mechanism has the disadvantage that the import state-
ment is evaluated directly during the evaluation. This results in
early binding of individual components and a strict processing
sequence (e.g., compilation) of the distinct artifacts. The import-by-
name extension provides a lazy reload strategy. This means that
import statements are only resolved when the corresponding name
of the referenced module is used in the program code. As a result,
imported but unused modules are not loaded unnecessarily.

Import-by-need is a further extension of the evaluation strategy,
which ensures that modules are not only loaded lazily but explic-
itly only once. If an import statement is used multiple times, the
imported module is only loaded once and then cached for further
use, which results in a considerable increase in efficiency.

The efforts around Import2vec [57] also deal with the topic of
import statements in various programming languages. Their pri-
mary focus is more on using modified natural language processing
[9] techniques to detect semantic similarities in libraries. This is
achieved by extracting imports and analyzing their related occur-
rences in the program code. Nonetheless, achieving this requires
addressing the structure and composition of the various import
statements. Overall, six languages are analyzed: Java [2], JavaScript
[38], Python [58], Ruby [20], PHP [40], and C# [28] throughout
distributed repositories. While these statements have many struc-
tural similarities, custom characteristics still need to be addressed
appropriately. These include wildcards, renaming, and diverging
import targets (e.g., individual elements vs. complete source files).

In the work on metasemantic protocols for modeling [51], Ed
Seidewitz elaborates on the prerequisites for self-extension mech-
anisms for modeling languages. This means that languages are
equipped with a generic mechanism that allows modelers to add
new constructs at the model level. Consequently, language expan-
sions are no longer exclusively dependent on the language devel-
opers, thus shifting from the M2 to the M1 level regarding the
Meta Object Facility [43]. Such a metasemantic protocol is the basis

for every self-extension mechanism of a language and the foun-
dation for establishing referenceable model libraries. The work
builds on well-established foundations for programming languages
[35]. These concepts are transferred on the concrete example of the
early phase of SysML v2 [49] and its underlying base language, Ker-
nel Modeling Language [48], thus following the trend of adapting
programming concepts to the world of modeling languages [60].
Establishing such a metasemantic protocol requires concrete and
abstract syntax for its usage in the modeling language and formal
semantics to determine the meaning of these syntactic constructs
[51]. This results in different referencing options, often expressed
throughout import statements. Their different (abstract) syntactic
constructs, as well as implicit and explicit purposes, are explained
in our work.

4 Different Aspects of Import Statements
Over the past decades, numerous different and occasionally con-
tradictory approaches have emerged in the design of import state-
ments. We list these aspects and give examples of their application
in real-world modeling and programming languages. We specify
the precise focus of this work before explaining the different design
features in detail.

4.1 Scope and Terminology
We restrict our analysis accordingly to avoid confusion in which
elements are precisely examined and the choice of terms used. By
import statement, we refer to the syntactic construct for referencing
language-specific artifacts (i.e., files) or elements within them. The
elaboration concerns the different constituents of such statements,
how and where they are realized, as well as their implicit meaning
and potential impact.

The scope explicitly does not include referencing fully packaged
model libraries. We associate the downloading and embedding of
these with dependency management, which is usually realized by
build management tools such as Maven [59] or Gradle [44]. An im-
port statement in the context of this contribution deals exclusively
with the facets of the mechanism enabling access to elements of
one namespace in another. Exchange formats, such as XMI [45], are
also not within the scope of this paper. Although they facilitate the
exchange between different model artifacts, their (de-) serialization
is independent of the actual referencing and, thus, of the import
statements themselves.

For import statements, we will also show examples of concrete
syntactic sentences from real-world languages. These are solely for
comprehension purposes and are no prescription of concrete syntax
per se. For instance, the occurrence of a keyword to indicate an
import statement is typical. For our analysis, however, only its ex-
istence is relevant and not whether the exact name of the keyword
is import, require, or use. Furthermore, cross-language imports,
which are common in language aggregation [29], are neither ex-
plicitly included nor excluded, as their basic features are the same
as regular imports within a single language.

4.2 Import Statement Design Aspects
We explain the different design aspects of import statements and
their various manifestations. Where applicable, we give a tangible
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real-world example. We divide our analysis into three categories: in-
trinsic characteristics, which deal with design decisions of internal
realization; explicitly provided modeling features; and compound
aspects in between.

