
A Model-based Software Development Kit for
the SensorCloud Platform

Lars Hermerschmidt, Antonio Navarro Perez, and Bernhard Rumpe
{hermerschmidt, perez, rumpe}@se-rwth.de

Department of Software Engineering,
RWTH Aachen University,

Aachen, Germany

Abstract. The development of software for the cloud is complicated
by a tight entanglement of business logic and complex non-functional
requirements. In search of a solution, we argue for the application of
model-based software engineering to a particular class of cloud software,
namely interactive cloud software systems. In particular, we outline an
architecture-driven, model-based method that facilitates an agile, top-
down development approach. At its core it employs a software archi-
tecture model that is augmented with additional aspect-specific models.
These models serve as concise, formal, first-class specification documents
and, thus, as foundation for tool-supported analysis and synthesis, in par-
ticular, code generation. We hypothesize that many crucial cloud-specific
non-functional requirements can be satisfactory addressed on the archi-
tecture level such that their realization in the system can be synthesized
by tools with small impact on the business logic.

Note: This paper is based on the technical report clArc – Architecture-
Driven, Model-based Engineering of Cloud Software which is currently in process
of publication in the Aachener Informatik Berichte series.

1 Introduction

The number of software-driven embedded devices has been growing for decades.
Such devices perceive and affect the real world, serve a multitude of diverse
purposes, and are found in many public, industrial, and domestic places. They
control vehicles, traffic infrastructure, factory machines, power plants, and en-
ergy grids. They measure electricity, temperatures, fill levels, global positioning,
velocities, and operating conditions, or capture visual and audio information.

Enabled by the ongoing pervasiveness and sinking costs of internet connec-
tivity, more and more embedded devices are no longer locally isolated but glob-
ally accessible and globally interconnected. Information and control shift from
the individual device to the internet. Integrated, large-scale distributed systems
emerge as a consequence. Their intimate relation to the real world and their
network- and software-driven logic has led to the common label of cyber-physical
systems. [1]

[HPR13] L. Hermerschmidt, A. Navarro Perez, B. Rumpe:
A Model-based Software Development Kit for the SensorCloud Platform.
In: Workshop Wissenschaftliche Ergebnisse der Trusted Cloud Initiative, pp. 125-140, Karlsruhe, Springer Schweiz, 2013.
www.se-rwth.de/publications

The software that drives those systems is of a interactive/reactive character:
it reacts to impulses from its environment (e.g. sensor input or user interaction)
with commands that control physical parts of the system (e.g. actors or moni-
toring systems). The software is also time-sensitive: its reactions have to happen
within a given time window.

New use cases explore the potentials of cyber-physical systems, for instance,
smart grids, smart traffic and smart homes. [2–4] The development of systems
that implement these use cases, however, is complicated by their inherent com-
plexity and subsequent development costs. Engineers of such systems must in-
tegrate system components and aspects on a technological level (e.g. devices,
networking, protocols, infrastructure resources, software architecture), on an eco-
nomic level (e.g. supported business models, integration with legacy systems and
processes, customer and installation support), and from the perspective of leg-
islators (e.g. privacy and customer autonomy). As a consequence of this tight
integration of concerns, only big companies with big budgets can successfully
implement such systems and bring them to product-ready matureness.

The SensorCloud project develops a large scale, cloud-based platform for
services based around internet-connected sensor and actor devices. [5] The plat-
form’s technological purpose is to provide a generalized and easy-to-use infras-
tructure for sensor- and actor driven cloud services. Its economic purpose is
to modularize and industrialize the development and provision of such services.
Multiple different stakeholders can contribute different parts of the service stack,
for instance, sensor/actor hardware, domain-specific data sets, domain-specific
services, and client software.

From a software engineering perspective, the success of such a platform is
largely influenced by the efficiency of development of software for the platform.
In the context of the SensorCloud, third-parties develop cloud services that
leverage sensors, sensor data, and actors in order to provide functionality for
end customers. However, the development of cloud services is complicated by a
tight entanglement of business logic and complex non-functional requirements.

