
Journal of Object Technology | RESEARCH ARTICLE

A Library of Literals, Expressions, Types, and
Statements for Compositional Language Design

Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann
RWTH Aachen University, Software Engineering, Aachen, Germany

ABSTRACT Many modeling languages share common concepts, such as types, expressions, statements, or literals. Nonethe-
less, these essential language concerns are often developed again and again, independently, and with minor changes here and
there. A well-designed and extensible library of such, tried-and-tested, language components can facilitate engineering new
languages through their reuse. We utilize the powerful language composition techniques of the MontiCore language workbench
to conceive such a library, present its components, and their rationale. This fosters language engineering in MontiCore and can
inspire more efficient language engineering in the technological spaces of other language workbenches.

KEYWORDS Software Language Engineering; Language Reuse; Language Modularity

1. Introduction

Model-driven development (MDD) (Selic 2003; Völter et al.
2013) lifts models to primary modeling artifacts to reduce
the conceptual gap (FR07 2007) between the problem domain
challenges and solution domain implementations. Automation
is one of the pillars of efficient software engineering and to
make models accessible to automation, they must conform to
machine-processable modeling languages, such as the Unified
Modeling Language (UML) (Rum16 2016), Object Constraint
Language (OCL) (Richters & Gogolla 2000), Systems Mod-
eling Language (SysML) (Friedenthal et al. 2014), MATLAB
Simulink (Dabney & Harman 2004) and many more. This
need gave birth to the discipline of software language engineer-
ing (SLE) (Kleppe 2008; HRW18 2018), which investigates the
conception, engineering, maintenance, and evolution of model-
ing languages. Another pillar of efficient software engineering
is the capability to reuse software parts successfully tried and
tested in different contexts, to create new solutions on the shoul-
ders of giants. As “software languages are software too” (Favre

JOT reference format:
Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen, Bernhard
Rumpe, and Andreas Wortmann. A Library of Literals, Expressions, Types,
and Statements for Compositional Language Design. Journal of Object
Technology. Vol. 19, No. 3, 2020. Licensed under Attribution - No
Derivatives 4.0 International (CC BY-ND 4.0)
http://dx.doi.org/10.5381/jot.2020.19.3.a4

2005), they can greatly benefit from reusing tried and tested
software language parts as well.

There are various kinds or categories of modeling languages
that either directly or indirectly depend on each other, such as
SysML extending UML. However, this extension is codified
in natural language standards documents, but not technically
through reusing UML parts in SysML. Consequently, every
implementation of, in this case, SysML, needs to make sure to
conform to the UML parts it is – by way of standards – meant
to reuse or extend. Moreover, most of the tooling, such as
analysis, syntheses, and editors, available for UML needs to be
reimplemented for SysML as well. This, of course, also holds
for the variety of different variants of UML (Dévai et al. 2014;
Rum16 2016; Starrett 2016), OCL (Cabot & Gogolla 2012;
Demuth & Wilke 2009; Rum16 2016), and SysML (WBCW20
2020; Wolny et al. 2020).

Other kinds of languages share concepts more loosely, but
could benefit from explicit reuse of language parts (and cor-
responding tooling) as well. For instance, there are over
120 architecture description languages (ADLs) (Medvidovic
& Taylor 2000), such as Architecture Analysis & Design Lan-
guage (Feiler & Gluch 2012) or EAST-ADL (Etzel & Bauer
2019), out of which many share the language concepts of com-
ponents, ports, and connectors (Malavolta et al. 2013). Similarly,
many action languages and programming languages relying on
the Java Virtual Machine, such as Clojure (Halloway 2009),
Groovy (Koenig et al. 2007), Kotlin (Jemerov & Isakova 2017),

An AITO publication

[BEH+20] A. Butting, R. Eikermann, K. Hölldobler, N. Jansen, B. Rumpe, A. Wortmann:
A Library of Literals, Expressions, Types, and Statements for Compositional Language Design.
In: Journal of Object Technology, 19(3), pp. 3:1-16, AITO, Oct. 2020.
www.se-rwth.de/publications/

http://dx.doi.org/10.5381/jot.2020.19.3.a4

and Scala (Odersky et al. 2008) share the same concepts and
syntax. Reusing and extending the shared concepts between dif-
ferent languages and technological spaces (Kurtev et al. 2002)
instead of reimplementing these again and again could allow
language engineers to address more advanced challenges. To
facilitate engineering and reusing language components, many
language workbenches (Fowler 2005; Erdweg et al. 2015) sup-
port various language composition and reuse mechanisms (Erd-
weg et al. 2012) addressing reuse of different combinations
of concrete and abstract syntax, well-formedness rules, code
generators, transformations, and other language-related tool-
ing. A collection of reusable components (Wor19 2019) for
core language concerns, such as literals, types, and expressions,
which are part of most modeling languages, still is missing.
To mitigate this, we investigated the modularization of these
core language concerns and present the resulting language com-
ponents in the technological space of the MontiCore (HR17
2017; HMSNRW16 2016) language workbench. Building upon
these can greatly facilitate language engineering and may help
language engineers to ‘see further’.

In the remainder, Section 2 presents concepts for language
modularity before introducing novel language components to
facilitate language reuse for a variety of language kinds and
domains. Section 3 illustrates the use of these components
by example, Section 4 highlights related work, and Section 5
discusses observations related to engineering and using these
components. Section 6 concludes.

2. Collection of Language Components for
Language Reuse

This section first introduces the MontiCore (HR17 2017; HM-
SNRW16 2016) language workbench and its features facilitating
modularity in language engineering. Thereafter, the different
components for literals, expressions, types, and statements are
explained. All language components discussed in this paper are
part of the MontiCore project, which is available on GitHub1.
Table 1 (in the Appendix) provides an overview of all the differ-
ent language components presented in this paper. Furthermore,
usages of these language components in different modeling
and programming languages are discussed in the case study in
Section 3 and summarized in Table 2 (in the Appendix).

2.1. MontiCore Language Workbench
MontiCore provides an EBNF-like context-free grammar for-
mat to define languages. For a given grammar, MontiCore
generates infrastructure necessary to efficiently engineer lan-
guages in a modular fashion. It has been applied to the engi-
neering of modeling languages for a variety of domains, includ-
ing automotive (DGH+19 2019), cloud services (Eikermann
et al. 2017), robotics (AHRW17b 2017), systems engineer-
ing (DJR+19 2019), and more.

The generated infrastructure for a given grammar includes
parser and lexer, Java classes for the abstract syntax tree (AST),
an infrastructure to implement context conditions (language
well-formedness rules), visitors (HMSNRW16 2016) to develop
1 MontiCore project on GitHub: https://github.com/MontiCore/monticore/

MG

1 grammar IOAutomata extends CommonLiterals,
2 CommonStatements,
3 CommonExpressions,
4 AssignmentExpressions{
5

6 Automaton = "automaton" Name "{"
7 (State | Transition)*
8 "}" ;
9

10 State = ["initial"]? ["final"]?
11 "state" Name ";" ;
12

13 Transition = from:Name "->" to:Name
14 ("[" guard:Expression "]")?
15 ("/" "{"
16 action:MCBlockStatement*
17 "}")? ";" ;
18 }

Figure 1 Exemplary grammar of an I/O automata language.

and compose analyses, and symbol tables (HMSNR15 2015;
MSNRR15 2015; MSNRR16 2016) to combine models of dif-
ferent languages.

A MontiCore grammar defines both the abstract syntax and
concrete syntax of a language. To this end, it comprises pro-
ductions that define nonterminals. A production consists of a
left-hand side (LHS) and a right-hand side (RHS) separated
by an = sign. The LHS is the nonterminal that the production
defines while the RHS is the production’s body and defines
both the abstract and concrete syntax. Figure 1 depicts a Mon-
tiCore grammar of a compact language for finite input/output
automata (RRW14a 2014), while Figure 2 shows a correspond-
ing automaton model. The automata grammar comprises three
productions defining the syntax of the nonterminals Automaton,
State, and Transition. MontiCore generates one AST class
per production. Its attributes result from the production body.
Stored terminals map to attributes while nonterminal usages
map to compositions.

