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Abstract. This technical report provides a collection of scenarios for the
decomposition and composition of (modular) model-based analyses for
different quality properties and different domains to serve as a basis for
illustrative examples and evaluation scenarios in the FeCoMASS research
project.
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1 Introduction

Before realising a complex software-intensive system it is worth analysing its
emerging properties. Analyses are applied for investigating systems for quality
properties or properties specific to a given domain. Model-based analysis is the
appropriate technique to do that early in development to avoid inappropriate
design decisions and costly design flaws. For today’s heterogeneous and complex
systems, analysis techniques become complex as well. To master the development
of tailor-made analysis techniques, decomposition and composition of analyses is
unavoidable. The very different nature of quality properties has led to the use of
individual analysis techniques and independent tools for each quality property.
Moreover, recently emerging innovations like internet of things and cyber-physical
systems combine several domains, such as software, electrics/electronics and

⋆ This work was funded by the DFG (German Research Foundation) – project number
499241390 (FeCoMASS).
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mechanics. In consequence, analyses need to be (de)composed along quality
properties and domain-specific properties.

The goal of the FeCoMASS research project is to provide more flexibility
in model-driven engineering by investigating foundations of decomposition and
composition mechanisms specifically for model-based analyses for tomorrow’s
increasingly heterogeneous and complex systems.

In this technical report, we describe scenarios for (de)composing (modular)
model-based analyses for different quality properties and different domains to
serve as a basis for illustrative examples and evaluation scenarios in the FeCo-
MASS project. For detailing and identifying the scenarios we will build upon
knowledge and experience from (a) recent research initiatives (like the DFG
Exzellenzcluster “Internet of Production” and the topic Engineering Secure
Systems of the Helmholtz Association (HGF)), (b) scenarios identified during
the Dagstuhl seminar 19481 [12,19], and (c) the evolution of historically-grown
modelling languages and analysis approaches. For the historically-grown Palladio
approach [30], for example, composition scenarios have been mentioned in [37]
and [20]. We further investigate historically-grown analysis approaches in this
report by surveying documentation and artifacts like code, models and language
fragments in online repositories to define appropriate composition scenarios.

The report is structured as follows. In section 2, we first present foundations
on the decomposition and composition of model-based analyses relevant for
understanding the report. In section 3, we then present examples of historically-
grown model-based analyses to serve as illustrative examples and evaluation
scenarios for the decomposition and composition of model-based analyses in
the FeCoMASS project. The report concludes in section 4 with a summary and
outlook of future work in the project.

2 Foundations of Decomposition and Composition of
Model-based Analyses

This section introduces fundamental concepts and their relationships necessary
to understand the remainder of the report. An overview of these concepts and
relationships is given in Figure 1 in form of an extended feature model.

A feature model [11] is a formalism to capture the variability and interdepen-
dencies of features of a specific subject. Based on a feature model, subsets of the
given features are selected to specify which features are of current interest. In our
previous work [23], we used feature models to specify interdependencies between
language features and select those of current interest for language composition.
In FeCoMASS, we will apply our notion of feature models to two dimensions:
(a) modelling languages and (b) analysis techniques. Further, we will use feature
models in FeCoMASS to specify the interdependencies between analysis features,
language features and from analysis features to language features as well as to
select those features (both analysis and language features) of current interest
for analysis composition and analysis tool development. As shown in Figure 1,
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parent-child relationships form a tree allowing, e. g., type mandatory, optional
and alternative feature groups [11].

A modelling language feature is an abstraction of a thing to be modelled [23].
An analysis feature is an abstraction of a property to be analysed [18]. For sake
of compositional reuse, it is of high interest to use analysis features, operating on
language features. The concepts of analysis features are applied in FeCoMASS to
decompose the increasing complexity of analysis techniques.

Language features are implemented by modelling language components. A
modelling language component describes language constituents, e. g. through
metamodels or grammars, has explicit interfaces and composition operators [9,23]
for other modelling language components, and has an individual, composable
semantics. Analysis features are implemented by analysis components containing
the analysis algorithms realised in source code. These analysis components
are executable on the needed language features, have explicit interfaces and
composition operators for other analysis components [18].