In this paper, we describe the concepts and modeling languages at the core
of a model-based SDK for developing cloud-based software in general and Sen-
sorCloud services in particular. This SDK is based on the clArc toolkit. It is
particularly aligned to the domain of cloud-based cyber-physical systems and
understands them more generally as interactive cloud software systems. At its
core, this toolkit core employs a software architecture model as well as accompa-
nying aspect-specific secondary models. These models serve as concise, formal,
first-class specification documents and, thus, as foundation for tool-supported
analysis and synthesis, in particular, code generation.

Chapter 2 describes the clArc toolkit underlying the SDK. Chapters 3 and 4
describe the architecture style and modeling language at the core of the toolkit.
Chapters 5 and 6 describe additional modeling languages for deployment and
testing. Chapter 7 briefly outlines the tooling for processing and executing these
modeling languages.

2 Model-based Engineering of Cloud Software

clArc (for cloud architecture) is a model-based, architecture-centric toolkit for
developing interactive cloud software systems. It is based on the language work-
bench MontiCore [6–8] and the architecture description language MontiArc [9,
10]. The toolkit

1. defines a software architecture style for distributed, concurrent, scalable and
robust cloud software that permanently interacts with a heterogeneous en-
vironment of physical things, services and users,

2. provides textual, executable domain-specific modeling languages for specify-
ing and implementing software systems according to that architecture style

3. provides a framework for implementing individual code generators that syn-
thesize an executable runtime framework for cloud software based on models
written with these DSLs and targeted towards individual cloud infrastruc-
tures and platforms.

These three components are part of a methodology that seeks to make the
development of interactive cloud software systems more reliable and efficient. It
does so by (a) providing an appropriate level of abstraction for the specification
of the software system and (b) by providing means to map the software’s specifi-
cation to an executable implementation without methodological discontinuities
between design and implementation activities.

2.1 Interactive Cloud Software Systems

The software architecture style [11] of clArc describes architectures as cloud-
based [12], interactive [13–15] software systems. Such systems are characterized
by permanent interaction (a) on a system level between the software and its
environment and (b) on the software level between the internal parts from which
the software is composed. Interacting parts (software components) and their
interactions (messages passed between components) are both first-level elements
of the architecture style. The emphasis on interaction is a result of essential
requirements imposed on those systems:

– Reactiveness: the software responds to events and requests from its environ-
ment within a given time window.

– Statefulness: the software continuously and indefinitely tracks and updates
a conversational state between itself and its environment.

– Concurrency : the software interacts with many interaction partners in par-
allel and must, hence, be inherently concurrent.

– Distribution: the software is composed from distributed parts that are de-
ployed on runtime nodes, communicate asynchronously, may replicate dy-
namically, support failure awareness and can be recovered from failures.

– Scalability : the software can adapt to changing work loads by increasing or
decreasing the number of its parts and by consuming or releasing necessary
computing resources.

These requirements are usually tightly entangled with each other and with
the software’s actual business functions. As a result, they hinder the software
engineer in focusing on the software’s business functionality that he actually
wants to analyze, realize, test, extend, or modify.

The central idea behind the clArc toolkit is to address these requirements
on an appropriate level of abstraction given by a description of the system’s
software architecture according to the architecture style of interactive systems.

2.2 Executable Modeling Languages

Modeling [16–19] can be employed in the engineering of software systems to
describe system aspects explicitly and formally. Domain-specific modeling lan-
guages are a tool to efficiently write concise models.

Appropriate high-level structure, distribution and interaction are the key fac-
tors when reasoning about requirements and overall system design. The explicit
description of system aspects through models makes them visible, substantiated
and documented in a coherent notation. Conversely, they remain implicit and
invisible on the lower levels of system implementation.

However, software developers too often respond to models with skepticism.
[20] In many projects, models are still created only at the beginning of the
development process and thereafter abandoned. The software is subsequently
developed detached from its models. Changes in requirements or design are
only incorporated in the software’s source code, but not in its models. As a
consequence, the models play no essential part in the software’s construction.
Developers, thus, perceive models as causing additional work without essential
contribution to the final product. Models are seen as documentation, at best.