IOAutomata

1 automaton PingPong {
2 initial state Ping;
3 state Pong;
4

5 Ping - returnBall > Pong [ballIsHit];
6 Pong - returnBall > Ping;
7 }

Figure 2 Exemplary automaton for the language of Figure 1.

The body of a production consists of terminals and non-
terminals. Terminals are surrounded by quotation marks,
e.g.,"automaton" (l. 6) in Figure 1. Both terminals and non-
terminals can have different multiplicities, i.e., by appending a
question mark ‘?’ (l. 10) they become optional while ‘*’ (l. 7)
allows arbitrary many (including zero) occurrences and ‘+’ en-
forces at least one occurrence. Alternatives are separated by
‘|’ (l. 7) and grouping can be achieved by parenthesizing parts

2 Butting et al

using round brackets. Terminals whose presence is relevant
for the abstract syntax can be parenthesized in square brackets,
yielding a Boolean attribute in the abstract syntax. Optional
elements are mapped to Java optionals and multiple occurrences
to Java lists.

Besides “normal” nonterminals, MontiCore provides inter-
face, abstract and external nonterminals. Abstract and external
nonterminals are not detailed here but detailed information on
these is available (HR17 2017). Interface nonterminals begin
with the keyword interface (cf. Figure 8, l. 3). They do not
specify concrete syntax themselves. Instead, interface nonter-
minals are implemented by other nonterminals (cf. Figure 8,
l. 5). For interface nonterminals, a production body can be used
to restrict possible implementing nonterminals (HR17 2017).
Conceptually, interface nonterminals are an extension of alterna-
tives. Whenever an interface nonterminal is used in a production
body, every interface implementation can be parsed. Thus, in-
stead of A = B | C; one can use interface nonterminals to de-
fine interface A; B implements A; C implements A;.
The concrete syntax for these two examples does not differ.
However, for interface nonterminals an AST interface instead
of a class is generated and thus the relation between A and B,
and A and C is mapped to inheritance instead of composition in
the abstract syntax.

Literals

Basis

Common

Literals

Java

Literals

Common

Expressions

JavaClass

Expressions

Assignment

Expressions

Bit

Expressions

Expressions

Basis

Full

GenericTypes

Simple

GenericTypes

Collection

Types

Basic

Types

OCL

Expressions

Set

Expressions

language
component

Figure 3 Relations of the language components for expres-
sions, types, and literals.

Using MontiCore, languages can be developed efficiently
by reusing the modular (parts of) other languages. To this
end, MontiCore provides grammar extension mechanisms. As
depicted in Figure 1 (ll. 1-4), the grammar of the automata lan-
guage uses this concept. With the keyword extends followed
by one or multiple comma-separated grammars, a grammar can
extend other grammars. As a consequence, all nonterminals
defined by productions of the super grammars are available in
the current grammar. In the automata language, the transition
production uses the nonterminal Expression that is not defined
locally but defined in the super grammar ExpressionsBasis.
If a grammar is designed for reuse only and does not define a
complete language itself, it is marked as a component grammar
by adding the keyword component (cf. Figure 8, l. 1).

The start nonterminal of a grammar is by default the first

nonterminal in the grammar (HR17 2017). However, sometimes
this is not feasible, e.g., when an inherited nonterminal should
be the start nonterminal of a language. To address this, the start
nonterminal can be set explicitly as follows: start State;.

When extending a grammar, it is possible to extend pro-
ductions of the super grammars. This is possible for normal
and interface productions. In both cases, conceptually a new
alternative to the existing body or implementation is created.
Thus, all nonterminals and especially interface nonterminals
can serve as extension points. To further control the priority of
the newly added alternative, it is possible to add a priority in
angle brackets (cf. Figure 8, l. 5). The higher the number within
the brackets the higher is the alternative’s priority in the parser.

Assert

Statements

VarDeclaration

Statements

Statements

Basis

LowLevel

Statements

Return

Statements

Common

Statements

Synchronized

Statements

Exception

Statements

FullJava

Statements

Figure 4 Language components for statements.

2.2. Literals
MontiCore provides many literals by default to support devel-
oping new modeling languages. Thus, these literals provide
essential, usually atomic, elements of common languages, such
as numbers, character strings, or boolean values. To facilitate
integration, MontiCore provides these literals in a modularized
fashion, enabling the selection of appropriate literals for a re-
spective modeling language. Figure 3 (left) depicts the three
literals language components and their inheritance hierarchy.
LiteralsBasis provides a basic interface for using literals.
It is implemented in CommonLiterals, resulting in the most
common set of literals for language development in MontiCore.
Furthermore, the JavaLiterals extend these again to provide
Java-compliant literals.

MG

1 component grammar LiteralsBasis {
2 interface Literal;
3 }

Figure 5 Grammar of LiteralsBasis.

The most basic variant of literals in MontiCore is
LiteralsBasis. This grammar provides a general Literal
interface (cf. Figure 5, l. 2). As a result, literals are modular-
ized, which increases interchangeability and reuse of language
components. The interface can be used in modeling languages
to enable all implementing literals. To define specific literals, it
is possible to implement this interface. An example is provided
in CommonLiterals.

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 3

MG

1 component grammar CommonLiterals extends Basics,
2 LiteralsBasis {
3 interface SignedLiteral;
4 interface NumericLiteral extends Literal;
5 interface SignedNumericLiteral
6 extends SignedLiteral;
7

8 NullLiteral implements Literal, SignedLiteral
9 = "null";

10

11 BooleanLiteral implements Literal, SignedLiteral
12 = src:["true" | "false"];
13

14 CharLiteral implements Literal, SignedLiteral
15 = Char;
16

17 StringLiteral implements Literal, SignedLiteral
18 = String;
19

20 NatLiteral implements NumericLiteral = Digits;
21

22 SignedNatLiteral implements SignedNumericLiteral
23 = (negative:["-"])? Digits;
24

25 BasicLongLiteral implements NumericLiteral
26 = Digits key("l" | "L");
27

28 SignedBasicLongLiteral
29 implements SignedNumericLiteral
30 = (negative:["-"])? Digits key("l" | "L");
31

32 BasicFloatLiteral implements NumericLiteral
33 = pre:Digits "." post:Digits key("f" | "F");
34

35 SignedBasicFloatLiteral
36 implements SignedNumericLiteral
37 = (negative:["-"])? pre:Digits
38 "." post:Digits key("f" | "F");
39

40 BasicDoubleLiteral implements NumericLiteral
41 = pre:Digits "." post:Digits;
42

43 SignedBasicDoubleLiteral
44 implements SignedNumericLiteral
45 = (negative:["-"])? pre:Digits "." post:Digits;
46 }

Figure 6 Grammar of CommonLiterals.

The grammar CommonLiterals extends LiteralsBasis
(Figure 6, ll. 1-2) and uses the provided interface to specify
literals. It provides a reduced subset of literals, which abstracts
from special cases (e.g., hexadecimal representation in Java), of-
fering a suitable foundation for most modeling languages. Addi-
tionally, the grammar introduces an interface SignedLiteral
(l. 3), which provides an additional prefix for literals, enabling
negative numbers. Lines 4-6 categorize these interfaces into
corresponding (Signed-) NumericLiterals. The remainder
of Figure 6 defines basic literals by implementing the avail-
able interfaces. These literals consist of primitive data types
(similar to Java) and strings in their signed and unsigned vari-
ants. We have slightly simplified this grammar to preserve clar-
ity. For instance, all token definitions (i.e., Char, String, and
Digits) have been omitted, since these only specify the allowed
character sequences and do not contribute to language modu-

larity. Lines 8-18 define a NullLiteral as well as Boolean
values, characters, and strings. These literals have no differ-
ences in signs, and thus both implement the Literal and the
SignedLiteral interface. As a result, they are available in
both cases. Lines 20-45 define numeric literals. MontiCore
supports natural numbers (ll. 20-25), long numbers (ll. 25-30),
float numbers (ll. 32-38), and double numbers (ll. 40-45). How-
ever, as these values have a signed and unsigned variant, there
are two productions each to cover both cases. The main dif-
ference between these cases is that signed values also have an
optional preceding "-" sign. According to the requirements,
the corresponding literals implement the NumericLiteral or
SignedNumericLiteral interface.