Analysis FeatureAnalysis Component

Language FeatureLanguage Component

Feature Relation

Component Dependency Optional Child

Mandatory Child

ImplementsAlternative OR Layer separator req. requires

Model-based Analysis

req.

req.

req.

req.

req.

Fig. 1. Relationships between modelling language and analysis concepts: analysis
features that are implemented by analysis components require (req.) modelling language
features that are implemented by modelling language components.

A model-based analysis is a type of analysis that uses models for reasoning
about the system and for communicating the results [42]. This type of analysis is
formally described according to [39] in Equation 1 as a projection from models of
an input modeling language M to a model of the output modeling language R.
Therefore, we describe an analysis as a function A(m) = r using an input model
to provide an output model.

A : M → R (1)
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A modelling language is created and applied to specify models to efficiently
design and reason about systems [27]. Modellers can use standardised languages,
such as UML [34] or SysML [14] or they can design their own domain-specific
modelling languages [13,10]. To capture reoccurring domain knowledge, language
workbenches [40,26] enable describing extensible languages. A modelling language
consists of an explicit syntax and an associated semantics. The syntax describes
the words and structure (”grammar”) of the language. Denotational semantics
is, e. g., realised by mathematically sound definition of a semantic mapping from
well-formed models to an appropriate, well understood semantic domain [16].
Each modelling language usually has its own semantic domain. For example,
statecharts use I/O-relations. Thus, the mathematical semantic construction
to be used in a given case depends on the used modelling language and the
scenario to be modelled. However, an integrated semantics typically needs a
complex mathematical structure, capturing all relevant concepts of the systems
under development. FOCUS [7,31] defines such a mathematical system model,
where almost all other semantic domains and especially the SysML semantics
can be embedded in. FOCUS furthermore provides a clear notion of refinement
and composition [6]. Therefore, we use FOCUS as the conceptual, mathematical
foundation for semantics in FeCoMASS, whenever the analyses cannot be based
on a homogeneous smaller semantic domain anymore.

An analysis technique is applied for reasoning about structure, behaviour
and/or quality of systems based on a model. Various different analysis techniques
are possible, e. g., based on queuing networks or Markov chains. While we on
the one hand belief in the hypothesis: analysis techniques can (to a large extent)
be decomposed into individual, reusable algorithms described in form of their
”analysis features”, we on the other hand investigate in detail the interactions
between these analyses in FeCoMASS, because these analysis interaction points
are the glue to combine analysis techniques to higher system understanding. An
analysis technique is semantically correct, if the calculated analysis results conform
to the mathematically defined semantics of the analysed models. Semantics is
not necessarily computable, especially when behaviour is involved. Thus, a
computable analysis technique may only be approximative, while a mathematical
semantics definition usually is precise. The analysis technique is valid in certain
boundaries, if the approximation deviation is small enough with respects to
an appropriate metric. Therefore, numeric metrics, conservative estimations,
and similar approximative forms of analysis results are of interest. A sound
denotational semantics is therefore the basis to capture the correctness and
validity of analysis techniques.

3 Decomposition and Composition Scenarios

In this section, we present examples of historically-grown model-based analyses
to serve as illustrative examples and evaluation scenarios for the decomposition
and composition of model-based analyses in FeCoMASS.
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3.1 Palladio – Software Architecture-Based Quality Prediction

The Palladio approach [30] is an architecture-based performance prediction ap-
proach for software systems. It allows software architects to simulate and analyze
the behaviour of their systems under different workloads and configurations,
in order to identify bottlenecks and optimize performance. It is based on the
Palladio Component Model (PCM), a domain-specific modeling language that
allows modelling the structure and behaviour of software systems. Starting over
20 years ago, the PCM has a long history of evolution. In the time from spring
2007 to fall 2012, the PCM grew from under 100 to over 200 classes [38], and
still continues to grow. There are at least 12 extensions of the PCM [23].

