[GJM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.

 In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE '25,
. ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

A Model-Driven Approach to Design, Generation, and
Deployment of GUI Component Libraries

Arkadii Gerasimov
gerasimov@se-rwth.de
Software Engineering, RWTH Aachen
University
Aachen, Germany

Bernhard Rumpe
rumpe@se-rwth.de
Software Engineering, RWTH Aachen
University
Aachen, Germany

Abstract

The reusability of modular, embeddable components is a
key determinant for the success of modern programming
languages to ensure efficient and high-quality development.
However, there is a gap in the field of domain-specific model-
ing regarding reusable components at the model level. While
libraries are relatively common and a de facto standard for
prominent programming languages, establishing model li-
braries is still in its infancy. This paper specifies building a
model-driven component library that utilizes a self-extension
mechanism. We demonstrate an approach to structure, build,
and integrate such a library using a wide range of GUI com-
ponents, from essential atomic elements and more complex
composed components to specifically tailored ones for par-
ticular application domains. Employing such libraries at the
model level further supports the goal of model-driven en-
gineering to assist domain experts in efficiently building
high-quality systems.

CCS Concepts: « Software and its engineering —
Model-driven software engineering; Domain specific
languages; Graphical user interface languages; Source
code generation; Unified Modeling Language (UML),
Reusability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE °25, Koblenz, Germany

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1884-7/25/06
https://doi.org/10.1145/3732771.3742713

Nico Jansen
jansen@se-rwth.de
Software Engineering, RWTH Aachen
University
Aachen, Germany

Judith Michael
michael@se-rwth.de
Software Engineering, RWTH Aachen
University
Aachen, Germany

Sebastian Will
will@se-rwth.de
Software Engineering, RWTH Aachen
University
Aachen, Germany

Keywords: Model-Driven Software Engineering, Domain-
Specific Languages, Software Language Engineering, Model
Library, Graphical User Interfaces

ACM Reference Format:

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe,
and Sebastian Will. 2025. A Model-Driven Approach to Design,
Generation, and Deployment of GUI Component Libraries. In Pro-
ceedings of the 18th ACM SIGPLAN International Conference on
Software Language Engineering (SLE °25), June 12—13, 2025, Koblenz,
Germany. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3732771.3742713

1 Introduction

Domain-Specific Languages (DSLs) are languages tailored
for domains using concepts commonly known to domain
experts [14, 34, 42, 68]. The use of DSLs in Model-Driven Soft-
ware Engineering (MDSE) [66] enables developers to be less
bound to the underlying implementation technology [48]
and using domain-specific concepts, being much closer to
the problem domain, when increasing the automation in
software engineering processes. While MDSE is applied in
practice [29, 49, 68], e.g., because of its technical merit [37],
it may become difficult to make changes to DSLs and their
tooling over time [61] and modeling has to be fully inte-
grable in code-centric environments [29]. Like any software
product, the maintenance and support efforts for DSLs also
increase as they evolve [28]. The success of DSLs also de-
pends on finding a good balance between domain-specificity
and generality and a proper scope when defining a DSL [62].

To mitigate some of these challenges, reusing existing
language components has become a focus in DSL research
and development [10]. Languages are no longer developed
from scratch but constructed using modular, reusable blocks.
Research and practice have suggested composition tech-
niques [27, 55, 67] and design patterns [24] to facilitate the
seamless integration of language components provided by
libraries [13], enabling the adoption of software language
product lines [21, 41]. These advancements at the language

https://orcid.org/0000-0003-4752-3995
https://orcid.org/0000-0001-5199-8323
https://orcid.org/0000-0002-4999-2544
https://orcid.org/0000-0002-2147-1966
https://orcid.org/0009-0000-3963-6688
https://doi.org/10.1145/3732771.3742713
https://doi.org/10.1145/3732771.3742713
https://doi.org/10.1145/3732771.3742713

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

SLE °25, June 12-13, 2025, Koblenz, Germany

level are essential for language development and mainte-
nance. In addition, extensibility at the model level becomes
important [43], e.g., Gerasimov et al. [32] have explored a
self-extension mechanism for DSLs that allows the inclusion
of model libraries within DSLs. However, such DSLs rely on
model libraries to be as expressive as possible, e.g., when
generating web applications with the related MDSE tooling.

Graphical User Interfaces (GUIs) play a crucial role in web
development, allowing users to interact with the system. As
systems become more complex, the difficulty of creating a
high-quality GUI increases [25]. To address this problem,
MDSE tooling has been applied to support the process by
using models to describe the GUI [26]. The approaches use
techniques for modeling GUIs, which include specifying GUI
components in their DSL and using those to build GUIs [2],
using a flexible DSL that allows for the creation of custom
GUI components [9, 64], or hybrid approaches with real-time
modeling and rendering capabilies [46].

This paper aims to show a method to make it easier for
modelers to create system specifications without using a
platform-specific frontend development language. Our main
contributions are an extensible GUI component library and
a method to deploy and integrate a model library within
the software engineering process up to system deployment.
We discuss the results in several case studies, e.g., for cre-
ating Digital Twin (DT) cockpits and several experimental
applications for different domains.

The paper is structured as follows: The next section pro-
vides relevant background. Section 3 introduces the GUI
model library, and Section 4 describes its developmnet, de-
ployment, and integration. Section 5 presents case studies for
applying the model library in different application domains.
Section 6 discusses our approach and Section 7 discusses
related works. The last section concludes.

2 Background

This section introduces the basics of MontiCore and Domain-
Specific Language for Graphical User Interfaces (GUI DSL),
a language used in MontiGem to model and generate GUIs.

2.1 DSLs & Language Workbench

DSLs [14, 42, 68] are an alternative or extension of general-
purpose languages like Java. A DSL focuses on a domain,
working on a higher abstraction level using a notation stan-
dard for the domain. This results in a software development
process that performs better in productivity and quality, at
the cost of a longer start-up time to create such a DSL [54].
For that reason, language workbenches such as EMF [52],
GEMOC Studio [22], MetaEdit+ [57], MontiCore [36], Nev-
erlang [59], Rascal [60], Spoofax [39], or Xtext [7] have been
introduced to support and speed up language engineering.
Our approach uses MontiCore language workbench. Mon-
tiCore grammars define the context-free syntax of a DSL

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will

in an EBNF-like format that supports DSL composition, ex-
tension, and aggregation [36]. MontiCore is a meta-tool for
generating infrastructure from a grammar file. This includes
a model parser for the concrete syntax to be converted into
an Abstract Syntax Tree (AST), and tooling such as visitors
for AST traversal, assisting in developing generators.

2.2 Domain-Specific Language for Graphical User
Interfaces

GUIDSL [33] is a language for modeling graphical user in-
terfaces. It is used in the MontiGem framework [1, 11] - a
tool built with MontiCore for generating web applications.
The MontiGem framework has been applied to create web
applications for different domains, such as resource man-
agement [31], process-aware information systems [23], low-
code development platforms [18], digital twins [6], assistive

systems [32], and IoT app stores [12].

package montigem;
component Icon(String name)

N}

Listing 1. GUI model: Icon model declaration

package myapp;

import montigem.Icon;

component HomeIcon() {
@Icon(name = "home");

[I N

}

Listing 2. GUI model: Home icon model declaration and
icon component usage

Using MontiGem, system-specification models are trans-
formed into Java, TypeScript, HTML, and SCSS code for an
Angular application. Each GUI DSL model declares a sin-
gle GUI component by specifying the qualified name of the
component and its input parameters. The model optionally
implements the component by importing and using other
components. Otherwise, the hand-written implementation
extends or overwrites the generated code. Listing 1 shows
a component declaration without implementation, and List-
ing 2 shows its usage to create a HomeIcon component.

GUI DSL defines concepts for specifying and using compo-
nents and their parameters. The language and the MontiGem
generator do not distinguish between different components.
Instead, a component’s semantics are specified by its imple-
mentation. For example, an icon implementation may use,
e.g., Angular Material icons, or have a custom implementa-
tion. Such an approach to specifying GUI components has
disadvantages in generating component-specific code, but is
a better fit for building model-driven component libraries.
This way of adding concepts using models without extending
the DSL’s grammar is called a self-extension mechanism [32].