4.2.1 Intrinsic Characteristics.
Intrinsic characteristics on import statements are mainly concerned
with how they are realized internally. This primarily affects the
technical infrastructure that must be provided for a language. How-
ever, these aspects can also directly influence the modeling to a
certain extent.
A1: Evaluation Strategy An inherent design decision is how and
when import statements are evaluated. Naturally, they are checked
for syntactic correctness and well-formedness during parsing, but
this does not directly imply loading a referenced source. Targeted
resources can either be loaded instantly or lazily. In the case of
instant import, all referenced sources are loaded and processed im-
mediately. With the lazy load strategy, they are only loaded when
they are required for processing. Although this usually has no di-
rect influence on the model’s structure, as described in [19], it can
influence the efficiency of an import mechanism. In the case of
interpreted languages such as Python [58], however, this can even
have a concrete influence on the result, depending on the imple-
mentation, as imported modules are evaluated during loading. If
the time or sequence of this evaluation changes, this also influences
the calculation result.
A2: Import Execution When executing an import, referenced
elements must be loaded and integrated. However, the way in
which this integration is performed has various implications for
the reusability of model parts. As in software development, the
different forms of reusability are also distinguished in modeling.
A complete inclusion makes external model elements available by
copying all elements directly into the own model. This method is
supported, for example, in the graphical modeling tool MagicDraw
[41], which merges external models into its own containment tree.
Another option is a loose coupling of the referenced elements, which
are loaded locally into the memory but technically remain sepa-
rate sources. This is a typical approach in common programming
languages such as Java [2].
A3: Transitivity Import statements naturally incorporate the ref-
erenced elements. However, imported elements again may require
further ones to operate correctly. An important decision, therefore,
lies in how these transitively required elements are incorporated.
One possibility is to design the import mechanism to be not just shal-
low, but also transitive. This would automatically load the elements
required in a transitive yet implicit manner. The Java programming
language [2] supports this paradigm. This means that loaded ele-
ments work without additional effort, such that their elements and
functionalities can be accessed, while transitive class and method
definitions are not explicitly available in the current namespace.
Another possibility is a completely shallow import, which requires
the modeler to explicitly handle transitive dependencies with addi-
tional import statements. This means an increased modeling effort
with greater control and flexibility at the same time. The R pro-
gramming language [23], for instance, offers an option for such
non-transitive imports.

4.2.2 Explicit Features.
Explicit features are concrete syntactic constructs in import state-
ments that pursue a direct objective. These usually add additional
modeling options and either extend the capabilities for importing
or specify shortcuts for improved usability.
A4: Wildcards Import statements reference an external source
that should be loaded and incorporated. This is usually done by
fully qualifying the required source. Additionally, many languages
support using a wildcard in the import statement to combine sev-
eral imports and facilitate usability. The wildcard is an additional
syntactic construct (often expressed as *), which leaves the ex-
act referenced source underspecified and can, therefore, serve as a
placeholder for multiple targets. For instance, the statement import
java.util.* imports several classes and interfaces from the cor-
responding Java library, such as List, Vector, Date, and many
more.
A5: Aliasing Since elements in different modules can have identical
names, name clashes arise when importing several suchmodules. As
a result, the referenced element can no longer be clearly identified.
The principle of aliasing tackles this issue, which allows elements to
be renamed during their import. As a result, the referenced elements
with the same name from external namespaces have a distinct and,
therefore, unique name in the importing namespace. Python allows
such renaming by introducing the additional keyword "as". For
instance, through the statement import vehicles.Automobile
as Car, the external class Automobile is known locally as Car and
can be used.
A6: Visibility Different visibilities for elements are a well-estab-
lished concept in both programming and modeling to configure
their accessibility from the outside. This concept can also be applied
to import statements. In SysML v2 [49], for instance, an import
can be explicitly specified as public or private to indicate whether
imported elements should also be exported again. That is, technical
details or elements that are only relevant for the internal use of a
module can be hidden by private imports. Visibility should not be
confused with transitive imports (see A3), which only implicitly
grant chained access to incorporated object functionalities. Public or
private imports directly influence the number of externally visible
elements.