Not only the modeling language of the Palladio approach continuously grows,
also the analysis techniques of the Palladio approach do. The Palladio approach
comprises at least eight different analysis techniques for reasoning about software
architectural design. Those are specific to certain quality properties (e.g., perfor-
mance versus reliability), tools (e.g., the Palladio bench [30] versus QPN-Tool
[3]) or analysis tasks (e.g., mean time analysis versus prediction of a statistical
distribution).

The Palladio approach was initially designed for performance analysis based
on software architectures. Over time, Palladio has been extended for modelling
and analysing reliability [5], scalability and elasticity, maintainability [32], con-
fidentiality [35], security [41], energy consumption [36] and many other quality
properties [24]. These modifications led to serious degradation of the structure of
the modelling language [37] and analysis techniques [20]. Feature overload, feature
scattering and unconstrained creation of dependencies harm the evolvability and
reusability of the modelling language and analysis techniques. This is because
Palladio, as other similar approaches, relies on a monolithic modelling language
and monolithic analysis techniques, making modifications and extension to new
properties challenging. However, in each project a large set of these analysis
techniques is not used, because they do not apply or have redundant alternatives.

SimuLizar: One of the performance analyses of the Palladio approach is SimuLizar [4].
SimuLizar comprises a set of analysis techniques that can analyze PCM instances.
SimuLizar supports most of the PCM language features. As a historically-grown
analysis technique (development started in 2013) SimuLizar shows the typical
erosion of the internal structure over time and therefore is a good example of
a historically grown analysis technique to apply the approaches developed in
FeCoMASS. An detailed overview of design smells, such as feature scattering,
global states and god parameters, in SimuLizar is given in [20].

SimuLizar currently comprises 75 packages, 306 classes, 69 interfaces, and
three enumerations, organized into 36 Java projects. Over time, SimuLizar has
undergone significant growth, with its size doubling since 2015, resulting in the
number of classes increasing from approximately 150 to the current more than 300
classes. Most of these classes are contained in a big monolithic analysis component.
Throughout its development, SimuLizar has experienced numerous evolutionary
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changes. SimuLizar offers ten openly available extensions that resulted for example
from research collaborations and student theses.

In FeCoMASS, we will develop approaches to decompose the monolithic
structure of SimuLizar and thus make it more easier to understand, refactor and
extend.

Furthermore, there are examples of model-based analyses that extend the
Palladio approach by additional analysis features to form more comprehensive
analysis techniques. These may serve as scenarios for the analysis composition
approaches developed in FeCoMASS. Some of these examples are described in
the following.

OMPCM: The OMNeT++ Palladio Component Model (OMPCM) [25] is a
model-based analysis that leverages the capabilities of the OMNeT++ simulation
framework Network Definition File (NED) to analyse networks as an extension
of the Palladio approach. The utilisation of OMNeT++ provides comprehensive
network simulation capabilities, enabling the examination of the impact of network
effects on the software system modelled on architectural level. OMPCM integrates
the OMNeT++-based network simulation with the Palladio architecture-level
software performance prediction to enrich Palladio by more detailed network
simulation. OMPCM applies composition by co-simulation [20] by having a
dedicated bridge to manage the translation of events between the OMPCM and the
network simulators. The OMPCM incorporates a series of model transformations,
which automatically translate a PCM model into a OMNeT++ NED, utilising
the OMPCM modules specifically developed for this purpose.

PCA: The Power Consumption Analyzer (PCA) [36] is another extension that
uses the results of Palladio’s SimuLizar performance analysis to forecast power
consumption of software systems. The Power Consumption metamodel and
the performance analysis results of SimuLizar are combined to reason about
power consumption on the architecture level. The PCA supports both static and
self-adaptive software systems, using measurements from the Palladio Runtime
Measurement Model and a stateful Power State Model. The results are accessible
in the Palladio Runtime Measurement Model and can trigger self-adaptations in
SimuLizar. In PCA, analysis composition is enabled by result exchange between
isolated analysis techniques [20].