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries

To handle various use cases using a few syntactical con-
structs, GUI DSL provides variations for component decla-
rations and different types of component parameters. For
example, a component may be declared a regular or page
component. The MontiGem generator creates routing con-
figurations for pages in addition to component code. Input
parameter may be declared with e.g., built-in Event type for
which the MontiGem creates event handlers and produces
specialized syntax. Other types are discussed in Section 3.

All input parameters are optional; regardless of whether
parameter values are specified, GUI is always functioning.
This ensures a robust GUI following Postel’s Law [70]. If a pa-
rameter expects some value, such as data for a chart, but the
value is missing, a placeholder is shown without affecting the
rest of the interface. Using observers, the MontiGem keeps
values up-to-date and updates the GUI whenever a param-
eter value changes. For example, if the chart data is loaded
later, the chart will be shown in the GUI automatically.

3 GUI Component Model Library

Building a library in a model-driven context using a self-
extension mechanism handles stages typical to a general
library lifecycle, such as creation, development, maintenance,
deployment, integration, and usage. We describe the stages
addressing the challenges of the model-driven aspect.

The stages involve the following roles:

o A library developer creates or derives reusable GUI
components from applications.

e An application developer designs the GUI by creat-
ing application-specific GUI components using library
components or from scratch.

e A component developer is either a library or an
application developer.

e A user interacts with the GUI, for example, by clicking
buttons, reading or typing in information, etc.

To establish a model-driven GUI component library, we
consider the following points:

o Identifying reusable GUI components from use cases
to create and grow a library. The library provides appli-
cation developers the components necessary to build a
system’s GUIL The components vary from basic build-
ing blocks like buttons and text to complex domain-
specific components like electric circuit diagrams or
molecular structures.

e Making sure the integrated library does not bloat the
size of the end product. During system deployment,
the imported library may include unused components,
negatively impacting user experience with the sys-
tem’s loading times. This problem can be partially mit-
igated by splitting a library into smaller chunks. This
concern comes after a library is established, but we
address it while describing the smaller library parts,
further called sub-libraries, for simplicity.

SLE °25, June 12-13, 2025, Koblenz, Germany

We identify reusable GUI components, select and describe
components with unique traits in an MDSE context, define a
method for structuring, developing, deploying, and integrat-
ing the library, and identify trade-offs of the used approach.

Figure 1 shows an overview of the GUI component library
explained in the following sub-sections. Reusable GUI com-
ponents are identified from their use cases: whenever a com-
ponent can be used in systems from different domains, it be-
comes a candidate for library integration. The library is split
into sub-libraries of related components, where the struc-
tural complexity, functionality, and domain define which
components are related. For example, text and image are
atomic, basic, domain-independent components. An input
field or checkbox is also an atomic and domain-independent
component. Still, an input field’s functionality is tied to ma-
nipulating an object state, like entering a person’s name.

A sub-library may reuse components of other sub-libraries.
For example, charts use buttons and text from the basic
components sub-library. A component can reuse components
of the same library, such as a card that consists of rows and
columns. Some components are constructed from multiple
sub-components, like the table, to form a cohesive structure.

Dividing a library into sub-libraries is unimportant for the
system’s modeling, but improves the application developer
and user experience. The components are loaded in packages,
which reduces the likelihood of unused components being
loaded during application development and usage.

3.1 Basic Components

Basic components include domain-independent atomic GUI
components for simple interaction, such as text, buttons, im-
age, video, etc. "Atomic" means that, from an application de-
veloper’s perspective, the component implementation does
not require the composition of other components. For ex-
ample, a video component has several buttons and an area
for displaying a video. Still, a component developer may use
a predefined HTML video element, which is perceived as
one entity. "Simple" interaction is defined by component us-
age. The simplest GUIs are used for consuming information,
provided by text, video, or audio, and most pages also have

buttons and links for navigation.

1| package montigem;

2| component Button(

3 String height = "auto",

4 String width = "auto",

5 String label = "",

6 List<GUIViewElement> content,
7 boolean disabled = false,

8 Event<Void> leftClick

91)

Listing 3. GUI model: Button declaration

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:
A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.

In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

SLE °25, June 12-13, 2025, Koblenz, Germany Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will
e IS e Ty
Basic | | Charts | | Input | Layout | | Table | | Navigation
— Audio — BarChart — Autocomplete — Card NN Table Navitem
Vo
[~ Button — BoxPlot — Checkbox — Column ! |_TabIeHeader NavList
— lcon — GaugeChart — Dropdown I~ Row <,// TableHeaderCell
— Image — Heatmap I~ DualRangelnput —|_Grid TableRow
— Link — LineChart — RadioButton GridCell TableRowCell
— Text — PieChart — Rangelnput Overlay
— Video — RadarChart — Textarea —I— Overlayltem
— ScatterPlot — Textinput - Dialog
— SunburstChart L Tree | Network | | Func

— EulerDiagram

dependency sub-component containment
L > ,
Grid

GridCell Audio

legend

|— NetworkGraph |— FunctionDisplay

Figure 1. GUI liBrary overview

An example of a basic component is a button. A button
enables active user interactions through mouse clicks, key
presses, or similar, depending on the system a user operates
on (e.g., taps on devices with a touch screen). The component
specifies input parameters:

e The component style (Listing 3, 1. 3-4). The width and
height parameters specify the visual dimensions of the
component. They are common for many components
and will be omitted in the examples. The components
use the width and height values to set corresponding
CSS attributes, thus the values can be specified as a
String in pixels, percents, with CSS keywords, etc.

e The button text (Listing 3, 1. 5-6). If the label
contains plain text, the label parameter is set. If
multiple components, such as an icon and some text,
should be shown, the content is set. It uses a type
GUIViewElement that enables component nesting.

e The button state (Listing 3, 1. 7). In this case, the
disabled parameter indicates whether a user can
interact with the button.

e A callback for an event (Listing 3, 1. 8). The MontiGem
recognizes leftClick parameter type Event and pro-
duces code for the event handling, for example, trans-
mitting data on button click.

The sign-up form model in Listing 4 and its visual repre-
sentation on Figure 2 show an example of GUI components’
usage. The button (Listing 4, 1. 16-19) specifies a function
for signing a person up. The function is declared and imple-
mented in a hand-written extension of the SignUpForm.

T . I NI TR R

10
11
12
13
14
15
16
17
18
19
20

package myapp;
import montigem.x*;
component SignUpForm(Person p) {
@Column(rowGap = "10px",
components = [
@TextInput (
labelText = "Name:",
placeholder = "Alice",
entry = p.name
),
@TextInput (
inputType = "date",
labelText = "Birth date:",
entry = p.birthdate
),
@Button (
label = "Confirm",
leftClick = signUp(p)
)
DR

Listing 4. GUI model: Sign-up form

Name:
Alice

Birth date:
tt.mm.jjjj]

Figure 2. Rendered GUI: Sign-up form

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries

3.2 Input Components

Input components are widely used in interactive systems
where users must provide data, e.g.,, to create or update
objects, form submissions, search functionalities, etc.

1| package montigem;

2| component TextInput(

3 String labelText = "",

4 String placeholder = "",

5 String inputType = "text",
6 ?String entry,

7 TextInputValidity validity,
8 Event keyRelease,

9 Event keyPress

Listing 5. GUI model: Text input declaration

The text input example in Figure 2 enables users to input
their name and birth date. Listing 5 shows the signature
declaration of the TextInput. The component comprises an
input field and a label to provide context for the expected
input. The inputType changes the component’s appearance
and behavior. For example, the input type "date" shows an
input in which a user can select a date using a calendar.

The main feature of input components is synchronizing
an input parameter with a variable and displaying validation
results. The parameter entry references the input field’s
value. The question mark before the type (Listing 5, L. 6) indi-
cates that the parameter is linked to a variable. For example,
variable p.name (Listing 4, I. 9) is updated whenever a user
enters a new value into the "Name" field. The validity pa-
rameter can be set to validate user inputs. For example, if a
user types an invalid date, the field is highlighted with a red
color, an icon, and help text.

3.3 Layout Components

Layout components are domain-independent components
serving as containers for other components. They ensure
the components are shown in a column, grid, dialog window,
etc. There are different ways to specify layout, such as using
a grid, coordinates, etc. MontiGem provides a library based

on CSS grid [17] and flexbox [16] layout.