4.2.3 Compound Aspects.
Compound properties in import statements cannot be assigned to
intrinsic or explicit categories. They are based on internal design
decisions, which can be enhanced by additional explicit modeling
features. Vice versa, there are also (seemingly harmless) syntactic
constructs that can significantly affect internal namespacing.
A7: Import Location While imports make elements of external
namespaces available to their own, their respective position in
the model can have some semantic and technical implications. In
many programming languages, such as Java, imports are specified
at a dedicated position as the beginning of an artifact, making
referenced constituents available in all subscopes of the namespace
spanned by the artifact. In contrast, SysML v2 also allows imports
in any subscopes (e.g., attribute definitions), which enables a more
flexible and distributed import of elements. The two approaches,
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therefore, have fundamentally different meanings since, in the first
case, imports are only possible at the artifact level. At the same
time, flexible localization requires technical support for imports in
every subscope.
A8: Import Targets Although imports fulfill the task of making
external elements accessible, the exact target kind to which the
statement points can vary. Thus, artifacts, language elements, or a
combination of these can be referenced. A classic example of pure
artifact imports is scripting languages such as Bash [24]. Here, only
the path to another script file to be included is specified. It is then
loaded, and its functions are accessible. The exact opposite of this
approach comprises import statements, which point exclusively to
the elements contained in the artifact, regardless of its localization.
An example of this is SysML v2 [49], which uses artifact modular-
ization exclusively for structuring purposes but does not consider
artifact borders in imports. Many programming languages employ
an integration of both approaches. For example, the qualified name
of an import statement (as in Java [2]) is primarily aimed at the ar-
tifact to be incorporated, which methodically has the same name as
the class, interface, etc., to be included. Only when directly referenc-
ing inner classes or static methods and constants does the import
statement also directly contain the name of the referenced language
elements. This means that the statement is split into two parts in
such a combination. The first (main) part points to the artifact to
be imported, while inner elements are specified as its suffix. Other
languages, such as Python [58], introduce an additional syntactic
construct in the import statement, which separates the module ref-
erence from the module content. The statement from automotive
import vehicles.Car thus incorporates the Car class from the
automotive component, allowing the module name and internal
package structure to be treated separately.
A9: Cyclicality Several modeling artifacts can reference each other
and import their respective mutual elements. This results in direct
or indirect cyclic dependencies, which makes the execution order of
affected artifacts indeterminable. While considered a code smell in
many software engineering scenarios, such cycles can occasionally
be practical. In general, there are three main options to deal with
such circular dependencies and the resulting infinite reload loop.
If we prohibit cycles (as in the Go language [42]), we avoid all
negative effects but also deprive modelers of the ability to use them
in a targeted manner. Alternatively, cycles can still be allowed, but
manual import guarding is required. This implies that a modeler
effectively allows modules to be imported under certain conditions.
However, this guarding requires an additional syntactic construct.
An example of this can be found in more traditional languages
such as C++ [56]. An advanced approach to allowing such cyclic
imports would be for the language tool to automatically perform
cycle extraction in the dependency graph of all incorporated artifacts
and process the corresponding ones jointly once (cf. Java [2]).
A10: Relative Imports Classical import statements specify the
absolute (qualified) name of the target to be incorporated. However,
some languages, such as Python [58], also offer the option of rela-
tive import statements. These do not identify the target qualified
from the project root but from the referencing artifact itself. This

can have advantages regarding cleaner source code if the required
functionality is located in a namespace close to your own.

5 Aspect Evaluation for Modeling
Based on the gathered features for import statements, we analyze
their applicability in the context of modeling languages. Finally, we
summarize our results and aggregate the findings into a compact,
configurable set of default import statements suitable for modeling.

