Tobias Schulte to Brinke

Analysis of Information Processing
and Memory Prerequisites for
Temporal Difference Learning in
Cortical Neural Network Models

Aachener Informatik-Berichte,

Software Engineering

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe
Prof. Dr. rer. nat. Abigail Morrison

[Sch25] T. Schulte to Brinke:
Analysis of Information Processing and Memory Prerequisites for Temporal Difference Learning in Cortical Neural Network Models.

Aachener Informatik-Berichte, Software Engineering, Band 61,
ISBN 978-3-8191-0192-2, Shaker Verlag, Sep. 2025.

Analysis of Information Processing and Memory
Prerequisites for Temporal Difference Learning in
Cortical Neural Network Maodels

Von der Fakultédt fiir Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M.Sc. TU Ilmenau
Tobias Schulte to Brinke
aus Diepholz, Deutschland

Berichter: Univ.-Prof Dr. rer. nat. Abigail Morrison
Univ.-Prof Dr. rer. nat. Bjorn Kampa

Tag der miindlichen Priifung: 16. Juni 2025

Eidesstattliche Erklarung

Tobias Schulte to Brinke

erklart hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen
sind und selbststdndig, als Ergebnis der eigenen origindren Forschung, generiert wurden.

Hiermit erklédre ich an Eides statt

1.

Diese Arbeit wurde vollstandig oder grofitenteils in der Phase als Doktorand dieser
Fakultdt und Universitéit angefertigt;

Sofern irgendein Bestandteil dieser Dissertation zuvor fiir einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

Wenn immer andere eigene- oder Veroffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

Wenn aus anderen eigenen- oder Verdffentlichungen Dritter zitiert wurde, wurde
stets die Quelle hierfiir angegeben. Diese Dissertation ist vollstandig meine eigene
Arbeit, mit der Ausnahme solcher Zitate;

Alle wesentlichen Quellen von Unterstiitzung wurden benannt;

Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert,wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

Teile dieser Arbeit wurden zuvor veroffentlicht, ersichtlich im Abschnitt Publica-
tions and contributions.

Aachen, Januar 2024

Abstract

This doctoral thesis delves into the computational intricacies of the human brain,
exploring the capabilities of cortical microcircuit models, the extent of their information
processing capacity, and their role in memory and temporal difference learning through
the use of cortico-striatal populations. Central to this exploration is the study of spiking
neural networks (SNNs). This research aims to gain a deeper understanding of the
structural and neuronal influences on information processing in these networks and at
the same time to provide a guideline for their analysis.

In the first part, a network model of a cortical column introduced in a previous paper
is reproduced and extended. These analyses show that the specific, data-based connec-
tivity improves computational performance by sharpening the clarity of internal rep-
resentations rather than increasing the duration of information retention as previously
described.

Moving beyond traditional task-based evaluations, the second part introduces a novel
application of the information processing capacity (IPC) metric to SNNs. This approach
provides a comprehensive profile of the functions computed by SNNs, encompassing
memory and nonlinear processing. The study methodically examines various encoding
mechanisms and their impact on the IPC and shows that the metric is indicative of
the performance in tasks with different demands of nonlinear processing and memory.
This exploration not only extends the utility of the IPC metric to more complex neural
networks but also offers a deeper insight into their computational capabilities.

The third part of the thesis tests a hypothesis about the computation of temporal
difference errors in the brain, focusing on two distinct populations of cortical layer 5
neurons: the crossed corticostriatal (CCS) and corticopontine (CPn) cells. By imple-
menting network models based on these populations and evaluating their memory capa-
bilities through the lens of the IPC, the research supports, at least for continuous rate
networks, the proposed role of these neurons in the computation of temporal difference
errors. However, the spiking network models pose a greater challenge and exhibit little
ability to memorize previous inputs in our experiments.

In summary, this work not only confirms and extends existing research results, but
also develops new methods for analyzing SNNs. It lays a solid foundation for future
studies of the brain’s computational processes and enriches the field of computational
neuroscience with advanced tools and methods for exploring the intricate workings of
biologically inspired neural network models.

vii

Kurzfassung

Diese Doktorarbeit befasst sich mit den rechnerischen Besonderheiten des menschlichen
Gehirns und erforscht die Fahigkeiten kortikaler Mikroschaltkreismodelle, das Ausmaf}
ihrer Informationsverarbeitungskapazitidt und ihre Rolle beim Gedéchtnis und beim
Temporal Difference Learning mithilfe kortiko-striataler Populationen. Im Mittelpunkt
dieser Forschung steht die Untersuchung von spikenden neuronalen Netzwerken (SNN).
Dabei ist das Ziel, ein tieferes Verstiandnis der strukturellen und neuronalen Einfliisse auf
die Informationsverarbeitung in diesen Netzwerken zu gewinnen und gleichzeitig einen
Leitfaden fiir deren Analyse bereitzustellen.

Im ersten Teil wird ein in einer fritheren Arbeit eingefithrtes Netzwerkmodell einer
kortikalen S&ule reproduziert und erweitert. Diese Untersuchungen zeigen, dass die
spezifische, datenbasierte Konnektivitdt die Rechenleistung verbessert, indem sie die
Klarheit interner Reprasentationen schérft, anstatt wie zuvor beschrieben die Dauer der
Informationsbeibehaltung zu verldngern.

Der zweite Teil geht iiber die traditionellen aufgabenbasierten Auswertungen hinaus
und stellt eine neue Anwendung der Informationsverarbeitungskapazitiat (IPC) auf SNN
vor. Dieser Ansatz liefert ein umfassendes Profil der von SNN berechneten Funktionen,
das sowohl das Gedéchtnis als auch die nichtlineare Verarbeitung einschliefit. Die Studie
untersucht methodisch verschiedene Kodierungsmechanismen und ihre Auswirkungen auf
die IPC und zeigt, dass die Metrik Riickschliisse auf die Leistung bei Aufgaben mit unter-
schiedlichen Anforderungen an nichtlineare Verarbeitung und Gedéchtnis zulésst. Diese
Untersuchung erweitert nicht nur den Nutzen der IPC-Metrik auf komplexere neuronale
Netzwerke, sondern bietet auch einen tieferen Einblick in deren Rechenfidhigkeiten.

Der dritte Teil der Arbeit testet eine Hypothese iiber die Berechnung von Temporal
Difference Fehlern im Gehirn und konzentriert sich dabei auf zwei unterschiedliche Pop-
ulationen von Neuronen der kortikalen Schicht 5: die gekreuzten kortikostriatalen (CCS)
und kortikopontinen (CPn) Zellen. Durch die Implementierung von Netzwerkmodellen,
die auf diesen Populationen basieren, und die Auswertung ihrer Gedéchtnisfahigkeiten
mit Hilfe der IPC unterstiitzt die Arbeit, zumindest fiir Netzwerke mit kontinuierlicher
Rate, die vorgeschlagene Rolle dieser Neuronen bei der Berechnung von Temporal Dif-
ference Fehlern. Die spikenden Netzwerkmodelle stellen allerdings eine groflere Her-
ausforderung dar und weisen in unseren Experimenten generell kaum Fahigkeiten zum
Speichern vorhergehender Eingaben auf.

Zusammenfassend lésst sich sagen, dass diese Arbeit nicht nur bestehende Forschungsergeb-
nisse bestéitigt und erweitert, sondern auch neue Methoden fiir die Analyse von SNN en-
twickelt. Sie legt eine solide Grundlage fiir kiinftige Untersuchungen der Rechenprozesse
des Gehirns und bereichert das Feld der Computational Neuroscience mit fortschrit-
tlichen Werkzeugen und Methoden zur Erforschung der komplizierten Funktionsweise
biologisch inspirierter neuronaler Netzwerkmodelle.

ix

Publications and contributions

The work presented in this thesis is in part based on the following publications of the
author:

Characteristic columnar connectivity caters to cortical computation: Repli-
cation, simulation, and evaluation of a microcircuit model

Tobias Schulte to Brinke, Renato Duarte and Abigail Morrison

Frontiers in Integrative Neuroscience 16 (2022)

Chapter 2 and parts of Chapter 1 and Chapter 5 are based on this publication.

Contributions Under the supervision of Renato Duarte and Abigail Morrison, the au-
thor performed all parts of the above publication. All authors contributed to the design
of the experiments and the writing of the manuscript.

A refined information processing capacity metric allows an in-depth analysis
of memory and nonlinearity trade-offs in neurocomputational systems
Tobias Schulte to Brinke, Michael Dick, Renato Duarte and Abigail Morrison
Scientific Reports 13 (2023)

Chapter 3 and parts of Chapter 1 and Chapter 5 are based on this publication.

Contributions Abigail Morrison, Renato Duarte and the author designed the study.
Under the supervision of Renato Duarte and Abigail Morrison, the author performed
all simulations and analyses of the above publication, except for those concerning the
FPUT system. These were carried out by Michael Dick. All authors contributed to the
writing of the manuscript.