IntBIIS: The performance prediction approach Integrated Business IT Impact
Simulation (IntBIIS) [22] extends the PCM and the Palladio performance analysis
by a modeling language and analysis technique to predict performance properties
of business processes and to investigate the alignment of business processes
and software systems with respect to performance. IntBIIS is an example of
composition by extension [20]. Applying composition by extension in IntBIIS is
possible as both, Palladio and the business process extension, adhere to the same
modelling paradigm and analysis formalism.
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Multi-level hardware simulation: The integration of more detailed hardware simu-
lations in Palladio is another example that demonstrates the need for composing
model-based analyses. To enrich Palladio’s limited hardware simulation capabili-
ties current work is extending Palladio’s software architecture simulation by one
or more detailed hardware simulators. The goal is to offer a multi-level hardware
simulation to allow the modelling and simulation of a system simultaneously
on different levels of abstraction. This allows to switch between these different
levels of abstraction, depending on the required trade-off between simulation run-
time and result accuracy. Both switching between simulation runs and switching
during a simulation run may be supported. Therefore, a composition approach
for multiple independent hardware simulators is required that will replace the
current hardware simulation capabilities of Palladio in specific use cases that
require investigation of detailed hardware properties. The composition of multiple
independent hardware simulators uses composition by result exchange [20] and is
connected to Palladio with the composition operator composition by co-simulation
[20]. This requires extensions to the PCM as well as to SimuLizar. An example
of a model element required on every level of abstraction is the specification of
the hardware resource demand, which might be a number of cycles on a high
level of abstraction and functional code on a low level. Because such hardware
resource demands are a common element of a PCM manually specifying them
on multiple levels might not be feasible. Therefore, the second aspect of this
approach is the automatic generation and transformation of inputs and outputs
between simulations on different levels.

Coupling of architectural analyses and static source code analyses: The coupling
of analyses on architectural level and static source code analysis for investigating
security properties of the system is another example of a composition relevant in
the context of FeCoMASS.

In the input models of architectural security analyses and specification-based
static source code analyses, security information is specified for system elements
to express their characteristics w.r.t. a security property, e.g., the confidentiality
level of data for information flow security. This security information has a type,
e.g., the confidentiality level of data, and a range of values, e.g., high and low.
However, the actual values realized in the implementation may not conform to
the assigned values in the specifications, e.g. by implementing an illegal flow
from high data to low data. While the architectural analyses has to assume
that the specified security information are realized in the implementation, source
code analyses can detect such non-conformances. A coupling approach could
therefore comprise an alignment of the assumed values in an architectural analysis
input model and the actual values realized in the implementation, obtained
by a static source code analysis, for security information of the same type.
For this approach, however, the specified security information of the system
elements w.r.t. the security property of interest and their values have to be
the same in the input models of the architectural analyses and source code
analyses. The coupling approach, therefore, comprises three steps: 1. Alignment
of the system representations and specifications in the input models of the
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architectural analysis and the static source code analysis w.r.t. an analysed
security property, e.g., secure information flow. 2. Executing the static source
code analysis, which provides indications of violations of the specification of
the source code by the implementation. Because of the alignment of step 1),
these violations are non-conformances of the implementation to the architectural
specification. 3. Extraction of the effective security-related information in the
implementation w.r.t. the analyzed property from the source code analysis result
and their integration into the architectural analysis input model. Consequently,
this scenario applies composition by result exchange [20]. With this coupling, the
architectural analysis performs its prediction with the information realized in
the implementation rather than the assumption that a specified security-related
information of an architectural element is correctly implemented. Architectural
analysis on which this approach can be applied are for example those of Kramer
et al. [28] and Seifermann et al. [35] which both use the PCM as a modeling
language. Examples for source code analyses which are applicable in this approach
are KeY [2], JOANA [15] or CodeQL [1]

3.2 Camunda – Business Process Analysis

Camunda BPM4 is an open-source platform for workflow and business process
management. In 2013 Camunda BPM was forked from the workflow management
system Activiti as an open-source project. Camunda BPM provides a web-based
process modelling environment, an execution engine to run the business processes,
and a set of tools for monitoring and managing the business process execution.
The Camunda BPM platform shows a size of over 500,000 lines of code organised
in around 7,000 classes and 23 projects.