MG

1 component grammar JavaLiterals
2 extends CommonLiterals {
3 IntLiteral implements NumericLiteral <100>
4 = source:Num_Int;
5

6 LongLiteral implements NumericLiteral <99>
7 = source:Num_Long;
8

9 FloatLiteral implements NumericLiteral <100>
10 = source:Num_Float;
11

12 DoubleLiteral implements NumericLiteral <100>
13 = source:Num_Double;
14 }

Figure 7 Grammar of JavaLiterals.

The JavaLiterals grammar defines Java-compliant literals.
Additionally, it extends CommonLiterals to leverage the liter-
als defined there (cf. Figure 7, ll. 1-2). Furthermore, new literals
for the numeric values int, long, float, and double are specified
(ll. 3-13). The advantage of this grammar is a comfortable usage
of literals in a Java-like syntax. This includes extended forms of
representation, e.g., the hexadecimal representation of numbers.

2.3. Expressions
Expressions usually build complex structures built on liter-
als and sub-expressions. They can be used in various con-
texts. To flexibly choose which kinds of expressions a lan-
guage uses a decomposition into different grammars is use-
ful. Thus, for the MontiCore language workbench the de-
composition presented in Figure 3 was developed. The most
basic variant ExpressionsBasis is depicted in Figure 8.
This language component provides the central expression in-
terface Expression as well as two basic implementations
NameExpression and LiteralExpression.

When extending this language component, the newly created
language enables the formulation of expressions that are simple
variables such as foo or bar, or values. The kind of values
expressible is not yet determined as the literals interface is used
(cf. l. 9) and only the LiteralsBasis grammar is extended.
This means that no Literal implementations are used so far.

Additional implementations of the Expression interface
are provided by the components AssignmentExpressions,

4 Butting et al

MG

1 component grammar ExpressionsBasis
2 extends LiteralsBasis, Basics {
3 interface Expression;
4

5 NameExpression implements Expression <350>
6 = Name;
7

8 LiteralExpression implements Expression <340>
9 = Literal;

10 }

Figure 8 Grammar of ExpressionsBasis.

CommonExpression, BitExpression, and JavaClass-
Expression each of which bundles a set of closely related
expression implementations.

The grammar of the AssignmentExpressions language
component is shown in Figure 9. It provides typical expressions
for assignments using operators such as ‘=’ or ‘+=’ as well as
increment or decrement operation as prefix or suffix operators.
These expressions are bundled in their own language component
as they produce side effects which is not feasible in every con-
text e.g., functional languages such as OCL. Furthermore, this
grammar provides algebraic signs. Using this grammar enables
to formulate expressions such as -a, a = b, or a += ++b -
c. As this grammar does not provide any implementation of
the Literal interface, it is still not determined which kind of
values are possible within the expressions. For instance, a = 1
is not yet expressible, as this would require an implementation
of the Literal interface that provides numbers.

MG

1 component grammar AssignmentExpressions
2 extends ExpressionsBasis {
3 IncSuffixExpression implements Expression <220>
4 = Expression "++";
5

6 DecSuffixExpression implements Expression <220>
7 = Expression "--";
8

9 PlusPrefixExpression implements Expression <210>
10 = "+" Expression;
11

12 MinusPrefixExpression implements Expression <210>
13 = "-" Expression;
14

15 IncPrefixExpression implements Expression <210>
16 = "++" Expression;
17

18 DecPrefixExpression implements Expression <210>
19 = "--" Expression;
20

21 AssignmentExpression implements Expression <60>
22 = left:Expression
23 operator:["=" | "+=" | "-=" | "*="
24 | "/=" | "&=" | "|=" | "^="
25 | ">>=" | ">>>=" | "<<=" | "%="]
26 right:Expression;
27 }

Figure 9 Grammar of AssignmentExpressions.

For clarity reasons, the grammars of CommonExpression, as
well as the BitExpression, and JavaClassExpression, are
not presented in this paper. The CommonExpression language
component provides mathematical expressions such as addition
and multiplication, comparisons such as greater than or equals,
and Boolean expressions such as and-expressions. Furthermore,
the bracket expression, as well as the conditional expression, is
provided by this language component. These expressions are
free of side effects and frequently used in modeling languages.
When using this language component, expressions such as a
<= b, (a == b), a && b, or a + b are expressible. Again,
no literal implementations are provided thus, the decision on
literals is not determined by this language component.

The BitExpression language component provides bit op-
erations such as shift expressions and bitwise expressions such
as and and or expressions. These expressions are rarely used for
modeling and thus separated from other, more frequently used
expressions. When using this language component, expressions
such as a « b or a & b are expressible.

The JavaClassExpression language component
builds upon the CommonExpression language component.
JavaClassExpression provides typical Java expressions
such as array expressions, type cast, and instanceof
expressions or expressions that use super or this. These
expressions are less useful for modeling but needed when
designing programming languages such as Java.

The presented collection of expression components provides
a modular foundation for creating individual expression lan-
guages. By composing an adequate subset of these components,
an OCL variant (Cabot & Gogolla 2012; Demuth & Wilke 2009;
Rum16 2016) can be implemented without much effort.

MG

1 component grammar BasicTypes extends Basics {
2

3 interface MCType;
4

5 MCQualifiedName = part:(Name || ".")+;
6

7 MCImportStatement = "import" MCQualifiedName
8 ("." Star:["*"])? ";" ;
9

10 MCPrimitiveType implements MCType
11 = primitive: ["boolean" | "byte"
12 | "short" | "int"
13 | "long" | "char"
14 | "float" | "double"];
15

16 interface MCObjectType extends MCType;
17

18 MCQualifiedType implements MCObjectType
19 = MCQualifiedName;
20

21 MCReturnType = MCVoidType | MCType;
22

23 MCVoidType = "void";
24 }

Figure 10 Grammar of BasicTypes.

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 5

MG

1 component grammar CollectionTypes extends BasicTypes
2 {
3 interface MCGenericType extends MCObjectType;
4

5 MCListType implements MCGenericType <200>
6 = "List" "<" MCTypeArgument ">";
7

8 MCOptionalType implements MCGenericType <200>
9 = "Optional" "<" MCTypeArgument ">";

10

11 MCMapType implements MCGenericType <200>
12 = "Map" "<" key:MCTypeArgument ","
13 value:MCTypeArgument ">";
14

15 MCSetType implements MCGenericType <200>
16 = "Set" "<" MCTypeArgument ">";
17

18 interface MCTypeArgument;
19

20 MCBasicTypeArgument implements
21 MCTypeArgument <200> = MCQualifiedType;
22

23 MCPrimitiveTypeArgument implements
24 MCTypeArgument <190> = MCPrimitiveType;
25 }

Figure 11 Grammar of CollectionTypes.