Temporal difference learning in cortico-striatal populations
Tobias Schulte to Brinke, Barna Zajzon, Renato Duarte and Abigail Morrison
In preparation

Chapter 4 and parts of Chapter 1 and Chapter 5 will constitute the basis of this publi-
cation.

xi

Contributions All authors designed the study together. Under the supervision of Re-
nato Duarte and Abigail Morrison, the author performed all simulations and analyses of
the study. Barna Zajzon and the author co-implemented the simulation scripts. Tobias
Schulte to Brinke is the sole author of the text in Chapter 4.

xii

Contents

1

Introduction 1
Introduction 3
1.1 Background and History 3
1.2 Fundamental principles oo o L 8

1.2.1 The human cortex, 8

1.2.2 Neurons and synapseso e 8

1.2.3 Neuron modelling 12

1.2.4 Dynamical systems theory 13

1.2.5 Learning paradigms oo 14

1.3 Aims and structure of the thesis 17

1.3.1 Computations in cortical microcircuit models 17

1.3.2 Information processing capacity 18
1.3.3 Memory prerequisites for temporal difference learning in cortico-

striatal populations. L oo 19

Experiments 21
Information processing in cortical microcircuits 23
2.1 Introduction 23
2.2 Methods e 26

2.2.1 Microcircuit model Lo 26
2.2.2 Tasks 37
2.2.3 Simulation and analysis framework 40
2.3 Results. e 40
2.3.1 Network activity 40
2.3.2 Task performance for the circuit variants 41
2.3.3 Robustness to neuron model simplifications 46
2.3.4 Detailed memory taskso 48
2.4 Replicability 50
2.5 Conclusion e 52

xiii

3

5

Xiv

Information Processing Capacity
3.1 Imtroduction

3.2 Methods
3.2.1 Information processing capacity
3.22 Tasks

3.2.3 Imvestigated models
3.2.4 Capacity chance level and cut-off value
3.3 Results. oo
3.3.1 Discrete time system: Echo state network
3.3.2 Simple continuous time system: Fermi-Pasta-Ulam-Tsingou model
3.3.3 Balanced spiking neural network model
3.3.4 Biophysical spiking network modelo
3.3.5 Comparative performance on tasks
3.4 Conclusion L

Memory prerequisites for temporal difference learning in cortico-striatal pop-
ulations
4.1 Introduction
4.2 Methods e
4.2.1 Baseline rate-based model L.
4.2.2 Structured rate-based model
4.2.3 Spiking baseline model L
4.2.4 Structured spiking modelo
4.2.5 Network modification experiments
4.2.6 Conversion networks
4.3 Results. e
4.3.1 How nonlinearities shape the memory in the baseline continuous
rate network L L
4.3.2 How weight distributions shape the memory in the baseline con-
tinuous rate networko oL
4.3.3 From baseline rate network to the structured rate network
4.3.4 Structured continuous rate network
4.3.5 Spiking neural networks Lo oo
4.3.6 Spiking networks constructed from rate networks
4.4 Conclusion e

Discussion

Discussion
5.1 Cortical microcircuit

5.2 Information processing capacity

5.3 Temporal difference learning in cortico-striatal populations

5.4 Outlook and future work
5.5 Conclusion e

Bibliography
A Microcircuit

B Information processing capacity

B.1 Details on removing the nonlinear encoder effects

C Temporal-difference learning in cortico-striatal populations
List of Figures

List of Tables

List of Abbreviations

D Index of Abbreviations

XV

Part |

Introduction

Chapter 1

Introduction

1.1 Background and History

Cardiocentic views

Throughout history, our understanding of the function of the brain has been subject to
constant change. The ancient Egyptians, for example, carelessly removed the brains of
their dead, whereas they made sure that the heart remained intact in the body (Finger,
2001). Their reason for this was the fact that they considered the heart, rather than
the brain, to be the seat of intelligence and emotion, and therefore assumed it would
be needed in the afterlife as well. Aristotle (384-322 BCE) attached no more profound
significance to the brain either. In his eyes, it was only responsible for cooling the blood
and for dissipating the heat generated by the heart (Aristotle, 1911).

The brain as the center of the mind

Gradually, however, the first thinkers, some long before Aristotle, began to recognize
the role of the brain in cognitive processes. Alcmaeon of Croton (5th century BCE) was
one of the first to identify the brain as an organ for perception and thought, and even
the physician Hippocrates of Kos (460-370 BCE) wrote in his Reflections of Epilepsy as
a Sacred Disease (Cobb, 2020):

"And men ought to know that from nothing else but (from the brain) come
joys, delights, laughter and sports, and sorrows, griefs, despondency, and
lamentations. And by this, in an especial manner, we acquire wisdom and
knowledge, and see and hear, and know what are foul and what are fair,
what are bad and what are good, what are sweet, and what unsavory; some
we discriminate by habit, and some we perceive by their utility. By this we
distinguish objects of relish and disrelish, according to the seasons; and the
same things do not always please us. And by the same organ we become
mad and delirious, and fears and terrors assail us, some by night, and some

CHAPTER 1 INTRODUCTION

by day, and dreams and untimely wanderings, and cares that are not suit-
able, and ignorance of present circumstances, desuetude, and unskilfulness."
(Hippocrates, 1868)

Furthermore, he stated in the same paper "that the brain exercises the greatest power
in the man". Other important findings came from Alexandria after Aristotle’s death.
In this important center of the Greco-Roman world, it was allowed for a short time
to perform dissections on humans, which enabled the anatomists Herophilus (335-280
BCE) and Erasistratus (304-250 BCE) to make important discoveries about the central
importance of the brain and its structures (Cobb, 2020). However, even their findings
had a hard time holding their own against Aristotle’s representations due to his still
pronounced reputation, also because people’s everyday experiences tended to support a
link between the heart and the emotions.

Animal spirits

About 400 years later, the Greek physician Galen (129-216 CE) carried out extensive
dissections on animals alongside examinations of wounded Roman gladiators. This led
him to develop the theory, based on Herophilus’ findings about the brain ventricles,
that movements of the body are caused by a kind of gas produced in the brain. This
so-called pneuma psychicon flows through the hollow nerves, which according to Galen
do not originate from the heart as Aristotle claimed, but all originate from the brain.
Although Galen’s theory was influential in many respects until the 17th century and
was extended after the collapse of the Roman Empire by Arab scholars such as Haly
Abbas (10th century) to include the non-material spiritus animalis (Bono, 1984), the
encephalocentric picture did not immediately gain full acceptance. Although scholars
like Ibn-Sina (980-1037, also known as Avicenna) could be convinced that the nerves
originate from the brain, they remained faithful to Aristotle’s opinion that the heart
was the center of perception and movement (Cobb, 2020).

With "De Humani Corporis Fabrica Libri Septem" (On the fabric of the human body
in seven books)(Vesalius, 1543), Andreas Vesalius (1514-1564) published one of the most
detailed and richly illustrated works on the anatomy of the human body in 1543. He
pointed out errors in Galen’s work, who had transferred his findings from animal ex-
periments too directly to humans and thus, for example, assigned a central role in the
interaction of brain and pneuma psychicon to the rete mirabile, which does not exist in
humans. Although Vesalius, like Galen, was an energetic advocate of the hypothesis of
the brain as the center of mental faculties, he too was unable to provide an explanation
for the exact functioning in the production of thoughts and movements (Catani and
Sandrone, 2015).

1.1 BACKGROUND AND HISTORY

Descartes’ dualism

For the first time, such an explanation was provided by another convinced opponent of
cardiocentric views. In his "Tractatus de homine" (1662)(Descartes, 1994), published
only after his death, Rene Descartes (1596-1650) postulated that animals and humans
functioned fundamentally like machines and that their perceptions and reflexive move-
ments could be explained by hydraulic mechanisms through the gases or fluids flowing
in the brain and nerves. In his dualistic worldview, humans differed only in the pineal
gland, which served as the point of connection between the spiritual (res cogitans) and
the material (res extensa), thus enabling conscious control of the body.

Rise of the scientific method

Apart from the fact that the pineal gland was soon proven in animals, a change of mind
in the sciences led thinkers and scholars from the 17th century onwards to question
the views of Descartes and previous representatives of the pneuma theory. This change
became particularly clear in the "Discourse on the Anatomy of the Brain" by the Dane
Nicolaus Steno (1638-1686) in 1665:

The brain being indeed a machine, we must not hope to find its artifice
through other ways than those which are used to find the artifice of the
other machines. It thus remains to do what we would do for any other
machine; I mean to dismantle it piece by piece and to consider what these
can do separately and together. (Cobb, 2020; Steno, 1669)

This new approach was also evident in the experiments of one of Steno’s colleagues.
The Dutchman Jan Swammerdam (1637-1680) showed with experiments on frog legs
that neither gas nor fluid enters contracting muscles. He proved that their volume does
not increase in the process. On top of that, he found that contraction could be induced
by "irritating" the attached nerve. To do this, for example, he struck them with a pair
of scissors.(Cobb, 2002)

Materialism

In the course of this, a purely materialistic view emerged among others through Thomas
Hobbes (1588-1679), Margaret Cavendish (1623-1670) and John Locke (1632-1704),
which contradicted a spiritual component in the functioning of humans. This view,
however, was opposed by thinkers such as Gottfried Wilhelm Leibnitz (1646-1716) and
religious conservatives who saw free will and morality as well as the immortality of the
soul, and thus Christianity in general, in danger. (Cobb, 2020)

CHAPTER 1 INTRODUCTION

The neuron doctrine

The invention of the light microscope in the early 17th century laid the foundation for
the discovery of Pukinje cells in the cerebellum by the Czech anatomist Jan Evangelista
Purkinje in 1837 (Purkinje, 1837). In the same century, the Golgi staining technique
of the Italian physician Camillo Golgi made it possible to visualize finer structures of
neural tissue (Golgi, 1873; Lopez-Munioz, Boya, and Alamo, 2006). Golgi recognized an
interconnected network, or reticulum, in the stained structures and postulated that the
entire nervous system was a non-separated whole. The major opponent of this reticulum
theory was the Spanish pathologist Santiago Ramoén y Cajal. He developed the Golgi
stain further and was able to see that the dendrites and axons are separated by a gap.
Thus, the brain consisted of individual cells called neurons (L6pez-Munoz, Boya, and
Alamo, 2006; Ramén y Cajal, 1888). Although there was much to support this neuron
doctrine, it was not until the later development of the electron microscope in the 1950s
that it was finally confirmed (Lépez-Muiioz, Boya, and Alamo, 2006).