Camunda BPM allows organisations to analyse their business processes mod-
elled using the Business Process Modelling Notation 2 (BPMN2) modeling lan-
guage. The BPMN2 modeling language has been applied as a case study for
the decomposition and composition of modeling languages in our previous work
[23]. In FeCoMASS, we focus on the analysis techniques of the Camunda BPM
platform. Due to the ten years of evolution history of Camunda BPM and the
dependencies of the BPMN2 modeling language and the analysis techniques
for business process analysis, Camunda BPM seems to be an interesting case
for further investigation on the decomposition and composition of model-based
analyses in FeCoMASS.

3.3 KAMP4aPS – Change Propagation Analysis for Automated
Production Systems

Karlsruhe Architectural Maintainability Prediction for Automated Production
Systems (KAMP4aPS) [21] is an approach to model automated production
systems and predict the impacts of changes in these systems. KAMP4aPS is
under development since 2016. KAMP4aPS is an instantiation of the Karlsruhe

4 Camunda github: https://github.com/orgs/camunda/repositories

https://github.com/orgs/camunda/repositories
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Architectural Maintainability Prediction (KAMP) methodology [17]. The KAMP
methodology has been developed to provide a blueprint for architecture-based
change impact analysis in various domains and has been instantiated among
others for software systems [33], business processes [32], production systems [21],
and Programmable Logic Controller (PLC) software [8].

KAMP4aPS comprises around 700 classes organised in 54 packages. The
modeling language of KAMP4aPS has been applied as a case study for the
decomposition and composition of modeling languages in our previous work [23].
In FeCoMASS, we focus on the analysis techniques of KAMP4aPS. KAMP4aPS
seems to be an interesting case for further investigation of the decomposition
and composition of model-based analysis in FeCoMASS due to (a) the different
domains — mechanics, electrics/electronics and software — involved in automated
production systems, (b) the dependencies of modeling languages and analysis
techniques in KAMP4aPS, and (c) the instantiation of the more general KAMP
methodology for change impact analysis.

3.4 SmartGrid Topology – Resilience Analysis of Energy Networks

The SmartGrid Topology [29] analysis approach is used for impact and resilience
investigation for smart grid topologies. Its development started in January 2014
and was initially released in October 2015. SmartGrid Topology comprises about
280 classes organised in 34 packages.

The SmartGrid Topology modeling language consists of four views: the
topology view, the device types view, the input state view, and the output
state view. Input and output state views are implemented in their own language
components. The SmartGrid Topology modeling language has been applied as
a case study for the decomposition and composition of modeling languages in
our previous work [23]. In FeCoMASS, we focus on the analysis techniques of
the SmartGrid Topology approach. In contrast to SimuLizar, for example, the
SmartGrid Topology approach is more stable and more modular, and covers a
different domain (energy networks) and a different quality property (resilience).
This makes it an interesting case for further investigation of the decomposition
and composition of model-based analyses in FeCoMASS.

3.5 Internet of Production – Aggregated Error Analysis

The excellence cluster Internet of Production (IoP) investigates novel methods
of connecting, controlling and monitoring industrial machinery. One of the case
studies is a robotic arm with multiple axes of freedom (cf. fig. 2). In order to
precisely move such a robotic arm the control logic requires a good understanding
of the system. For example, small production errors in the components or friction
lead to imprecise movements. To understand how these errors of subcomponents
influence the whole system, all components and their interconnection via joints are
modelled in SysML. Since the robotic arm consists of several similar components
these can be modeled individually and the model of the whole system can then
be composed of the smaller components.



10 S. Koch et al.

Fig. 2. Symbolic Picture of Robotic Arm

Fig. 3. Model of Robotic Arm

Figure 3 depicts how such a a system might be modelled. Each joint receives
control information from the previous joint while their respective positions
influence each other. Given both models for the individual components and
the composite system we aim to investigate how an analysis of the individual
components can be composed to obtain an analysis of the entire system. Given
individual analyses of these imprecisions we aim at composing these to obtain
the error of the entire system.