1| package montigem;

2| component Column(

3 String hAlign = "stretch",

4 String vAlign = "stretch",

5 String rowGap = "o",

6 String colGap = "o",

7 String wrap = "nowrap",

8 List<GUIViewElement> components
90)

Listing 6. GUI model: Column declaration

SLE °25, June 12-13, 2025, Koblenz, Germany

A column is an example of a layout component (see List-
ing 6). The inputs of a layout component primarily consist
of the layout configuration, such as horizontal and vertical
alignment of nested elements (Listing 6, 1. 3-4), gaps between
components (Listing 6, 1. 5-6), and whenever the components
are wrapped to the next column when there is not enough
space (Listing 6, 1. 7). A components parameter specifies
components to be arranged in a column. The parameters
with types indicating a single or multiple GUIViewElement
objects are handled by MontiGem separately to nest the com-
ponents in the target code properly. Such parameters are the
main feature of a layout sub-library component.

Listing 4 uses the column component to vertically stack
input fields and the button. Any component can be used as
input, which allows an application developer to nest layout
components and create complex web pages. However, such
a container may not affect components with a coordinate-
based positioning, like context menus and dialog windows.

3.4 Charts

Charts are structurally complex components that represent
statistical data. They are used in financial applications, mar-
keting, cyber-physical systems, IoT data, and other domains
handling large data volumes that require an overview. Mon-
tiGem’s charts library is based on existing implementations
of commonly used charts, such as pie, bar, and line charts.

GUIDSL
package montigem;

import montigem.LineChartTypes.LineChartEntry;
component LineChart(

List<LineChartEntry> entries,

boolean enableBackgroundColor,

Integer maxValue,

Integer minValue

[I T N R N

)

Listing 7. GUI model: Line chart declaration

\\N

CcD
LineChartEntry LineChartSubEntry
String category 1 » String label
String color int value

Figure 3. Class diagram: Line chart types declaration

An example is a line chart (Listing 7). Most input parame-
ters are used to configure the chart, e.g., setting minimum
and maximum values of the y-axis. The entries parame-
ter represents input statistical data and has a more complex
structure. Its type is a list of GemLineChartEntry objects,
each describing a line on a line chart. Figure 4 shows an ex-
ample of a line chart. The blue line is represented by an entry
specifying the blue color, category name, "Motor Temp.", and
the list of points specifying values for different timestamps.

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

SLE °25, June 12-13, 2025, Koblenz, Germany

~
a

e
e

60 //

16:33:53 17:34.06 18:33:50 19:33:48 20:33:36
® Motor Temp. (°C)
Figure 4. Rendered GUI: Line chart usage

Complex data types are a common trait of the charts since
they visualize aggregated statistics on a dataset. To support
complex types, GUI DSL enables importing and using types
from compiled Java classes and interfaces or from MontiCore-
specific class diagram definitions. In a MontiGem application,
the data is aggregated and sent to GUI from the server.

3.5 Composed Components

MontiGem has a few GUI components that rely on the com-
position of several specific parts, such as the navigation and
table components. These components are categorized in sep-
arate sub-libraries since they have different functionality. We
use the table component to describe the composition trait.

Address
Name
Street House
Emma Oak Str. 29
Alice
Gitschiner Str. 9

Olivia
Isabella Pine Rd.

Figure 5. Rendered GUI: Table usage

package montigem;

component Table(
List<GUIViewElement> headers,
List<GUIViewElement> body

[R N

)

Listing 8. GUI model: Table declaration

The table component has several sub-components to spec-
ify a header and a body. A table organizes and displays
text or other GUI elements in rows and columns. Listing 8
demonstrates the declaration of the table component in Mon-
tiGem. The header is defined by a list of other GUI elements
(headers), same as the body. Headers are set to a list of ta-
ble header components and body to a list of table rows. The
header is visually distinguishable from the body and defines
the width of the columns.

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will

package montigem;

component TableRow(
List<String> cols,
List<GUIViewElement> cells

[N

Listing 9. GUI model: Table row declaration

Each row consists of as many cells as the table has columns.
Listing 9 shows the declaration of a table row. If a table only
displays text, the cols parameters can be used to specify the
text for each column. For complex table elements, cells are
used. The cells may span multiple columns and rows and
contain GUI elements, such as buttons or text inputs.

Composed structures provide a high level of customiza-
tion. The sub-components are not restricted to a specific type.
For example, a modeler may specify custom sub-components
to replace predefined TableRow. However, application devel-
opers are not prevented from making unintentional mistakes,
such as providing unfitting components as input.

3.6 Domain-Specific Components

Some reusable domain-specific components were recognized
while developing several projects in digital twins, chatbots,
and artifact analysis domains. These include components:

e A status indicator like a traffic light.

e A network graph for viewing dependencies between
objects. For example, it displays dependencies between
software artifacts across git repositories.

e A function display component for showing compo-
nent and connector architectures, currently used in
teaching to visualize a factory simulation.

e A chat component built for communication between
application users or between a user and a chatbot.

The chat and status indicator components are being inte-
grated into the library at the time of writing. Each compo-
nent is packaged in separate libraries since they are added
to projects with specific use cases.

Status indicators are used in real-time monitoring
and decision-making applications, such as digital twin
dashboards for automated industrial systems. A traffic
light indicates whether a service has stopped ("red"), is not
functioning properly ("yellow"), or is operating ("green").
Status indicators give immediate feedback to the user,
enabling an intuitive visualization of operational conditions.

Fundamentally, domain-specific components are similar
to domain-independent components and utilize the same
GUI DSL features. The status indicator is similar to a basic
component, such as an icon, but it has additional features
to switch between various states. The graph component is
essentially a chart since it visualizes aggregated data. The
function display is a composition of GUI components for
displaying software, hardware components, and connectors.

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries

The chat component combines input and layout components’
features to enable user input to be entered and displayed.

4 Development, Deployment, and
Integration of the Model Library

We describe the steps for building, deploying, and integrating
a model library with the generated code into a system (see
Figure 6). Further, we explain the process using the GUI
component library.

4.1 Classification

The process starts with identifying and classifying a
reusable GUI component. This step ensures the library’s
modular structure, simplifies component maintenance and
deployment, and tracks dependencies by handling compo-
nent groups instead of individual components. A reusable
GUI component is distilled from use cases in which an
application developer identifies repeated usage of the same
GUI part. Given a reusable component, it is categorized into
the library according to its traits: functionality, complexity,
and application domain. The component is either assigned
to an existing sub-library or put in a new one.

Consider adding an icon component to the library (Fig-
ure 7). The existing sub-library for simple components with
basic interaction that fit an arbitrary domain contains text,
image, and button components. Since the icon component
does not possess new traits, a library developer puts it into
the existing sub-library. When a FunctionDisplay compo-
nent is integrated, a library developer creates a new library
for the C&C architecture domain. The component consists of
elements describing system parts, thus categorized as com-
plex, and showing basic statistics.

The area assigned to a sub-library is chosen mainly ac-
cording to the balance between maintenance complexity and
package size. For example, each component could be man-
aged in a separate sub-library, but that would require more
careful dependency management. A separate sub-library for
a component may also be insignificant regarding package
size, for example, for tiny components like text or images.

New components are generally created according to re-
search, experimental, and industrial project requirements.
When library developers identify repeated use of a compo-
nent, it is added to a domain-specific library correspond-
ing to the project’s domain or, if applicable, to a domain-
independent sub-library. The extent of fitting the domain is
derived from use cases for a component. For example, a status
indicator for digital twins is currently used in two MontiGem
applications in the digital twin domain out of numerous other
applications. If a component is being more actively used in
other domains, the component may be moved to a different
sub-library fitting a more general domain.

SLE °25, June 12-13, 2025, Koblenz, Germany

4.2 Library Deployment and Integration
Environment

The library must be set up before the reusable components
can be integrated. The library provides an environment that
manages GUI components’ implementations in the form of
models and corresponding code.

