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Abstract. Software development for robotics applications is a sophisticated en-
deavor as robots are inherently complex. Explicit modeling of the architecture
and behavior of robotics application yields many advantages to cope with this
complexity by identifying and separating logically and physically independent
components and by hierarchically structuring the system under development. On
top of component and connector models we propose modeling the requirements
on the behavior of robotics software components using I/Oω automata [29]. This
approach facilitates early simulation of requirements model, allows to subject
these to formal analysis and to generate the software from them. In this paper,
we introduce an extension of the architecture description language MontiArc to
model the requirements on components with I/Oω automata, which are defined
in the spirit of Martin Glinz’ Statecharts for requirements modeling [10]. We fur-
thermore present a case study based on a robotics application generated for the
Lego NXT robotic platform.

“In der Robotik dachte man vor 30 Jahren, dass man heute
alles perfekt beherrschen würde”, Martin Glinz [38]

1 Introduction

Robotics is a field of Cyber-Physical Systems (CPS) which yields complex challenges
due to the variety of robots, their forms of use and the overwhelming complexity of the
possible environments they have to operate in. Software development for robotics ap-
plications is still at least as complex as it was 30 years ago: even a simple robot requires
the integration of multiple distributed software components. Successful robotics appli-
cations – for example the RoboCup1 contributions to robotic soccer and service robotics
– are usually the joint effort of teams of domain experts. The results are integrated into
experimental, monolithic and hardly adaptable or reusable platforms [22,33].

While software reuse in robotics has been intensively pursued within the last five
years [6,5], most approaches focus on some form of component-based software engi-
neering (CBSE) reusing binary components [26,24], whereas modeling techniques have
been proven useful in several other domains [27,1] to reduce the “accidental complexi-
ties” [9] arising from the gap between problem domain and implementation domain.

1 http://www.robocup.org/
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Modeling the architecture of robots yields many advantages to cope with these
complexities. Architecture descriptions allow to identify and separate logically and
physically independent components and to hierarchically structure the system under
development. Models are language-agnostic, can be provided by domain experts, are
highly reusable and may be better suited for formal analysis than code written in gen-
eral purpose languages (GPLs). Furthermore, executable models may be transformed
into the target system using software engineering knowledge embodied in generation
tools, liberating the domain experts from becoming software engineering experts. We
use the architecture description language (ADL) MontiArc [13] to model and simulate
distributed, hierarchically decomposed, service robotics systems. This means we can
model robots as Component and Connector (C&C) architectures, where a component
is a unit performing computations and the information flow between components is de-
fined by unidirectional connectors between typed ports of the components. MontiArc
enforces stable component interfaces, thus the components and their requirements may
be developed independently, minimizing integration effort.

Statechart descriptions are an amenable mechanism to model interactive systems
[14,10]. We use I/Oω automata to model requirements for the runtime behavior of com-
ponents and subsystems. Following the idea to describe requirements in Statechart lan-
guages “as simple as possible, as rich as needed” [10], we present a variant of I/Oω

automata [29] to model requirements on the input and output reaction of components
in the architecture of robotic systems. This approach to requirements modeling yields
several advantages:

– I/Oω automata allow underspecification in two forms: (1) incompleteness of trig-
gers to only regulate the reaction to inputs of interest and (2) nondeterministically
overlapping triggers to restrict possible behavior as desired.

– Incomplete I/Oω automata can be composed as well as refined to more detailed and
complete behavior.

– The use of a Component & Connector architecture description language makes
communication and dependencies explicit in the models.

– Due to the embedding into MontiArc components, requirements may be modeled
and simulated independently, incrementally and bottom-up by different domain ex-
perts, thus facilitating the evolutionary development of the requirements models as
proposed in [34,11].

– The models may further be validated automatically by means of model transfor-
mation into other formalisms. A translation of I/Oω automata to the model checker
Mona [8] for analysis tasks, e.g., refinement checking is presented in [16].

We illustrate the requirements modeling using an example coffee service applica-
tion in Section 2, before we describe the semantics of the I/Oω automata modeling
language in Section 3. In Section 4, we show how models of this language may be
utilized to generate executable implementations, discuss related work in Section 5 and
finally conclude our approach to requirements modeling for robotic systems in Section
6.
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Fig. 1. A scenario where one coffee robot encounters another coffee robot in opposite direction
on a common path.