2.4. Types
Type systems are available in a variety of (programming) lan-
guages and facilitate programming because typing errors can
already be detected at compile time. To express type usages, a
library of language components for modeling types was devel-
oped for MontiCore-based languages. It consists of four lan-
guage components that are in an inheritance relationship. The
most basic language component is BasicTypes, which pro-
vides the central interface nonterminal MCType (cf. Figure 10,
l. 3). Besides this interface nonterminal, this language com-
ponent provides nonterminals that enable modeling primitive
types (ll. 10-14) and qualified types (ll. 18-19). The latter are
realized with the nonterminal MCQualifiedName that contains
only an optional qualifier. Therefore, non-qualified types are
expressible as well.

Furthermore, the grammar provides a return type (l. 21),
which can be an MCType or void. These nonterminals are bun-
dled as they form a relativity small yet useful collection of types
for modeling. When using this language component, types such
as int, Person, or java.lang.String are expressible.

MG

1 component grammar SimpleGenericTypes
2 extends CollectionTypes {
3 MCBasicGenericType implements MCGenericType <20>
4 =(Name || ".")+
5 "<" (MCTypeArgument || ",")* ">";
6

7 MCCustomTypeArgument
8 implements MCTypeArgument <20> = MCType;
9 }

Figure 12 Grammar of SimpleGenericTypes.

MG

1 component grammar StatementsBasis {
2 interface MCBlockStatement;
3 interface MCStatement extends MCBlockStatement;
4 interface MCModifier;
5 }

Figure 13 Grammar of StatementsBasis.

The CollectionTypes language component builds upon
the basic types language component as visualized in Figure 11.
This language component adds implementations to the MCType
interface nonterminal that enables to model four kinds of gener-
ics: Set, List, Map, and Optional. Via the MCTypeArgument,
qualified and primitive types can be used as arguments for the
aforementioned generics. Furthermore, these generics cannot be
nested as the purpose of this language component is to provide
some commonly used collection types but limit their functional-
ity such that it is useful for high-level models. Using this lan-
guage component, types such as List<Integer>, Set<char>,
or Map<java.lang.String, Person> are expressible.

The language component SimpleGenericTypes extends
the language component CollectionTypes (cf. Figure 12).
This language extends the expressible types with custom
generics. MCBasicGenericType enables modeling gener-
ics of arbitrary classes with arbitrary arguments. The lat-
ter is achieved by the nonterminal MCCustomTypeArgument.
When using this language component, types such as
Person<String> or Map<Person<String>, Integer> are
expressible. These types, however, do not cover all pos-
sible types from Java, as Java additionally supports inner
types of generic types, which is not expressible using the lan-
guage component SimpleGenericTypes, e.g., types such as
a.b.C<D>.E.F<G>.H are not expressible. If these kinds of
types are required, the FullGenericTypes language compo-
nent, whose grammar is not included here, can be used. This
language component is part of the MontiCore project on GitHub.

MG

1 component grammar VarDeclarationStatements extends
2 StatementsBasis, BasicTypes, ExpressionsBasis {
3

4 LocalVarDeclaration implements MCBlockStatement
5 = MCModifier* MCType (VariableDeclarator || ",")+;
6

7 VariableDeclarator
8 = DeclaratorId ("=" VariableInit)?;
9

10 DeclaratorId = Name (dim:"[" "]")*;
11

12 interface VariableInit;
13

14 SimpleInit implements VariableInit = Expression;
15

16 ArrayInit implements VariableInit
17 = "{" (VariableInit || ",")* (",")? "}";
18 }

Figure 14 Grammar of VarDeclarationStatements.

6 Butting et al

MG

1 component grammar CommonStatements extends VarDeclarationStatements {
2 MCJavaBlock implements MCStatement = "{" MCBlockStatement* "}";
3

4 JavaModifier implements MCModifier =
5 modifier:["static" | "protected" | "public" | "private" | "transient" | "final" | "abstract"
6 | "native" | "threadsafe" | "const" | "volatile" | "strictfp" | "synchronized"];
7

8 IfStatement implements MCStatement
9 = "if" "(" cond:Expression ")" thenStatement:MCStatement ("else" elseStatement:MCStatement)?;

10

11 ForStatement implements MCStatement = "for" "(" ForControl ")" MCStatement;
12

13 interface ForControl;
14

15 CommonForControl implements ForControl = ForInit? ";" cond:Expression? ";" (Expression || ",")*;
16

17 ForInit = ForInitByExpressions | LocalVariableDeclaration;
18

19 ForInitByExpressions = (Expression || ",")+;
20

21 WhileStatement implements MCStatement = "while" "(" cond:Expression ")" MCStatement;
22

23 DoWhileStatement implements MCStatement = "do" MCStatement "while" "(" cond:Expression ")" ";";
24

25 SwitchStatement implements MCStatement
26 = "switch" "(" Expression ")" "{" SwitchBlockStatementGroup* SwitchLabel* "}";
27

28 EmptyStatement implements MCStatement = ";";
29

30 ExpressionStatement implements MCStatement = Expression ";";
31

32 SwitchBlockStatementGroup = SwitchLabel+ MCBlockStatement+;
33

34 interface SwitchLabel;
35

36 ConstantExpressionSwitchLabel implements SwitchLabel = "case" constantExpression:Expression ":";
37

38 EnumConstantSwitchLabel implements SwitchLabel = "case" enumConstantName:Name ":";
39

40 DefaultSwitchLabel implements SwitchLabel = "default" ":";
41 }

Figure 15 Grammar of CommonStatements.

2.5. Statements
MontiCore provides a library of modular statement language
components, depicted in Figure 4, to offer language developers
different options for embedding Java-like statements in a mod-
eling language. To this end, language developers can select the
appropriate subset of statements or add their own statements.

MontiCore offers a basic grammar that provides the neces-
sary interfaces for a modular statement definition. Figure 13
contains a listing of this grammar, named StatementsBasis.
Line 2 specifies the interface MCBlockStatement, which rep-
resents the most extensive set of statements. The interface
MCStatement further extends this (cf. l. 3). The difference be-
tween the two interfaces is that MCBlockStatement allows any
kind of statements, while MCStatement depicts a subset that
excludes block statements. For instance, this is demonstrated
via variable declarations which, according to Java, are used
exclusively in blocks. Finally, line 4 introduces the interface
MCModifier. It provides access to more advanced properties
of model elements, such as attribute visibility and accessibility.

Grammar VarDeclarationStatements in Figure 14 spec-
ifies statements for declaring variables. It uses the predefined
interfaces from StatementsBasis as well as MCBasicTypes
and ExpressionBasis (ll. 1-2). A LocalVarDeclaration
(ll. 4-5) is part of the MCBlockStatements and thus imple-
ments the corresponding interface. These declarations may
have several modifiers, followed by an MCType and at least one
VariableDeclarator. This declarator (ll. 7-10) contains an
identifier consisting of the variable’s name and its dimension,
expressed by "[" "]" for multidimensional variables, such as
arrays. Furthermore, variables can optionally be initialized via
the inherited expressions (ll. 12-17). For multidimensional vari-
ables, several expressions are provided as a comma-separated
list in curly brackets.

The grammar CommonStatements defines basic state-
ments such as method calls, variable assignments, condi-
tions, and loops. The grammar (cf. Figure 15) extends
VarDeclarationStatements. Line 2 defines MCJavaBlock,
a statement that may contain additional statements in curly

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 7

brackets. Furthermore, the interface MCModifier from the in-
herited grammar StatementBasis is implemented by explicit
JavaModifiers (ll. 4-6). In general, this grammar enables a
standard Java-like statement syntax. This includes if-clauses
(ll. 8-9), for loops (ll. 11-19), and while loops (ll.21-23). Fur-
thermore, SwitchStatements (ll. 25-26) enable case distinc-
tions in Java-customary syntax. The specified statements use
expressions to establish and verify their conditions.