The disconnect between models and product is grounded in process disconti-
nuities caused by a lack of automated transitions between descriptions in models
and the final product: models have to be manually transformed into an imple-
mentation and manually synchronized with a changing implementation.

The clArc toolkit incorporates the expressive power of models into the de-
velopment process of cloud software and focuses on the elimination of process
discontinuities. Models in clArc are automatically linked to a respective imple-
mentation and, thus, executable. A set of valid clArc models, therefore, can be
compiled into an implementation through a code generator.

More precisely, the system aspects described by models are realized in the
form of a generated framework. This framework provides interfaces for handwrit-
ten code that implements the systems business logic. In this way, the business
logic is cleanly separated from system aspects described by models. Models and
code are both first-class artifacts that are integrated via well-defined interfaces.
Contrasting other model-based methods, the generated code is treated the same
way compiled machine code is treated in traditional programming: it is neither
modified manually nor inspected.

Code generators are highly specific to the technological infrastructure the
cloud software targets. Consequently, the clArc toolkit does not provide con-
crete code generators, but (a) a framework to efficiently develop individual code

Source Code
Architecture

Models
Infrastructure

Models
Data

Models
Deployment

Models
Testcase
Models

Language Infrastructure

Code Generators & Compilers

Service FrameworkBusiness Logic

Generated Code Libraries

Target Infrastructure (Cloud PaaS / IaaS)

Compiler

Fig. 1. Code Generation

generators for specific cloud infrastructures and (b) a library of pre-developed
standard libraries to be reused in concrete code generators.

3 Modeling Languages

The clArc toolkit employs several textual modeling languages.
The Cloud Architecture Description Language (clADL) is the central mod-

eling language of clArc. Its models define logical software architectures that im-
plement an architecture style targeting the domain of distributed, concurrent,
scalable, and robust cloud software. All other languages integrate with each other
by referencing clADL models.

The Target Description Language (TDL) describes physical infrastructure ar-
chitectures on which software is executed. The Mapping Description Language
(MDL) relates clADL and TDL models to each other by defining deployments
of software architectures onto infrastructure architectures. In combination, these
models describe the overall system architecture that comprises the software ar-
chitecture and infrastructure architecture.

In combination, the clADL, TDL and MDL can be used to configure a code
generator to generate code according to a specific system architecture given by
models of those languages. The generated part of the software architecture’s
implementation is then custom generated according to the the deployment given
by TDL and MDL models.

The Architecture Scenario Description Language defines exemplary interac-
tion patterns in a particular software architecture. Models of this language can
be used to specify test cases. The Test Suite Definition Language configures test
setups of such scenarios. Both languages are used for model-based testing of
software architecture implementations.

3.1 Architecture Style

The architecture style of clArc uses components as the elemental building block
of software architectures. Components in clArc are modules with well-defined
import and export interfaces. They are executed in their own discrete thread
of control and interact with each other through asynchronous message passing
(with FIFO buffers at the receiver’s end) over statically defined message chan-
nels. They encapsulate their state and do not share it with their environment
by any other means except explicit message passing.

clArc

ComponentIc = h m0, m1, m2 i Oc = h m4, m5 i

Fig. 2. A component receiving incoming messages from the channel IC and sending
outgoing messages to the channel IC

Components are arranged in a decomposition hierarchy of components. In
this hierarchy, leaf nodes represent the atomic building blocks of business logic
while inner nodes compose, manage and supervise their immediate child compo-
nents. Failures are propageted bottom-up through the hierarchy until they are
handled or escalate at the root component.

CSD

a1:A

b1:B c1:C

Composition
composite

component

Supervision
supervision

supervisee

Fig. 3. A hierarchy of component runtime instances

This architecture style has several beneficial implications.

– The execution semantics of the software do not depend on the actual physical
distribution of components. Interactions are always and completely described

by discrete, passed messages and always asynchronous in nature. Hence,
components can be regarded as distributed by default.

– Component executions are self-contained. Every component has its own
thread of control. Blocking operations or component failures do not influence
other components directly. Failure recovery can be implemented within the
local scope of the failed component.

– Components encapsulate a state and are, hence, in combination capable of
representing the overall state of a continuously running system.