3.6 Internet of Production – Analysis of Effect Chains

Another case study in the excellence cluster Internet of Production is an
injection molding machine. Such machines are widely used in the mass production
of plastic parts. The basic working principle of these machines is that plastic can
be melted and then injected into a mold, essentially a 3-dimensional negative of
the part to be produced, and then cooled down and the solidified plastic can then
be ejected. An injection molding machine consists of several parts in general. The
process begins with a granulate which is dried in a dryer. Then the granulate is
melted and compressed to remove any air in an injector. The injector then injects
the molten plastic into the mold with high pressure. The mold is clamped shut
using electric motors, hydraulics or magnets. Since the produced part can be
ejected only when it sufficiently solidified the mold is often cooled actively. When
the part is ready the clamp is released and ejected using different means like
pressurised air, mechanical ejectors or robotic arms. A basic model of an injection
molding machine might consist of a dryer, an injector and a clamping unit. Each
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of those components can be decomposed into various sensors to measure humidity,
temperature and pressure, control units, motors and actuators.

With regards to a system like an injection molding machine one might want
to analyse performance, verify functionality and understand the system and
the effects the various components have on other parts of the system. In order
to facilitate these analyses this system or a subsystem can be modelled using
components and connectors. Depending on the intended analysis this allows us
to model not only logical flow of information but also physical functionalities
of the system. The underlying semantic in FOCUS allows us to represent the
connections between components as channels with streams which can represent
data, material and energy. In order to analyse effects of components on others,
and in this context particularly performance, we need to extend FOCUS and
investigate using effect chains.

4 Conclusion

In this technical report, we presented scenarios for the decomposition and com-
position of (modular) model-based analyses for different quality properties and
different domains to serve as a basis for illustrative examples and evaluation
scenarios in the FeCoMASS project.

Based on these scenarios we will investigate (i) semantic foundations of
analysis techniques with a special focus on how compositionality of semantics can
be transferred to composition of analysis techniques; (ii) how to transfer these
semantic foundations into concepts and detailed guidelines for the (de)composition
and extension of model-based analyses and develop composition operators; (iii)
how to manage the interactions between analysis features for given composition
specifications. We will investigate semantically well-founded analysis interaction
points as the glue to combine analysis techniques to higher system understanding.
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April 2016, Bonn. pp. 11–22 (2016). https://doi.org/20.500.12116/869

16. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Computer 37(10), 64–72 (2004). https://doi.org/10.1109/MC.2004.172

17. Heinrich, R., Busch, K., Koch, S.: A methodology for domain-spanning change
impact analysis. In: 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). pp. 326–330. IEEE Computer Society (2018).
https://doi.org/10.1109/SEAA.2018.00060

18. Heinrich, R.: Architecture-based Evolution of Dependable Software-intensive Sys-
tems. KIT Scientific Publishing (2023)

19. Heinrich, R., Durán, F., Talcott, C.L., (eds.), S.Z.: Composing Model-Based Analysis
Tools. Springer (2021)

20. Heinrich, R., Henss, J., Koch, S., Reussner, R.: Challenges in the Evolution of
Palladio—Refactoring Design Smells in a Historically-Grown Approach to Soft-
ware Architecture Analysis, pp. 235–257. Springer International Publishing, Cham
(2021). https://doi.org/10.1007/978-3-030-81915-6_11, https://doi.org/10.
1007/978-3-030-81915-6_11

21. Heinrich, R., Koch, S., Cha, S., Busch, K., Reussner, R., Vogel-Heuser, B.:
Architecture-based change impact analysis in cross-disciplinary automated pro-
duction systems. Journal of Systems and Software 146, 167 – 185 (2018).
https://doi.org/https://doi.org/10.1016/j.jss.2018.08.058, https://doi.

