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Abstract
Turn-based games such as chess are very popular, but tool-
chains tailored for their development process are still rare.
In this paper we present a model-driven and generative
toolchain aiming to cover the whole development process of
rule-based games. In particular, we present a game descrip-
tion language enabling the developer to model the game
in a logics-based syntax. An executable game interpreter is
generated from the game model and can then act as an envi-
ronment for reinforcement learning-based self-play training
of players. Before the training, the deep neural network can
be modeled manually by a deep learning developer or gen-
erated using a heuristics estimating the complexity of map-
ping the state space to the action space. Finally, we present a
case study modeling three games and evaluate the language
features as well as the player training capabilities of the
toolchain.

CCS Concepts: • Software and its engineering → Do-
main specific languages; • Computing methodologies
→Multi-agent reinforcement learning.

Keywords: games, reinforcement learning, code generation
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1 Introduction
Turn-based games such as tic-tac-toe, chess, or Go are pop-
ular all around the globe. Mostly, the game itself is defined
by a ruleset. Consequently, logics-based Game Description
Languages (GDLs) have been developed allowing a precise
domain-oriented modeling of games [11], especially in the
context of General Game Playing. The development of ded-
icated players for games such as chess can be an utterly
complex endeavor. Different approaches have been proposed
ranging from rule-based, over randomized to Artificial In-
telligence (AI)- based. General game playing is a discipline
trying to tackle this issue by letting a game-independent
agent use and interpret the GDL model dynamically to come
up with the best move.

However, often the most successful AI players for games
such as chess are still specialized programs which cannot
be transferred to new games. Recent developments show
that deep learning, in particular reinforcement learning and
self-play techniques where an AI player learns by playing
against a copy of itself, are an efficient approach [35].

The question arises, whether a tailored generative method-
ology can facilitate the development of turn-based games and
the corresponding deep learning-based players and whether
the latter can be automatically generated from the game
models as is the case for general game playing.
The aim of this research is to develop a model-driven

generative toolchain for modeling turn-based games and the
matching reinforcement learning-based players.

Based on the above considerations we derive the following
high-level set of requirements for a toolchain, supporting a
game developer from rule implementation to agent training.
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• (R1) Toolchain Integration: The toolchain should
cover all aspects of a game development process, in
particular the development of the game logic and AI
players able to play the game.

• (R2) Player Training: The toolchain should enable
the developer to train players for a given game model
using reinforcement learning algorithms.

• (R3) Player Model Generation: To further automate
(R2), it should be possible to derive an AI player model,
i.e. a neural network architecture and hyperparame-
ters, from the game model automatically.

• (R4) Player Difficulty Levels: It should be possible to
automate the design of different difficulties and man-
age the players accordingly.

• (R5) Handwritten Code Integration: The generated
software should be extensible by hand-written code,
e.g. to integrate a specific user interface.

The main contribution of this paper is a generative tool-
chain that aims to fulfill the requirements stated above. Fur-
thermore, we present a case study modeling three popular
games.
The remainder of this paper is structured as follows. In

the next section we are going to discuss related work on
game modeling and player generation. Then, in Section 3 we
introduce the foundations our presented approach is built on.
An overview of the generative toolchain is given in Section 4.
Its main parts consisting of a GDL for the modeling of a game
itself, the self-play approach for the automated realization
of players, and a code integration facility are presented in
Sections 5 to 7, respectively. The toolchain is then evaluated
with regard to a set of research questions in Section 8. The
paper is concluded in Section 9.

2 Related Work
General libraries for RL algorithms and RL environ-
ments: Program libraries such as OpenAI Baselines [8], Sta-
ble Baseline [15], TF Agents [13], Dopamine [4], Keras-RL
[32], TRFL [28], PyQlearning [1], Tensorforce [20] and other
implementations of RL algorithms such as DQN or DDPG,
TD3, PPO and others are available. Most of these contain
multiple integrations or interfaces to various environments
provided by the following libraries, among others: OpenAI
Retro [31] (classic video games), OpenAI Gym (see below),
PyGame Learning Environment [36] (games like Snake or
Flappy Bird), VizDoom [18] (game environment of the first-
person shooter Doom), CARLA [9] (environment for au-
tonomous driving), PySC2 [39] (StarCraft II environment),
and DeepMind Control Suite [37] (environments for contin-
uous control tasks).
OpenAI Gym: OpenAI Gym [3] is a Python library that

provides environments for the application of RL algorithms
that use uniform interfaces for specifying a current state, re-
ward, and for receiving actions. For this purpose, the library

defines action and state spaces. States are usually encoded as
vectors representing an n-dimensional real data field. How-
ever, discrete spaces are also possible. Rewards are generally
specified as real numbers. Actions can use the same encod-
ings as states. However, actions are typically encoded as
discrete numerical values. Included are environments of clas-
sical RL problems of control theory, such as the upright bal-
ancing of a pole on a moving cart connected to it by an axis
of rotation (cart-pole balancing). In these problems, the state
space provides information about concrete parameters such
as the velocity of the cart or the angle of the pole. Further-
more, game environments exist for numerous Atari games,
which specify the state either as screenshot of the current
game situation or the content of the 128-byte RAM memory
of the Atari simulator, encoded as an array. Particular to
these environments is their continuous behavior, i.e. that the
state changes continuously even without the execution of
actions and also that actions can be executed continuously.
However, in addition to the provided environments, numer-
ous others with suitable interfaces are also provided by third
parties, such as an environment of the turn-based game Go
[17].
OpenAI Baselines: OpenAI Baselines [8] is a Python

library that contains implementations of RL algorithms (in-
cluding the DQN algorithm) and comes from the same au-
thors of OpenAI Gym. Thus, it is possible to initiate a training
process of an agent with a desired algorithm via a command
line with a few parameters for all OpenAI Gym environ-
ments.