The brain as a computer

In the first half of the 20th century, several new movements and insights changed the
way we look at how the brain works. The British mathematician and logician Alan
Turing published in 1936 in his article "On Computable Numbers, with an Application to
the Entscheidungsproblem"” (Turing, 1936) a mathematical formalization of algorithms
and computability by conceiving an idealized computing machine endowed with infinite
time and memory that manipulates symbols on a memory tape. He claimed that this
abstract but simple machine, known today as the Turing machine, was powerful enough
to perform any human-computable calculation that is based on symbolic configurations.
Shortly thereafter, Warren McCulloch and Walter Pitts were the first to use Alan Tur-
ing’s conception of computation to explain neural processing in the brain (McCulloch
and Pitts, 1943). Following Cajal’s neuron doctrine, they developed a simple neuron
model whose output is 1 provided the sum of incoming excitatory signals exceeds a fixed
threshold and there is no inhibitory input. Otherwise, these McCulloch-Pitts neurons
output 0. From these basic neurons, McCulloch and Pitts were able to construct net-
works that could among other functions perform the logical operations AND, OR, and
NOT. From a conceptual point of view, the Arithmetic Logic Unit (ALU) of the 1945
introduced Von Neumann architecture (von Neumann, 1993), which is implemented in
a large number of computers today, can also be seen as a network of gates that perform
these same logical operations.

Learning in neural networks

Based upon the research on synaptic plasticity by Donald O. Hebb (Hebb, 1949), Frank
Rosenblatt further developed the previously only statically and manually connected Mc-

1.1 BACKGROUND AND HISTORY

Culloch Pitts networks into the perceptron by extending them with a learning rule that
allows the connections to adapt in a way that the outputs of the network adapt to desired
output values (Rosenblatt, 1958). However, this learning rule only works for single-layer
perceptrons and therefore can only be applied to solve linearly separable problems.

Artificial intelligence

Although already in the science fiction literature of the 19th and early 20th centuries,
such as Samuel Butler’s "Erewhon” (Butler, 1872), Mary Ann Evans (known as George
Eliot) "Impressions of Theophrastus Such” (Eliot, 1879) and Karel Capek’s "R.U. R
(Rossum’s Universal Robots)" (Capek, 1920) machines with intelligence comparable or
even superior to humans were conceived (Taylor and Dorin, 2020), this concept found its
way into science under the term artificial intelligence (AI) primarily with Alan Turing’s
work on the "imitation game" (also known as the Turing Test) as a method for recognizing
intelligent algorithms (Turing, 1950) and the 1956 Dartmouth Workshop organized by
Marvin Minsky, John McCarthy, Claude Shannon, and Nathan Rochester (McCarthy
et al., 1955).

Computational theory of mind

Based on the work of McCulloch and Pitts and the artificial intelligence movement,
the Computational Theory of Mind emerged in philosophy. In this theory, the mind is
viewed as an information-processing system that gives rise to cognition and consciousness
as a form of computation (Piccinini and Bahar, 2013). This view was introduced into
philosophical discussion primarily by Putnam (1967) and developed and extended by him
and his PhD student Jerry Fodor in the following decades (Rescorla, 2020). However,
the view about the nature of computation carried out by the brain has changed over
time. McCulloch and Pitts were of the opinion that the processes in the brain are
based on digital processing, whereas Karl Lashley believed that they were analog in
nature. More recent research tends to assume that neural computation is a separate
type of computation ("neural computation is sui generis") (Piccinini and Bahar, 2013).
Even though the continuous development of methods for the non-invasive analysis of the
brain, such as the electroencephalography (EEG) (Berger, 1929), magnetic resonance
imaging (MRI) (Lauterbur, 1973) and functional magnetic resonance imaging (fMRI)
(Belliveau et al., 1991; Ogawa et al., 1990), has led to new insights and data about
its processes, and the steadily increasing computing power allows for ever larger model
simulations (Billeh et al., 2020; Hausler and Maass, 2007; Markram et al., 2015; Potjans
and Diesmann, 2014) that enable the testing of hypotheses about the functioning of
our cognitive center, it is still unclear how neural computations work in detail and how
exactly structural and biological properties shape these computations.

CHAPTER 1 INTRODUCTION

1.2 Fundamental principles

1.2.1 The human cortex

The human brain is a marvel of nature that fascinates with its complex structure and
dynamic processes. Specifically, the cortex, the outermost shell of the mammalian brain
and thus also of the human brain, plays a key role in numerous cognitive functions. For
instance, it is substantially involved in the perception of sensory input, the processing of
language, the initiation of motor functions, and the planning of complex actions. This
outer mantle of the brain consists of a few millimeters thin, but mostly highly folded
and thus surface-rich layer of so-called gray matter, which consists mainly of densely
packed nerve cell bodies and their local connections to each other (dark outer areas in
Figure 1.1 A and B; image of cell bodies in Figure 1.1 C). Underneath this gray matter is
a thicker layer of long-range nerve fiber connections, which have a white coloration due
to their wrapping with layers of lipid-rich myelin, which serve as insulation (lighter inner
areas in Figure 1.1 A and B). For this reason, this layer is called white matter. Each
of the approximately 16 billion neurons of the human cortex processes incoming signals
from a large number of upstream neurons, the average number of which is on the order
of 10*. The structure of the cortex is characterized by a complex architecture in which
different areas appear to be particularly (but not exclusively) specialized for specific
parts of information processing. For example, the visual cortex is primarily involved
in processing visual impressions, the motor cortex is involved in motor control, and
the prefrontal cortex is involved in abstract thought processes related to internal goals
(Miller, Freedman, and Wallis, 2002). Despite this division into differently functional
areas, the basic microstructure of the cortex is thought to be approximately identical
in each of its areas. This local microcircuit architecture spans an area of about 1 mm?,
contains about 80,000 neurons and 0.3 billion connections, and is divided into up to 6
different horizontal layers (Potjans and Diesmann, 2014). These layers differ primarily
in the type and distribution of neurons located within them and their interconnections
with other cortical and subcortical structures. This division into fundamentally invariant
cortical columns, which serve as a basic computational unit in the brain, enables blind
people, for example, to use their cortex areas previously used for visual processing for
the processing of other modalities such as hearing and touch after their loss of sight
(Castaldi, Lunghi, and Morrone, 2020).

1.2.2 Neurons and synapses

On an even smaller level, the human nervous system comprises networks of separate
but intercommunicating neurons. As illustrated in Figure 1.2 A, these neurons consist
of a cell body (soma), dendrites and an azon. The soma contains the nucleus and
is the metabolic center of the cell, while the dendrites and the axon are responsible
for receiving and transmitting signals, respectively. The cell membrane of a neuron

1.2 FUNDAMENTAL PRINCIPLES

Choroid plexus
Bulb of posterior cornu
Calcar avis

Collateral eminence
Fimbria hippocampi

Figure 1.1: Cortical architecture. A: Drawing of a human brain from Henry Gray’s
Anatomy of the Human Body (Gray, 2000). B: Slice of a macaque monkey
brain with Nissl stained cell bodies (retrieved from BrainMaps Atlas (Mikula
et al., 2007)). C: Historical drawing of the Nissl stained visual cortex of a
human adult seen through a microscope by Santiago Ramén y Cajal (Ramén
y Cajal, 1899).

CHAPTER 1 INTRODUCTION

Figure 1.2:

10

Neuronal action potential generation and transmission. A:
Schematic illustration of a mneuron with its different parts and
synapses connecting it with a second neuron (Source: ~Wikimedia
Commons, Public Domain, https://commons.wikimedia.org/wiki/
File:Chemical_synapse_schema_cropped. jpg). B: Example illus-
trating the input integration of a neuron. The incoming action potentials
of two presynaptic neurons successively depolarize the postsynaptic neuron
until the membrane potential exceeds a threshold value and a new action
potential is emitted. The membrane potential then normalizes to the resting
potential after a short time. Image is adapted from Gerstner et al. (2014).

https://commons.wikimedia.org/wiki/File:Chemical_synapse_schema_cropped.jpg
https://commons.wikimedia.org/wiki/File:Chemical_synapse_schema_cropped.jpg

1.2 FUNDAMENTAL PRINCIPLES

serves as an insulator that maintains an electrical potential between the intracellular and
extracellular space, called the membrane potential. Typically, the inside of the neuron
is negatively charged compared to the outside, resulting in a negative resting potential.
Communication between neurons occurs through the transmission of electrical impulses.
These action potentials (often referred to as spikes) are mainly generated by proteins in
the cell membrane that allow positively charged sodium ions (Na™) to be transported
across the cell membrane into the neuron. As a result of the influx of ions allowed by
these ion channels, the cell becomes depolarized and the negative resting membrane
potential becomes less negative or even positive for a brief moment. However, after
this rapid influx of sodium ions, other channels are opened, allowing positively charged
potassium ions (K1) to flow out of the neuron. This positive outflow causes the cell to
repolarize again, which restores the resting membrane potential. This precise balance
and timing of the ion exchange is essential for the correct generation and propagation of
the action potential. A schematic example of the input generation and resulting changes
of the membrane potential inside the neuron is visualized in Figure 1.2 B. In addition
to the two mentioned channels, there are a myriad of other ion channels that affect the
membrane potential, but they will not be discussed further here.