Figure 8 shows our library deployment and integration
setup as an example.

e Models describe GUI component API and partial im-
plementation processed by a generator producing An-
gular component code (TypeScript, HTML, CSS). Gen-
erally, any reusable models and corresponding target
code could be library sources. For example, in JetBrains
MPS, it could be one or several reusable solutions, pos-
sibly coupled with languages into plugins.

e When the library is deployed, the component code in
the target language is compiled and packaged as npm
packages for each sub-library. All models are processed
by MontiGem and converted to JSON files describing
exported symbols of GUI components, e.g., the library’s
public API for application models. The symbols are
packaged into a JAR file. Gradle manages the deploy-
ment process. It delegates target code packaging to
Angular CLI and model conversion to MontiGem. In
a different context, such as MPS, the process could be
managed by a custom build with a plugin to compile
and package target code and the corresponding solu-
tion, possibly with an extended Ant build script and
plugins.

e On the side of a MontiGem application, a MontiGem
gradle plugin includes the JAR file and a default sub-
set of npm packages, which it provides for domain-
independent sub-libraries. An application developer
may override the default package set by providing
a configuration file. Whenever an application’s GUI
model uses a library component, the generated code
imports use a corresponding component in the target
code. The MontiGem generator specifies how to map
a library component import and usage in the model to
the target code. In other words, the application side re-
quires an integration infrastructure as a counterpart of
the library deployment. For example, in MPS, it could
be a plugin for integrating an existing solution.

e The library is published by a GitLab Continuous Inte-
gration (CI) pipeline.

The setup includes multiple configuration files required by
the technology stack. For example, Angular JSON files config-
ure libraries and applications, package . json files configure
npm packages, Gradle scripts orchestrate library deployment
and integration, etc. This environment is predefined for a
MontiGem application. An application developer may adjust
it by providing configuration files to override the defaults.

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

SLE °25, June 12-13, 2025, Koblenz, Germany

[library exists]

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will

[update not required]

AD
J

classify component

setup library H add component

update componentH publish ’

update application

Figure 6. GUI component library development, deployment, and integration

complexity

Video
L]
Button
L]

Text

JImage o'cON functionality

@
s
Figure 7. GUI component classification
model
& —\ —\ jar
= = = || import
=9 ool =9 oo _serialize. = e
g el ca caf = _] o
oS ontiGem
g g\@ @ =
<
1Y)
s0) < =
(=
= =

Gradle @

PN

o okt %"
package

import

compile

<y
<y

=4"”
el
)
o
=~
)
()
®

Figure 8. GUI library deployment and integration

Abstracting away from specific technologies, a model li-
brary based on a self-extension mechanism requires a real-
ization of the following concepts:

e Model packaging mechanism.

o Target code packaging mechanism.

e Mapping from model import and usage to the corre-
sponding import and usage in the target code.

e A coordinator for integrating the model and target
code packages into the end product.

Depending on the technology stack, the setup realization
may vary. For example, models written in the internal DSL of

a target code language could use the packaging mechanism
of the target code. The coordinator may use a code generator
to load dependencies based on imports in application models.

4.3 Integrating Components into the Library

Reusable components can be integrated after the library is
set up (see Figure 6). Adding a component to an existing sub-
library involves adding its model and code to the correspond-
ing sub-library parts. Refactoring steps may be necessary
if the library environment differs from the application. For
example, generated MontiGem applications use path aliases
for import paths, which should be avoided in an Angular
library. The MontiGem generator realizes a library mode —
the import statements are generated differently depending
on the environment. However, hand-written code extensions
may require similar manual adjustments.

A library developer must consider simplifying a compo-
nent’s model before publishing it, e.g., reducing input param-
eters and naming them according to the library’s standards.
Since the model describes a component’s public AP, changes
involving renaming or removing component parameters in-
troduce breaking changes for library applications. Changes
made to the API in the model should also be propagated
to the target code. For example, if hand-written extensions
of application code use input parameters of a hand-written
library component extension that is missing in the compo-
nent’s model, refactoring hand-written code to the applica-
tion models becomes difficult.

1 | component Button (GUIDSL] & 1 | component Button (GUI DSL
2 String label = "", §|:>2 String label = "',

3 int myAppParam % 3 // ..

4) g 4)

refactor vi @ refactor v2 N

1 | component MyButton(|GUIDSL 1 | component MyButton (
2 String label = "", 2 int myAppParam,

3 int myAppParam 3 GUIViewElement button
410) { 41) {

5 @Button (label = label) ; 5 button;

6|} 6|}

Figure 9. Application GUI component refactoring

The (sub-)library version is incremented at the end, and
the library can be published. The library component can
then replace the original GUI component in applications
from which it was derived. Generally, the replacement needs
refactoring if changes were applied to the component during
library integration. Figure 9 shows two refactoring strategies.

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries

After moving a button to the GUI component library, the com-
ponent loses the application-specific parameter myAppParam.
The refactoring option v1 suggests creating a wrapper GUI
component with application-specific parameters. The com-
ponent delegates the library component parameters if neces-
sary. The refactoring option v2 builds a wrapper that accepts
a library component instance. Both solutions have disad-
vantages; the first requires duplicate parameter declarations,
and the second allows arbitrary components. Moving a com-
ponent to a different sub-library does not affect existing
MontiGem applications since specific imports in the target
code are abstracted away at the model level.

After the library component integration, an application
developer may request new features, and the component
development enters a loop. In case a breaking change is
introduced, a migration mechanism should be supplied for
models. The current MontiGem migration strategy is limited
to simple scripts. More advanced techniques are possible,
but outside this work’s scope.

5 Case Studies

We applied MontiGem to create various web-based appli-
cations and conducted several experiments to evaluate the
tooling. Gerasimov et al. [32] have already compared library-
based development to traditional DSLs specifying GUI com-
ponents on the language level. We analyze the effectiveness
of built infrastructure based on a model library by comparing
it to code-first development.

5.1 Digital Twin Cockpit

The presented GUI components library can be used to realize
a GUI for a website by applying a model-driven approach. It
takes the work of recreating GUI view elements from scratch
and instead offers a large selection of predefined compo-
nents to integrate into a system quickly. These range from
essential components useful for almost every website, such
as navigation, basic information display, and user input, to
domain-specific components. This section describes engi-
neering a GUI for the particular domain of digital twins, also
called digital twin cockpit according to [6]. An example of
such a GUI is shown in Figure 10.

In the digital twins domain, there are many sub-domains
such as digital smart cities [8, 45], smart farming [4], man-
ufacturing and production [35, 56, 65], energy systems and
electricity networks [30, 44], oil and gas industry [20], sup-
ply chain management, clinical institutions [6, 19, 38], and
more [47]. However, they all have common ideas. Therefore,
these domains’ applications can benefit from reusable GUI
components. It also leverages the modularity of the GUI com-
ponent library, only using components from sub-libraries
relevant to the domain. Digital twin cockpits require a GUI
capable of comprehensively visualizing large datasets, often
capturing real-time information for monitoring. Using the

SLE °25, June 12-13, 2025, Koblenz, Germany

table component is an intuitive approach for this task. Fur-
thermore, displaying data in different charts supports data
analysis, giving the user clues for predictions and planning.

A reference architecture for digital twins presented in [35]
determines different parts of a digital twin using component
and connector architecture models. Mapping these models
onto the GUI DSL and class diagram models allows easy
integration in a MontiGem project. It automatically gener-
ates services for backend communication and provides data
access from the database. After the data layer is set up, we
decide which web pages the application features. Creating
a page with the keyword page will define a route for navi-
gation. The types defined in the class diagram can be used
as input parameters. A typical page is a content overview. It
receives a list of services that the digital twin should mon-
itor. Defining them as an input parameter of a page will
automatically load the information from the database. Af-
ter adding a dependency to the GUI component library, the
desired components can be imported and used in the page,
e.g., Table, LineChart, StatusIndicator, or others. Fur-
thermore, a page can be split into more granular components
for either sub-parts of the page, e.g., elements that should
only be visible once their content is loaded, or complex ele-
ments like the table to display the observed values.

Figure 10 shows the described digital twin cockpit,
reusing the domain-specific status indicator component
demonstrated in Section 3. The table shows the evolution
of the operational attributes of a machine, in this case, a
conveyor belt, at different timestamps. The traffic light
status changes once the "motor temperature" reaches a
certain threshold. This is also visible in the line chart,
allowing the machine’s status to be monitored.

The digital twin cockpit application was written in 354
lines of code for the GUI models, with 267 additional lines
of handwritten code to extend the GUI’s functionality. The
generated code in Angular, including TypeScript, HTML, and
CSS, comprises 6967 lines of code. The generated Angular
code represents an application without a model library; the
model-driven approach requires about 90% less code.