– Components do not need to have direct knowledge about the receivers their
sent messages. They only need to know the message channels they are con-
nected to. Channels, in turn, are implemented by a communication middle-
ware that is independent from individual components. This middleware can
deliver messages dynamically to different runtime instances of replicating
receivers using different communication patterns (e.g. message queues) and
technologies (e.g. different protocols and message formats). In this way, the
middleware can implement several load balancing and scaling strategies and
integrate heterogeneous infrastructures.

– Component implementations are technology-agnostic as their execution and
interaction semantics are defined homogeneously and independent from con-
crete target technologies. Such components are easier to port between dif-
ferent infrastructures and easier to test and simulate.

This architecture style bears much resemblance to actor-based systems [21]
but differs in some aspects. First, components may have not just one but many
buffers for incoming messages. Second, these buffers are strictly typed. Third,
communication channels are statically defined by the software architecture model
and cannot be altered at runtime. Fourth, components do not control the in-
stantiation of other components. Instead, the software architecture is statically
defined by a given architecture model and automatically instantiated by the
generated framework according to that model. Only the number of replicating
runtime instances is dynamic.

4 Architecture Modeling

At the center of our language family is the cloud architecture description lan-
guage (clADL). This language follows the components and connectors paradigm.
It describes the structure of a software system in terms of system parts (com-
ponents) and their mutual relationships (interfaces and connectors). [22] The
clADL is derived from MontiArc, an architecture description language for dis-
tributed, interactive systems. [9] As MontiArc, the clADL is based on the seman-
tics defined by the FOCUS method. [14] More precisely, our ADL is an extension
of MontiArc that adds cloud software specific syntax and semantics.

The clADL describes cloud software architectures in terms of interacting
components. A component is a distinct system part that implements a certain

function. Components communicate with other components by exchanging mes-
sages as atomic units of information. Messages are exchanged via explicit con-
nectors between components. Thereby, components and connections describe a
network that represents the system architecture. In this network, components
act autonomously and exchange messages asynchronously without an subordi-
nately imposed control flow. This semantics applies to a logical point of view
and does not enforce a particular technical realization.

Figure 4 shows the architecture of a simple cloud service in a graphical rep-
resentation.

SensorChannel

Credentials

UpdateStore

UpdateValidator

cc.clarc.sensors.Store

Update

Ack

Authenticator

UpdateHandler

Boolean

Update

clADL

Fig. 4. The software architecture of a simple cloud service.

This service is modeled as a decomposed component named SensorChannel.
It receives streams of sensor data represented by messages of type Update and
acknowledges them by responding with Ack messages. The component is in-
ternally decomposed into four subcomponents. The UpdateHandler receives all
incoming Update messages from its SensorChannel parent component, interacts
with the Authenticator and the UpdateValidator to analyze the update, sends
valid updates to the UpdateStore and finally sends an acknowledgement to the
SensorChannel’s respective outgoing port. The Authenticator checks whether
the received Update has valid credentials. The UpdateValidator checks the re-
ceived data for its validity. The UpdateStore uses a service port to write the
update to a database provided by the service’s underlying platform.

A component is syntactically defined by its name and its interface. Its inter-
face is defined as a set of ports. Ports are the end points of connections between
components and can either (as incoming ports) send or (as outgoing ports) re-
ceive messages. A component may be decomposed into further subcomponents

and is, moreover, denoted as their parent component. Hence, components can
again be understood as systems on their own. In fact, the system as a whole
can be described as one single root composed component. Accordingly, we call
components that are not decomposed into further subcomponents atomic com-
ponents.

The semantics of a component defined by its externally observable (black
box) behavior that is given by the relation between the sequence of received
messages and the sequence of sent messages. The behavior of atomic compo-
nents is given by a behavioral specification. It may be described in various
ways, for instance, in declarative logic or functional/imperative programming
languages. That specification includes the notion of an internal component state
that changes depending on the sequence of incoming messages and implies the
sequence of outgoing messages. The behavioral specification of composed com-
ponents is inductively given by the aggregated behavioral specifications of its
subcomponents and the topology of their connections.