5.1 Analysis and Recommendations
While different features may benefit certain domains but not others,
we try to establish a general baseline for modeling. This means that
features will be examined primarily with respect to fundamental
modeling benefits, such as the abstraction of technical details and
consistent integration into a context. Furthermore, we will also
discuss the technical implications of realizing such features to pro-
vide language engineers with an overview of the implementation
requirements. Table 1 aggregates our assessment results explained
in the following.
A1: Evaluation Strategy The choice of evaluation strategy has
minimal impact on the actual modeling experience. However, a
lazy load strategy positively influences the efficiency of the reload-
ing mechanism. Sources only need to be loaded on demand; they
can be buffered for faster multiple access, and unused imports
have no negative effect, as they are ignored by construction. An
instant evaluation strategy leads to the front-loading of all im-
ported sources, whether required or not. Naturally, the dynamic
approach requires the resolve algorithm to reload and manage miss-
ing sources adaptively. Although this mechanism is more complex
than front-loading through instant import evaluation, language
workbenches can provide it generically. This means that a language
developer would only have to use this functionality with regard to
the designed import statements. The lazy load strategy is, therefore,
clearly recommended to ensure loading efficiency even in more
complex modeling languages with many larger models involved.
A2: Import Execution Regarding the type of execution of imports,
loose coupling is clearly preferable to full inclusion. Integrating
external model elements completely into the current model has
rather the characteristics of copy-paste reuse, even if it is performed
automatically by a modeling tool. In comparison, almost all mod-
ern programming languages exclusively use the principle of loose
import coupling. Just imagine modern IDEs loading the complete
program code of the referenced source into the current artifact
upon import. This would completely pollute the code base. The
same applies to modeling. Another disadvantage of complete inclu-
sion is that it is difficult or even impossible to react to changes in a
library, as you are not working on the referenced sources but on
a local copy. This would destroy the agile and integrative nature
of MDE. Therefore, it is essential that the import mechanisms of
state-of-the-art modeling languages are based on loose coupling of
artifacts.
A3: Transitivity Whether imports should be transitive or non-
transitive by default depends mainly on the application domain. In
highly technical areas (such as hardware-related software devel-
opment), customized imports may be required to fill transitively
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Table 1: The various aspects of import statements and their
characteristics assessment concerning modeling.

A1: Evaluation Strategy
instant lazy

A2: Import Execution
complete inclusion loose coupling

A3: Transitivity
shallow transitive

Explicit Features
A4: Wildcards A5: Aliasing A6: Visibility

A7: Import Location
artifact namespace distributed import

A8: Import Targets
pure artifact exclusively elements integration separator

A9: Cyclicality
prohibit import guarding cycle extraction

A10: Relative Imports
absolute relative

Legend:
highly recommended
beneficial
neutral
discouraged
not suitable

required holes, which is easily possible with non-transitive imports.
However, the overall modeling activity is rather abstracted from
technical details, reducing the need for non-transitive imports in
reality. Moreover, transitive imports significantly increase usability.
Otherwise, a modeler would have to manually enter all transitive
imports, which is a tedious and error-prone manual effort. Ac-
cordingly, transitive reloading algorithms should be preferred in
modeling but are also significantly more complicated to implement.
However, such an algorithm can be delivered by default in language
workbenches as basic functionality in a library. Therefore, imports
should operate transitively by default, and only an optional possi-
bility of non-transitive imports should be considered for specific
application domains.
A4: Wildcards The application of wildcards has been widely used
in both programming and modeling over the last few years. They
facilitate referencing multiple model elements with a single state-
ment, thus keeping code and models cleaner and more manageable.

However, in some cases, wildcards could lead to unwanted ambigu-
ities in referencing, resulting in errors in the model. Nevertheless,
this issue can be identified at design time via well-formedness rules,
such that themodeler can bewarned. In conjunctionwith aspectA1,
wildcards show the importance of following a lazy load reloading
strategy to ensure that only the sources actually used are reloaded
for wildcards and not all those in the specified namespace automat-
ically. Additionally, tooling support could automatically refactor
wildcard imports into the respective required explicit ones. Since
these general drawbacks can be compensated by standard valida-
tion rules and recommended evaluation strategies, the advantages
in terms of usability outweigh. Therefore, including wildcards as a
general construct is reasonable and should be supported by default.
A5: Aliasing Aliases alter the names of external entities within the
importing namespace. The primary purpose of this mechanism is
to avoid name clashes with duplicate names from different modules.
Without the aliasing, we would otherwise have to ensure that no
name duplicates exist globally in library artifacts, which is often
beyond a modeler’s control. Furthermore, it creates convenience
functionality for assigning more suitable names during import.
In general, aliasing has no real disadvantage except that, in daily
modeling, it may arguably not be the most frequently used. Overall,
however, they are a helpful and valuable construct that can be
recommended as a default feature for imports.
A6: Visibility Visibilities in import statements help specify which
incorporated elements are exported again to the outside. While
modeling scenarios exist where explicit hiding or forwarding of
employed elements might be helpful, the general benefit is debat-
able. Modeling generally abstracts away from the technical details
of the underlying tooling. In conjunction with the recommended
transitivity (cf.A3), implicit access to all necessary functionalities is
generally provided anyway. Furthermore, an incorrect understand-
ing of this feature and different modeling conventions regarding
visibility during imports can lead to stress and inconsistencies.
Therefore, it can be useful for selected domain-specific languages
or for languages with a general universality claim (such as the
general-purpose language SysML v2 [49]). In most cases, however,
language engineers should refrain from providing this feature.
A7: Import Location Distributed import statements with local
integration are more flexible to use but can lead to more confus-
ing models. Furthermore, saving imports in each spanned scope
must be possible to realize them technically. With imports at arti-
fact level, this only has to happen in one central location for each
file. Even if the infrastructure is of varying complexity, it can be
provided by language workbenches as standard in both cases. For
this reason, we do not express an explicit preference for one of
these two approaches. Generally, language engineers should check
whether decentralization of the import statements makes sense for
the specific modeling language.
A8: Import Targets There are several options for realizing the
various import targets. Pure artifact referencing, as found in script-
ing languages, is, however, largely unsuitable. The elements to be
integrated via import often appear in nested scopes of an artifact,
which must also be referenced in a qualified manner.
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ImportStatement = 