5.2 Experimental Applications

We conducted an experiment in which 15 students organized
into six groups (4 groups of 3, one group of 2, and one solo),
selected a domain, and created two very similar applications
for the domain: the first application was built using a tech-
nology stack of a group’s choice, and the second was built
with the MontiGem framework using the GUI component
library (see Table 1). The developed applications:

¢ Inventory management application handling a list of
wares and making purchases.

e Traffic management application handling train routes.

e Project management application handling issues in a
software project, similar to GitHub.

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.

In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

SLE °25, June 12-13, 2025, Koblenz, Germany

Start Overview

Raw Material Handling Conve or 2
Machining Area y

Post-Processing Date: [} from

14.02.2025 14:50 ©

Heat Treatment

£ v v v v

Conveyor Belts
Conveyor 1
Conveyor 2 Belt Motor Load
Conveyor 3 Timestamp Speed Temp. Weight
Conveyor 4 (m/s) (°C) (kg)

Power
(kW)

14:52:42 1.2 55 200 2.8
15:53:03 1.2 57 210 29
16:53:20 1.1 62 215 3.1
17:52:50 1 68 220 35
18:53:28 0.8 75 225 4

19:00 ©

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will

Orchestrator

Motor Temperature (°C)

75

Status

L /
| P

B d

: e
i

14:52:42

N

16:53:20 18:53:28

® Motor Temp. (°C)

15:53:03 17:52:50

Figure 10. Digital twin cockpit

Table 1. Lines of code comparison: MontiGem vs. other frameworks

Technology Statistic Inventory M TrafficM ProjectM CourseM AssetM CRM
GUI LoC 1291 831 472 493 913 239
MontiGem HW LoC 1151 1652 435 404 985 279
total LoC 2442 2483 907 897 1898 518
Own choice total LoC 2898 3918 1246 2057 1578 1091
GUI Tool Django Angular React React Flutter React

e Course management application handling creation and
assignment to student courses.

e Asset management application handling cars in one
application and devices, such as phones, in the other.

e Customer relationship management (CRM) application
handling customer data, contacts, and deals.

The students had a week for planning the applications,
e.g., describing use cases and requirements, and a 4-week
development time for each application. The quantitative anal-
ysis of the results is shown in Table 1. Developing a GUI for
an application with MontiGem component library gener-
ally requires less code, for example, compared to React and
Angular that require a moderate amount of boilerplate code.
The amount of GUI model code and hand-written (HW) ex-
tensions within a MontiGem application was similar at the
time of the experiment. However, as some participants re-
ported, the MontiGem version of the application had fewer
features. For example, the inventory management applica-
tion’s overview page did not have an update button that
opens a 3-field form for updating product information. We
surveyed the students (10 out of 15 participated) to analyze
further the differences between using a model-driven ap-
proach and widely used frameworks.

Table 2. Survey participants’ experience

Experience <3m 3m-1ly 1y-2y >2y
Programming 1 1 1 7
Web dev 4 0 5 1
MDE 8 0 2 0

The participants’ experience with technologies is shown
in Table 2. Most participants had experience with program-
ming (more than 2 years), more than half had moderate
web development experience, and most were beginners in
model-driven engineering (less than 3 months). The Table 3
shows questions related to GUI development. Development
speed and experience are assessed in favor of the technology
stack chosen by students. MontiGem’s GUI development fea-
tures were voted as slightly lacking compared to widely used
frameworks. When asked the follow-up question, "What fea-
tures did you miss most?" participants mentioned missing
components: maps (Google Maps or similar) and drag-and-
drop. Other missing features included out-of-the-box authen-
tication and specific data request options for server-side data
filtering. Such components will be added to the library.

Threats to validity The experiment started 10 months
ago and ended 7 months before the writing of this paper.

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries

SLE °25, June 12-13, 2025, Koblenz, Germany

Table 3. Comparing MontiGem and other frameworks. The numbers show the number of votes for the corresponding options.

It was possible to realize GUI : fully - mostly partially no
ithin time limit MontiGem 1 5 4 0
withun trme fumt Own choice 3 5 2 0
GUI development with longer slightly longer similar slightly shorter shorter
MontiGem was 4 1 4 1 0
sufficient required support insufficient

Documentation was MontiGem 0 1 9
Own choice 4 6 0

How difficult was . easy manageable difficult
troubleshooting th MontiGem 0 4 6
roubleshooting the errors Own choice 4 6 0

Since then, MontiGem and other frameworks have been up-
dated, and MontiGem has addressed some issues. Its current
version introduced major changes and was released shortly
before the students used it. Thus, the documentation had
to be created from scratch, and we are still improving it.
The documentation provided to students had a short us-
age example and input parameters for each GUI component.
This documentation will be generated from artifacts such
as component declaration models and models describing
more complex usage examples. A step-by-step tutorial and
several example projects were added for students’ training,.
Regarding IDE tooling, a language server protocol (LSP) was
implemented for the GUI DSL and class diagram languages.
The tooling is currently available and is being improved. Fu-
ture support includes live updates of the application during
model development, which is currently experimental. In ad-
dition, error logs are collected and analyzed by a centralized
system. Error messages are being added and clarified to sim-
plify the error resolution process for application developers.

The experiment started with all students working on an
application using a technology stack of their choice first and
MontiGem second. The students likely had a general idea of
the application structure before building it with MontiGem,
which could have given MontiGem an advantage.

The number of students and survey participants was low,
and the students had similar backgrounds, favoring conven-
tional tools. While some results, such as weaker documen-
tation for MontiGem, are convincing, other results, such as
GUI development time, could be different if the students had
more experience with MDSE.

6 Discussion

The presented library creation, deployment, and integra-
tion method is similar to library management in traditional
software systems. The model layer requires dependency han-
dling through imports, packaging, and building tools par-
allel to code-level ones. Additionally, those tools must be
coordinated to ensure intuitive library management. Provid-
ing such infrastructure enables model reuse across different

projects. However, the infrastructure alone is not enough to
provide a positive application developer experience.

6.1 Experimental Results

In general, applications created with MontiGem require less
code than commonly used frameworks. Engineers with expe-
rience in model-driven engineering, as shown in Section 5.1,
can build a GUI with less code using MontiGem and its
component library. This suggests that the model-driven ap-
proach reduces the boilerplate code, accelerating develop-
ment. However, the student survey does not entirely support
this hypothesis. The lack of experience and knowledge about
a model-driven framework, such as MontiGem, as well as
the steep learning curve, plays a significant role in the de-
velopment process. GUI models offer a good starting point
for the development of web applications with the possibility
of extending the functionality with hand-written code.

The survey results and interactions with the students indi-
cate that the model-driven result with MontiGem, in its prior
state, hardly competes with state-of-the-art GUI frameworks.
However, the proposed approach could outperform such
frameworks in domains that rely on components for special-
ized use cases. Although the knowledge distribution of the
participants, which was more in favor of web development
than MDSE, likely influences this result, it also indicates an
important aspect: MDSE tools in themselves require a matu-
rity comparable to modern programming frameworks. This
includes comprehensive documentation, tooling support to
guide the engineering process, and accessible tutorials con-
sidering different proficiency levels.

6.2 Limitations and Trade-offs

Our model-driven component library relies on target lan-
guage supporting libraries, e.g., providing the packaging and
importing mechanisms, such as the Angular framework us-
ing its CLI tool, webpack, and npm. Additionally, a build tool
must be able to use these mechanisms, in our example, Gradle
delegates to the Angular CLI tool. While both conditions can

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

SLE °25, June 12-13, 2025, Koblenz, Germany

be satisfied with custom-built tools when necessary, building
such tools requires additional resources.

A generator may require customization for supporting
libraries since the target language may have specific require-
ments for a library component implementation. For example,
the MontiGem generator creates import statements with rel-
ative paths for library components and absolute paths for
application components.

The current realization of the library integration uses a
predefined list of sub-libraries with commonly used compo-
nents. The information on how to import components from
a sub-library is specified in the MontiGem generator. For
example, a button component is a part of @montigem/basic
sub-library, and the generator uses the library name to im-
port the component. An alternative solution is importing
sub-libraries based on the model’s component usages. The
library could provide the sub-library names that the genera-
tor would use. This way, the generator becomes independent
of the libraries, and the imports can potentially be further
optimized by importing individual GUI components.