The resulting spike is propagated along the axon and, upon reaching its end, triggers
the opening of calcium channels. The resulting influx of calcium ions (Ca?") triggers the
release of chemical messenger molecules called neurotransmitters. Those neurotransmit-
ters thus diffusing into the synaptic cleft bind to receptor proteins in the cell membrane
of the postsynaptic neuron (see inset of Figure 1.2 A), triggering again an opening of
ion channels, whose ion flux in turn influences the membrane potential of this second
neuron.

Synaptic efficacy is by no means static but can change based on recent activity. Re-
peatedly arriving action potentials can lead to a depletion of the available vesicles con-
taining the neurotransmitters. This results in a reduction in neurotransmitter release
with subsequential stimuli. In addition to this short-term depression, there can also be a
strengthening of synaptic efficacy, i.e. short-term facilitation, which is mainly caused by
residual calcium remaining from the previous opening of the corresponding ion channels.

This influence on the postsynaptic neuron can not only be excitatory, i.e. bringing
the membrane potential closer to the firing threshold value but, depending on the neu-
rotransmitter and receptor type, can also lead to an inhibition of the postsynaptic cell.
According to Dale’s principle (Eccles, Fatt, and Koketsu, 1954), however, a single neu-
ron can release only the same set of neurotransmitters at all of its synapses, allowing the
classification into excitatory and inhibitory nerve cells. The spike trains at all incoming
synapses are integrated by the neuron and, if this depolarizes the cell sufficiently, again
lead to the generation of a spike that is sent to further neurons.

11

CHAPTER 1 INTRODUCTION

1.2.3 Neuron modelling

In computational neuroscience, models represent a valuable tool for the analysis and pre-
diction of neuronal dynamics. These mathematical formulations derived from biological
observations can be extensive models that reproduce a highly detailed morphology and
physiology. However, the high complexity of these models imposes enormous computa-
tional power requirements. This can be reduced by dividing the spatial characteristics of
the neuron into different sections or compartments so that we are dealing with so-called
compartmental models.

Leaky integrate-and-fire model

To further minimize the computational requirements and increase the possibilities of
theoretical analyzability, in point models, we omit any spatial structure of the neuron
and reduce its complexity to a single dimensionless point. In essence, we focus on the
temporal dynamics of the membrane potential in these models. The leaky integrate-and-
fire (LIF) neuron (Lapicque, 1907; Stein, 1967) represents a fundamental type of these
point models. It embodies the fundamental concept of the input-accumulating neuron,
which emits an action potential when its potential threshold is reached and thereupon
directly resets its membrane potential. It captures the essence of neuronal activity at
minimal computational cost, making it a popular choice for large-scale neural network
simulations where efficiency and scalability are critical constraints.

Adaptive exponential integrate-and-fire model

A more advanced variant of the LIF model, the adaptive exponential integrate-and-
fire (AdEx) neuron (Brette and Gerstner, 2005), adds an exponential term to the dynam-
ics equation of the LIF neuron (Fourcaud-Trocmé et al., 2003), which both better reflects
the rapid voltage changes that real neurons exhibit in the vicinity of their threshold and
replaces the previously hard threshold with a more gradual and soft spike initiation pro-
cess. Furthermore, the AdEx neuron model includes an additional dynamic adaptation
current that can adjust the responsiveness to incoming signals over time, allowing the
model to adapt its behavior based on its recent activity.

Hodgkin-Huxley model

A further increase in the level of detail is provided by the Hodgkin-Huxley point neuron
model developed by Alan Hodgkin and Andrew Huxley in the 1950s (Hodgkin and Hux-
ley, 1952). This model is based on the two scientists’ studies of the giant axon of the
squid, which revealed the essential role of the opening and closing of sodium and potas-
sium channels in the generation and propagation of electrical impulses. The simulation of
the nonlinear differential equations defining the complex ion channel dynamics requires

12

1.2 FUNDAMENTAL PRINCIPLES

a much higher computational effort compared to the other point models presented. In
return, however, it can reproduce the biophysical processes underlying individual neuron
behavior with unrivaled fidelity.

1.2.4 Dynamical systems theory

Dynamical systems are systems whose state evolves over time, following specific laws of
motion. They are often defined by differential equations that characterize the motion
of their elements in a finite state-space (Birkhoff, 1927). The theory of such systems
originates in the study of the motions of celestial bodies (Poincaré, 1892), but today finds
applications in many research fields. From the double pendulum (Levien and Tan, 1993),
to the modeling of population dynamics (May, 1976) and the interacting reactions of
chemicals (Dale and Husbands, 2010), to fields such as the study of collective decision-
making processes (Yang et al., 2021), infant development (Smith and Thelen, 2003)
or brain development (Leféevre and Mangin, 2010), the theory of dynamical systems is
central to many disciplines and offers a mathematical formalism to characterize complex
adaptive systems.

The theory also forms the basis of a field of neuroscience (Izhikevich, 2007) and fa-
cilitates a better understanding of the activity inside the brain. The dynamics inside
the central nervous system give rise to complex behavior, enabling the living being host-
ing the brain to solve challenging problems, and are therefore of great interest to this
research field.

Moreover, there is increasing interest in physical systems that can serve as substrates
for brain-like computations. There are numerous dynamical systems that perform non-
trivial computations on input signals using the interactions between their parts and the
dynamics that arise within them (Grollier et al., 2020; Larger et al., 2012; Lugnan et al.,
2020; Sharp et al., 2012).

Balance between excitation and inhibition

As mentioned above, computational neuroscience also deals with biologically inspired
dynamical systems. In this context, researchers primarily rely on networks of recurrently
connected populations of excitatory and inhibitory neuron models. When characterizing
network activity, we pay particular attention to the regularity and synchrony of the spike
trains. Of high interest are systems that operate in a state of asynchronous-irregular
(AI) activity, typically featuring low firing rates. This state occurs mainly in sufficiently
large networks of sparsely interconnected neurons, in which the effect of the excitatory
units is approximately balanced by the inhibitory neurons (Brunel, 2000; Van Vreeswijk
and Sompolinsky, 1996). On average, the membrane potential thereby shifts to a value
just below the threshold and action potentials are evoked in the network mainly by
spontaneous fluctuations and external inputs. This tight balance between excitation

13

CHAPTER 1 INTRODUCTION

and inhibition, as it occurs in these networks, plays a crucial role in the execution of
complex neural computations (Denéve and Machens, 2016).

1.2.5 Learning paradigms

Sometimes it is sufficient to analyze systems with static structures and look at their
activity and dynamics, but often in areas like machine learning and computational neu-
roscience, we want to study systems that can adapt to their environment or specific
tasks. This results in different distinguishable learning paradigms.

Unsupervised learning

If the learning process takes place completely without an external training signal or la-
beled data, we speak of unsupervised learning. This includes, for example, the clustering
of data or the reduction of their dimensionality.

Supervised learning

In supervised learning, for each point of the input, there is a corresponding correct and
explicitly desired output signal that the system to be trained should reproduce. To
adapt the system according to these desired outputs, gradient-based methods such as
Backpropagation of Errors (Rumelhart, Hinton, and Williams, 1986) can be used to
adapt a large number of parameters, such as the weights of a neural network. How-
ever, such training of the complete system or major parts of it can lead to substantial
computational costs.

Reservoir computing Another form of supervised learning is the concept of reservoir
computing, which usually requires much less computation. Although exceptions exist
(Pyle and Rosenbaum, 2019; Sussillo and Abbott, 2009), the computing system itself is
usually not adapted. It typically serves only as a reservoir whose temporal dynamics
process the input signals and project them into a higher-dimensional state space from
which the outputs required by the task can be extracted using a linear readout mecha-
nism, i.e. a linear combination of the state variables (see Figure 1.3). This readout is the
only part of the system that is trained. The reservoirs must exhibit the so-called echo
state property, meaning that the effects of previous inputs have to vanish asymptotically
from the state representation of the system (Jaeger, 2001b; Yildiz, Jaeger, and Kiebel,
2012).

Although the reservoir computing principle was developed in the early 2000s with
the development of the echo state network (ESN) (Jaeger, 2001b) and the liquid state
machine (LSM) (Maass, Natschldger, and Markram, 2002) for use with spiking (LSM)
and non-spiking (ESN) recurrent neural networks, any other input-driven dynamical
system can equivalently be utilized as a reservoir. This opens the possibility to use

14

1.2 FUNDAMENTAL PRINCIPLES

Reservoir Readout
= '-------‘
Output
L0 .
:Wout 1
O o m EmEEEEEEEE®E®ED®SDSD s B , S

Figure 1.3: Schematic illustration of the reservoir computing paradigm. The
input is linearly transformed by the weight matrix W and the reservoir
processes these inputs so that the desired outputs can be read out using the
linear transformation matrix W°%. Adapted from Tanaka et al. (2019).

physical in addition to simulated systems for the computations. Besides more exotic
reservoirs such as water buckets (Fernando and Sojakka, 2003) and octopus-arm inspired
softbodies (Nakajima et al., 2015), this also enables the use of particularly fast and
efficient systems that use, among other phenomena, light (Duport et al., 2012; Paquot
et al., 2012; Paquot et al., 2010; Vandoorne et al., 2014) or quantum effects (Chen,
Nurdin, and Yamamoto, 2020; Ghosh et al., 2019; Nakajima et al., 2019) for reservoir
computations, or rely on mechanical anharmonic nano-oscillators (Coulombe, York, and
Sylvestre, 2017) or memristive devices (Biirger et al., 2015; Zhong et al., 2021).