Messages are syntactically defined by a name and a type that determines
the kind of that specifies the kind of information they carry. Accordingly, ports
reference a message type that determines the kind of messages they can com-
municate. Message types come with different internal syntactical structures that
denote the basic structure of their carried information. They may be primitive
types (e.g. a number or a string) or complex types that are composed of primi-
tive types in a certain syntactic structure. Message types can be defined through
external languages, for instance, Java and UML/P class diagrams. [23]

Connections syntactically connect exactly one outgoing port with one incom-
ing port. Thus, connections haven an implicit direction in which messages can
be communicated.

4.1 Replication

Subcomponents can be modeled as replicating components. Usually, the decla-
ration of a component within the context of a parent component semantically
implies the fixed existence of a single runtime instance of that component in
the context of its parent component. In contrast, the declaration of a replicating
component implies a variable number of multiple instances. This notion allows
us to describe quantitative system scalability in terms of dynamic replication
of system parts. That means, the number of instances of replicating compo-
nents may increase or decrease dependent on specific circumstances. Thereby,
the system dynamically adapts to increasing or decreasing load demands.

By implication, replicating components may be dynamically created and de-
stroyed. To represent this, every replicating component maintains a lifecycle
state that corresponds to a lifecycle model. Basically, a components lifecycle de-
termines if the component is idle and therefore a candidate for destruction or if
it is busy and therefore protected from destruction.

4.2 Contexts

The semantics of channels where the receiver is a replicating component proto-
type are not in itself fully specified. The model does not define the mechanism
that selects the replicating component’s concrete runtime instance as the receiver
of a given message. The semantics of channels only define the constraint that
individual messages are only received by one receiver.

However, in many cases the concrete receiver of a message matters. A com-
mon real-world example are web systems that handle multiple user sessions.
Runtime component states might be associated to such user sessions. Hence,
interactions between such components should happen between those instances
that have a state associated to that user session.

Contexts are a mechanism to resolve the ambiguities of receiver selection in
such scenarios. A context is a type for context tokens and is declared in the
scope of a component type. Context tokens are markers that can be assigned to
components and messages.

Context tokens are assigned to messages that are sent through context gates
of the respective context. Context gates can be defined on connectors and ports.
Context gates can open a context by assigning a new token of that context to the
message passing the gate. Furthermore, they can close a context by removing
all tokens of that context from the message passing the gate. In addition, every
outgoing port of a composite component implicitly closes all contexts defined in
that component on messages passing this port.

The tokens assigned to messages that pass context gates serve as an identifier
similar to session IDs in web systems. When messages with context tokens are
received by a component, this component is also implicitly associated with these
tokens.

4.3 Service Interfaces

Components may declare service ports. In contrast to other ports, service ports
are not endpoints of message channels but represent service interfaces that pro-
vide operations that can be called on other software or by other software. Service
ports can be required by a component (e.g. to call operations on the runtime
infrastructure the component is being executed) or provided by a component,
hence allowing other software running in the same runtime to call operations on
the component.

5 Infrastructure and Deployment Modeling

Models of the clADL describe logical software architectures. They omit the de-
tails of its technical realization and physical distribution, that is, its complete
system architecture. For a complete description of the actual system, additional
information is necessary, in particular, information about the technical infras-
tructure it will run on (e.g. a Java EE Application Server), its technical con-
figuration (e.g. the URL it will be bound to) and the concrete mapping of our

software architecture onto this infrastructure. Alltogether, this information con-
stitutes the deployment of an architecture implementation.

A deployment is described by infrastructure models and mapping models.
Infrastructure models describe the technical infrastructure on which an arch-
tecture implementation will run. For instance, an infrastructure can consist of
application servers, and databases. Mapping models relate components in the
software architecture to elements of the infrastructure architecture. For instance,
a mapping model could specify that selected ports are accessible via a RESTful
interface.

5.1 Target Description Language

The Target Description Language describes physical infrastructure architectures
onto which software can be deployed for execution.

Targets are the essential building blocks of infrastructure architectures. Every
target represents a discrete part of an infrastructure. Targets are called targets
because components of the software architecture can be targeted at them for
deployment.