RLCard: RLCard [40] is a Python library / toolchain that
provides numerous game environments for card games like
Blackjack, UNO, Mahjong and others with uniform inter-
faces. A distinctive feature of the supported card games is
the incompleteness of information from the individual play-
ers’ points of view, as well as the presence of randomness.
Depending on the game, the game complexity is comparable
to chess.

Textworld:Textworld [7] is a Python library that provides
a building kit for text-based game environments intended for
training RL agents. Functions are provided for generating
and executing games with interfaces for querying states,
rewards, as well as for performing actions.

Reinforcement LearningToolbox:Reinforcement Learn-
ing Toolbox [29] allows modeling of both RL agents and
environments. Agents and environments can be modeled
and connected using many predefined functions using either
MATLAB or the Simulink graphical programming environ-
ment. The toolbox provides many predefined environments
and is not specialized for any particular application. Program
code in various programming languages can be generated
for the execution of trained players.
Deep Reinforcement Learning for General Game

Playing: AlphaZero [35] describes an algorithm that uses
self-play and reinforcement learning for chess, shogi, and
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Go to train an agent that can compete against world-class
players in the respective games. Goldwasser and Thielscher
[12] present an approach by extending the algorithm of Alp-
haZero to be applicable to all board games described in GDL.
This is achieved by first converting the GDL encoding of
its rules as well as its current state into a propositional net-
work. Then, the nodes of the graph are encoded as integers,
which serve as the input of a neural network. After training,
the output vector contains probabilities for all players and
corresponding turns.

General Game Playing: In General Game Playing: Over-
view of the AAAI Competition [11] a GDL is presented form-
ing a basis for general game playing systems. Furthermore,
Genesereth et al. showed that using this approach, success-
ful general players could be developed in the context of a
competition.

3 Background
This work builds on top of the deep learning modeling frame-
work and build system MontiAnna [19, 21–23]. MontiAnna
provides a Domain Specific Language (DSL) for the design
of deep neural networks as graphs of neuron layers as is
often done in widely used Python-based frameworks such as
Keras or PyTorch. For a rapid-prototyping of neural network
architectures, MontiAnna provides a library of predefined
layer classes enabling the developer to model state-of-the-
art architectures using fully connected, convolutional, ReLU,
attention, and other layers. A deep neural network is then
encapsulated as an EmbeddedMontiArc component [24–26]
with an interface mapping the input ports to the input layers
and the output ports to the output layers. This encapsula-
tion enables us to integrate MontiAnna neural networks
seamlessly in any EmbeddedMontiArc architectures and in-
terconnect them with other components. The code generator
then produces C++ and Python code for the creation of the
network architecture itself as well as its training and exe-
cution. In order to render the generated code efficient and
compatible with third-party or legacy software, the code
generator targets multiple widely used deep learning frame-
works including Apache MXNet/Gluon and TensorFlow.

Moreover, MontiAnna manages the lifecycle of neural
network components and decides when to (re-)train a neural
network. To do so, it analyzes the artifacts constituting a deep
learning system, including the neural network architecture,
the hyperparameters, but also the training data, and the
trained weights according to the MontiAnna software 2.0
artifact model defined by Atouani et al. [2].
To train a neural network model, MontiAnna supports

multiple training pipelines out of the box, including super-
vised learning, reinforcement learning, Generative Adversar-
ial Networks (GANs), etc. The application developer chooses
and configures an appropriate pipeline for the problem to
be solved and configures its hyperparameters in a JSON-like

syntax, e.g. the learning rate, number of episodes, etc. Of
particular interest for this work is the reinforcement learning
pipeline [10] supporting training algorithms such as Deep
Q Learning (DQN) [30] and Deep Deterministic Policy Gra-
dient (DDPG)[27]. In reinforcement learning, an agent is
trained in an environment by mapping states to actions, re-
ceiving a feedback, i.e. a reward, and adapting its behaviour
in order to maximize the average reward. In our case, the
environment is the game we would like to train an agent for
and the reward could be defined as +1 if the player wins, -1 if
the player loses, and 0 in the case of a draw. This leads to the
problem that an opponent player is required to generate the
reward for the trained player. To circumvent this problem,
the MontiAnna reinforcement learning pipeline can be used
in a self-play set up, i.e. the opponent is controlled by the
same neural network. As our trained player improves, so
does the opponent. We are going to use this principle as the
base scheme for player training in this paper.

To set up a reinforcement learning procedure with an un-
known environment, MontiAnna uses the Robot Operating
System (ROS) middleware, a publish/subscribe communica-
tion system for loosely coupled components [33]. In a ROS
network publishers can publish their messages to named top-
ics. Subscribers interested in a specific topic can subscribe
to this topic. A central master node receives published mes-
sages and forwards them to the interested subscribers. Hence,
publishers and subscribers do not need to know each other.

In particular, the reinforcement learning framework needs
to receive a state and a reward from the environment and
aims to send back an action. To do so, MontiAnna needs to
be configured with the ROS topic names for the state, action,
and reward, which are used by the environment. A commu-
nication between the environment, e.g. a game interpreter
and the player is then established.

4 Toolchain Overview
In this sectionwe give a high level overview over the toolchain
for game and player development based on the requirements
introduced in Section 1. Then we proceed with the discussion
of its integral parts in the following sections.
An overview of the activities involved in the creation of

games and players is given in Figure 1. The process can be
subdivided in two major steps: first, the game itself needs to
be modeled. Second, players, also referred to as agents, need
to be tailored for this game.

Creating a game environment: To develop a game, our
toolchain provides a GDL, a logics-based DSL for the declar-
ative description of game rules. The game developer is sup-
posed to write a GDLmodel for the game under development,
which then serves as a basis for code generation and analysis.

The games supported by the GDL may be single-player or
multi-player based. Currently, the toolchain supports games

97



GPCE ’22, December 06–07, 2022, Auckland, New Zealand Kusmenko, Münker, Nadenau, Rumpe

with complete information, hidden information, simultane-
ous decision making and randomness. Not supported are
games with elements based on real time.