Reservoir computing in computational neuroscience In computational neuroscience,
the reservoir computing method is mainly used to study neural network models. In
this case, the readout mechanism serves as a translation tool that makes the functions
computed naturally by the network usable or at least recognizable to humans. Since
the learning mechanism only acts outside of the reservoir that is actually being studied,
it is possible to integrate any biologically inspired features such as different plasticity
mechanisms or network structures into the neural system without having to adapt the
training mechanism.

15

CHAPTER 1 INTRODUCTION

Reinforcement Learning

The third learning paradigm, reinforcement learning (RL), can be seen as a middle
ground between the supervised and unsupervised methods. In reinforcement learning,
an agent is trained to maximize a cumulative reward by interacting with an environment.
This reward signal does not specify the absolutely correct output after each step as in
supervised learning, but only provides an often sparse and delayed positive (reward)
or negative (punishment) evaluation of the current state. Based on this sparse signal,
the system must independently find the best actions to maximize this reward by opti-
mizing its policy using a balance between the exploration of unknown actions and the
exploitation of steps previously proven useful (exploration-exploitation dilemma). This
trial-and-error learning goes back, on the one hand, to behaviorism’s psychological the-
ories of learning in humans and other animals of classical (Pavlov, 1927) and operant
(Skinner, 1938; Thorndike, 1911) conditioning. On the other hand, many basics of re-
inforcement learning come from the mathematical-technical direction of optimal control
theory and dynamic programming (Bellman, 1957).

Temporal difference learning A widely used method of reinforcement learning is temporal
difference (TD) learning (Sutton, 1988; Sutton and Barto, 1981). Temporal difference
learning combines approaches from Monte Carlo learning (Metropolis and Ulam, 1949)
and dynamic programming (Bellman, 1957). While Monte Carlo learning relies on actual
experienced trajectories to estimate the value of a state or action, dynamic programming
uses known models of the environment to make predictions. TD Learning combines these
approaches and allows estimates based on partial trajectories to be updated without re-
quiring a full model of the environment or the full trajectory. In this approach, the main
task of the algorithm is to learn to predict future rewards. Each state s is given a state
value V' that represents the future rewards r expected from that state:

oo
Vi(s)=E lZ Vkrt+kz+1] ;7 € [0, 1] (L.1)
k=0

where the discount factor « can be used to implement a different weighting of rewards
received over time. For a value of v = 0, only the immediate reward is maximized, and
the closer v is to 1, the more the agent tries to maximize the cumulative reward across
the entire period. Since the actual state value can only be correctly determined over time
by rewards that occur, the agent’s task is to minimize a reward prediction error (RPE)
6 based on the difference between the expected and actual value of the state:

5(t) = Tt+1 + ’YV(SH—I) — V(St) (12)

Temporal difference learning in the brain Such a temporal difference error in the
mammalian brain is thought to be signaled by the activity of dopaminergic neurons in

16

1.3 AIMS AND STRUCTURE OF THE THESIS

the midbrain (Glimcher, 2011; Montague, Dayan, and Sejnowski, 1996; Schultz, Dayan,
and Montague, 1997). Consistent with this theory, activity in the substantia nigra
pars compacta (SNec) and the ventral tegmental area (VTA) has been demonstrated in
monkeys (Bayer and Glimcher, 2005; Schultz, Dayan, and Montague, 1997) and also in
humans (McClure, Berns, and Montague, 2003; O’Doherty et al., 2003; O’Doherty et al.,
2004). Thus, this theory and practical research thereon provide a direct bridge between
computational approaches to reinforcement learning and actual neural mechanisms in
the brain.

1.3 Aims and structure of the thesis

The scientific community has long been intrigued by the task of comprehending the
computational capabilities of dynamical systems, particularly those that aim to simulate
and reproduce the intricate processing mechanisms of the human brain. The main
objectives of this thesis are to gain a comprehensive understanding of the information
processing happening in such systems, with a particular focus on spiking neural networks
(SNNs), and to provide other researchers with a guideline on how to analyze such models
in the most insightful way possible. For this purpose, we seek to evaluate to what
extent structural and neuronal properties derived from biological data shape information
processing in neural networks and test computational hypotheses derived from such
biological properties.

1.3.1 Computations in cortical microcircuit models

In Chapter 2 Information processing in cortical microcircuits, we analyze the influence
of the connectivity structure on information processing in a cortical microcircuit model.
This first data-based network model we examine was published in the work of Hausler
and Maass (2007). In this work, the authors created a microcircuit model using intra-
cellular recordings and compared it to structurally modified but statistically identically
connected control models. As Karl Popper already stated in his 1934 book "The Logic
of Scientific Discovery" that "non-reproducible single occurences are of no significance
to science" (Popper, 2005) the scientific progress can only be based on mutual valida-
tion and the peer-review process can only be considered the first necessary step on the
path of research verification. Therefore we will first reproduce the results from the orig-
inal paper. Especially in the domain of computational neuroscience, small details and
parameter deviations can strongly influence experimental results (Pauli et al., 2018).
Therefore, it is not sufficient to run the original code, but only a qualitative reproduc-
tion using a reimplementation and additional testing of the robustness of the results
ensure that the findings can be trusted. For these reasons, a further part of Chapter 2
deals with subjecting the model we reimplemented to further experiments. Among other
aspects, we check whether the results, which mainly emphasize the importance of the

17

CHAPTER 1 INTRODUCTION

laminar connectivity structure, hold up in the presence of changes in the neuron model
and the omission of the intrinsic noise mechanism. In addition, we subject the network
models to further tests that provide a more detailed picture of how information is main-
tained in the systems and which structural properties are of particular importance for
this. Furthermore, we verify whether the obtained findings also apply to network sizes
that more closely resemble the dimension of the biological equivalent of the network.

1.3.2 Information processing capacity

The evaluation of computational systems commonly focuses on their performance in
standard tasks and so we also examined the network models in Chapter 2 using this
criterion. Nevertheless, when considering different dynamical systems, specifically spik-
ing neural networks, evaluating task performance alone may provide some insight but
lacks the necessary depth to fully comprehend the precise operations performed by these
systems. Therefore, in Chapter 3 Information processing capacity, we focus on the in-
vestigation of a more expressive method for the assessment of the microcircuit model
from Chapter 2 and neural networks in general. The concept of information processing
capacity (IPC), initially proposed by Dambre et al. (2012), is a measure used to evalu-
ate dynamical systems based on the methodical construction of orthogonal polynomial
functions that the system is asked to reconstruct based on random input.

The result is a well-interpretable profile of functions that are computed by the sys-
tem. However, this approach has predominantly been employed in the context of less
complex and primarily discrete-time systems, such as echo state networks and it is not
clear how it can be applied to SNNs. In addition to the requirement of converting a
discrete signal into continuous time, the optimal method for encoding the signal remains
uncertain. There are several criteria to consider. In addition to the objective of opti-
mizing overall capacity, there are other noteworthy considerations such as maximizing
memory, attaining optimal nonlinear processing, and ensuring biological plausibility. As
a first step, therefore, Chapter 3 will examine the necessary adjustments required for the
information processing capacity metric to enable the most insightful analysis of SNNs.

The resulting capacity profile not only provides the total capacity value but also in-
cludes information on the maximum delay and maximum degree of the calculated func-
tions. These properties are assumed to be easily interpretable. However, it is unclear
to what extent these properties are also associated with the broader understanding of
memory and nonlinearity, and how they inform about the system’s ability to perform
specific tasks. Hence, an additional section inside Chapter 3 addresses this matter by
examining the correlation between various aspects of the capacity profile and the ability
to successfully complete tasks that explicitly assess the memory and nonlinearity capa-
bilities of the systems.

18

1.3 AIMS AND STRUCTURE OF THE THESIS

As previously mentioned, different signal encoding alternatives are also tested. Due to
these different encoding methods, the encoder can have a great influence on the calcu-
lations in the system. Consequently, the encoder is an integral component of the overall
system whose information processing capacity is being measured. Often, however, one
is only interested in the computational performance of the main system, excluding the
encoder. Therefore, a further part of Chapter 3 searches for ways of subtracting the
effects of the encoder from the information processing capacity results to allow for the
independent examination of the computational capabilities of the primary system.

With all these investigations, in addition to gaining direct insights into information
processing in the studied dynamical systems, our main goal in Chapter 3 is to provide
the computational neuroscience community with a method to gain profound insights into
the computations of spiking neural networks using the information processing capacity
metric.

1.3.3 Memory prerequisites for temporal difference learning in
cortico-striatal populations

In Chapter 4 Memory prerequisites for temporal difference learning in cortico-striatal
populations, we examine a hypothesis put forward by Morita et al. (2012) about the
processes involved in computing a reward prediction error in the brain. Specifically, the
hypothesis states that two distinct populations of cortical layer 5 neurons, the crossed
corticostriatal (CCS) and corticopontine (CPn) cells, respectively encode the current and
previous states and make them available to the direct and indirect pathway of the basal
ganglia for further processing and computation of a reward prediction error. Morita et
al. (2012) base their hypothesis primarily on the experimentally observed structural and
neural properties of these two populations. However, this is initially only a theory. To
test this theory, we create a network model based on the data known from the literature
(Morishima et al., 2011; Morishima and Kawaguchi, 2006; Morishima et al., 2017) and
use the information processing capacity prepared in Chapter 3 to examine how long the
information about the input state is maintained in the CCS and CPn cells. This allows
us to determine if a reward prediction error can be calculated based on the activity of the
two populations. Besides the question of whether the tested model can be the basis for
temporal difference learning, we also evaluate how strong the influence of the different
mainly structural, but also neuronal features on the memory of the two populations is.
For this purpose, similar to the approach taken in Chapter 2, we create different control
models, each of which lacks a certain feature, and compare their ability to maintain
information with that of the full, data-based network.