Targets are defined by target types. Target types are defined in individual
target models which in combination form the overall infrastructure architecture
model. Target types can extend other target types. Thereby, they inherit all
the structural and semantic properties of the other target type and enter a
topological “is a” relationship with it.

The language defines a fixed set of target kinds.

– Locations represent physical locations (e.g. certain data centers or regions
with particular legislations).

– Resources represent physical resources of information technology like compu-
tation and storage (e.g. hardware servers, virtual servers, storage systems).

– Runtimes represent containers for the execution of software (e.g. virtual
machines, application servers, database management systems).

– Artifacts represent software documents or archives containing software doc-
uments (e.g. Java Archives, Web Archives, compiled binaries).

– Modules represent grouped software modules with shared properties (e.g. soft-
ware parts executed in the same security sandbox).

– Endpoints represent resources for communication (e.g. web services, message
queues).

Targets can contain subtargets which are target prototypes of a particular
target type. Possible containments are constraint, for instance, a location can
contain resources but a resource cannot contain locations. Subtargets can be
declared as replicating subtargets and thus allow for multiple runtime instances
of that subtarget.

Figure 5 shows an example of a hierarchy of nested target prototypes. In
this example, a resource Server contains two other resources VM A and VM B

(i.e. Virtual Machine). VM A contains a runtime ApplicationServer which con-
tains an artifact WebArchive which, again, contains two modules Logic and
UserManagement. VM B contains a runtime MySQLServer which contains an end-
point MySQLAccess. The Server is contained in an implicit location of the gen-
eral target type Location.

target

«resource»
Server

«resource»
VM_A

«runtime»
ApplicationServer

«artifact»
WebArchive

«module»
Logic

«module»
UserManagement

«resource»
VM_B

«runtime»
MySQLServer

«endpoint»
MySQLAccess

Fig. 5. An example for a hierarchy of targets

Target types may declare target properties. Target properties are variables
that are assigned to string values in target prototypes. They can, for instance,
describe TCP port numbers of services or identify the operating system of a
server. Properties can be assigned to values in subtarget declarations.

5.2 Mapping Description Language

The Mapping Description Language defines deployments of a software architec-
ture onto an infrastructure architecture.

Mappings are collections of concrete mappings between components and tar-
gets. Hence, a mapping relates a model of a logical software architecture defined
by clADL models to a model of a physical infrastructure model defined by TDL
models. Mapping declarations map a referenced component as well as all oth-
erwise unmapped subcomponents of the hierarchy it defines to the referenced
target.

«runtime»
ApplicationServer

«endpoint»
JerseyServlet

«artifact»
WebArtifact

«artifact»
BeanArtifact

A

B

C

mapping

Fig. 6. A mapping model with two mappings

Figure 6 shows an example of a software architecture with a component A be-
ing decomposed into subcomponents B and C put next to an infrastructure archi-
tecture consisting of a runtime ApplicationServer, two artifacts BeanArtifact
and WebArtifact and an endpoint JerseyServlet.

6 Model-based Testing

The Architecture Scenario Description Language describes exemplary interaction
scenarios in concrete software architectures. The Architecture Test Suite Defi-
nition Language defines test setups of software architectures and corresponding
scenarios.

A scenario describes a valid, chronologically arranged, partially ordered set
of interactions in a software architecture. Interactions are described as messages
passed between component prototypes. Scenario descriptions bear resemblance
to Message Sequence Charts [24]. Thus, scenarios are partial protocol definitions
[25]

Figure 7 shows an interaction between the subcomponents of the SensorChannel
component introduced in figure 4. This representation is similar to UML se-
quence diagrams. Components are depicted with ports and timelines while in-
teractions are depicted as arrows between these timelines.

Scenarios can serve as specifications for model-based tests. From a scenario
model, the expected behavior of each participating component can be derived.
This behavior can be used (a) as a reference against which components under
test can be evaluated and (b) as a basis for mocking components with whom
components under test interact.

7 Language Execution

The model-based SDK for the SensorCloud consists of several tools that com-
bine source code of traditional programming languages and models of the clArc
language family.