2 The Coffee Service Example

We present a simple example of a coffee service robot. The objective of the robot is
to drive to a coffee machine and pick up coffee that it delivers to coffee drinkers at
different locations. To deliver coffee the robot follows marked lines on the floor for
orientation. If a coffee fetching robot encounters another one on the same line but in
opposite direction it either has to wait for the second robot to give way or has to give
way itself (sidestep maneuver). This situation and the sidestep maneuver are shown in
Fig. 1.

MontiArc

UltraSonicSensor

LightSensor 
 lsLeft

LightSensor 
 lsRight

LineStatusCmp

AvoidCrash

ManeuverControl

Motor 
 mLeft

Motor
 mRight

Timer

Fig. 2. A partial overview of the architecture of the coffee fetching robot presented as a MontiArc
model. Sensors (ultrasonic and two light sensors) are aligned to the left and actuators (two motors)
are aligned to the right.

The engineering team already created the partial C&C architecture of the cof-
fee fetching robot shown in Fig. 2. The main component of the architecture is the
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AvoidCrash component. It receives input from an ultrasonic sensor and informa-
tion from component LineStatusComp whether the two light sensors have correctly
captured the line to follow. Other robots are detected via the ultrasonic sensor by mea-
suring the distance to the next object.

MontiArcAutomaton

AvoidCrash
Distance frontUS

MotorCmd cmd

frontUS: tooClose 
    / cmd: backRight

wait

frontUS: tooClose 
    / cmd: stop

frontUS: noObj 
    / cmd: fwd

/ cmd: fwd

backup

driving

Fig. 3. Initial and incomplete model of the input and output behavior of component
AvoidCrash given as an I/Oω automaton.

An engineer has described requirements for the input and output behavior of compo-
nent AvoidCrash as the I/Oω automaton shown in Fig. 3. Component AvoidCrash
has to start in an initial state driving and to output the message fwd on its out-
going port cmd of type MotorCmd. This triggers the engines to drive forward. The
possible messages that can be sent on the port cmd are the values of the enumera-
tion type MotorCmd shown in the class diagram in Fig. 4. If the component receives
a tooClose message in state driving it should either send the motor command
backRight to back up away from the line in a right curve to let the second robot pass
or it should send the motor command stop and wait until the ultra sonic sensor reports
that the robot detected earlier has disappeared.

«enumeration»
MotorCmd

stop
fwd
…
back
backRight
…
turnRight

«enumeration»
Distance

tooClose
ok
noObj

«enumeration»
LineStatus

lostLeft
ok
lostRight

«enumeration»
TimerCmd

reset
delay
…

«enumeration»
TimerSignal

alert
…

CD

Fig. 4. UML/P class diagram of the enumerations used as message types on input and output ports
of the AvoidCrash component.
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The requirement specification in Fig. 3 is rather incomplete. Over time, the en-
gineernig team needs to detail the required behavior of the robot during the sidestep
maneuver. As more knowledge of the system under developent is aquired, the early re-
quirements are typically refined into more detailed behavior descriptions. Ideally, con-
tinous refinement of requirements leads to an implementation.

A refined version of the I/O behavior definition of component AvoidCrash is
shown in Fig. 5. This version details the handling of the sidestep maneuver: the com-
ponent sets a timer by sending the delay command to a timer component. The timer
is expected to respond with an alert message once the delay has elapsed. The robot
then has to stop motors at its remote position and wait until the second robot has cleared
the line. It then should issue a fwd command to the motors to return to the line. This
description of the system’s input and output is detailed enough to simulate exemplary
system runs.

MontiArcAutomaton

AvoidCrash
frontUS: tooClose 
    / cmd: backRight,
      timer: delay

wait

frontUS: noObj 
    / cmd: fwd

ts: alert 
    / cmd: stop

frontUS: tooClose 
    / cmd: stop

frontUS: noObj 
    / cmd: fwd

MotorCmd cmd

TimerCmd timer

/ cmd: fwd

Distance frontUS

TimerSignal ts

observe

return

driving

backup

Fig. 5. An I/O specification for component AvoidCrash with additional details about the
sidestep maneuver once an obstacle is detected.