19

Part 1|

Experiments

21

Chapter 2

Information processing in cortical
microcircuits

The neocortex, and with it the mammalian brain, achieves a level of computational
efficiency like no other existing computational engine. A deeper understanding of its
building blocks (cortical microcircuits), and their underlying computational principles
is thus of paramount interest. To this end, we need reproducible computational models
that can be analyzed, modified, extended and quantitatively compared. In this chapter,
we further that aim by providing a replication of the seminal cortical column model
proposed by Héausler and Maass (2007).

2.1 Introduction

Neurons of the neocortex are arranged in layers, forming connectivity structures through
their synapses that share many properties across various brain areas. This suggests that
diverse cortical areas are likely based on a common microcircuit template (see e.g., De-
Felipe, 2012; Harris and Shepherd, 2015; Horton and Adams, 2005; Mountcastle, 1997).
These broad commonalities suggest a functional purpose behind this structure that gives
networks an information processing advantage over randomly connected circuits.

To investigate this hypothesis, Stefan Hausler and Wolfgang Maass developed a data-
based microcircuit model and tested its computational properties in comparison with
networks with equivalent dynamics but alternative connectivity structures in their semi-
nal paper A Statistical Analysis of Information-Processing Properties of Lamina-Specific
Cortical Microcircuit Models (Hausler and Maass, 2007).

After this paper was published as one of the first studies on data-based cortical column
models, it was cited hundreds of times and influenced the computational neuroscience
community’s view on the purpose and benefits of a laminar cortical network structure.
Since then, the model has been used by Wolfgang Maass’s team to analyze, for example,
the distributions of network motifs in its connectivity structure (Hausler, Schuch, and
Maass, 2009) and to show how a version of the network with stochastic neurons can
exploit noise for computation (Habenschuss, Jonke, and Maass, 20013; Maass, 2014).
Rasch et al. (2011) use the model as the basis for a larger network that also includes a

23

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

model of the retina and lateral geniculate nucleus (LGN) of the thalamus to analyze its
responses to natural stimuli and compare them with in vivo activity. Since the publi-
cation of Héusler and Maass (2007), modeling of cortical columns has partially evolved
toward large-scale networks of point neurons whose focus is to accurately reproduce
the statistical properties of spike activity from in vivo data (e.g. Potjans and Diesmann,
2014). The other recent direction of modeling cortical columns focuses on large networks
of biophysically detailed neural compartment models, such as Markram et al. (2015) and
Billeh et al. (2020). Nevertheless, smaller network models continue to be relevant be-
cause simulating these large-scale models requires huge amounts of computing resources
that are beyond the scope of many computational laboratories. Therefore, as a highly
influential study uncovering the relationships between structure, dynamics and function,
it would be of great benefit to have the computational model introduced by Hausler and
Maass (2007) available for further study and quantitative comparison with other models.

Unfortunately, as the model was originally implemented in MATLAB (unknown ver-
sion, but no later than R2006b) and the C++ simulation plugin csim that is no longer
maintained, the code can no longer be executed. In this chapter, we present a replication
of the original study, which serves the twin purpose of testing the original findings and
providing an executable version of the model to the computational neuroscience com-
munity. Specifically, we re-implement their model using the open source software NEST
(Hahne et al., 2021) to simulate the networks, NESTML (Babu et al., 2021) to define the
neuron model and Python for data analysis, thus ensuring a reusable and maintainable
code base.

Here, we use the term replication in the R® sense described by Benureau and Rougier
(2018), i.e. striving to obtain the same results using an independent code base, whereas
a reproduction (R?) of the model would have been achieved if we had obtained the results
of the original study using the original code. Note that others have argued that these
terms should be used the other way around: see Plesser (2018) for an overview and
analysis.

Following the structure of the original work, we construct a cortical column model
based on data from rat and cat cortical areas published by Thomson et al. (2002). The
network consists of spiking Hodgkin-Huxley neurons with an intrinsic conductance-based
noise mechanism that represents the incoming currents generated by stochastically re-
leasing synapses and is connected by synapses with short-term plasticity. Using this
network model, we investigate the impact of the data-based laminar structure on the
computational performance of the system. Besides the data-based model, we imple-
ment additional control models that share the global statistics of the microcircuit whilst
removing specific network properties. This allows analysis of how different network prop-
erties affect the networks’ computational performance on various tasks based on input
signals that are encoded as precise spike patterns or spike trains with changing firing
rates.

These tasks are designed in such a way that they allow us to draw conclusions about

24

2.1 INTRODUCTION

computational abilities of the models under investigation by testing the networks not
only on their simple classification capabilities, but also on memory and their nonlinear
processing power. Following the reservoir computing paradigm (see paragraph 1.2.5),
the synaptic efficacies of the recurrent connections within the network are not trained to
improve performance; only the projections from the network to separate readout neurons
are learned.

We successfully reproduced the main data-based model and all six control circuit
variants. The results on the computational tasks confirm the findings of the original
study, most notably that the data-based circuit has superior computational performance
to circuits without laminar structure.

Going beyond the experiments of the original study, and demonstrating the value of
having executable versions of important models, we further examine the generalizability
of the results with respect to the neuron model. Assuming that the laminar structure is
the most important component of the model, we hypothesize that the central findings
are not dependent on the specific choice of the somewhat complex Hodgkin-Huxley
neurons used in the original study. To investigate this hypothesis, we simplify the
neuron model by reducing its complexity to basic integrate-and-fire dynamics and show
that this simplification not only maintains the superior performance of the data-based
circuit but even increases its absolute performance on almost all tasks. The same is true
for the removal of the noise mechanism from the Hodgkin-Huxley model. Although noise
was added mainly to increase biological plausibility rather than to improve performance,
it is not necessarily the case that noise degrades the performance of a neural system,
since, for example, effects such as stochastic resonance can improve the detection of weak
signals (McDonnell and Ward, 2011; Wiesenfeld and Moss, 1995).

Finally, we extend the original computational tasks to include a more detailed exami-
nation of the memory capabilities of the systems under consideration, reflecting the fact
that the ability to recall information over time forms the basis for a variety of cognitive
processes. Our results reveal a stereotypical memory profile for all tested circuits and
demonstrate that the characteristic temporal structure of the stimulus has differential
effects on the task performance of the networks receiving it.

Apart from providing a reproducible and re-usable implementation of the cortical mi-
crocircuit model in (Héusler and Maass, 2007), our successful replication reduces the
likelihood that the original findings were influenced by implementation errors (Benureau
and Rougier, 2018; Pauli et al., 2018). Our findings thus lend further support to the
hypothesis that the highly nonrandom connectivity structure of cortical columns serves
important computational purposes, with the degree distributions, i.e. the distributions
of the number of incoming and outgoing connections per neuron, playing the most promi-
nent role. Going beyond the original findings, we further demonstrate that the compu-
tational benefits of the laminar structure are not dependent on the complexity of the
neuron model. Finally, we discover that the laminar structure does not confer memory
benefits in the model - the circuits with laminar structure do not retain stimulus in-

25

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

formation for longer than networks with other connectivity assumptions - and conclude
that the superior computational performance is achieved primarily by generating more
distinct stimulus representations.

2.2 Methods

2.2.1 Microcircuit model

In the following sections we provide details of our implementation of the microcircuit
model that is publicly available at Zenodo (Schulte to Brinke, Duarte, and Morrison,
2022) and compare it to the model described in (H&ausler and Maass, 2007), whose
implementation is available at ModelDB (McDougal et al., 2017; accession number 82385,
https://modeldb.science /82385).

Neuron model

The networks consist of single-compartment Hodgkin-Huxley type neurons with three
different active currents, as described by Destexhe and Paré (1999), and an intrinsic
conductance noise mechanism introduced by Destexhe et al. (2001):

dV;
CmTF = —g9L(Vin — BL) — INa — Ix — Int — Tnoise (2.1)
where V4, is the membrane potential, Cy, is the membrane capacitance, gr, is the leak
conductance and Ej, is the leak reversal potential. Iy, is a voltage-dependent Na™

current with the following dynamics:

Ina = gNamgh (Vm - ENa) (2'2)
dm

—r = am(Vi) (1 = m) = B (Vin)m (2:3)
% = ap(Vin)(L — h) = By (Viu)h (2.4)
- —0.32(Vyy — Vp — 13) (2.5)

exp|—(Vm — Vr —13)/4] — 1
0.28(Vin — Vr — 40)

P = P [(Ven = Ve — 40)/3] = 1 (26)

an = 0.128 exp|— (Vi — Vip — Vg — 17) /18] (2.7)
4

Bh (2.8)

1+ exp[—(Vim — Vr — Vs — 40) /5]

where gn, is the sodium peak conductance, Fyy, is the sodium reversal potential, Vg is
a voltage that shifts the inactivation towards hyperpolarized values and Vr is a voltage

26

https://modeldb.science/82385

2.2 METHODS

offset that controls dynamics and adjusts the membrane threshold. Note, the model
does not incorporate an explicit threshold; the membrane potential threshold Vipresh in
Table 2.1 is just the potential at which the peak in the membrane potential is recognized
as a spike by the simulator. This is also the reason why a refractory period ¢, is needed
to avoid the emission of multiple spikes during a peak in the membrane potential. Ik is
a delayed-rectifier K* current:

IK = gKn4(Vm - EK) (29)

%’Z — o (Vi) (1 =) = B (Vi) (2.10)
 —0.032(V — Vi — 15)

" o= (Ve — Vo — 15)/5] =1 211)

B = 0.5 exp|—(Vin — Vi — 10)/40] (2.12)

Here, gk is the potassium peak conductance and F is the potassium reversal potential.
The third current is a non-inactivating K™ current responsible for spike frequency adap-
tation, which is only activated for excitatory neurons and was first described by Mainen,
Huguenard, and Sejnowski (1995):

Iy = gmp(Vin — En) (2.13)

W (V)1)~ BV (214)
- (Vi £ 30)

P T exp[(Vin + 30)/9] (2.15)

g = =7 (V30 2.16)

1 — exp[—(Vim + 30)/9]

where gy is the peak conductance for this additional potassium channel. The factor
r is set to 0.0001 by Destexhe et al. (2001), but Héusler and Maass (2007) use a value
of 0.001 in their code, and we followed the latter in our implementation. A complete
specification of all neuron parameters can be found in Table 2.1.