org/10.1016/j.jss.2018.08.058

22. Heinrich, R., Merkle, P., Henss, J., Paech, B.: Integrating business process simulation
and information system simulation for performance prediction. Software & Systems
Modeling 16, 257–277 (2017)

https://doi.org/10.1007/s00287-006-0124-6
https://doi.org/10.1007/s00287-006-0124-6
https://doi.org/10.1007/s00287-006-0124-6
https://doi.org/10.1007/s00287-006-0124-6
https://doi.org/10.1109/IECON.2018.8591302
https://doi.org/10.1109/IECON.2018.8591302
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.4230/DagRep.9.11.97
https://doi.org/10.4230/DagRep.9.11.97
https://doi.org/20.500.12116/869
https://doi.org/20.500.12116/869
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/SEAA.2018.00060
https://doi.org/10.1109/SEAA.2018.00060
https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/10.1007/978-3-030-81915-6_11
https://doi.org/https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1016/j.jss.2018.08.058


Scenarios for (De)Composition of Model-based Analyses 13

23. Heinrich, R., Strittmatter, M., Reussner, R.H.: A layered reference architecture for
metamodels to tailor quality modeling and analysis. IEEE Transactions on Software
Engineering (2019). https://doi.org/10.1109/TSE.2019.2903797

24. Heinrich, R., Werle, D., Klare, H., Reussner, R., Kramer, M., Becker, S., Happe,
J., Koziolek, H., Krogmann, K.: The palladio-bench for modeling and simulating
software architectures. p. 37–40. ICSE ’18, Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3183440.3183474, https:
//doi.org/10.1145/3183440.3183474

25. Henss, J., Merkle, P., Reussner, R.H.: The ompcm simulator for model-based
software performance prediction. In: Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques. pp. 354–357 (2013)

26. Hölldobler, K., Kautz, O., Rumpe, B.: MontiCore Language Workbench and Library
Handbook: Edition 2021. Aachener Informatik-Berichte, Software Engineering, Band
48, Shaker Verlag (May 2021), http://www.monticore.de/handbook.pdf

27. Hölldobler, K., Rumpe, B., Wortmann, A.: Software language engineering in the
large: towards composing and deriving languages. Computer Languages, Systems
& Structures 54, 386–405 (2018). https://doi.org/10.1016/j.cl.2018.08.002

28. Kramer, M.E., Hecker, M., Greiner, S., Bao, K., Yurchenko, K.: Model-Driven
Specification and Analysis of Confidentiality in Component-Based Systems. Tech.
rep., Karlsruhe Institute of Technology, Department of Informatics, Karlsruhe
(2017). https://doi.org/10.5445/IR/1000076957, http://dx.doi.org/10.5445/
IR/1000076957

29. Ottenburger, S.S., Münzberg, T., Strittmatter, M.: Smart grid topologies paving
the way for an urban resilient continuity management. International Journal of
Information Systems for Crisis Response and Management (IJISCRAM) 9(4), 1–22
(2017). https://doi.org/10.4018/IJISCRAM.2017100101

30. Reussner, R.H., Becker, S., Happe, J., Heinrich, R., Koziolek, A., Koziolek, H.,
Kramer, M., Krogmann, K.: Modeling and Simulating Software Architectures – The
Palladio Approach. MIT Press (2016)

31. Ringert, J.O., Rumpe, B.: A Little Synopsis on Streams, Stream Processing Func-
tions, and State-Based Stream Processing. International Journal of Software and
Informatics pp. 29–53 (2011)

32. Rostami, K., Heinrich, R., Busch, A., Reussner, R.: Architecture-based Change
Impact Analysis in Information Systems and Business Processes. In: International
Conference on Software Architecture. pp. 179–188. IEEE (2017), https://doi.org/
10.1109/ICSA.2017.17

33. Rostami, K., Stammel, J., Heinrich, R., Reussner, R.: Architecture-based assessment
and planning of change requests. In: Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software Architectures. p. 21–30. QoSA ’15,
Association for Computing Machinery, New York, NY, USA (2015). https://doi.
org/10.1145/2737182.2737198, https://doi.org/10.1145/2737182.2737198