Further statement grammars are not presented in detail for
the sake of clarity. Instead, we briefly introduce these accord-
ing to their main features. The grammar ReturnStatements
enables specifying the return of methods. Therefore, an op-
tional expression is provided, which evaluates to the return
value. SynchronizedStatements supports the definition
of synchronized expressions. This, e.g., enables thread
safety for method calls. Grammar ExceptionStatements
introduces additional try-catch blocks. These reference ex-
ceptions by their name and can thus handle these. Gram-
mar LowLevelStatements enables several basic control state-
ments such as break and continue commands, as well as
labelling of statements. Finally, FullJavaStatements joins
the defined statement sub-languages, leveraging their modular
structure. Only existing grammars must be integrated with-
out the necessity of introducing new productions. Overall,
FullJavaStatements provides access to an extensive, Java-
compatible, collection of statement components.

3. Case Study
The presented language components can be used to realize
languages without the effort of re-implementing commonly
used parts again. Instead, “off-the-shelf” language components
can be reused and combined to form the basis for engineering
a new language. This section describes the engineering of
the syntax for a light-weight ADL for which the grammar is
depicted in Figure 16.

MG

1 grammar LightADL extends BasicTypes, IOAutomata {
2

3 Component implements CmpElement
4 = "component" Name "{" CmpElement* "}";
5

6 interface CmpElement;
7

8 Port implements CmpElement = "port"
9 direction:["in" | "out"] MCType Name ";";

10

11 Connector implements CmpElement
12 = "connect" src:Name "->" tgt:Name ";";
13

14 StateBasedBehavior implements CmpElement
15 = "behavior" "{" (State | Transition)* "}"
16 }

Figure 16 Exemplary grammar of the light-weight ADL.

The light-weight ADL (LightADL) grammar reuses the lan-
guage components for automata (cf. Section 2) and basic types
(cf. Section 2) by extending the grammars of the respective lan-

guage components (l. 1). Through this, other language compo-
nents (e.g., for literals, expressions, and statements) are reused
transitively as well. A component of the ADL begins with the
keyword component, followed by a name and a list of compo-
nent elements (ll. 3-4). The component elements are realized
as interface production (l. 6) to foster extensibility with further
kinds of component elements. The syntax of every kind of
component element is realized as grammar production imple-
menting the interface production. Possible component elements
of the ADL are transitively contained components (ll. 3-4), di-
rected and typed ports (ll. 8-9), through which a component
can exchange messages with other components via connectors
(ll. 11-12). The types of ports are realized by reusing the inter-
face nonterminal Type. In this ADL, components may further
contain behavior descriptions (ll. 14-15) in form of automata.
For realizing these, the syntax of States and Transitions is
reused from the automata language component.

MG

1 grammar FullADL extends LightADL,
2 FullJavaStatements, SimpleGenericTypes {
3 start Component;
4 }

Figure 17 Exemplary grammar of the complex ADL.

For a different application, the light-weight ADL is extended
to create an ADL with a more sophisticated type system and
more options for using statements to describe the actions of
a behavior automaton’s transitions. The grammar of the re-
sulting FullADL language is depicted in Figure 17. FullADL
extends the LightADL, and also the language components for
JavaStatements and SimpleGenericTypes. Through this,
the port definitions can use generic types. Further, the state-
ments in action blocks of automaton transitions can be any Java
statements. This is due to the fact that LightADL uses the in-
terface nonterminal MCType of the BasicTypes language com-
ponent for specifying port types and SimpleGenericTypes
provides further implementations for MCType. Analogously,
the interface nonterminal BlockStatement that the automata
language uses for statements in action blocks is provided with
further implementations in the FullADL through extending the
language component JavaStatements. The grammar further
reuses the start production Component of the LightADL. The
remaining body of the grammar is empty, as all grammar produc-
tions are reused from super grammars and no new productions
are defined.

Figure 18 depicts an overview of the language components
of this case study and their interrelations. Language compo-
nents that are reused from the presented language component
library are colored gray. For clarity, the figures omits relations
between reused language components and transitively reused
language components. IOAutomata, LightADL, andFullADL
are complete languages, which means that they yield a parser.
This is indicated in Figure 18 via a dedicated icon.

While the FullADL does not introduce a single new non-
terminal, the LightADL introduces five nonterminals, and

8 Butting et al

Common

Literals

Common

Expressions

LightADL

Assignment

Expressions

Simple

GenericTypes

Basic

Types

IOAutomata

FullADL

Common

Statements

FullJava

Statements

Reuses = 86

Defines = 3

Reuses = 89

Defines = 5

Reuses = 117

Defines = 0

Reuses = 1

Defines = 15

Reuses = 8

Defines = 7

Reuses = 8

Defines = 21

Reuses = 25

Defines = 18

Reuses = 4

Defines = 8

Reuses = 56

Defines = 0

Reuses = 20

Defines = 2

complete language

number of reused and
defined nonterminals

language
component

Figure 18 Language components of the case study, including reused (colored gray) language components. Relations between
reused language components and transitive reuses are omitted.

IOAutomata introduces three nonterminals. However, the num-
ber of introduced nonterminals is only a small portion of the
number of nonterminals that these languages use. Most nonter-
minals are reused from inherited language components. Both
the number of nonterminals that a language component reuses
from other language components and the number of nontermi-
nals that a language component defines are depicted in Figure 18
next to each language component. These numbers exclude to-
ken productions and count nonterminals, which are inherited
multiple times through diamond inheritance, only once. The
number of defined and reused nonterminals per language com-
ponent of the presented language component library is depicted
for literals, types, and expressions in Figure 20. The numbers
for statements are depicted in Figure 19.

The case study demonstrates by example that a large pro-
portion of nonterminals can be reused for building a new lan-
guage. This does not only save effort in re-engineering the
syntax again, but also has the advantage that reused parts of
language infrastructure can be developed, tested, evolved, and
maintained individually.

4. Related Work
The functionalities and features of language workbenches have
already been studied in detail over the past decades (Erdweg et
al. 2013). Utilizing language composition, several allow pro-
viding composable language modules similar to the proposed
language components. In the following, we discuss the po-
tential of modern language workbenches to provide respective
language modules and describe existing libraries of composable
modules to the best of our knowledge.

Spoofax (Wachsmuth et al. 2014) is a language workbench,
which automatically derives integrated Eclipse editors from a
language definition. It supports the modularization of a model-
ing language into different grammars, so-called modules. Dif-
ferent concepts of such modules can be reused via imports,
enabling language extension. Thus, Spoofax offers fundamental
features for language composition. Even if basic modules of
public projects sometimes resemble each other, there are no stan-
dard modules or libraries similar to the language components
provided by MontiCore.

Xtext (Bettini 2016) is an open-source framework for de-
veloping modeling languages. It enables the specification of a

grammar, which is further processed into an Ecore metamodel
and corresponding tooling for modeling. Xtext also automati-
cally derives textual Eclipse editors. In general, Xtext supports
reusable language components. Single grammar inheritance is
supported, but neither non-terminal interfaces nor non-terminal
inheritance. Hence, Xtext also offers basic concepts for lan-
guage extension but does not cover the entire field. Besides
a default grammar for terminals, Xtext also offers the expres-
sion language Xbase (Efftinge et al. 2012). Xbase relies on the
general-purpose language Java, thus fostering the integration of
Java-like expressions into a custom modeling language.

Neverlang (Vacchi & Cazzola 2015) is a framework for devel-
oping modular languages. It enables the composition of gram-
mars with placeholders as extension points. For this purpose,
production rules can assign undefined non-terminals, which
are implemented by extending sub-languages. Furthermore,
Neverlang supports language variability by using the Common
Variability Language (Méndez-Acuña et al. 2016). Although we
are not aware of any language components, Neverlang supports
the required functionality to provide these.