In addition to these ion channel dynamics, Hausler and Maass (2007) used noisy
background currents whose conductances are modeled by an Ornstein-Uhlenbeck process.
This stochastic background activity was introduced by Destexhe et al. (2001) to represent
the spontaneous activations of incoming synapses as follows:

Inoise = gne(t)(vm - Eex) + gni(t)(vm — F) (217)

where gy is the time dependent excitatory conductance, Eey is the excitatory synaptic
reversal potential and gy; and Ey, are their inhibitory counterparts.

27

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

The conductances are calculated by the following update rules:
ne(t + 1) = geo + [gne(t) = geo exP(—h/Tne) + AeN1(0, 1)] (2.18)

gni(t +h) = gio + [gni(t) — gio exp(—h/mi) + AiN2(0,1)] (2.19)
where gog and g are average conductances, 1, and 7,; are time constants, h is the
integration step, N1(0,1) and N»(0, 1) are random numbers drawn from a normal distri-
bution with mean 0 and standard deviation 1, and A, and A; are amplitude coefficients
given by

D —2h
Ao = \/eTne [1 — exp()] (2.20)
2 The
D;y; —2h
A; :\/ 27 1~ exp(——)] (2.21)
D, and D; are noise diffusion coeflicients:
2
D, = 2Tne (2.22)
Thne
202,
D; = 2ni (2.23)
Tni

where oy, and oy are standard deviations of the excitatory and inhibitory noise con-
ductances respectively. All of the parameter values for the noise term can be found in
Table 2.3. The neuron model also handles synaptic conductances, which increase im-
mediately with each spike and then decay exponentially with time constants 7gyy,, for
spikes coming from excitatory neurons and gy, for inhibitory ones. To implement the
full neuron model we described it in NESTML (Babu et al., 2021), from which code can
be automatically generated for NEST 3.0 (Hahne et al., 2021).

Neuron model variations

We examine the robustness of the model results to simplification of the neuron model
described above. The first variation we apply is to disable the intrinsic conductance
noise mechanism by setting ope and op; to 0. This adjustment also allows us to study
the susceptibility of the networks to noise in the system. In a second step, we additionally
disable the Ina, Ik, and Iy currents, resulting in leaky (integrate-and-fire (iaf) neurons.
We leave all parameters unrelated to these ion channel currents unchanged, but change
the membrane potential threshold Vipresh of each population (L2/3-E: —52 mV, L2/3-1:
=55 mV, L4-E: —49 mV, L4-I: —55 mV, L5-E:—57.0 mV, L5-I: —65.0 mV) such that
the means of the population firing rates of the data-based circuit with integrate-and-fire
neurons match those of the network with Hodgkin-Huxley neurons as closely as possible
(see Supplementary Materials for firing rate distributions of all networks).

28

2.2 METHODS

Par. Value Source | Description
uniformly
Vin gz:l;l;t?%) paper Membrane potential
and -60 mV
code .

Vr -63 (-58) mV (1) Voltage offset that controls dynamics
Vihresh | -30 mV code Membrane potential threshold
Vs -10 mV (1) Shifting voltage
Er, -80 mV (2) Leak reversal potential
a 34636 pm? paper Membrane area used for all but gy
PCn 1 pF/cm? (2) Membrane capacitance density
Cm 346.36 pF a-pcy, Capacity of the membrane
Par, 0.045 mS/cm? | (2) Leak conductance density
gL 15.5862 nS a-pgr Leak conductance

Time constant of the excitatory
Tsynex 3 ms code . . .

synaptic exponential function

Time constant of the inhibitory
Tsynin 6 ms code . . .

synaptic exponential function
tref 3 ms code Duration of refactory period
Fox 0 mV (2) Excitatory synaptic reversal potential
Ein -75 mV (2) Inhibitory synaptic reversal potential

Table 2.1: Main neuron Parameters. The source column indicates where the value can
be found, searching in the following order: main replicated paper, referenced
papers, source code. If a value was given in the paper which differs from the
one used in the code, the paper value is written in parenthesis. References:
(1) Destexhe and Paré (1999), (2) Destexhe et al. (2001)

Par. | Value Source Description

code
(3)

code (paper)

a: Pgna
code (paper)

Ena | 50 (60) mV Sodium reversal potential

Poxa | 516 (500) 2%

17872.176 nS
INa | (17318 nS)

Peak conductance density for In,

Sodium peak conductance

Ex -90 mV code Potassium reversal potential

Pyx 100 pS/}lm2 paper Peak conductance density for Ik

JK 3463.6 nS a - Pgx Potassium peak conductance

am 10000 pm? code Membrane area used for gy

By -80 (-90) mv zg;ie Potassium reversal potential for Iy

Pant 10 (5) pS/pm? code (paper) Peak conductance density for Iy

o 100 (173.18) nS amM - pgy code | Peak c.ondt}ctance of ad.dltlonal

ex (a - pgypaper) | potassium ion channel in exc. neurons

Peak conductance of additional

IMip 0 nS paper

potassium ion channel in inh. neurons

Table 2.2: Ton channel parameters. Source definitions as in Table 2.1. References: (3)
Mainen, Huguenard, and Sejnowski (1995)

29

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

Par. | Value Source | Description
Time constant for the excitatory
noise conductance

The 2.7 ms paper

Time constant for the inhibitory
noise conductance

Mean conductance of the excitatory
noise

Mean conductance of the inhibitory

Tni 10.5 ms paper

Jne 12 nS paper

Gni 57 nS paper noise

Standard deviation of the excitatory
One 3 nS paper R

noise conductance

Standard deviation of the inhibitory
Oni 6.6 nS paper

noise conductance

Table 2.3: Neuronal conductance noise parameters; source definition as in Table 2.1

Synapse model

For the synaptic short-term dynamics, we use the tsodyks2_synapse model imple-
mented in NEST. This model implements short-term synaptic plasticity according to
Maass and Markram (2002) with the following equations, which are also used in the
replicated paper:

A =w-ug - Ry (2.24)

where Aj is the amplitude of the postsynaptic potential for the kth spike and w is the
synaptic weight. The release probability wu is given by:

Ap_
up = U + up_1(1 — U) exp(——=2=1) (2.25)
Ttac
where U determines the increase in v with each spike, Aj denotes the time since the
last spike and 7, is the time constant for recovery from facilitation. R} is the fraction
of synaptic efficacy available for the kth spike and follows:

Ak—l)

Ry =1+ (Rg—1 —up—1Rp—1 — 1) exp(— (2.26)

Trec
where 7. is the time constant for recovery from depression. The variables u; and Ry
are initialised with w7 = U and Ry = 1. The mean values for U, 7g and Tyec as well
as the synaptic delay depend on the type of their source and target neurons and can be
found in Table 2.4.

These parameters are not fixed for a given ensemble of synapses between a source
population j and a target population ¢; instead, they are drawn from a Gaussian random
distribution with a standard deviation of 50% (by for U, byec for Tree and bg,e for 7e,c),
10% (bgq for the delay) or 70% (b, for the weight) of their mean values. As described
by Héausler and Maass (2007), all negative values or values bigger than the upper bound

30

2.2 METHODS

Par. Source | Description
From/to E 1
Increase of release
E U 05 0.05s paper probability with each spike
Trec 1.1s 0.125s | paper Time constant for depression
Tfac 0.05s 1.2s paper Time constant for facilitation
d 1.5ms | 0.8 ms | code Synaptic delay
Increase of release probability
I U 0.25 s 0.32s paper with each spike
Trec 0.7s 0.144 s | paper Time constant for depression
Tfac 0.02 s 0.06 s paper Time constant for facilitation
d 0.8ms | 0.8 ms | code Synaptic delay

Table 2.4: Population type dependent synaptic parameters; source definition as in Ta-
ble 2.1

of the range (for U) are replaced by values drawn from a uniform distribution between
0 and two times the mean. Note that using a truncated normal distribution leads to a
different network activity with higher firing rates (data not shown).

The mean amplitudes A;; of the postsynaptic potentials for the connections between
populations j and 4, which are needed to calculate their mean weights, can be found in
Figure 2.1. With this, we get the value for their weight w by:

Wex — ———————— 2.27
¢ ‘Eex - Vmean’ ()
for excitatory synapses and
A
Wiy = (2.28)
|Ein - Vmean‘

for inhibitory ones. Fox and FEjy, are the excitatory and inhibitory synaptic reversal
potentials and Vijean is the mean membrane voltage of a neuron without input. All
values of the synaptic parameters can be found in Tables 2.4 and 2.5.

Network models

In this section, we describe the different network models implemented in the original
work and in this replication. All circuits comprise 560 of the Hodgkin-Huxley neurons
described above unless otherwise stated. Another common feature shared by six of the
seven circuits is that they are connected by synapses with short-term adaptation as
described above. The exception is the data-based model variant with static synapses,
which helps us examine the effects of synaptic dynamics on task performance. Figure 2.2
shows the histograms of degrees (number of incoming and outgoing synapses) for the
different circuits; this serves as the first validation of our work, as they are visually
indistinguishable from those presented in Figure 7 of Hausler and Maass (2007), which
is the best that can be achieved without access to the original data.