7 Related Work

GUI component libraries implemented with general-purpose
languages [15, 51, 58, 69] have well-defined tooling, pro-
cesses, and documentation for their management from the
library creation to integration and maintenance. Such li-
braries inspired our work, and our approach is particularly
close to the Angular framework and its library system [3].
The Angular framework is built on web technologies like
TypeScript, HTML, and CSS for component development
and packaging systems, such as npm and webpack. It pro-
vides a custom HTML extension, which can be viewed as a
DSL, and has a set of tools working together to provide and
simplify component library management. Our work adapts
this infrastructure, creating a conceptual framework and a
method supporting libraries in the MDE context.

A common, straightforward model-driven approach to
GUI creation is to specify a predefined set of GUI compo-
nents directly in the DSL [2, 53]. The approach is simple,
generally easier to implement, and provides a syntactic va-
riety compared to a DSL supporting a library. However, as
demonstrated by Gerasimov et al. [32], defining an abstract
GUI component concept in the language and specific com-
ponents in models, e.g., using the self-extension mechanism,
facilitates the library approach, enabling accelerated expan-
sion of GUI component libraries. Although the self-extension
mechanism is used in different forms in research [50, 63],
component libraries and their lifecycle are rarely discussed.

Some prominent DSLs for modeling web applications uti-
lize the library approach. Visser [64] presents WebDSL — a
language for designing and generating web applications. The
DSL uses abstract concepts, such as page fragments and tem-
plates, similar to the GUI components in this paper. WebDSL

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will

provides a module and import system that enables the reuse
of concepts and opens a potential for model library support.
The DSL has navigation, interaction, and layout component
groups. Our work advances the research by describing the
model library, including the different component types and
principles behind library structuring. Furthermore, we ex-
plain in detail the library deployment and integration.

Brambilla and Fraternali [9] provide an extensive list of
GUI components in IFML — a graphical UML standard lan-
guage for describing the front end of software applications.
They describe basic components and component composi-
tion patterns for various domains, such as mobile applica-
tions and business processes. The extension and distribution
of components are done via the UML profiling mechanism.
Our work specifies a different structuring for a GUI compo-
nent library and provides a more detailed lower-level view
of the library deployment and integration.

The UML profiling mechanism is similarly utilized by
Link et al. [40]. The authors specify stereotypes for dif-
ferent groups of GUI components, such as InputElement,
ChoiceElement, and ContainerElement, to provide exten-
sion points for adding new components. The work introduces
enumerations for the stereotypes, for example, TextField
and PasswordField, practically specifying a GUI compo-
nent library. The paper focuses on the interaction between
GUI and UML models, leaving out the details on the library.

Aschauer et al. [5] use the self-extension mechanism to
specify the API for a UI using models and having abstract
concepts for API definition in the language. The authors
describe libraries for nested domains, giving an example of a
domain concept library used by a manufacturer library and a
customer library using both. Their work aligns with ours, but
does not go into further details about libraries, such as how
to structure, deploy, and integrate them into applications.

8 Conclusion

This paper introduces a method to create web-system speci-
fications without using a platform-specific frontend devel-
opment language based on an extensible GUI component
library. We provide a method for realizing and managing
different stages of GUI component library development in a
model-driven context. We evaluate the approach by compar-
ing it to traditional web development. Although the quan-
titative analysis shows positive results, the classic issues of
model-driven technology, such as the steep learning curve
and tools’ immaturity, still pose significant challenges to the
approach’s widespread adoption and practical usability.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy — EXC 2023 Internet of Production - 390621612.
Website: https://www.iop.rwth-aachen.de.

https://www.iop.rwth-aachen.de

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

References
[1] Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe,

[10

(11

[12

[13

(14

[15

[16

[17

—

= =

—

—

[t

—

—

—

flans!

]

—

Patricia Heuser, and Peter Letmathe. 2018. Model-Based Generation of
Enterprise Information Systems. In Enterprise Modeling and Informa-
tion Systems Architectures (EMISA’18), Vol. 2097. CEUR-WS.org, 75-79.
doi:10.18154/RWTH-2019-00745

Arsalan Ali, Muhammad Rashid, Farooque Azam, Yawar Rasheed,
and Muhammad Waseem Anwar. 2021. A Model-Driven Framework
for Android Supporting Cross-Platform GUI Development. In 2021
National Computing Colleges Conference (NCCC). 1-6. doi:10.1109/
NCCC49330.2021.9428869

Angular. 2025. Overview of Angular libraries. Retrieved February 9,
2025 from https://angular.dev/tools/libraries

Pascal Archambault, Houari Sahraoui, and Eugene Syriani. 2024. A
Modeling Methodology for Crop Representation in Digital Twins for
Smart Farming. In ACM/IEEE 27th Int. Conf.on Model Driven Engi-
neering Languages and Systems (MODELS Comp. "24). ACM, 342-352.
d0i:10.1145/3652620.3688247

Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. 2010. A
modeling language’s evolution driven by tight interaction between
academia and industry. In 32nd ACM/IEEE Int. Conf. on Software Engi-
neering, V. 2 (ICSE ’10). ACM, 49-58. doi:10.1145/1810295.1810304
Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, and
Matthias Weske. 2022. Process-Aware Digital Twin Cockpit Synthesis
from Event Logs. Journal of Computer Languages (COLA) 70 (2022).
doi:10.1016/j.cola.2022.101121

Lorenzo Bettini. 2016. Implementing Domain-Specific Languages with
Xtext and Xtend. Packt Publishing Ltd.

Federico Bonetti, Antonio Bucchiarone, Judith Michael, Antonio Cic-
chetti, Annapaola Marconi, and Bernhard Rumpe. 2024. Digital Twins
of Socio-Technical Ecosystems to Drive Societal Change. In System
Analysis and Modelling Conference, MODELS Companion "24: Int. Conf.
on Model Driven Engineering Languages and Systems (SAM). ACM,
275-286. doi:10.1145/3652620.3686248

Marco Brambilla and Piero Fraternali. 2014. Interaction flow modeling
language: Model-driven Ul engineering of web and mobile apps with
IFML. Morgan Kaufmann.

Barrett Bryant, Jean-Marc Jézéquel, Ralf Limmel, Marjan Mernik, Mar-
tin Schindler, Friedrich Steinmann, Juha-Pekka Tolvanen, Antonio
Vallecillo, and Markus Vélter. 2015. Globalized Domain Specific Lan-
guage Engineering. Springer, 43-69. doi:10.1007/978-3-319-26172-0_4
Constantin Buschhaus, Arkadii Gerasimov, Jorg Christian Kirchhof,
Judith Michael, Lukas Netz, Bernhard Rumpe, and Sebastian Stiiber.
2024. Lessons Learned from Applying Model-Driven Engineering in 5
Domains: The Success Story of the MontiGem Generator Framework.
Science of Computer Programming 232 (2024), 103033. doi:10.1016/j.
5cic0.2023.103033

Arvid Butting, Jérg Christian Kirchhof, Anno Kleiss, Judith Michael,
Radoslav Orlov, and Bernhard Rumpe. 2022. Model-Driven IoT App
Stores: Deploying Customizable Software Products to Heterogeneous
Devices. In 21th ACM SIGPLAN Int. Conf. on Generative Prog.: Concepts
and Experiences (GPCE 22). ACM. doi:10.1145/3564719.3568689

Arvid Butting, Judith Michael, and Bernhard Rumpe. 2022. Language
Composition via Kind-Typed Symbol Tables. Journal of Object Tech-
nology (JOT) 21 (2022), 4:1-13. doi:10.5381/j0t.2022.21.4.a5

Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. 2016. Engineering Model-
ing Languages: Turning Domain Knowledge into Tools. Chapman &
Hall/CRC Innovations in SE and Software Development Series.
D3.js Community. 2011. D3.js — Data-Driven Documents.
//d3js.org/

World Wide Web Consortium. 2018. CSS Flexible Box Layout Module

Level 1. https://www.w3.0org/TR/css-flexbox-1/
World Wide Web Consortium. 2020. CSS Grid Layout Module Level 2.