34. Rumpe, B.: Agile Modeling with UML: Code Generation, Testing, Refactoring.
Springer (2017)

35. Seifermann, S., Heinrich, R., Werle, D., Reussner, R.: Detecting violations of
access control and information flow policies in data flow diagrams. Journal of Sys-
tems and Software 184, 111138 (2022). https://doi.org/https://doi.org/10.
1016/j.jss.2021.111138, https://www.sciencedirect.com/science/article/

pii/S0164121221002351

36. Stier, C.: Adaptation-Aware Architecture Modeling and Analysis of Energy Effi-
ciency for Software Systems (2018). https://doi.org/10.5445/IR/1000083402

https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1145/3183440.3183474
https://doi.org/10.1145/3183440.3183474
https://doi.org/10.1145/3183440.3183474
https://doi.org/10.1145/3183440.3183474
http://www.monticore.de/handbook.pdf
https://doi.org/10.1016/j.cl.2018.08.002
https://doi.org/10.1016/j.cl.2018.08.002
https://doi.org/10.5445/IR/1000076957
https://doi.org/10.5445/IR/1000076957
http://dx.doi.org/10.5445/IR/1000076957
http://dx.doi.org/10.5445/IR/1000076957
https://doi.org/10.4018/IJISCRAM.2017100101
https://doi.org/10.4018/IJISCRAM.2017100101
https://doi.org/10.1109/ICSA.2017.17
https://doi.org/10.1109/ICSA.2017.17
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1145/2737182.2737198
https://doi.org/https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/https://doi.org/10.1016/j.jss.2021.111138
https://doi.org/https://doi.org/10.1016/j.jss.2021.111138
https://www.sciencedirect.com/science/article/pii/S0164121221002351
https://www.sciencedirect.com/science/article/pii/S0164121221002351
https://doi.org/10.5445/IR/1000083402
https://doi.org/10.5445/IR/1000083402


14 S. Koch et al.

37. Strittmatter, M.: A Reference Structure for Modular Metamodels of Quality-
Describing Domain-Specific Modeling Languages. Ph.D. thesis, Karlsruhe Institute
of Technology (KIT) (2020). https://doi.org/10.5445/KSP/1000098906

38. Strittmatter, M., Hinkel, G., Langhammer, M., Jung, R., Heinrich, R.: Challenges
in the evolution of metamodels: Smells and anti-patterns of a historically-grown
metamodel. In: 10th International Workshop on Models and Evolution (ME). CEUR
Vol-1706 (2016), http://ceur-ws.org/Vol-1706/

39. Talcott, C., Ananieva, S., Bae, K., Combemale, B., Heinrich, R., Hills, M.,
Khakpour, N., Reussner, R., Rumpe, B., Scandurra, P., Vangheluwe, H., Durán,
F., Zschaler, S.: Foundations, pp. 9–37. Springer International Publishing, Cham
(2021). https://doi.org/10.1007/978-3-030-81915-6_2, https://doi.org/10.
1007/978-3-030-81915-6_2

40. Völter, M., et al.: Model-driven software development: technology, engineering,
management. Wiley (2013)

41. Walter, M., Heinrich, R., Reussner, R.: Architecture-based attack path analysis for
identifying potential security incidents. In: 17th European Conference on Software
Architecture (ECSA) (2023)

42. Zeigler, B.P., Muzy, A., Kofman, E.: Theory of Modeling and Simulation: Discrete
Event and Iterative System Computational Foundations. Academic Press, Inc.,
USA, 3rd edn. (2018)

https://doi.org/10.5445/KSP/1000098906
https://doi.org/10.5445/KSP/1000098906
http://ceur-ws.org/Vol-1706/
https://doi.org/10.1007/978-3-030-81915-6_2
https://doi.org/10.1007/978-3-030-81915-6_2
https://doi.org/10.1007/978-3-030-81915-6_2
https://doi.org/10.1007/978-3-030-81915-6_2

	A Collection of Scenarios for the Decomposition and Composition of Model-based Analyses