The toolchain provides validity checks for the gamemodel.
These include syntactic and semantic checks, e.g. whether a
keyword is allowed within a certain context. Furthermore,
the toolchain is able to analyse models for a valid imple-
mentation of our introduced type system. After checking the
gamemodel for validity, the toolchain generates a standalone
executable interpreter in Prolog. The recommended usage
is to control the executable with the Java wrapper provided
in our standard Java GDL module. In the Java wrapper, the
models can be tested via a command line interface. For au-
tomated testing, the Java module is able to check the model
for deviations from game recordings provided by the game
developer.
While player AI for a given game can be written man-

ually in a General Purpose Language (GPL), our aim is to
facilitate this process. For this reason, our approach is to use
reinforcement learning, in particular self-play techniques, to
train deep neural networks, which are able to play the given
game.

For this cause, our toolchain provides an environment as
a Java class in which agents can be defined. The states and
actions for agents can be communicated to and controlled by
any source. Additionally, our toolchain is able to configure
the environment for the purpose of a reinforcement learning
procedure. The reinforcement learning environment is gen-
erated by producing prototypes for agents. These prototypes
include configurations for human players, random playing
agents as well as for computer controlled agents. The com-
puter controlled agents are integrated with reinforcement
learning methods provided by the MontiAnna framework.
For the environment, the developer is supposed to map

the state and action spaces of his or her game model to fit
the agent model. In case a strongly typed game model is
provided, cf. Section 5, the toolchain is able to produce these
mappings itself. A heuristic can then be used to suggest a
neural network structure tailored to learn how to play the
current game. Otherwise, the toolchain only provides a neu-
ral network template for an agent and the player developer
needs to model a deep learning architecture him- or herself
using MontiAnna.

The deep learning agent is then trained using self-play in
the generated reinforcement learning environment. After-
wards, the training result can be evaluated against either a
random acting agent or a provided expert agent.
The GDL interpreter derives the score achieved by the

agent when the game is finished, i.e. 0, 50, and 100 for a loss,
draw, and win, respectively. The environment then computes
a standard reward automatically, by mapping these values
to the symmetric rewards -10, 0, and 10. A custom reward
function can be modeled by subclassing the environment.
Then a reward can be computed using the achieved score

Figure 1. Overview of the game development toolchain
presented in the paper.

given by the GDL interpreter, the current game state, a flag
whether a given move is legal or not, as well as the current
episode. This way, we can for instance only punish illegal
moves first and start rewarding or punishing the game out-
come after some initial episodes. Furthermore, as the agent
outputs scores for the whole action space, the toolchain can
be configured to use and punish illegal moves or to always
choose the best legal move instead.

All in all the pipeline generates different modular artifacts,
each of which can be used standalone. These artifacts include
a standalone Prolog interpreter, Java interpreter bindings
with an included CLI, a training environment, and Mon-
tiAnna components for modeling machine learning algo-
rithms.

5 Game Description Language
5.1 Basic Language
The GDL is a logical programming language derived from
the Datalog language but containing additional concepts that
simplify the modeling of games. GDL allows the developer to
define a set of rules and facts to represent the logic of a game.
During the interpretation of a GDL model, the rules induce
changes to the game state depending on an acting player’s
move. Generally, a GDL model is described by a composition
of tuples. Here, the GDL makes use of multiple keywords
presented in Figure 2.
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GDL Explanation
𝑎 𝑎 is a fact.
(⇐ 𝑎 𝑏1 . . . 𝑏𝑛) Rule that implies that 𝑎 holds

true if 𝑏1 . . . 𝑏𝑛 hold true.
(distinct 𝑎 𝑏) True if 𝑎 and 𝑏 are distinct.
(role 𝑎) Role 𝑎 is part of the game.
(legal 𝑎 𝑏) Move 𝑏 is legal for role 𝑎.
(does 𝑎 𝑏) True if role 𝑎 makes move 𝑏.
(init 𝑎) The initial state contains 𝑎.
(next 𝑎) The next state contains 𝑎.
(true 𝑎) True if the current state con-

tains 𝑎.
terminal Signals that the game is in the

terminal state.
(goal 𝑎 𝑏) Role 𝑎 reaches goal 𝑏.

Figure 2. Overview of all basic keywords of the GDL [11],
where 𝑎 and 𝑏 are parameters.

As is typical in logics-based languages, a GDL model is
based on facts and logical operators inferring propositions
from atomic facts and other propositions.
Furthermore, we have the ability to define players or

roles using the role keyword. For a given role, we can
check whether a move is legal or whether a move is per-
formed using the keywords legal and does, respectively.
Using the keywords init, next or true allows us to mod-
ify and read from the current game state. To terminate a
game, we can make use of the keyword terminal. If the
terminal-condition can be derived by the interpreter, the
game is stopped. The keyword goal lets us specify each
role’s achievements for the end of the game.

To make the models dynamic, the GDL supports different
types of parameters. These types are represented by values,
tokens and tuples. Values are identified by combinations of
numbers and characters. Tokens also consist of combinations
of numbers and characters but are identified by the prefix ’?’.
Tuples may contain combinations of values, tokens and other
tuples. If a tuple contains no tokens, it is considered to be a
constant value. Tokens are handled similarly to variables in
other logical languages.

5.2 Advanced Concepts
For many games such as tic-tac-toe or chess, the Stanford
GDL [11] is already sufficient. These games are defined by
complete information for all players and do not feature any
randomness. However, the Stanford GDL model lacks pos-
sibilities to implement games with hidden information or
randomness. As a result, games with simultaneous decision
making can also not be designed properly.

