
A Methodology for Impact Analysis Based on Model Differencing

Klaus Müller, Bernhard Rumpe
Software Engineering

RWTH Aachen University
mueller@se-rwth.de, rumpe@se-rwth.de

1 Introduction

A software system typically has to be changed fre-
quently to adapt the system to new or changing re-
quirements or due to bug fixes. One crucial problem is
that every kind of change can introduce severe errors
into the software system and that it is difficult to pre-
dict in what way which parts of a software system are
potentially affected by a change. Impact analysis ap-
proaches cope with this problem by trying to identify
the potential consequences of changes [1].

In model-based software development, models are
usually transformed into concrete implementations
[2]. Even though code generators can automatically
generate essential parts of a software system, it is
usually still required to create and maintain further
handwritten artifacts such as source code. These arti-
facts have to be integrated into the generated parts of
the software system and, thus, they sometimes heav-
ily depend on the generated artifacts. For example,
a code generator might generate the database schema
based on a UML class diagram. If developers intro-
duce a handwritten source code file which contains
SQL queries that access this database, the source code
file depends on the generated database schema and
consequently also on the UML class diagram. Hence,
model changes can have tremendous impact on the
handwritten artifacts.

In this extended abstract, we discuss a methodol-
ogy for developing and applying a model-based im-
pact analysis approach, in which explicit impact rules
can be specified in a domain specific language (DSL).
These impact rules embody what kind of model
changes have what kind of impact. Based on such im-
pact rule specifications, impact rule implementations
are generated, which check the specified conditions
and output the defined impact.

The main advantage of defining explicit impact
rules is that they allow formalizing knowledge about
known dependencies and characteristics of a software
system. As the impact rules describe the impact of
model changes, it is possible to create a checklist that
informs developers about the impacts of all model
changes that have been detected in a model differ-
encing step. The resulting checklist, thus, contains
concrete hints about the development steps that are
(potentially) necessary to adapt the system to the

model changes. Due to this, the checklists can sim-
plify the evolution process, as developers can work
through the checklists. The motivation for creating
such checklists is that developers might forget to per-
form certain development steps that are necessary af-
ter specific model changes. This particularly holds in
a complex software system.

In the next section, we elaborate on the methodol-
ogy for developing and appyling the approach. Results
of a case study dealing with the impacts of UML class
diagram changes can be found in [3].

2 Methodology to Generate Checklists

Our methodology proposes an impact analysis ap-
proach that is composed of two steps: the identifica-
tion of model differences and the application of impact
rules on these differences. As a result, the approach
produces a checklist which can be ticked off.

Subsequently, Subsection 2.1 outlines the steps that
have to be performed to set up this impact analysis ap-
proach. After that, Subsection 2.2 outlines the steps
that have to be carried out to apply the approach.

2.1 Setting up the Impact Analysis Ap-
proach

At first, a model differencing tool has to be chosen to
be able to perform model differencing. If the chosen
model differencing tool expects input models of a cer-
tain type, but the original input models have another
type, a model converter has to be implemented or an
existing one has to be integrated into the tool chain
to allow for differencing the input models.

One problem that has to be considered in the con-
text of model differencing is that a completely auto-
matic approach to model differencing cannot infer the
differences correctly in all cases [4]. Because of this,
we propose to allow users to integrate knowledge of
how specific model elements changed in so-called user
presettings. Hence, user presettings have to be de-
rived that fit to the corresponding input model type.
Furthermore, the model differencing tool needs to be
extended to be able to process user presettings [4].

These two steps are the only required steps to be
able to calculate the model differences. Next, the
steps that are necessary to set up the impact anal-
ysis part of the approach are sketched.

[MR15] K. Müller, B. Rumpe:
A Methodology for Impact Analysis Based on Model Differencing.
In: Workshop Software-Reengineering und -Evolution (WSRE),
GI Softwaretechnik-Trends, Volume 35, pp. 13-14, 2015.
http://www.se-rwth.de/publications/

The impact analysis approach that results from
applying the proposed methodology relies on impact
rules capturing the consequences of changes in partic-
ular types of models. In an impact rule the user is free
to define what kind of change leads to what kind of
impact. To improve the comprehensibility of an im-
pact rule, the methodology proposes a simple DSL, in
which it can be specified which conditions have to be
fulfilled by a model difference so that a certain check-
list hint is created.