ACK

true

ACK

c

u

u

scenario

sensorChannel

ackupdate

authenticator

acceptedcreden…

validator

validupdate

handler

update creden... isValid isAcc... ack

Fig. 7. A Scenario of Interactions inside SensorChannel

At the core is a modular code generator that is composed of many gen-
erator modules, each being responsible for different aspects of the generated
code (e.g. protocols, resource management). This code generator generates a
deployment-specific service framework based on clADL, TDL and MDL models.
This framework is customized with handwritten code and integrates with the
SensorCloud’s platform APIs. The result is a complete implementation of a Sen-
sorCloud service. The use of models lifts the abstraction of this implementation
and makes it agnostic of the actual SensorCloud’s API. Platform-specific code is
strictly left to the code generator. In this way, the platform can evolve without
affecting the implementation of its services.

In addition, a test-specific code generator can generate a functionally equiv-
alent variant of a service’s implementation that can be executed locally. In this
way, the service can be functionally tested without the need for a testing infras-
tructure. Concrete test cases can be generated from scenario models.

8 Conclusion

In this paper we described a model-based SDK based on the clArc toolkit for
developing cloud services for the SensorCloud platform. The SDK is in ongoing
development and will enter its evaluation phase in the third and final year of the
SensorCloud’s research and development schedule.

References

1. Lee, E.A.: Cyber-Physical Systems - Are Computing Foundations Adequate? Oc-
tober (2006)

2. Iwai, A., Aoyama, M.: Automotive Cloud Service Systems Based on Service-
Oriented Architecture and Its Evaluation. In: 2011 IEEE 4th International Con-
ference on Cloud Computing, IEEE (July 2011) 638–645

3. Harper, R., ed.: The Connected Home: The Future of Domestic Life. Springer
London, London (2011)

4. Haller, P., Odersky, M.: Scala Actors: Unifying thread-based and event-based
programming. Theoretical Computer Science 410(2-3) (February 2009) 202–220

5. : SensorCloud
6. Krahn, H.: MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im

Software-Engineering. Dissertation, RWTH Aachen University (2010)
7. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: A Framework for Compositional

Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer 12(5) (March 2010) 353–372

8. Department of Software Engineering at RWTH Aachen University: MontiCore
9. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-

active Distributed and Cyber-Physical Systems. Technical report, RWTH Aachen
University, Aachen (2012)

10. Haber, A., Ringert, J.O., Rumpe, B.: Towards Architectural Programming of
Embedded Systems. In: Tagungsband des Dagstuhl-Workshop MBEES: Modell-
basierte Entwicklung eingebetteter Systeme VI. (2010)

11. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. (January 2009)

12. Armbrust, M., Stoica, I., Zaharia, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A.: A View of Cloud Computing.
Communications of the ACM 53(4) (April 2010) 50

13. Selic, B., Gullekson, G., Ward, P.T.: Real-Time Object-Oriented Modeling. Wiley
professional computing. Wiley (1994)

14. Broy, M., Stø len, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)

15. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
- Specification. Springer (1992)

16. Rumpe, B.: Modellierung mit UML: Sprache, Konzepte und Methodik.
Xpert.press. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

17. Rumpe, B.: Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.
Xpert.press. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

18. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. 2nd edn. Addison-Wesley Professional (May 2005)

19. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: Systems
Modeling Language. (July 2008)

20. Engels, G., Whittle, J.: Ten years of software and systems modeling. Software &
Systems Modeling 11(4) (September 2012) 467–470

21. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
Dissertation, Massachusetts Institute of Technology (December 1986)

22. Medvidovic, N., Taylor, R.N.R.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering 26(1) (2000) 70–93

23. Schindler, M.: Eine Werkzeuginfrastruktur zur Agilen Entwicklung mit der
UML/P. Dissertation, RWTH Aachen University (2011)

24. Krüger, I.: Distributed System Design with Message Sequence Charts. PhD thesis,
Technische Universität München (2000)

25. Selic, B.: Protocols and Ports: Reusable Inter-Object Behavior Patterns. In:
ISORC. (1999) 332–339