An extension to support hidden information and random-
ness is proposed in the GDL-II paper [38]. Here, two addi-
tional keywords are introduced. First, the keyword random

describes a role that always plays one move at random if
possible. Second, the keyword sees limits the visibility of a
state to a specific role.
Both these extensions are implemented in our GDL, as

well. For randomness, after each state update all legal moves
are aggregated for the role random. From these moves, one
move is then randomly chosen to be played with an even
distribution before any other role can act. As soon as there
is no move to be made for the role random, only the result-
ing state is published to the roles. In contrast to the given
proposal, we define the visibility through the keyword sees
in one of the state relations to further emphasize its connec-
tion with the state of the game. On top of that, no moves
performed by any role are visible to the players by default.
The players only get notified of state changes, if the visible
state for their role is changed. The visible state of a role is a
combination of the general state (without the keyword sees)
and the hidden state only visible to the respective role.

Additionally, we can handle simultaneous decisionmaking
by interpreting all moves in series. The main idea here is
for the game model to cache moves in invisible intermediate
states by means of the sees-keyword to treat serial moves
simultaneously. In gameswith simultaneous decisionmaking
it may occur that players have the option to skip a turn. For
this case, a static no operation move is provided through the
noop-keyword. If a player decides to make the noop move,
the game state is guaranteed to not be altered.
Games often require to perform some sort of arithmetic.

As native implementations in logical languages tend to be
rather inefficient, an interface for some integer operations
is provided. These include addition, subtraction, multiplica-
tion, division and the modulo operator. Furthermore, binary
operators for comparison are given. To make conditions ac-
cessible through arithmetic operators, it is often required to
count the number of models for a given condition. This is
accomplished by the keyword count.

5.3 Type System
Many games make use of finite sets of game objects. These
game objects are often divided into distinct domains. In chess
for example, the game objects could be divided into a domain
of all chess pieces and a domain of all fields making up the
chess board. In most GDL models, these divisions are already
defined in a set of baseline facts. These facts then simplify
the process of narrowing down tokens within rules to a
given domain. In our GDL extension, we provide keywords
to standardize this pattern.
The language allows the developer to define types for

tokens and values using type-related keywords given in Fig-
ure 4. A type is defined by a named finite set of values. By
means of the type-keyword, it is possible to assign a value
to a type set. To prevent type ambiguity, each value can only
be assigned once. The only exception to this rule applies
to numbers. For numbers, a range type is predefined. Still,
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GDL Explanation
(role random) The random role only is

played automatically if it is de-
fined.

(legal random 𝑏) Move 𝑏 is put into the pool of
legal random moves.

(init (sees 𝑎 𝑏)) State 𝑏 is visible for role 𝑎 in
the initial state.

(next (sees 𝑎 𝑏)) State 𝑏 is visible for role 𝑎 in
the next state.

(true (sees 𝑎 𝑏)) True if state 𝑏 is currently vis-
ible for role 𝑎.

(add 𝑎 𝑏 𝑐) True if 𝑎 + 𝑏 = 𝑐 .
(sub 𝑎 𝑏 𝑐) True if 𝑎 − 𝑏 = 𝑐 .
(mult 𝑎 𝑏 𝑐) True if 𝑎 · 𝑏 = 𝑐 .
(div 𝑎 𝑏 𝑐) True if 𝑎 ÷ 𝑏 = 𝑐 (rounded to-

wards 0).
(mod 𝑎 𝑏 𝑐) True if 𝑎 = 𝑐 mod 𝑏.
(less 𝑎 𝑏) True if 𝑎 < 𝑏.
(greater 𝑎 𝑏) True if 𝑎 > 𝑏.
(count 𝑎 𝑏1 . . . 𝑏𝑛) True if 𝑎 is equal to the num-

ber of different models for all
conditions 𝑏1 . . . 𝑏𝑛 .

Figure 3. Overview of all additional keywords for the GDL.

each number can be assigned with the type-keyword once.
The redefined type then gets prioritized over the range type
for a value, if the value is not named to be part of a range
explicitly.
For the reuse of values in different types, the language

allows the developer to combine existing type sets to new
named typesets with the help of the keyword typecom-
bine. This resembles type inhertance as seen in many other
languages. If we still want to assign an infinite number of
values to a named type set, we can make use of the keyword
typemap. Here, we can reduce tokens through specified
rules to fixed values. These fixed values then form a separate
named type set.
Types are not only meant to provide better readability

for the user. By assigning types to tokens with the prefix
notation, the interpreter can easily derive a low upper bound
for state and action space dimensions, which are formed by
tokens.

6 Self-Play & Multiplayer Games
In our toolchain we reuse the self-play principle inspired
by AlphaZero [35]. Competitive as well as cooperative turn-
based games require opponents or teammates for the execu-
tion. Therefore, in order to train a player for a certain role,
moves must be automatically determined for all other roles.
The simplest way to do this is to select a random legal move.
This approach may lead to success for cooperative games,

GDL Explanation
𝑡 :𝑎 Value 𝑎 is of type 𝑡 .
[𝑥,𝑦]:𝑎 Value 𝑎 belongs to the in-

teger interval [𝑥,𝑦].
(type 𝑡 𝑎) Define value 𝑎 as type 𝑡 .
(typecombine 𝑡 𝑡1 𝑡2) Define type 𝑡 is a union of

types 𝑡1 and 𝑡2.
(typemap 𝑡 𝑎 𝑏) 𝑏 can be reduced to value

𝑎 as type 𝑡 .

Figure 4. The keywords of the GDL type system.

1 (role x)
2 (role o)
3 (init (cell 1 1 _))
4 ...
5 (init (cell 3 3 _))
6 ...
7 (<= (next (cell ?x ?y ?player ))
8 (does ?player (mark ?x ?y)))
9 ...

