
A Classification of Dynamic Reconfiguration
in Component and Connector

Architecture Description Languages
Arvid Butting1, Robert Heim1, Oliver Kautz1, Jan Oliver Ringert2, Bernhard Rumpe1, Andreas Wortmann1

1Software Engineering, RWTH Aachen, Aachen, Germany, http://www.se-rwth.de/
2School of Computer Science, Tel Aviv University, Tel Aviv, Israel, http://cs.tau.ac.il

Abstract—Architecture description languages (ADLs) facili-
tate model-driven engineering by fostering reuse of component
models. Some of the over 120 ADLs contributed by academia
and industry feature dynamic architecture reconfiguration and
the underlying mechanisms vary significantly. When considering
employing an ADL supporting dynamic reconfiguration it is
challenging to keep track of the possibilities. We conducted
a literature study investigating the different reconfiguration
mechanisms of component & connector (C&C) ADLs. To this
effect, we started with the 120 ADLs studied in [29], reduced these
to C&C ADLs, investigated their reconfiguration mechanisms,
and classified these along six dimensions. The findings unravel
the state of dynamically reconfigurable C&C ADLs and support
developers considering employing one in choosing the most
suitable language.

I. INTRODUCTION

Component & connector (C&C) architecture description
languages [29], [32] combine the benefits of component-based
software engineering with model-driven engineering (MDE) to
abstract from the accidental complexities [19] and notational
noise [54] of general-purpose programming languages (GPLs).
They employ abstract component models to describe software
architectures as hierarchies of connected components.

We adopt the notion of C&C ADLs as described in [32],
where components encapsulate the functionality of the system
within well-defined stable interfaces and connectors enable
component interaction. These concepts abstract over technical
language details of C&C ADLs. In many ADLs the config-
uration of C&C architectures is fixed at design time. The
environment or the current goal of the system might however
change during runtime and require dynamic adaptation of the
system [45] to a new configuration that may only include a
subset of already existing components and their interconnec-
tions or may introduce new components and connectors.

To support dynamic adaptation a modeled C&C architecture
either has to adapt its configuration at runtime or it must
encode adaptation in the behaviors of the related components.
This encoding introduces implicit dependencies between com-
ponents and forfeits abstraction of behavior paramount to C&C

This research has partly received funding from the German Federal Ministry
for Education and Research under grant no. 01IS16043P. The responsibility
for the content of this publication is with the authors.

models. It thus imposes co-evolution constraints on differ-
ent levels of abstraction and across components. Dynamic
reconfiguration mechanisms and their formulation in ADLs
help to mitigate these problems by formalizing adaptation as
structural reconfiguration. This allows components to maintain
encapsulation and abstraction of functionality.

Different C&C ADLs have suggested different reconfig-
uration mechanisms currently lacking detailed classification.
On the one hand, this creates challenges for engineers in
selecting ADLs with the right reconfiguration mechanisms.
On the other hand, a classification might help ADL creators to
design appropriate reconfiguration mechanism. Our goal is to
identify the modeling dimensions for dynamic reconfiguration
in C&C ADLs. We therefore investigate dynamic reconfig-
uration in C&C ADLs and develop a classification of C&C
ADL reconfiguration mechanisms. Our contribution consists
of (1) a study of dynamic reconfiguration in C&C ADLs, and
(2) a classification of C&C ADLs along different dimensions
of dynamic reconfiguration.

Sec. II gives an example to demonstrate benefits of dynamic
reconfiguration, before Sec. III presents concepts of dynamic
reconfiguration in C&C ADLs. Afterwards, Sec. IV discusses
our study and Sec. V compares it to related work. Finally,
Sec. VI concludes.

II. EXAMPLE

As motivating example, we consider different C&C model
configurations of a shift controller for an automatic transmis-
sion system for cars, as modeled in [23]. In this example, the
car’s clutch can adopt the six positions Park, Reverse, Neutral,
Drive, Sport, and Manual that influence when to shift gears.
Each of these positions is reflected in the software architecture
by an equivalent transmission operating mode (TOM). In C&C
software architectures, each shifting behavior would typically
be modeled as an individual component. With dynamic recon-
figuration, the architecture can adapt at run time. To this end,
reconfiguration modifies parts of the architecture, for example,
by redefining the connections between components. There
are different approaches to realizing dynamic reconfiguration,
e.g., stating different configurations of activated components
and connectors or exchanging connectors and instantiating or
deleting subcomponents.

[BHK+17] A. Butting, R. Heim, O. Kautz, J. O. Ringert, B. Rumpe, A. Wortmann:
A Classification of Dynamic Reconfiguration in Component and Connector Architecture Description Languages.
In: Proceedings of MODELS 2017 Satellite Event: Workshops (ModComp, ME, EXE, COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa,
 MDETools, FlexMDE, MDEbug), Posters, Doctoral Symposium, Educator Symposium, ACM Student Research Competition,
 and Tools and Demonstrations co-located with ACM/IEEE 20th International Conference on Model Driven Engineering
 Languages and Systems (MODELS 2017), 2017.
www.se-rwth.de/publications/

http://www.se-rwth.de/
http://cs.tau.ac.il

http://af3.fortiss.org/

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 75–84. ACM, 2010.

[52] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. IEEE
Computer, 2000.

[53] Rainer Weinreich and Georg Buchgeher. Paving the Road for Formally
Defined Architecture Description in Software Development. In Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, pages
2337–2343. ACM, 2010.

[54] David S. Wile. Supporting the DSL Spectrum. Computing and
Information Technology, 2001.

[55] Qing Wu and Ying Li. ScudADL: An Architecture Description Language
for Adaptive Middleware in Ubiquitous Computing Environments. In
ISECS International Colloquium on Computing, Communication, Con-
trol, and Management, 2009.

[56] Qian Zhang. Visual Software Architecture Description Based on Design
Space. In International Conference on Quality Software, 2008.