Retrieved February 4, 2025 from https://www.w3.org/TR/css-grid-2/

https:

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

SLE °25, June 12-13, 2025, Koblenz, Germany

Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérome
Pfeiffer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. 2022.
Generating Customized Low-Code Development Platforms for Digital
Twins. Journal of Computer Languages (COLA) 70 (2022). doi:10.1016/
j.cola.2022.101117

Giordano D’Aloisio, Alessandro Di Matteo, Alessia Cipriani, Daniele
Lozzi, Enrico Mattei, Gennaro Zanfardino, Antinisca Di Marco, and
Giuseppe Placidi. 2024. Engineering a Digital Twin for Diagnosis and
Treatment of Multiple Sclerosis. In ACM/IEEE 27th Int. Conf.on Model
Driven Engineering Languages and Systems (MODELS Comp. "24). ACM,
364-369. doi:10.1145/3652620.3688249

Vinicius Kreischer de Almeida et al. 2024. A Digital Twin System
for Oil And Gas Industry: A Use Case on Mooring Lines Integrity
Monitoring. In ACM/IEEE 27th Int. Conf.on Model Driven Engineering
Languages and Systems (MODELS Comp. °24). ACM, 322-331. doi:10.
1145/3652620.3688244

Juan de Lara, Esther Guerra, and Paolo Bottoni. 2024. Modular lan-
guage product lines: concept, tool and analysis. Software and Systems
Modeling (2024), 1-30. doi:10.1007/s10270-024-01179-9

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. 2015. Melange: A Meta-language for Modu-
lar and Reusable Development of DSLs. In 8th Int. Conf.on Software
Language Engineering (SLE).

Imke Drave, Judith Michael, Erik Miiller, Bernhard Rumpe, and Simon
Varga. 2022. Model-Driven Engineering of Process-Aware Information
Systems. Springer Nature Computer Science Journal 3 (2022). doi:10.
1007/s42979-022-01334-3

Florian Drux, Nico Jansen, and Bernhard Rumpe. 2022. A Catalog of
Design Patterns for Compositional Language Engineering. Journal of
Object Technology (FOT) 21, 4 (2022). doi:10.5381/j0t.2022.21.4.a4
Lenin Erazo-Garzoén, Steveen Suquisupa, Alexandra Bermeo, and
Priscila Cedillo. 2023. Model-Driven Engineering Applied to User
Interfaces. A Systematic Literature Review. In Applied Technologies.
Communications in Computer and Information Science, Vol. 1755.
Springer, Cham, 575-591. doi:10.1007/978-3-031-24985-3_42

Lenin Erazo-Garzoén, Steveen Suquisupa, Alexandra Bermeo, and
Priscila Cedillo. 2023. Model-Driven Engineering Applied to User
Interfaces. A Systematic Literature Review. In Applied Technologies.
Springer Nature Switzerland, 575-591.

Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. 2012.
Language Composition Untangled. In Twelfth Workshop on Language
Descriptions, Tools, and Applications. 1-8. doi:10.1145/2427048

J-M Favre. 2005. Languages evolve too! Changing the Software Time
Scale. In Eighth Int. Workshop on Principles of Software Evolution (IW-
PSE’05). IEEE, 33-42. doi:10.1109/IWPSE.2005.22

Andrew Forward and Timothy C. Lethbridge. 2008. Problems and
opportunities for model-centric versus code-centric software develop-
ment: a survey of software professionals. In Int. WS on Models in SE
(MiSE 08). ACM, 27-32. doi:10.1145/1370731.1370738

Francois Fouquet, Thomas Hartmann, Cyril Cecchinel, and Benoit
Combemale. 2024. GreyCat: A Framework to Develop Digital Twins at
Large Scale. In ACM/IEEE 27th Int. Conf.on Model Driven Engineering
Languages and Systems (MODELS Comp. *24). ACM, 492-495. doi:10.
1145/3652620.3688265

Arkadii Gerasimov, Patricia Heuser, Holger Kettenif}, Peter Letmathe,
Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2020.
Generated Enterprise Information Systems: MDSE for Maintainable
Co-Development of Frontend and Backend. In Modellierung 2020 Short,
Workshop and Tools & Demo Papers. CEUR-WS.org, 22-30.

Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe.
2024. Applying a Self-Extension Mechanism to DSLs for Establish-
ing Model Libraries. In 23rd ACM SIGPLAN Int. Conf. on Genera-
tive Programming: Concepts and Experiences (GPCE). ACM, 29-43.
doi:10.1145/3689484.3690732

https://doi.org/10.18154/RWTH-2019-00745
https://doi.org/10.1109/NCCC49330.2021.9428869
https://doi.org/10.1109/NCCC49330.2021.9428869
https://angular.dev/tools/libraries
https://doi.org/10.1145/3652620.3688247
https://doi.org/10.1145/1810295.1810304
https://doi.org/10.1016/j.cola.2022.101121
https://doi.org/10.1145/3652620.3686248
https://doi.org/10.1007/978-3-319-26172-0_4
https://doi.org/10.1016/j.scico.2023.103033
https://doi.org/10.1016/j.scico.2023.103033
https://doi.org/10.1145/3564719.3568689
https://doi.org/10.5381/jot.2022.21.4.a5
https://d3js.org/
https://d3js.org/
https://www.w3.org/TR/css-flexbox-1/
https://www.w3.org/TR/css-grid-2/
https://doi.org/10.1016/j.cola.2022.101117
https://doi.org/10.1016/j.cola.2022.101117
https://doi.org/10.1145/3652620.3688249
https://doi.org/10.1145/3652620.3688244
https://doi.org/10.1145/3652620.3688244
https://doi.org/10.1007/s10270-024-01179-9
https://doi.org/10.1007/s42979-022-01334-3
https://doi.org/10.1007/s42979-022-01334-3
https://doi.org/10.5381/jot.2022.21.4.a4
https://doi.org/10.1007/978-3-031-24985-3_42
https://doi.org/10.1145/2427048
https://doi.org/10.1109/IWPSE.2005.22
https://doi.org/10.1145/1370731.1370738
https://doi.org/10.1145/3652620.3688265
https://doi.org/10.1145/3652620.3688265
https://doi.org/10.1145/3689484.3690732

SLE

(33]

(36]

(37]

(38]

(39

—

(40]

[41]

(42]

[43]

’25, June 12-13, 2025, Koblenz, Germany

[GIM+25] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, S. Will:

A Model-Driven Approach to Design, Generation, and Deployment of GUI Component Libraries.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 57-70, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742713, ACM, Jun. 2025.

Arkadii Gerasimov, Judith Michael, Lukas Netz, and Bernhard Rumpe.
2021. Agile Generator-Based GUI Modeling for Information Systems.
In Modelling to Program (M2P). Springer, 113-126. doi:10.1007/978-3-
030-72696-6_5

Jeff Gray, Sandeep Neema, Juha-Pekka Tolvanen, Aniruddha S Gokhale,
Steven Kelly, and Jonathan Sprinkle. 2007. Domain-Specific Modeling.
In Handbook of Dynamic System Modeling.

Malte Heithoff, Nico Jansen, Judith Michael, Florian Rademacher, and
Bernhard Rumpe. 2024. Model-Based Engineering of Multi-Purpose
Digital Twins in Manufacturing. Springer Nature Switzerland, Cham,
89-126. doi:10.1007/978-3-031-67778-6_5

Katrin Holldobler, Oliver Kautz, and Bernhard Rumpe. 2021. MontiCore
Language Workbench and Library Handbook: Edition 2021. Shaker
Verlag. doi:10.2370/9783844080100

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristof-
fersen. 2011. Empirical assessment of MDE in industry. In 33rd Int.
Conf.on Software Engineering. ACM. doi:10.1145/1985793.1985858
Abdallah Karakra, Franck Fontanili, Elyes Lamine, Jacques Lamothe,
and Adel Taweel. 2018. Pervasive computing integrated discrete event
simulation for a hospital digital twin. In IEEE/ACS 15th Int. Conf.on
Computer Systems and Applications (AICCSA). IEEE.