10 (<= (legal ?player (mark ?x :?y))
11 (true (cell ?x ?y _)))
12 ...
13 (<= (goal ?player 100)
14 (line ?player)
15 (role ?player ))
16 ...
17 (<= terminal
18 (line ?player)
19 (role ?player ))

Figure 5. Shows a snippet of a GDL model of tic-tac-toe.
Two roles x and o are specified and a state is initialized that
contains a tuple for each field. The next-relation ensures
that the symbol of a player is written into the tuple of the
corresponding field if the player marks there. Legal enforces
that the field was previously empty. Goal defines a goal and
terminal an end of the game, both of which make use of
auxiliary relations. (Many parts are omitted for illustrative
purposes.)

but in the case of a competitive game, a possible player is not
able to adapt its strategy to challenging opponents during
training. One way to solve this is to train multiple players
for different roles at the same time. In symmetric games
such like chess, self-play can be used to determine a move
for the other role. The toolchain covers all three cases and
can be configured accordingly. In case of self-play, the op-
ponent initially performs random actions. Subsequently, the
agent is periodically copied after a certain number of training
episodes and used as opponent in the subsequent training.
In the AlphaZero paper multiple agents are trained in

parallel and the best performing one is chosen after each
round. In the next round this agent then again competes
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1 // GDL
2 (init (cell 1 1 b))
3 (<= (line ?player) (row ?x ?player ))
4

5 // Prolog
6 gdl_init ([ value_cell , numpos_1 ,
7 numpos_1 , value_b ]).
8 gdl_rule ([ value_line , Token_player ]) :-
9 gdl_rule ([value_row , Token_x ,

10 Token_player ]).

Figure 6. The figure shows the direct translation of a GDL
model into Prolog. Lines 2 and 3 show an excerpt of the tic-
tac-toe GDL model. Line 2 gets translated into Prolog (lines
6-7) by translating all tuples into Prolog lists. All values are
translated by using prefixes, as Prolog is case sensitive. For
implied rules (line 3), the GDL tuple structure is translated
recursively (lines 8-10).

against multiple adversaries. In this paper we only train one
agent at a time.
As an alternative, instead of playing against itself, the

agent can be trained by our toolchain against random players,
which can lead to good results, as well. In addition, interfaces
are available to allow the user to connect external game
engines or to use a custom algorithm to determine the moves
for a role. This can also be helpful for defining a baseline.
To realize the creation of different difficulty levels as re-

quired by (R4), the agent is stored every 𝐸/𝑁 episodes to-
gether with the obtained reward, where 𝐸 is the total number
of episodes and 𝑁 is an integer parameter. Once the training
is finished the toolchain takes the model with the highest
reward 𝑅𝑚𝑎𝑥 as the standard. To obtain 𝑛 ≤ 𝑁 agents of
different difficulty levels, the reward is then divided by 𝑁 .
For difficulty level 𝑖 we then look up a previously stored
model with the closest reward to 𝑅𝑚𝑎𝑥

𝑁
𝑖 . At runtime the game

application programming interface (API) offers functions to
return the available difficulty levels and to set the desired
difficulty level (strongest is default).

7 Code Generation & Integration
7.1 Game Generation
To generate a game out of a GDL model, the toolchain

provides a GDL-to-prolog transpiler based on the Monti-
Core [16] language workbench. The MontiCore architecture
allows us to easily define a grammar for the GDL and gen-
erate a corresponding abstract syntax tree (AST) for any
GDL model. Furthermore, we are then able to check the AST
against a number of context conditions to ensure a valid use
of the provided GDL keywords. In case of misuse, this allows
us to signal comprehensive error messages to the game de-
veloper. Valid game models are then transpiled into prolog as
seen in Figure 6. The generated file is then fitted with utility
functions provided by the toolchain. The utility functions

1 // GDL
2 (type mark x) (type mark o) (type mark b)
3 (init (cell 1 1 b))
4 (<= (next (cell [1 ,3]:?x [1 ,3]:?y
5 mark:? player )) ...)
6

7 // Prolog
8 gdl_rule ([type , value_mark , value_x ]).
9 gdl_rule ([type , value_mark , value_o ]).

10 gdl_rule ([type , value_mark , value_b ]).
11

12 gdl_template_state ([
13 (constant , value_cell),
14 (constant , numpos_1),
15 (constant , numpos_1),
16 (constant , value_b )]).
17 gdl_template_state ([
18 (constant , value_cell),
19 (range , numpos_1 , numpos_3),
20 (range , numpos_1 , numpos_3),
21 value_mark ]).

Figure 7.Here, the type system translation is depicted. Lines
2-5 show an excerpt of the tic-tac-toe GDL model. The type
tuples (line 2) are not handled different from other GDL
rules (see Figure 6). As no types are provided for line 3, all
values are translated as constants (lines 12-16). In line 4, the
tokens are explicitly typed as ranges (line 19-20). In line 5, the
defined mark-type is used and translated (line 21). Merging
the produced templates results in the template defined in
lines 17-21, as the constant all fit the corresponding bigger
type sets.

provide implementations for all GDL keywords as well as
an implementation of the full interpretation process for any
game defined in GDL. As such, the generated prolog file can
be executed as a standalone interpreter.

To preserve backwards compatibility to GDL models writ-
ten with a reduced feature set, the game developer must
opt-in to use the type system. The generation of the type
system is a multi-step process. First, it is checked whether all
rules directly affecting the state and action of a GDL model
(e.g. rules with the keywords init, next, and legal) are suf-
ficiently typed. For each of the mentioned rules a template
holding the rule’s type structure is naively generated as a
prolog fact as seen in Figure 7. As the generated type tem-
plates often contain duplicate or overlapping elements, the
prolog interpreter is fitted with utility functions to merge
similar type templates. The merged set of type templates
is then used to calculate the state and action space dimen-
sions as well as the state indicator matrix mappings and the
index-to-action mapping.
For generating an indicator matrix 𝑀 ∈ {0, 1}𝑛 (where

𝑛 is the state dimension) from a given state, each tuple of
the state is matched with the set of type templates. Once a

101



GPCE ’22, December 06–07, 2022, Auckland, New Zealand Kusmenko, Münker, Nadenau, Rumpe

matching template is found, an index 𝑖 = 𝑖𝑙 +𝑛𝑟 is calculated.
Here, 𝑛𝑟 is the sum of all dimensions of the right hand side
templates in the state template set and 𝑖𝑙 is a local index
calculated by recursively mapping the state tuple to the cor-
responding finite type definitions embedded in the matching
state template. For the resulting matrix𝑀 , each entry𝑀𝑖 is
equal to 1 if the state contains a tuple with index 𝑖 , else 0.