1 impactRule "IRExample" {

2 description = "Example description"

3 severity = critical

4 relevantFor = "mueller@se -rwth.de"

5

6 impact {

7 renamedClass () =>

8 "Implement data migration."

9 }

10 }

Figure 1: Simple impact rule example

A very simple example of an impact rule written
in the DSL is illustrated in Figure 1. At first, a de-
scription indicating what the impact rule is used for
(line 2) is denoted, then it is defined how critical vi-
olations against the impact rule are (line 3) and for
which persons the hints are relevant for (line 4).

In the subsequent part, it is defined which condi-
tions have to be fulfilled by a model difference to re-
sult in the creation of the subsequently given checklist
hint (line 7 − 8). According to Listing 1, a checklist
would inform the developer about the necessity to im-
plement a data migration if a class was renamed. An
impact rule can contain zero or multiple blocks of such
condition parts and according checklist hints. More-
over, the condition part can consist of multiple condi-
tions that can be combined using the logical operators
&& and || known from Java. For each type of model
change which can be found in the model differencing
step and which is relevant for the impact analysis, we
propose to derive a condition which checks whether
the particular type of model change occurred. For
instance for UML class diagrams, there would be con-
ditions such as renamedClass (see line 7 of Listing 1)
or addedAssociation [3]. These different conditions
need to be implemented in the checklist tool so that
the conditions can be referenced in the condition part
of the impact rule DSL.

As soon as a first set of conditions has been imple-
mented, concrete impact rules can be defined using
the impact rule DSL. An impact rule generator will
generate implementations of the impact rules out of
the impact rule specifications written in the DSL. In
some situations it can be necessary to extend this gen-
erated implementation and to add handwritten parts
to a handwritten subclass [3].

2.2 Applying the Impact Analysis Ap-
proach

After having executed the steps listed in the previ-
ous subsection, the tool chain contains the required
parts to identify the impacts of model changes. The
workflow to apply this impact analysis approach to
generate checklists is outlined in the following.

If not all impact rules should be executed when cre-
ating the checklist, the checklist tool first needs to be
configured by defining which impact rules should (not)
be invoked in the checklist generation. By default, all
impact rules are taken into account.

Afterwards, the developers have to decide for which
pairs of input models the checklists should be gener-
ated. If a model converter had been integrated into
the tool chain, the next step is the invocation of the
model converter to produce models that can be pro-
cessed by the model differencing tool. Finally, the
model differencing tool is invoked for the potentially
converted pairs of input models.

Next, the checklist generator is called for the re-
sulting difference model. Every difference contained
in the difference model is passed to the impact rules.
Each impact rule then analyzes the current model dif-
ference and creates a list of hints at further (potential)
development steps, if the difference is regarded as rel-
evant. These different hints are finally merged into a
checklist, together with further information such as a
list of detected model differences.

Before performing the development steps that are
contained in the resulting checklist, developers need
to verify that the reported model differences are cor-
rect. If wrong model differences have been reported,
developers have to provide user presettings to fix these
problems. In this case, the model differencing tool has
to be invoked again and the subsequent steps have to
be repeated.

Remarks This extended abstract discusses a gener-
alization of previous work [3].

References

[1] S. A. Bohner. A graph traceability approach for soft-
ware change impact analysis. PhD thesis, George Ma-
son University, Fairfax, VA, USA, 1995.

[2] R. France, B. Rumpe. Model-Driven Development of
Complex Software: A Research Roadmap. In Proc.
Future of Software Engineering (FUSE’07). Pp. 37–
54. 2007.

[3] K. Müller and B. Rumpe, “A Model-Based Approach
to Impact Analysis Using Model Differencing,” in
Proc. International Workshop on Software Quality
and Maintainability (SQM’14), ECEASST Journal,
vol. 65, 2014.

[4] K. Müller and B. Rumpe, “User-Driven Adaptation
of Model Differencing Results,” International Work-
shop on Comparison and Versioning of Software Mod-
els (CVSM’14), GI Softwaretechnik-Trends, vol. 34,
no. 2, pp. 25–29, May 2014.