"import" (artQual:ImportQualifier ":")? symQual:ImportQualifier ("as" alias:Name)? ";"

ImportQualifier = QualifiedName ("." star:["*"])? 

QualifiedName = (Name || ".")+;
dot-separated

list of names

artifact delimiter

wildcard

keyword

1

2

3

4

5

6

aliasing keyword

Figure 1: Context-free grammar specifying a standardized version of import statement.

The reverse approach of ignoring artifact names and their loca-
tion on the file system during imports and referencing exclusively
on the basis of the internal scope structure avoids this problem by
design. The advantage is that modelers do not have to deal with
the model artifact itself but only with its content. Nevertheless,
this approach also has a major technical disadvantage: Without
artifact references, it is unclear which file the referenced model
elements are located in. This leads to a massive frontloading of all
potentially relevant artifacts, which represents a significant over-
head. Alternatively, each qualified name must be mapped to the
respective artifact via preprocessing for efficient adaptive reloading.
This approach is generally suitable for larger modeling languages
(such as SysML v2, where the strategy is actually applied), where
database-like infrastructures are available for model management.
For smaller modeling languages and tools, this approach does not
seem transferable without considerable overhead, even if it is prac-
tical from a usability point of view.

An integrated approach, as common in many programming lan-
guages, still allows the artifact to be referenced and seamlessly
transition to the qualification of the internal model elements. This
represents a compromise between ease of use from the modeler’s
point of view and efficient reloading of the artifacts. The only dis-
advantage of this approach is the ambiguity in determining the
artifact boundary. The statement import a.b.c.d.e provides no
information about where the artifact ends, and the internal model
structure begins. The required element could be, for instance, in ar-
tifact a.b, which has a substructure c.d.e, or in artifact a.b.c.d,
which contains element e directly. In this case, several artifacts
must be reloaded. However, such cases should be arguably rare in
reality.

However, this problem does not occur in the last variant, where
a systematic distinction is established between the artifact path and
internal model qualification. Accordingly, there are two qualified
names in the import statement that refer to independent targets.
However, rigorously enforcing this dichotomy creates a modeling
overhead. It is preferable to offer a combination of implicit and
explicit artifact qualification, which allows user-friendly modeling
while also enabling a more precise artifact specification if necessary.
A9:CyclicalityWhether cyclic importsmake sense depends largely
on the objective of the modeling language. Nevertheless, they
should not be forbidden in general, as there can certainly be use-
ful applications. At best, a library that offers import statements
by default should also support cyclic references, with the option
to exclude them by validation rule if they are explicitly not de-
sired. Otherwise, artifact dependency circles should generally be

allowed. However, manually excluding the cycles’ effects via im-
port guarding is discouraged. This is a technical remnant of more
traditional programming languages that modelers should not have
to worry about at this level of abstraction. Automatic cycle ex-
traction is, therefore, the technique of choice to support modeling
appropriately. Naturally, this is also the most complicated approach
algorithmically, but just like in other cases, the functionality can
already be provided by default as an incorporable component in a
language workbench.
A10: Relative Imports While import statements with absolute
qualification are the de facto standard and should be supported in
principle, relative qualifications based on the current artifact posi-
tion are less common. This can result in shorter import declarations
if the required element is in a namespace close to the referencing
location. There is a minor disadvantage for non-tool-assisted refac-
torings, as a reference can become invalid in two ways: when the
position of the reference source or the target changes. Generally,
however, relative imports are an optional feature that can be used
reasonably in specific scenarios.