For the index-to-action mapping, the process described for
the indicator matrix mappings is reversed. Here, for an index
𝑖 , a corresponding action type template needs to be found.
This happens by mapping all action type templates to ranges
[𝑛, 𝑛+𝑛𝑟 ], where 𝑛 is each template’s dimension and 𝑛𝑟 is the
sum of all dimensions of the right hand side templates in the
set of action type templates. A template then corresponds
to an index 𝑖 , if 𝑖 ∈ [𝑛, 𝑛 + 𝑛𝑟 ]. To then generate an action
from the index 𝑖 , a local index 𝑖𝑙 = 𝑖 −𝑛 is used to recursively
build a tuple by traversing over the corresponding template’s
structure and mapping the included finite type definitions
to values.
After generating the fully self-contained prolog inter-

preter, the pipeline additionally provides a Java binding. The
Java binding contains an interpreter class as well as classes
for the tuple structure of the GDL. To interact with the in-
terpreter, an observer pattern is employed to listen to state
changes for distinct roles defined in the GDL model. Here,
each role observer is only supplied with the state visible to
the corresponding role. The state is only updated for a role, if
the role’s state changed upon an action input. The interpreter
additionally binds functions for issuing actions, resetting the
game state, retrieving all legal moves per role, reading out
the total game state and the game state per role, checking
for game termination, evaluating the achieved goals, and for
interacting with the type system. Here, functions are pro-
vided to obtain information about the state and action spaces
and to access the state and action mappings described in the
previous paragraph. For interacting with the interpreter, a
command line interface (CLI) is provided.

7.2 Hand-Written Code Integration
The generated game offers a state-observer to implement
a graphical user interface. Furthermore, the automatically
provided game environment offers interfaces to realize 3rd
party agents. For this purpose, an abstract agent class can be
implemented, in which a method for executing moves has
to be provided. The agent can then be dynamically assigned
to a role by subclassing a provided game environment. The
Game Environment has a ROS interface, which is used to
communicate the state and execute actions and is mainly
used by the toolchain itself. Furthermore, many customiza-
tions can be made in the concrete game environment. For
example, a reward can be given depending on the legality
of moves or it can be determined which role will make the
next move, if this is ambiguous in a game situation

7.3 Network Generation
In player model generation as required by (R3), the main
challenge lies in generating the underlying network. For any
player, we want to give the current game state visible to the
player as input and receive a corresponding action as output.
As our network needs constant input and output sizes, the
first task to be solved is about the dimensions of the state and
action spaces. Here, we provide two different solutions. The
first one is manual, but gives the opportunity to customize
all state and action mappings to the programmers desire.
The second approach works automatically, but still offers
the ability for full customization.

7.3.1 Manual StateActionMapping. For anyGDLmodel,
a training environment is generated. The training environ-
ment contains a template neural network defined with the
MontiAnna framework as well as a training coordinator in
Java. If the game model was generated without using the
type system (see 5.3), then the state and action space dimen-
sions are generally unknown. The programmer then needs to
extend the training coordinator in Java to manually provide
mappings for the input and output of the targeted network.
For the network input, a function is needed to map any state
to a float array with fixed size. For the output, first the ac-
tion space dimension needs to be stated. Then, a function
needs to be specified to map each index of the dimension to
a corresponding action in the GDL model. In the last step,
the provided network template needs to be altered to fit the
given dimensions.

7.3.2 Automatic State Action Mapping. For GDL mod-
els created with the type system extension (see Section 5.3),
many of the previously described steps are automated. Here,
the user only has to assign types to all unresolved tokens
in the state and action rules in the GDL model. As all types
must be defined finite, the state and action space dimensions
can be derived automatically. For this, we first generate type
templates for each state and action rule. The number of type
templates is then reduced to a minimum by detecting and
combining compatible type templates based on type domain
affiliations. The resulting dimensions are then used to gen-
erate an agent network.
For the input, the pipeline creates a function to map any

state to an indicator matrix. For the output, the action index
can automatically be mapped back to an existing action of
the GDL model. Here, it has to be noted that the generated
action mapping must be bijective. As the use of typemap
reduces value dimensions, it is not supported in action rules.

7.3.3 Expanding Network Generation. To facilitate the
creation of the agent models, we provide a hook point in
the toolchain to integrate heuristics for the generation of
neural network architectures from a given GDL model. Such
heuristics can derive a neural network architecture from the
dimensionality of the state and the action spaces, but also
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1 component TicTacToeQNet {
2 ports
3 in Q(0:1)^{29} state ,
4 out Q(-oo:oo)^{9} qvalues;
5 implementation CNN {
6 state ->
7 FullyConnected(units =29) ->
8 Relu() ->
9 FullyConnected(units =256) ->

10 Relu() ->
11 FullyConnected(units =512) ->
12 Relu() ->
13 FullyConnected(units =128) ->
14 Relu() ->
15 FullyConnected(units =9) ->
16 qvalues;
17 } }

Figure 8. MontiAnna specification of the neural self-play
agent to be trained for tic-tac-toe.

use additional information from the GDL model concerning
the complexity of the ruleset, e.g. the number of legality
conditions. In particular, we need to estimate an appropriate
number of layers and the corresponding layer sizes. Alterna-
tively, architectural search techniques, e.g. based on genetic
algorithms can be applied to avoid a manual modeling of a
neural network architecture for the agent [5].

Furthermore, MontiAnna offers AutoML techniques such
as AdaNet [6] out of the box. AdaNet is an architectural
search technique, starting with a small neural network and
succesively extending it after each training procedure. Fi-
nally, the best candidate is used as the result. Weaker can-
didates can be used for weaker difficulty levels of the game
under development.