The examples demonstrate some features of the message passing semantics of I/Oω

automata for describing required I/O behavior. This model allows communication be-
tween components on an event or command level. An example for this high-level com-
munication is sending the fwd command only once and not in every execution cycle
in that the robot should be driving forward. I/Oω automata however also allow contin-
uous sending of data messages as for example done by the ultrasonic sensor on port
frontUS. These values are only read on transitions when necessary.

Working towards a behavior implementation based on I/Oω automata, the coffee
fetcher development team decided for a resolution of the nondeterminism between the
sidestep and the stop and wait maneuver. If the robot carries a fresh cup of coffee the
second robot has to sidestep (saving time for the robot that delivers the coffee). Please
note that the target locations are arranged in a tree like structure around the coffee
machine and thus no two robots with fresh coffee will ever face each other in opposite
directions. The refined version of the AvoidCrash component is shown in Fig. 6.
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MontiArcAutomaton

AvoidCrash
frontUS: tooClose,
gotCoffee: false
    / cmd: backRight,
      timer: delay

wait

frontUS: noObj 
    / cmd: fwd

ts: alert 
    / cmd: stop

frontUS: tooClose 
gotCoffee: true
    / cmd: stop

frontUS: noObj 
    / cmd: fwd

/ cmd: fwd
MotorCmd cmd

TimerCmd timer

ls: ok /

Distance frontUS

TimerSignal ts

Boolean gotCoffee

LineStatus ls

wait

observe

return

driving

backup

Fig. 6. Updated version of component AvoidCrash with nondeterminism between sidestep and
stop and wait action resolved.

Furthermore the team decided that when driving back from the remote position the
message that the line was found (value ok on port ls of type LineStatus) should
trigger the transition to the initial driving state.

The examples from Fig. 5 and Fig. 6 show that messages on multiple input and
output ports can be received or sent from single transitions. This feature can, e.g., be
used if transitions are guarded by values read from sensors or dependent on an external
state like the value on port gotCoffee.

The first version of the AvoidCrash component from Fig. 3 is modeled with
an incomplete interface and only a few required output messages in response to its
local state and the limited inputs known. The last version shown in Fig. 6 is much
more detailed and many decisions are fixed. All versions of I/Oω automata can easily
be used for code generation and simulation. However, if the automaton in partially
underspecified, choices need to be made [29]. The more detailed, the more functionality
we ca test, simulate or use. We consider it a benefit of the language that an engineer can
easily sketch requirements as partial models but also create detailed behavior models.

3 I/Oω Automata Modeling Language

We use the architecture description language (ADL) MontiArc [13] to model robotic
systems. The top level elements offered by MontiArc to describe interactive distributed
systems are components and connectors following the definitions of Medvidovic and
Taylor [21,37]: components encapsulate subsets of the systems functionality and reg-
ulate access via explicitly defined interfaces. Connectors allow and regulate the inter-
action of components. Component interfaces in MontiArc are sets of directed (either
input or output) typed ports. The type associated with a port determines the possible
messages a component may receive or send on that port.

In MontiArc and its underlying semantic model FOCUS [4] a component is either
atomic and its behavior is defined explicitly or a component is decomposed and its be-
havior is defined solely based on the structural composition of the behaviors of its sub-
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components. Models of decomposed components represent configurations of subsys-
tems (relations between components and connectors). MontiArc cleary distinguishes
between the definition of a component and its instantiation, but allows to efficiently
define and instantiate components where desired. It also supports powerful typing, in-
stantiation, and parametrization mechanisms as described in [13] that allow, e.g., the
definition of generic components and reuse by instantiation and parametrization.

The ADL MontiArc does itself not provide a language to model the input and output
behavior of its components explicitly (implicit definitions are possible using embedded
constraint languages). We have thus extended MontiArc by embedding I/Oω automata
as form of component definitions. Our implementation of this DSL using the Monti-
Core framework is called MontiArcAutomaton. We use the terms I/Oω automaton and
MontiArcAutomaton automaton interchangeably in this paper.