Reuses = 0

Defines = 3

Reuses = 56

Defines = 0

Reuses = 25

Defines = 18

Reuses = 11

Defines = 1

Reuses = 11

Defines = 1

Reuses = 3

Defines = 3

Reuses = 43

Defines = 1

Reuses = 43

Defines = 7

Reuses = 19

Defines = 6

Assert

Statements

VarDeclaration

Statements

Statements

Basis

LowLevel

Statements

Return

Statements

Common

Statements

Synchronized

Statements

Exception

Statements

FullJava

Statements

Figure 19 Numbers of reused and defined nonterminals for
statement language components of the library.

The Meta Programming System (MPS) (Voelter & Pech
2012) is a language workbench that fosters the development
of modeling languages with projectional editors. In projection
editors, changes are performed directly on the AST without the
necessity of parsing a model. MPS supports a wide range of
editorial representations, such as textual, symbolic, or graphical.
It enables language composition by extending abstract syntax
elements (Voelter & Pech 2012). For these elements, MPS
offers modular standard libraries, which contain expressions,

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 9

Literals

Basis

Common

Literals

Java

Literals

Expressions

Basis

Common

Expressions

Assignment

Expressions

Bit

Expressions

OCL

Expressions

Set

Expressions

JavaClass

Expressions

Full

GenericTypes

Simple

GenericTypes

Collection

Types

Basic

Types

Reuses = 0

Defines = 1

Reuses = 1

Defines = 15

Reuses = 16

Defines = 4

Reuses = 20

Defines = 2

Reuses = 12

Defines = 8

Reuses = 4

Defines = 8

Reuses = 22

Defines = 4

Reuses = 8

Defines = 21

Reuses = 29

Defines = 15

Reuses = 8

Defines = 7

Reuses = 5

Defines = 3

Reuses = 8

Defines = 7

Reuses = 8

Defines = 34

Reuses = 8

Defines = 8

Figure 20 Numbers of reused and defined nonterminals per
types, literals, and expression language component.

literals, and variables. Hence, this approach is similar to the
language components presented for MontiCore, although it
covers a different technological area.

mbeddr (Voelter et al. 2012) is a framework for the devel-
opment of embedded modeling languages. Based upon MPS,
mbeddr directly inherits its language composition features. It is
specialized in language engineering for embedded systems, and,
thus, offers the possibility to extend C artifacts by DSL snippets.
Existing language modules are, therefore, primarily designed for
embedded systems. These cover a recreation of the language C,
as well as SI units and state machines for behavior specification.
Thus, mbeddr also aims at offering language components for
a particular scope. These languages are self-contained without
further modularisation and separation of concerns.

Whole Platform (Solmi 2005) is a language workbench based
on the Eclipse IDE. Based on grammars for language devel-
opment, the Whole Platform also supports various projection
representations, such as tables, tree views, and mathematical
representations (Erdweg et al. 2013). The language workbench
provides various languages supporting language development,
such as composable types or a transformation language. Gen-
erally, the Whole Platform enables language product lines and
language composition. Furthermore, there is a standard library
of modeling languages for embedding and extension. However,
to the best of our knowledge, these primarily cover complete
languages (e.g., Java, XML). Therefore, the Whole Platform
differs in scope and granularity from MontiCore’s approach of
modular language components.

5. Discussion
The presented library of language components for different
kinds of literals, expressions, types, and statements is based on
our experiences in engineering languages for various purposes
in different applications. However, the language component
library does obviously not claim to be complete. Further re-
alizations for literals, expressions, types, and statements can
be integrated into the language components library anywhere

within the inheritance hierarchies. We identified many further
language parts that are reusable for engineering various lan-
guages such as, e.g., cardinalities, stereotypes, SI units, and
modifiers. Presenting the language components for these in
detail, however, is beyond the scope of this paper.

The language component library has been developed to avoid
conflicting nonterminals. Multiple inheritance of grammars in
general, however, can lead to ambiguities in combination with a
flat namespace of nonterminal names that should be avoided.

Picking a suitable granularity for language components is
crucial. Coarse-grained components prevent using parts of it
for an application individually without reusing the parts that are
not needed in this application. Fine-grained components, on the
other and, increase the overhead in engineering and managing
these individually.

Identifying language components in terms of reusable units
requires foresight by language developers: If a language com-
ponent depends on another language component by inheriting
from it, it is impossible to use this language component without
the other one. The rationale for engineering modular languages,
therefore, is to develop language features as separate language
components and postpone binding these to their environment,
i.e., to other language components, as late as possible.

An extensive application of language modularization can be
leveraged to realize product lines of language (BEK+18a 2018;
BEK+19 2019), in which each feature of a language is associ-
ated with a language component realizing this feature. Upon a
selection of features, the respective language components can
be composed to yield a language variant. This fosters systematic
reuse of language components for families of similar languages.

A formal understanding of the OCL (Richters & Gogolla
1998), an OCL metamodel (Richters & Gogolla 1999), and the
presented language component library with the modularization
techniques of MontiCore are the perfect basis for building a
modular OCL. The modular OCL can, e.g., include impera-
tive statements (Büttner & Gogolla 2014) based on statement
language components from the presented library. Further, a
modular OCL engineered with MontiCore can be embedded
into other languages similar to the SOIL (Büttner & Gogolla
2011) approach.

While the focus of this paper lies in the modularization of
language grammars, the modularization of other parts of lan-
guage infrastructure is important as well. This can include, e.g.,
a modular visitor infrastructure for traversing the abstract syn-
tax. To give meaning to a model, language components can,
e.g., apply modular code generators (BEK+18a 2018), graph
transformations (Kuske et al. 2002), or (domain-specific) model
transformations (Hoe18 2018). Only providing, for instance,
modular analyses (e.g., type checks) and transformations (e.g.,
code generators) accompanying the modular syntax makes lan-
guage components truly modular.

6. Conclusion
Reusing tried and tested software parts in different contexts is
one of the key success factors of software engineering. With
software languages being software too, the efficient reuse of

10 Butting et al

software language components in different contexts reuse can
facilitate engineering truly domain-specific languages. Hence,
software language reuse can be a key enabler of their adoption
and, thus, the adoption of MDD in general. To advance the use
of software languages, we have developed concepts for the mod-
ularization of the ubiquitous language components of literals,
expressions, types, and statements. Leveraging these facilitates
engineering novel languages, liberates software language engi-
neers from needing to reinvent the wheel, and ultimately may
promote the adoption of MDD in different contexts.

References

Adam, K., Hölldobler, K., Rumpe, B., & Wortmann, A. (2017).
Modeling Robotics Software Architectures with Modular
Model Transformations. Journal of Software Engineering for
Robotics (JOSER), 8(1), 3–16.

Bettini, L. (2016). Implementing Domain-Specific Languages
with Xtext and Xtend. Packt Publishing Ltd.

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wortmann,
A. (2018, September). Modeling Language Variability with
Reusable Language Components. In Int. Conf. on Systems
and Software Product Line (SPLC’18). ACM.

Butting, A., Eikermann, R., Kautz, O., Rumpe, B., & Wortmann,
A. (2019, June). Systematic Composition of Independent
Language Features. Journal of Systems and Software, 152,
50–69.

Büttner, F., & Gogolla, M. (2011). Modular Embedding of the
Object Constraint Language into a Programming Language.
In Brazilian symposium on formal methods (pp. 124–139).

Büttner, F., & Gogolla, M. (2014). On OCL-Based Imperative
Languages. Science of Computer Programming, 92, 162–
178.

Cabot, J., & Gogolla, M. (2012). Object Constraint Language
(OCL): a Definitive Guide. In International School on Formal
Methods for the Design of Computer, Communication and
Software Systems (pp. 58–90).

Dabney, J. B., & Harman, T. L. (2004). Mastering Simulink.
Pearson.

Dalibor, M., Jansen, N., Rumpe, B., Wachtmeister, L., & Wort-
mann, A. (2019, September). Model-Driven Systems En-
gineering for Virtual Product Design. In L. Burgueño et al.
(Eds.), Proceedings of MODELS 2019. Workshop MPM4CPS
(pp. 430–435). IEEE.