5.2 Assembling a Standardized Import
Statement

Based on our evaluation results, we propose an import statement
variant with the following syntactic constructs: Wildcards, aliasing,
and a combination of an integrated artifact and symbol path as well
as an explicit separator. Figure 1 shows a context-free grammar
that specifies these import statements. It starts with a correspond-
ing keyword (l. 2) followed by the optional qualifier for the artifact
path. Such an ImportQualifier (l. 4) consists of a QualifiedName,
a dot-separated list of simple names (l. 6), and an asterisk to indicate
a wildcard. The artifact qualifier requires a delimiter or keyword
to mark its range (l. 2). This is followed by the symbol qualifier,
which points to the actual internal element via its unique name.
The artifact qualifier is declared optional, which means that it does
not necessarily have to be used. If the artifact qualifier is omitted,
the symbol qualifier is used in the integrative variant instead, con-
taining both the artifact path and the symbol’s qualification. Finally,
the imported symbol can be renamed using aliasing.

The grammar shown is only intended to serve as an orientation
example for the various features and not to prescribe the concrete
syntax. Furthermore, not all valid instances are useful. For example,
if a symbol qualifier uses a wildcard, there can generally be no
alias, as it would be mapped to an undefined set of import names.
In a language tool, such context-related conditions would also be
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excluded by validation rules. Further constructs, such as visibility,
can also be included. However, this was deliberately omitted here,
as we do not recommend their use in the standard case. Intrinsic and
compound aspects that cannot be mapped directly in the concrete
syntax also apply according to our evaluation.

6 Discussion
The presented work analyzes the foundations of import statements
in literature and various language realizations. While imports are a
well-known concept in programming, there has been no overview
of their various realization aspects, as well as their advantages
and disadvantages. Our work provides this elaboration concerning
modeling languages.

On the one hand, our contribution guides language developers on
which aspects are appropriate to consider for their particular import
realizations. On the other hand, we also provide a comprehensible
set of conceptually reusable, configurable standard import variants.
We wish that major language workbenches will offer similar ones
in their libraries. Some large language workbenches, such as Xtext
[16], MPS [7], and MontiCore [29], already come with standard
mechanisms for this. However, providing configurable support
for the various standards would be beneficial to relieve language
developers of redundant work and offer them a selection of pre-
tailored statements for multiple purposes.

Our work is based on our years of experience with software lan-
guages in general, as well as their different forms of composition,
both on language and model level, but also on modeling as a partic-
ular application area. Thus, our results are also subject to threats to
validity, as usual when assessing certain features. Threats to inter-
nal validity exist in terms of our evaluation of the individual aspects
and their characteristics, as these can be influenced by personal
experience. To reduce this, we evaluated the aspects dedicatedly
against requirements for modeling in general. We also involved
colleagues from academia and industry to incorporate their as-
sessment of specific characteristics. Threats to external validity do
exist, as we cannot cover all aspects of import statements within
the scope of this paper. Also, our classification does not perfectly fit
every realization of imports, as there are different implementations
that can overlap certain aspects. However, these can be regarded as
relatively small, as a variety of state-of-the-art software languages
were included in our investigation. Furthermore, our work aims to
provide a basis for most modeling languages, for which not every
feature, no matter how exotic, is usually required.

Other noteworthy aspects that we have not addressed in detail
are, for example, further extension variants in the wildcards. It
would also be possible to use several wildcards simultaneously in
the qualified path statement, which would open up several resolve
branches. Similarly, recursive wildcards could be defined, which
include not only all sources at a single level but also all contained
substructures. Furthermore, programming languages such as Java
[2] differentiate between static and non-static imports. This makes
sense in the object-oriented context of this language, but cannot
necessarily be mapped to general modeling scenarios, which is why
we have deliberately excluded such features. In general, languages
can also employ multiple syntactically different import statements,

e.g., explicitly separate imports for different sources (e.g., in lan-
guage aggregation [29]). This practice can be valuable, but it is the
same principle with different keywording, which is why we do not
consider it in any more detail. While there will always be special
cases our work cannot cover, we provide a reasonable baseline for
developing import concepts from a common foundation.

7 Conclusion
Language engineering is continuously improving, and modern
frameworks already offer a variety of standardized functionalities
and design patterns. Our work contributes to this standardization
by analyzing the aspects and features of import statements of state-
of-the-art software languages. Furthermore, we have explained
their implications in the context of MDE, whereby a configurable
set of predefined import statements can be derived. Our aim is that
this results in a more homogeneous and, therefore, more reusable
collection of imports in the future, which can be applied universally
across different language workbenches.
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