3.1 MontiArcAutomaton Language Elements

The purpose of the modeling language MontiArcAutomaton is to model I/Oω automata
that describe requirements on the input and output behavior of software components.
State-based descriptions are an amenable mechanism to model requirements for inter-
active systems [14,10].

The language elements added to MontiArc components in order to model com-
ponent behavior are local variables, states, and transitions. Variables can be used by
automata to store intermediate values to, e.g., implement counters or timers. A transi-
tion connects a source and a target state and has an optional guard, input block, and
output block. Variables, states and transitions are only visible inside a component and
all communication between components is made explicit via ports and connectors. Via
local variables to counter state space explosion, via the rich composition operators of
ADLs, and via explicit communication mechanisms we believe to make our require-
ments language accessible, easy to understand, and yet powerful enough as motivated
in [10].

The input block of a transition defines patterns of events and messages received on
incoming ports or stored in the local variables of the component that together with the
guard activate the transition. A guard is a predicate over the messages on input ports
and values stored in local variables. Guards in MontiArcAutomaton can be specified
using OCL/P [30,31] our MontiCore implementation of OCL.

A component’s reaction to an input is specified in the output block of a transi-
tion. The output block is a set of pairs of output ports and the messages or streams of
messages that are sent as a reaction to the input. The output block also may contain
assignments to update the local variables of a component.

In the language design of MontiArcAutomaton we deliberately omitted an action
language known, e.g., from UML [12]. We believe that requirements for the behavior
of interactive components are best described and understood on an abstract and not too
implementation oriented event- and message-based level while an action language often
degrades into a programming language itself.

Please note that when implementing a Cyber-Physical System each component
should have exactly one corresponding implementation. In our case we can have multi-
ple I/Oω automata denoting requirements on the behavior of a single atomic component.
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We furthermore can have I/Oω automata describing the behavior of a decomposed com-
ponent and thus imposing requirements on the implementation of its sub components.

3.2 Semantics of I/Oω Automata

The semantics of I/Oω automata is described as sets of stream processing func-
tions [3,4,28]. Each stream processing function (SPF) describes one realizable behavior
(i.e., an implementation) of the desired system. The SPF corresponding to a MontiArc
component maps one input stream bundle to one output stream bundle. The input stream
bundle contains streams for each input port of the component and the output stream bun-
dle contains streams for each output port of the component. For a formal definition of
I/Oω automata semantics see [29] and the MontiArcAutomaton website [17].

When defining requirements for the behavior of an interactive system we typically
allow many different concrete implementations. To be able to define these requirements
in way that is not too restrictive and too implementation oriented I/Oω automata of-
fer various features to model underspecified behavior and express partial knowledge
by allowing nondeterministic choice between enabled transition as well as completely
unspecified behavior when no transition is enabled.

3.3 Language Features for Partial Knowledge and Requirements

Partiality of models and ways to express underspecified behavior are important when
modeling requirement scenarios [35]. Modeling requirements and partial knowledge
available is supported by I/Oω automata in multiple ways. These mechanisms can be
used to express the level of confidence of the completeness of the behavior and behav-
ior requirements modeled. The most complete level is achieved when the I/Oω automa-
ton handles all input messages of interest and defines according outputs in all states.
The I/Oω automata language allows to introduce nondeterminism by modeling multiple
transitions activated for the same input to describe alternative behaviors.

The set of states and transitions of an automaton can be interpreted as incomplete.
This means that the transitions shown only denote required behavior. Nothing is speci-
fied about the I/O behavior of the system if no transition is activated. An implementation
or refinement of the required behavior can add states and transitions where previously
no behavior was defined.

Another notion of incompleteness is when the set of states is completely known
but further transitions might exist. This requires again any implementation to behave
according to the defined input and output behavior. In case an undefined input (com-
bination) is read, the output of the component is arbitrary but the component has to
continue computation from its current state. Thus state changes can only happen via
transitions defined in the automaton by the requirements engineer.