Demuth, B., & Wilke, C. (2009). Model and Object Ver-
ification by Using Dresden OCL. In Proceedings of the
Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice, Ufa, Russia (pp. 687–690).

Dévai, G., Kovács, G. F., & An, Á. (2014). Textual, Executable,
Translatable UML. In OCL@ MoDELS (pp. 3–12).

Drave, I., Greifenberg, T., Hillemacher, S., Kriebel, S., Kus-
menko, E., Markthaler, M., . . . Wortmann, A. (2019, Febru-
ary). SMArDT modeling for automotive software testing.
Software: Practice and Experience, 49(2), 301-328.

Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von
Massow, R., Hasselbring, W., & Hanus, M. (2012). Xbase:

Implementing Domain-Specific Languages for Java. ACM
SIGPLAN Notices, 48(3), 112–121.

Eikermann, R., Look, M., Roth, A., Rumpe, B., & Wortmann,
A. (2017). Architecting Cloud Services for the Digital me in
a Privacy-Aware Environment. In Software Architecture for
Big Data and the Cloud (pp. 207–226). Elsevier.

Erdweg, S., Giarrusso, P. G., & Rendel, T. (2012). Language
Composition Untangled. In Proceedings of the Twelfth Work-
shop on Language Descriptions, Tools, and Applications (pp.
1–8).

Erdweg, S., Van Der Storm, T., Völter, M., Boersma, M.,
Bosman, R., Cook, W. R., . . . others (2013). The State
of the Art in Language Workbenches. In International con-
ference on software language engineering (pp. 197–217).

Erdweg, S., Van Der Storm, T., Völter, M., Tratt, L., Bosman, R.,
Cook, W. R., . . . others (2015). Evaluating and comparing
language workbenches: Existing results and benchmarks for
the future. Computer Languages, Systems & Structures, 44,
24–47.

Etzel, C., & Bauer, B. (2019). Modeling and Analysis of
Partitions on Functional Architectures Using EAST-ADL. In
International Conference on Model-Driven Engineering and
Software Development (pp. 298–319).

Favre, J.-M. (2005). Languages evolve too! Changing the
Software Time Scale. In Eighth International Workshop on
Principles of Software Evolution (IWPSE’05) (pp. 33–42).

Feiler, P. H., & Gluch, D. P. (2012). Model-Based Engineering
with AADL: An Introduction to the SAE Architecture Analysis
& Design Language. Addison-Wesley.

Fowler, M. (2005). Language Workbenches: The Killer-App for
Domain Specific Languages.

France, R., & Rumpe, B. (2007, May). Model-driven Develop-
ment of Complex Software: A Research Roadmap. Future of
Software Engineering (FOSE ’07), 37–54.

Friedenthal, S., Moore, A., & Steiner, R. (2014). A Practical
Guide to SysML: The Systems Modeling Language. Morgan
Kaufmann.

Halloway, S. (2009). Programming Clojure. Pragmatic Book-
shelf.

Heim, R., Mir Seyed Nazari, P., Rumpe, B., & Wortmann, A.
(2016, July). Compositional Language Engineering using
Generated, Extensible, Static Type Safe Visitors. In Conf.
on Modelling Foundations and Applications (ECMFA) (pp.
67–82). Springer.

Hölldobler, K. (2018). MontiTrans: Agile, modellgetriebene En-
twicklung von und mit domänenspezifischen, kompositionalen
Transformationssprachen. Shaker Verlag.

Hölldobler, K., Mir Seyed Nazari, P., & Rumpe, B. (2015).
Adaptable Symbol Table Management by Meta Modeling
and Generation of Symbol Table Infrastructures. In Domain-
Specific Modeling Workshop (DSM’15) (pp. 23–30). ACM.

Hölldobler, K., & Rumpe, B. (2017). MontiCore 5 Language
Workbench Edition 2017. Shaker Verlag.

Hölldobler, K., Rumpe, B., & Wortmann, A. (2018). Software
Language Engineering in the Large: Towards Composing
and Deriving Languages. Computer Languages, Systems &
Structures, 54, 386–405.

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 11

Jemerov, D., & Isakova, S. (2017). Kotlin in Action. Manning
Publications Company.

Kleppe, A. (2008). Software Language Engineering: Creating
Domain-specific Languages Using Metamodels. Pearson
Education.

Koenig, D., Glover, A., King, P., Laforge, G., & Skeet, J. (2007).
Groovy in Action. Manning Publications Co.

Kurtev, I., Bézivin, J., & Aksit, M. (2002). Technological
Spaces: An Initial Appraisal. CoopIS, DOA, 2002.

Kuske, S., Gogolla, M., Kollmann, R., & Kreowski, H.-J. (2002).
An Integrated Semantics for UML Class, Object and State
Diagrams Based on Graph Transformation. In International
conference on integrated formal methods (pp. 11–28).

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., & Tang, A.
(2013). What Industry Needs from Architectural Languages:
A Survey. IEEE Transactions on Software Engineering, 39(6),
869–891. doi: 10.1109/TSE.2012.74

Medvidovic, N., & Taylor, R. (2000). A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering.

Méndez-Acuña, D., Galindo, J. A., Degueule, T., Combemale,
B., & Baudry, B. (2016). Leveraging Software Product
Lines Engineering in the Development of External DSLs: A
Systematic Literature Review. Computer Languages, Systems
& Structures, 46, 206–235.

Mir Seyed Nazari, P., Roth, A., & Rumpe, B. (2015). Manage-
ment of Guided and Unguided Code Generator Customiza-
tions by Using a Symbol Table. In Domain-Specific Modeling
Workshop (DSM’15) (pp. 37–42). ACM.

Mir Seyed Nazari, P., Roth, A., & Rumpe, B. (2016, March).
An Extended Symbol Table Infrastructure to Manage the
Composition of Output-Specific Generator Information. In
Modellierung 2016 Conference (Vol. 254, pp. 133–140). Bon-
ner Köllen Verlag.

Odersky, M., Spoon, L., & Venners, B. (2008). Programming
in scala. Artima Inc.

Richters, M., & Gogolla, M. (1998). On Formalizing the
UML Object Constraint Language OCL. In International
conference on conceptual modeling (pp. 449–464).

Richters, M., & Gogolla, M. (1999). A Metamodel for OCL. In
International conference on the unified modeling language
(pp. 156–171).

Richters, M., & Gogolla, M. (2000). Validating UML models
and OCL constraints. In International Conference on the
Unified Modeling Language (pp. 265–277).

Ringert, J. O., Rumpe, B., & Wortmann, A. (2014). Architec-
ture and Behavior Modeling of Cyber-Physical Systems with
MontiArcAutomaton. Shaker Verlag.

Rumpe, B. (2016). Modeling with UML: Language, Concepts,
Methods. Springer International.

Selic, B. (2003). The pragmatics of model-driven development.
IEEE software, 20(5), 19–25.

Solmi, R. (2005). Whole Platform (Unpublished doctoral
dissertation). Citeseer.

Starrett, C. (2016). xtUML: Current and Next State of a Model-
ing Dialect. In EXE@ MoDELS (pp. 33–37).

Vacchi, E., & Cazzola, W. (2015). Neverlang: A framework

for feature-oriented language development. Computer Lan-
guages, Systems & Structures, 43, 1–40.

Voelter, M., & Pech, V. (2012). Language Modularity with the
MPS Language Workbench. In Software Engineering (ICSE),
2012 34th International Conference on (pp. 1449–1450).

Voelter, M., Ratiu, D., Schaetz, B., & Kolb, B. (2012). mbeddr:
an Extensible C-based Programming Language and IDE for
Embedded Systems. In Proceedings of the 3rd annual confer-
ence on Systems, programming, and applications: software
for humanity (pp. 121–140).