8 Evaluation
We evaluate the presented toolchain on three case studies
developing the games tic-tac-toe, chess, and the card game
Doppelkopf.

The research questions we aim to answer are as follows:
RQ1:Which kinds of games and players can be generated

out of GDL and machine learning models?
RQ2: To what extent can the implementation of an AI

agent for a given game model be fully generated? How well
does the agent perform?
RQ3: Is the model-driven generative approach more effi-

cient than developing the game in a GPL directly?

8.1 Tic-tac-toe
Using the automated state action mapping, the agent gen-

eration pipeline defines the state as a 29-dimensional binary
vector, where 27 dimensions describe the states of the 9 fields
(empty, cross, circle) and the two remaining ones define the
player to move next. Furthermore, the pipeline defines a

(a) DQN with self-play.

(b) Rainbow DQN against random playing agent.

(c) Rainbow DQN with self-play.

Figure 9. Agents for tic-tac-toe are trained with various
approaches offered by the toolchain out of the box.

binary 9-dimensional action space, denoting which field to
choose in the next move. This simple scheme results in the
problem that the network might choose a field which has
already been taken in a previous move. For this reason, we
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need to punish the learning agent not only for losing a game,
but also for taking illegal moves.
The tic-tac-toe model is implemented in only 136 lines

of code, whereas the generated Prolog interpreter uses 933
lines of code.

In a first experiment we punish the agent with a reward of
-8 in the case of an illegal move and the game ends immedi-
ately, -6 for a lost game, 2 for a draw, 5 for a win, and 0.75 per
legal move. The average reward for the training procedure of
400,000 episodes is depicted in Figure 9a. Here, for the first
8,000 episodes we only check the legality of the moves and
only thereafter also give rewards depending on the outcome
of the game. This helps the network to learn legal moves
more quickly. Unfortunately, we realize that the agent does
not learn to play the game very well.

Therefore, in a second experiment we change the training
algorithm to Rainbow DQN [14]. It combines the advantages
of various DQN algorithms of the last years. In this experi-
ment, we ignore illegal moves and always take the best legal
move as was discussed in Section 4. This approach leads to
a much better result as can be seen in Figure 9b, showing
a training against a random agent. After 3,000 episodes of
training the agent managed to win 86% and draw 1% of games
against random players (for a perfect agent the empirically
obtained expectation value when the player moves first in
50% of the time is 89% win and 11% draw1).
In a third experiment we expanded the Rainbow DQN

training procedure with self-play. Here, we initialize the
training procedure with an acting agent backed by the Rain-
bow DQN algorithm and a random acting enemy agent. For
every 50 episodes, the acting agent is then evaluated against
a random playing agent. If the acting agent scores higher
then the previous enemy agent, the enemy agent is updated
with the policy of the current acting agent. At the beginning,
this score is initialized with the expectation value of 0 for
randomly played games between two random agents. As we
can see in Figure 9c, we can achieve similar results as in the
random acting approach. With the self-play approach, the
agent managed to win 78% and draw 8% of games against
random players. Training against a random player performed
slightly better. The advantage of an integrated toolchain with
multiple predefined models is that we can try out different
strategies with little effort.

The MontiAnna model of the agent to learn the concrete
mapping from the state to the agent space is depicted in Fig-
ure 8. In particular, we can see in ll.3-4 that the input and the
output dimensions correspond to our state and action space
dimensions. The action is output as a vector of Q-values.
The highest Q-value, i.e. its argmax, determines the field to
choose. The network itself is defined in ll. 6-16 and consists
of five fully connected neuron layers with 29, 256, 512, 128,

1https://blog.ostermiller.org/tic-tac-toe-strategy/, accessed August 11th,
2022

1 // en passant
2 (<= (next (enPassant col:?col))
3 (does white (move white_pawn
4 ?col 2 ?col 4)))
5 (<= (next (enPassant col:?col))
6 (does black (move black_pawn
7 ?col 7 ?col 5)))
8 (<= (next (enPassant none))
9 (not (does black (move black_pawn

10 ?col 7 ?col 5)))
11 (not (does white (move white_pawn
12 ?col 2 ?col 4))))

Figure 10. GDL code for the definition of the en passant rule
for chess.

and 9 units, respectively, each except the last followed by a
ReLU non-linearity.

8.2 Chess
We decided on implementing a GDL model of chess, as it has
a long history in general game playing. Chess does not cover
any of the extended GDL features, but with many existing
agents and chess implementations, we are able to perform
comparisons for the training toolchain.
Since the whole model is too long to be presented here,

we only show an excerpt defining the en passant rule in
Figure 10. It defines when en passant is activated for the
next move. Therefore, we check in which column a pawn
has been moved two fields (from row 2 to row 4 for white or
from row 7 to row 5 for black). Then this respective pawn in
this column can be beaten en passant in the next move. The
full model spans over 1054 lines of code. The model is then
translated to a Prolog interpreter, which uses 1645 lines of
code and contains all needed interfaces for the integration
in the full toolchain.

For a better understanding of the chess model in develop-
ment we made use of the Java interpreter artifact to model a
GUI as seen in Figure 11 with help of the provided observer
pattern. Here, we are able to listen to state changes for each
role individually to draw the current chess board at each
timestep.
The pipeline generates a state and action space of the

same dimensionality as is used by AlphaZero, i.e. a 851-
dimensional state and a 4096-dimensional action space. As
in tic-tac-toe we are confronted with the possibility that the
neural network produces illegal moves. Similarly, a negative
reward is given in case of an illegal move and the game ends
immediately.

8.3 Doppelkopf
The german four player card game of Doppelkopf provides a
large variety of game mechanics to evaluate RQ1. Addition-
ally, the game serves up with different game elements and
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Figure 11. A GUI was implemented for chess to help in
creating and debugging the GDL model.

many different possible game states that need to be consid-
ered by our type and dimension detection system. This might
impact the agent pipeline covered inRQ2. Furthermore, Dop-
pelkopf presents itself with a variety of rule sets prone to
change each round given the players’ announcements. The
many rules help us in assessing RQ3.