Note that state and transition complete I/Oω automata are not required to explicitly
handle inputs from all incoming ports. In our semantics described on the MontiAr-
cAutomaton website [17] this simply means that all possible inputs on the ports not
considered would have no effect on the modeled behavior and are thus ignored.
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4 Code Generation and Case Study

We use models of the MontiArcAutomaton [17] language to describe the required run-
time behavior of systems modeled as component architectures. Based on the comple-
tions described in Section 3.3 we can utilize MontiCore’s template based code gener-
ation toolchain [32] to generate executable component architectures directly from the
requirements specification. MontiCore’s compositional approach to language develop-
ment allows to generate code for different target platforms easily [18]. We are applying
MontiCore code generators for I/Oω automata to first model the requirements of the
coffee service illustrated in Section 2 and subsequently generate executable code from
detailed behavior descriptions in our current service robotics course.

The participants use Lego NXT kits and the Lego Java Operating System2 (leJOS)
to build three robots (cup dispenser, coffee fetcher, coffee preparing robot) working to-
gether to provide the coffee service illustrated in Section 2 over the course of a semester.
We provided the MontiArcAutomaton language, several MontiArc components wrap-
ping the sensors and actuators provided by leJOS, initial requirements as user stories
and a source code generator targeting leJOS. The students work in groups on different
parts of the system using I/Oω automata to model the requirements of the components
they develop. In doing so, they evolve sequences of requirements models that, bottom-
up, converge against the desired system behavior.

Fig. 7. The three Lego NXT robots providing the coffee service.

2 http://lejos.sourceforge.net/
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The source code generation uses the framework introduced in [32], i.e., we have pro-
vided templates and template operators capturing the transformation of MontiArcAu-
tomaton models to leJOS compatible Java code. Therefore, we imposed a three layer
architecture (sensors, logics, actuators) on the participants, depending on the leJOS
API only in the sensors and actuators layers. This easily allows to subject the busi-
ness logics layer to simulation and to port it to other robots. The target implementation
details (e.g., programming languages, robot APIs, libraries) only depend on the genera-
tor templates, thus it is straightforward to generate for different targets (developing the
prototype of a code generator for leJOS Java took us two days).

5 Related Work

Research in robotics software reuse produced to a number of CBSE frameworks
[7,2,5,20,24,33] and other approaches to modular robot architectures [39,26,19], while
modeling robot behavior has received less attention [23,40,25]. Integrated architecture
and behavior modeling is even less common. The approach proposed in [33] to model
components with embedded partial statecharts to be filled by the developer follows a
“freedom from choice” approach: the developer, for example, is forced to use state-
charts for behavior modeling and C++ as target language. MontiArc instead allows to
embed arbitrary domain specific languages developed with MontiCore into the com-
ponents (e.g., Java/P [32]) and to generate source code for arbitrary target platforms.
Besides the research in dedicated robotics modeling, there are several other modeling
languages and frameworks available to model both system architecture and behavior
requirements.

The System Modeling Language3 (SysML) is a variant of UML which features,
among others, the internal block diagrams ADL and state machine diagrams. While
SysML can be used to model overall system requirements a priori [15,36] there yet are
not approaches to incrementally model the behavior requirements of CPS in a form,
such that the models may be subjected to simulation at each instant. While it further is
possible to use statecharts instead of I/Oω automata, this would require to modify the
semantics of until these result in a more complex form of I/Oω automata – which we,
following [10], want to avoid.

6 Conclusion

We have shown how the embedding on I/Oω automata into MontiArc components can
be used to evolutionary model partial requirements on the behavior of a certain type
of CPS. The resulting MontiArcAutomaton language allows to model both architecture
and behavior of the system under development incrementally, bottom-up and in a dis-
tributed manner. We have illustrated syntax and semantics of the MontiArcAutomaton
language and discussed that these can be used to easily develop code generators for
different platforms.

3 http://www.sysml.org/
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Interesting directions for future work include an evaluation of the usefulness of the
modeling language for describing the requirements and developing the control logic of
robotic systems (partially done based on the current student lab described in Section 4).
We are also interested in extending our initial analysis framework for combining mul-
tiple models and analyzing the evolution of requirements as well as to automatically
discover contradicting (sets of) scenarios.
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