Völter, M., Stahl, T., Bettin, J., Haase, A., & Helsen, S. (2013).
Model-driven software development: technology, engineering,
management. John Wiley & Sons.

Wachsmuth, G. H., Konat, G. D. P., & Visser, E. (2014). Lan-
guage Design with the Spoofax Language Workbench. IEEE
Software, 31(5), 35–43.

Wolny, S., Mazak, A., Carpella, C., Geist, V., & Wimmer, M.
(2020). Thirteen years of SysML: a systematic mapping
study. Software and Systems Modeling, 19(1), 111–169.

Wortmann, A. (2019, November). Towards Component-Based
Development of Textual Domain-Specific Languages. In
L. Lavazza, H. Mannaert, & K. Kavi (Eds.), International
Conference on Software Engineering Advances (ICSEA 2019)
(pp. 68–73). IARIA XPS Press.

Wortmann, A., Barais, O., Combemale, B., & Wimmer, M.
(2020, January). Modeling Languages in Industry 4.0: an
Extended Systematic Mapping Study. Software and Systems
Modeling, 19(1), 67–94.

About the authors
Arvid Butting received his B. Sc. and M. Sc. degrees in com-
puter science from the RWTH Aachen University, in 2014 and
2016. Currently, he is a research assistant and Ph.D. candidate
at the Department of Software Engineering at RWTH Aachen
University. His research interests cover software language engi-
neering, software architectures, and model-driven development.
You can contact the author at butting@se-rwth.de.

Robert Eikermann received his B. Sc. and M. Sc. degrees in
computer science from the RWTH Aachen University, in 2012
and 2014. Currently, he is a research assistant and Ph.D. can-
didate at the Department of Software Engineering at RWTH
Aachen University. His research interests cover software lan-
guage engineering, behavior languages, and model-driven soft-
ware development. authorcontacteikermann@se-rwth.de

Katrin Hölldobler received her Ph.D. from RWTH Aachen Uni-
versity in 2018. Currently, she is a postdoctoral researcher at the
Department for Software Engineering at RWTH Aachen Univer-
sity. Her research interests cover software engineering, software
language engineering, model-driven development, and model
transformation. You can contact the author at hoelldobler@se-
rwth.de.

Nico Jansen received his B. Sc. and M. Sc. degrees in computer
science from the RWTH Aachen University, in 2015 and 2018.

12 Butting et al

mailto:butting@se-rwth.de?subject=Your paper "A Library of Literals, Expressions, Types, and Statements for Compositional Language Design"
mailto:hoelldobler@se-rwth.de?subject=Your paper "A Library of Literals, Expressions, Types, and Statements for Compositional Language Design"
mailto:hoelldobler@se-rwth.de?subject=Your paper "A Library of Literals, Expressions, Types, and Statements for Compositional Language Design"

Currently, he is a research assistant and Ph.D. candidate at the
Department of Software Engineering at RWTH Aachen Univer-
sity. His research interests cover software language engineering,
software architectures, and model-based software and systems
engineering. You can contact the author at jansen@se-rwth.de.

Bernhard Rumpe is heading the Software Engineering depart-
ment at the RWTH Aachen University, Germany. Earlier he
had positions at INRIA Rennes, Colorado State University, TU
Braunschweig, Vanderbilt University, Nashville, and TU Mu-
nich. His main interests are rigorous and practical software
and system development methods based on adequate modeling
techniques. This includes agile development methods as well as
model-engineering based on UML/SysML-like notations and
domain specific languages. He also helps to apply modeling,
e.g. to autonomous cars, human brain simulation, BIM energy
management, juristical contract digitalization, production au-
tomation, cloud, and many more. He is author and editor of 34
books including “Agile Modeling with the UML” and “Engi-
neering Modeling Languages: Turning Domain Knowledge into
Tools”. You can contact the author at rumpe@se-rwth.de.

Andreas Wortmann received his Ph.D. from RWTH Aachen
University in 2016. Currently, he is a tenured researcher at
the Department for Software Engineering at RWTH Aachen
University. His research interests cover software engineering,
software language engineering, model-driven development, and
robotics. He is a member of IEEE and its Technical Commit-
tee on Software Engineering for Robotics and Automation and
serves on the board of the European Association for Program-
ming Languages and Systems (EAPLS). You can contact the
author at wortmann@se-rwth.de.

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 13

mailto:jansen@se-rwth.de?subject=Your paper "A Library of Literals, Expressions, Types, and Statements for Compositional Language Design"
mailto:rumpe@se-rwth.de?subject=Your paper "A Library of Literals, Expressions, Types, and Statements for Compositional Language Design"
mailto:wortmann@se-rwth.de?subject=Your paper "A Library of Literals, Expressions, Types, and Statements for Compositional Language Design"

Appendix

Table 1 Overview of Language Components and their Intention
Language Component Intention
CommonLiterals provide a limited but useful collection of values usable in various

modeling languages
JavaLiterals provide additional values needed to support literals allowed in

Java

CommonExpressions provide side effect-free expressions commonly used in modeling
languages

Assignment-
Expressions

provide expressions with side effects that assign new values to
variables

BitExpressions provide expressions with side effects that operate on bits
JavaClassExpressions provide expressions concerning classes needed in programming

languages such as Java

BasicTypes provide a limited but useful collection of types usable in various
modeling languages

CollectionTypes provide predefined generic types for Collections, Optionals and
Maps useful for modeling

SimpleGenericTypes provide custom generics that can be nested
FullGenericTypes provide additional generic types such as inner types of generic

types needed for programming languages such as Java

AssertStatements provide the assert statement as known from Java constraints
CommonStatements provide typical statements, such as method calls, assignment of

variables, loops, conditions, and blocks
ExceptionStatements provide statements for exceptions, including a Java-like try-

catch notation
FullJavaStatements provide exact Java statements by combining the other statement

language components
LowLevelStatements provide low-level control statements
ReturnStatements provide return statements for Java methods
Synchronized-
Statements

provide a statement for Java-like synchronization

VarDeclaration-
Statements

provide statements concerning variable declaration and initial-
ization

14 Butting et al

Table 2 Overview of Language Components and their Usage
Language Component Used, e.g., in Used, e.g., for

CommonLiterals
Java Values for fields, variables or loops
IOAutomaton Values in Guards, Actions

JavaLiterals Java Values for Fields and Variables

CommonExpressions
Java Conditions, comparisons, variable/field usages
IOAutomaton Expressions in Guards, Actions of Transitions

AssignmentExpressions
Java assignments of fields/variables in expressions
IOAutomaton Expressions in Guards, Actions of Transitions

BitExpressions Java manipulating bits within expressions
JavaClassExpressions Java using this or .class within expression

BasicTypes
Java Types of fields, variables, parameters, return types
LightADL Types of ports

ColletionTypes
Java Types of fields, variables, parameters, return types
FullADL Types of ports

SimpleGenericTypes
Java Types of fields, variables, parameters, return types
FullADL Types of ports

FullGenericTypes Java Types of fields, variables, parameters, return types

AssertStatements Java using asserts within method bodies

CommonStatements
Java Method calls, assignments, if, loops, switch statements, and blocks
IOAutomaton Statements in Actions of Transitions

ExceptionStatements
Java exceptions including try, catch, finally, and throw
FullADL Statements in Actions of Transitions

FullJavaStatements
Java all statements
FullADL Statements in Actions of Transitions

LowLevelStatements
Java Loops and conditionals
FullADL Statements in Actions of Transitions

ReturnStatements
Java returns in method bodies
FullADL Statements in Actions of Transitions

SynchronizedStatements
Java synchronize statements
FullADL Statements in Actions of Transitions

VarDeclarationStatements
Java declaring local variables
FullADL Statements in Actions of Transitions

A Library of Literals, Expressions, Types, and Statements for Compositional Language Design 15