The GDL model of Doppelkopf implements the card deal-
ing phase with help of the random role. Here, random is
allowed to give a card to a player as long as the player has no
full hand and as long as the card does not belong to another
player already.

Doppelkopf makes use of hidden information in multiple
places. Here, the model not only manages to hide states for
certain players. It also allows players to have different views
on the same state.

For example, a player can see the distinct values of his or
her own card hand. For the other players, the model reduces
this state to the number of cards the player has on hand, as
in the real-world the players would only be able to see each
card’s backside.
In another example, the model can deal with changing

each player’s knowledge about the current team compo-
sitions throughout the course of a game. This knowledge
usually changes multiple times per game. This signifies the
importance of being able to store the state of each player
separated, as the knowledge changes can either be shared or
constricted to single players.

1 (type reservation queens_solo)
2 ...
3 (type reservation wedding)
4

5 (typecombine announcement team bid)
6 (type team re)
7 (type team kontra)
8 (type bid 90)
9 (type bid 60)

10 (type bid 30)
11 (type bid 0)
12

13 (<= (typemap points far_behind ?x)
14 (less ?x -50))
15 ...
16 (<= (typemap points far_ahead ?x)
17 (greater ?x 50))

Figure 12. An excerpt of the types that are defined in the
Doppelkopf model.

In a Doppelkopf game, simultaneous decision making may
occur when one player makes an announcement while an-
other player plays a card. As making an announcement in
Doppelkopf is a voluntary action, the model offers the no
operation action as an alternative.
The full model of Doppelkopf is covered in 2360 lines of

code. The translated Prolog interpreter uses 2755 lines of
code.
The type system allows us to define many of the game

objects and actions in the specified pattern. Although some
variable contexts in Doppelkopf are overlapping, the type
system does not restrict us with the rule of being able to bind
any variable only once. For example, the team names are
used on multiple occasions. On the one hand, team names
indicate the teammembership of each player. But at the same
time, team names are used as a subset of possible announce-
ments to be made by players. This conflict is resolved by
first defining the team names in one domain, second defin-
ing the remaining announcements in their own domain and
last combining both domains to the announcements domain.
Another challenge comes with players being able to score
an infinite number of points through an arbitrary number
of played game rounds. To still hold to the type system’s
requirement of types being finite, we can sort the achieved
points into bins by defining intervals. As far as code effi-
ciency goes, holding onto this pattern later rewards us with
the automatic state and action space dimension detection
and mapping. Creating mappings for any agent manually is
a tedious job, as one has to consider many different possible
game states with a game consisting of 40 cards, 10 played
tricks per game round, 5 different game announcements per
team, variable team sizes throughout 8 rule sets derived from
different reservations andmore. For Doppelkopf, the pipeline
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generates a 2958-dimensional state and a 64-dimensional ac-
tion space. As in tic-tac-toe and chess, the agent has the
possibility to choose illegal actions, e.g. choosing a card it
currently does not possess. Again, we punish illegal moves
accordingly and end the game immediately.
Without our extensions, GDL models are pretty limited

in terms of arithmetics, as every atomic arithmenic opera-
tion has to be implemented by hand. For Doppelkopf, the
arithmetic extensions helps in implementing the complicated
point scoring rules and bridges the gap to more traditional
GPLs in terms of code length efficiency for basic calculations.
Additionally, the count-keyword allows us to use model
counting to easily check any player’s card count.

8.4 Threats to Validity
Construct Validity: The toolchain was developed with the
evaluation games in mind, which might bias the evaluation
results.
Internal Validity:Agent training was performed covering a
limited hyperparameter and architectural space of the neural
networks. The results could deviate sharply for different
network architectures and hyperparameter sets.
External Validity:The toolchain and the experimentswhere
designed with the evaluation games in mind so that a gen-
eralizability to new games cannot be established here. An
empirical study needs to be conducted as future work to
better understand how high performance machine learning
player models can be derived from game models automat-
ically. This also includes an evaluation of the heuristical
generation of neural network architectures from the GDL
models.

9 Conclusion
In this paper we presented a toolchain for the design of
games and the corresponding players. The rules of the mod-
eled game are modeled in a game description language and
translated to Prolog code, rendering the game executable.
For the player part, we use self-play-based reinforcement
learning enabling us to train agents for a given game model
with minimal effort - the developer only needs to specify a
neural architecture and the corresponding hyperparameters.
We also show that this step can be automated using appro-
priate heuristics. This works well for games with a constant
state size. Agents for games with a growing state size on
the other hand are more difficult to generate so that manual
neural network model creation is advisable.

The presented toolchainwas evaluated based on the games
tic-tac-toe, chess, and Doppelkopf making use of advanced
features such as randomness and hidden information. For
tic-tac-toe, it is shown how the toolchain trains an agent
yielding an almost perfect agent at the end.
Regarding the reward function we notice similarities in

the three evaluation games. First, in the initial phase of the

training, the agent is only punished and rewarded for the
legality of its moves. Afterwards, the agent is additionally
rewarded or punished for the actual outcome of the game.
While the concrete reward schemes have to be tailored for
complex games, in futurework a basic set of reward functions
can be offered by the pipeline out of the box.

The highly automated Model-Driven Engineering (MDE)
approach fosters agility, making it easy to adapt the game
quickly and to obtain updated AI agents automatically. This
facilitates incremental development and experimentation
with new rule sets and rule adaptations.

As possible next steps we propose to parameterize the
GDL to support games with variable player sizes and to
easily generate games with similar rules from one rule set
definition. Furthermore we suggest the integration of agents
based on Monte Carlo Tree Search to generate stronger op-
ponents. Here, MuZero [34] can be named as an example
for an algorithm to learn playing games with hidden infor-
mation. Additionally, the pipeline was only evaluated with
existing games in mind. Here, an evaluation regarding game
invention is desirable.
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