Lennart CL Kats and Eelco Visser. 2010. The Spoofax Language Work-
bench: Rules for Declarative Specification of Languages and IDEs.
In 25th ACM SIGPLAN Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2010). ACM, 444-463.
d0i:10.1145/1932682.1869497

Stefan Link, Thomas Schuster, Philip Hoyer, and Sebastian Abeck. 2008.
Focusing Graphical User Interfaces in Model-Driven Software Devel-
opment. In First Int. Conf. on Advances in Computer-Human Interaction.
3-8. doi:10.1109/ACHI.2008.16

David Méndez-Acuiia, José A Galindo, Thomas Degueule, Benoit
Combemale, and Benoit Baudry. 2016. Leveraging software prod-
uct lines engineering in the development of external dsls: A systematic
literature review. Computer Languages, Systems & Structures 46 (2016),
206-235. doi:10.1016/j.c1.2016.09.004

Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and
How to Develop Domain-Specific Languages. ACM Comput. Surv. 37,
4 (dec 2005), 316-344. doi:10.1145/1118890.1118892

Judith Michael, Dominik Bork, Manuel Wimmer, and Heinrich Chris-
tian Mayr. 2024. Quo Vadis Modeling? Findings of a Community
Survey, an Ad-hoc Bibliometric Analysis, and Expert Interviews on
Data, Process, and Software Modeling. Journal Software and Systems
Modeling (SoSyM) 23, 1 (2024), 7-28. doi:10.1007/s10270-023-01128-y

[44] Judith Michael, Imke Nachmann, Lukas Netz, Bernhard Rumpe, and

Sebastian Stiiber. 2022. Generating Digital Twin Cockpits for Parame-
ter Management in the Engineering of Wind Turbines. In Modellierung
2022. GI, 33-48. doi:10.18420/modellierung2022-012

Neda Mohammadi and John E. Taylor. 2017. Smart city digital twins.
In 2017 IEEE Symposium Series on Computational Intelligence (SSCI).
Pedro J. Molina. 2019. Quid: prototyping web components on the web.
In ACM SIGCHI Symp. on Engineering Interactive Computing Systems
(EICS °19). ACM, Article 3. doi:10.1145/3319499.3330294

Soheil Sabri, Kostas Alexandridis, and Newton Lee. 2024. Digital Twin.
Springer Nature Switzerland. doi:10.1007/978-3-031-67778-6

Bran Selic. 2003. The pragmatics of model-driven development. IEEE
Software 20, 5 (2003), 19-25. doi:10.1109/MS.2003.1231146

Bran Selic. 2017. Model-Based Software Engineering in Industry:
Revolution, Evolution, or Smoke? https://www.youtube.com/watch?
v=miPZyfRlcs8 Talk at the Monash University Dean’s Seminar Series.
Thiago Rocha Silva, Jean-Luc Hak, and Marco Winckler. 2017. A
Behavior-Based Ontology for Supporting Automated Assessment of
Interactive Systems. In 2017 I[EEE 11th Int. Conf. on Semantic Computing
(ICSC). 250-257. doi:10.1109/ICSC.2017.73

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Arkadii Gerasimov, Nico Jansen, Judith Michael, Bernhard Rumpe, and Sebastian Will

Ivan Sopin and Felix G. Hamza-Lup. 2010. Extending the Web3D:
design of conventional GUI libraries in X3D. In 15th Int. Conf. on Web
3D Technology (Web3D ’10). ACM. doi:10.1145/1836049.1836070
Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
2008. EMF: Eclipse Modeling Framework. Pearson Education.

Harald Storrle. 2010. Model driven development of user interface
prototypes: an integrated approach. In Fourth European Conference
on Software Architecture: Comp. Volume (ECSA °10). ACM, 261-268.
doi:10.1145/1842752.1842802

Ana Maria Sutii, Mark den van Brand, and Tom Verhoeff. 2018. Ex-
ploration of modularity and reusability of domain-specific languages:
an expression DSL in MetaMod. Computer Languages, Systems &
Structures 51 (2018), 48-70. doi:10.1016/j.cl.2017.07.004

Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale,
Robert Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bern-
hard Rumpe, Patrizia Scandurra, and Hans Vangheluwe. 2021. Compo-
sition of Languages, Models, and Analyses. In Composing Model-Based
Analysis Tools. Springer, 45-70. doi:10.1007/978-3-030-81915-6
Angella Thomas, David A Guerra-Zubiaga, and John Cohran. 2018.
Digital Factory: Simulation Enhancing Production and Engineering
Process. In ASME Int. Mechanical Engineering Congress and Exposition,
Vol. 52019. American Society of Mechanical Engineers, V002T02A077.
Juha-Pekka Tolvanen and Steven Kelly. 2009. MetaEdit+: Defining and
Using Integrated Domain-Specific Modeling Languages. In 24th ACM
SIGPLAN Conf. Comp. on Object Oriented Programming Systems Lan-
guages and Applications. ACM, 819-820. doi:10.1145/1639950.1640031
Vasileios Triglianos and Cesare Pautasso. 2015. Asqium: A JavaScript
Plugin Framework for Extensible Client and Server-Side Components.
In Engineering the Web in the Big Data Era. Springer, 81-98.

Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A framework for
feature-oriented language development. Computer Languages, Systems
& Structures 43 (2015), 1-40. doi:10.1016/j.c1.2015.02.001

Tijs van der Storm. 2011. The Rascal Language Workbench. CWL
Software Engineering [SEN].

Arie van Deursen and Paul Klint. 1998. Little languages: little mainte-
nance? Journal of Software Maintenance: Research and Practice 10, 2
(1998), 75-92. doi:10.1145/1869542.1869623

Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific
languages: an annotated bibliography. SIGPLAN Not. 35, 6 (June 2000),
26-36. doi:10.1145/352029.352035

Jean Vanderdonckt. 2008. Model-Driven Engineering of User Interfaces:
Promises, Successes, Failures, and Challenges. Annual Romanian Conf.
on Human-Computer Interaction (01 2008).

Eelco Visser. 2008. WebDSL: A Case Study in Domain-Specific Language
Engineering. Springer, 291-373. doi:10.1007/978-3-540-88643-3_7
Ryno Visser, Anton Basson, and Karel Kruger. 2024. An Architecture
for the Integration of Product and Production Digital Twins in the
Automotive Industry. In ACM/IEEE 27th Int. Conf.on Model Driven En-
gineering Languages and Systems (MODELS Comp. "24). ACM, 431-441.
doi:10.1145/3652620.3688257

Markus Volter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon
Helsen. 2013. Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons.

Markus Vélter and Eelco Visser. 2010. Language Extension and Com-
position with Language Workbenches. In ACM Int. Conf. on Object
oriented programming systems languages and applications Comp. 301—
304. doi:10.1145/1869542.1869623

Andrzej Wasowski and Thorsten Berger. 2023. Domain-Specific
Languages: Effective Modeling, Automation, and Reuse.
doi:10.1007/978-3-031-23669-3

Hadley Wickham. 2016. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York. https://ggplot2.tidyverse.org

Springer.

[70] Jon Yablonski. 2024. Laws of UX: 10 praktische Grundprinzipien fiir

intuitives, menschenzentriertes UX-Design. O’Reilly and dpunkt-Verlag.

https://doi.org/10.1007/978-3-030-72696-6_5
https://doi.org/10.1007/978-3-030-72696-6_5
https://doi.org/10.1007/978-3-031-67778-6_5
https://doi.org/10.2370/9783844080100
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1109/ACHI.2008.16
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/s10270-023-01128-y
https://doi.org/10.18420/modellierung2022-012
https://doi.org/10.1145/3319499.3330294
https://doi.org/10.1007/978-3-031-67778-6
https://doi.org/10.1109/MS.2003.1231146
https://www.youtube.com/watch?v=miPZyfRIcs8
https://www.youtube.com/watch?v=miPZyfRIcs8
https://doi.org/10.1109/ICSC.2017.73
https://doi.org/10.1145/1836049.1836070
https://doi.org/10.1145/1842752.1842802
https://doi.org/10.1016/j.cl.2017.07.004
https://doi.org/10.1007/978-3-030-81915-6
https://doi.org/10.1145/1639950.1640031
https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1145/1869542.1869623
https://doi.org/10.1145/352029.352035
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1145/3652620.3688257
https://doi.org/10.1145/1869542.1869623
https://doi.org/10.1007/978-3-031-23669-3
https://ggplot2.tidyverse.org

	Abstract
	1 Introduction
	2 Background
	2.1 DSL & Language Workbench
	2.2 Domain-Specific Language for Graphical User Interfaces

	3 GUI Component Model Library
	3.1 Basic Components
	3.2 Input Components
	3.3 Layout Components
	3.4 Charts
	3.5 Composed Components
	3.6 Domain-Specific Components

	4 Development, Deployment, and Integration of the Model Library
	4.1 Classification
	4.2 Library Deployment and Integration Environment
	4.3 Integrating Components into the Library

	5 Case Studies
	5.1 Digital Twin Cockpit
	5.2 Experimental Applications

	6 Discussion
	6.1 Experimental Results
	6.2 Limitations and Trade-offs

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