31

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

Par. Value Source Description
A see Figure 2.1 paper Mean amplitude of PSPs
A 1.925 mV code Mean amplitude of PSPs
input (1.9 mV) (paper) for input connections
Mean membrane voltage
Vimean -65 mV &) of a neuron without iniut
g 66825/N code Scaling parameter for
RW (60000/N) (paper) recurrent connections
g . Saw /73 experiment Srw for data-base circuit
RWstatic RW p with static synapses
5 14.85 (14) code Scaling parameter for
(paper) connections from stream 1
code Scaling parameter for
52 36.498 (33) (paper) conneftirc)ms from stream 2
g) A-gp d Maximum conductance for
Wex RW " TEex—Vinean] | ©0%°¢ excitatory synapses
) g) Agp, d Maximum conductance for
Win BRW * TB, —Vinean] | ©09¢ inhibitory synapses
by 05 paper Factor defining the std.
for the distribution of U
Factor defining the std.
brec 05 paper for the distribition of Trec
brac 05 paper Factor defining the std.
for the distribution of 7¢,.
Factor defining the std.
ba 0-1 code for the distriblgltion of d
Factor defining the std.
bw 0.7 paper for the distribution of wey
and w;n

Table 2.5: Synapse parameters. Source definitions as in Table 2.1. References: (2)
Destexhe et al. (2001)

32

2.2 METHODS

1.7 (26%) 1.35 (25%)

N~

0.65—(16%)=—— [2/3-]

| |
1_9—(21%)_,‘u\\ 34 neurons /,3
(6% of N) /

L2/3-E

134 neurons
(24% of N)

input stream 2 1.925-(20%)

16_ 175 i
(8%) (50%) 15
(20%) 4.0 i
1.925 (g%) 0.15 (2(1%)
' 11 10%) T .
03 1.4 (10%) \(1 55
- 0.85:(10%) N L4-1
input stream 1 1.925- -(80%) La-E | |
89 neurons 3l7_(19%)_>u\ 23 neurons |
16% of N 4% of N
(3%) (17907 N (50%)
1.925 T
(55%) 59
(50%) >
1.925 (20%)
(10%) —
TN
L5-E 12-02%)—— L5 |
224 neurons 0_9_(10%> “\ 56 neurons ’,“
(40% of N) (10%ofN)<
1.7 (9%) 1.2 (60%)

Figure 2.1: Structure of the data-based microcircuit model. The connection arrows are
labeled with the connection strength (mean amplitude of post-synaptic po-
tentials (PSPs) in mV, c.f. parameter A in Table 2.5) and the connection
probability (in parentheses). Red arrows represent inhibitory connections
and excitatory connections are black. The excitatory input connections are
represented as grey dashed arrows. Neuron numbers are based on a network
size of N = 560 neurons. C.f. Figure 1, original publication (Hausler and
Maass, 2007).

Data-based circuit The data-based model consists of three layers, each divided into an
excitatory and an inhibitory population. Figure 2.1 illustrates the network’s connectivity
structure; a specification of the parameters can be found in Tables 2.4 and 2.5. Since
the data on which the circuit is based comes from biological systems with a much larger
number of incoming connections per neuron, the synaptic weights in the model are scaled
up by a factor Sgw to obtain a reasonable network activity. In the paper, the value of
this scaling factor is given as 60000/N (about 107 for N = 560), but in the published
code this parameter is calculated as 66825/N (about 119 for N = 560). We use the
second value in our implementation because it gives a network activity closer to the
reported one. The distribution of degrees for this connectivity model (and all following
models) can be seen in Figure 2.2.

33

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

L2/3-E L2/3-

0.02 A 1
0.01 A 1
0.00 T T T T T

L4-E L4-I

probability
o
o
w

0.06

o o
o o
» (5]
L !
.

0.03 A 1

probability

o o

o o

=R N
. .
.

0.00 T Y T T T T T T T T
L5-E L5-I

0.06

data-based
amorphous
degree-controlled

degree-controlled
w/o io

small-world

o o

o o

e (5]
L !

0.03 A 1

probability

o o
o o
et o
A
.

0.00 . . : . /\
0 50 100 150 200 250 300 O 50 100 150 200 250 300
indegree + outdegree indegree + outdegree

Figure 2.2: Histograms of degrees (number of incoming and outgoing connections per
neuron) per population for each circuit. Values are aggregated for 100 runs
with different seeds for each model. C.f. Figure 7, original publication
(Hausler and Maass, 2007).

Amorphous circuit The amorphous circuit is derived from the data-based circuit by
destroying the laminar connectivity structure: for each connection, we replace the source
neuron with a random neuron of the same type (excitatory or inhibitory) and also the
target neuron with a random neuron of the same type (excitatory or inhibitory), whereby

34

2.2 METHODS

the new randomly selected neurons are not constrained to belong to the same layer as
the ones they replace. Multiple connections between the same neuron pair are excluded.
This results in a network that shares most global statistics with the data-based model:
number of synapses, their pre- and postsynaptic neuron type and the distribution of
all synaptic parameters such as the weights and the parameters defining the short-term
dynamics remain unchanged.

Degree-controlled circuit The degree-controlled circuit is also derived from the data-
based circuit by scrambling its connections. However, in this network, we ensure that
the number of incoming and outgoing connections (the degree) for each neuron remains
unchanged. To achieve this, we randomly select two synapses whose source neurons are
of the same type (excitatory or inhibitory) and whose target neurons are also of the same
type and exchange the target neurons of these synapses. We continue this procedure
until none of the original connections remain. Just as in the amorphous circuit, the
global statistics of the network are preserved. In addition, the number of incoming and
outgoing connections per neuron is the same as in the data-based circuit.

Degree-controlled circuit without input or output specificity The degree-controlled
circuit without input or output specificity is derived from the degree-controlled circuit
by changing the neurons to which external input is given and from which the states are
read out. We implement this by randomly exchanging the layer assignations of neurons
of the same type (excitatory or inhibitory) after recurrently connecting the network, but
before connecting the external input streams and readouts.

Small-world network As introduced by Watts and Strogatz (1998), the small-world
network is one in which the underlying undirected graph has small-world properties.
Such networks show a higher clustering coefficient than amorphous circuits while keeping
the average shortest path length at a comparable value. Watts and Strogatz define the
local clustering coefficient of a node as the fraction of all possible connections between
the node’s neighbors that actually exist. It represents how close the neighborhood is
to being a clique. The global clustering coefficient of a network is the average of all
local clustering coefficients. The shortest path length between two nodes measures the
separation of nodes and is defined as the minimum number of links required to get from
one node to the other. This shortest path length is averaged over all possible node pairs
in the network. We generated a small-world network using the spatial growth algorithm
proposed by Kaiser and Hilgetag (2004); first we initialize the network by assigning the
position (0.5, 0.5) to a random node, then we perform the following steps:

1. Take a new node and assign it a random position (z,y) with coordinate values
drawn from the interval [0,1].

35

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

2. Connect the new node with all other nodes with probabilities defined by:
P(u,v) = fe~duwv) (2.29)

where d(u,v) is the Euclidian distance between the nodes u and v, 8 is a gen-
eral density parameter and « is a spatial range parameter, which regulates the
dependence of the connection probability on the distance.

3. Repeat steps 1 and 2 until the desired number of nodes has been reached.

By choosing a = 4 and § = 1.32 we obtain small world networks that have a clustering
coefficient around 36% and an average shortest path value of about 1.75 links, comparable
to those of data-based circuits.

To get the final connections for the network, we randomly assign a direction to ev-
ery edge and set the weight and other synaptic parameters according to the neurons’
population affiliations (see Figure 2.1 and Table 2.4). If a neuron pair belongs to two
populations that aren’t connected in the data-based circuit (see Figure 2.1), we ran-
domly draw a weight from connection definitions for the same synapse type (excitatory
or inhibitory). For example, given a connection from L5-E to L4-I, we would randomly
select another excitatory connection such as L4-E to L4-I and use its weight. Since
the other synaptic parameters depend only on the type (excitatory or inhibitory) of the
connected neurons and not on the exact population affiliation, we can read them out
from Table 2.4 as we did for all other connections.

Data-based circuit with static synapses This network is identical to the data-based
circuit but with the dynamic synapse model replaced by static synapses. To achieve a
similar network activity we have to adjust the scaling parameter Sgw. As this value is
not explicitly stated by Héausler and Maass (2007), we tuned this parameter by hand to
obtain firing rates of the network as close as possible to the data-based circuit, under
the condition that no population is silent. This is achieved at a value S§y = Srw/73
(see Figure A.2 in the appendix for the resulting firing rate histograms of all networks).

Data-based circuit with random synaptic dynamics This network is identical to the
data-based circuit, except that the short-term dynamics of the data-based network’s
connections are scrambled. To do this, for each synapse we randomly select one of the
four connection types (EE, EI, IE, IT) independently of the actual source and target of
the synapse. We then draw values for the parameter values U, Tyec, Ttac, and d according
to the corresponding distributions for the selected connection type, with mean values as
given in Table 2.4 and standard deviation factors as given in Table 2.5.

36

2.2 METHODS

1500 training trials 300 test trials

T

8 o O T T 1 O
P A U 1

c TIRIRN AR (NN I O T (T
£8 LTI IOy [N RN

=

SE NI R N RN R I |
I IR I U N I B I 1 1/ 1
LICEEEL T LI T T T AR
LTI e I Y A AT

segment 1 H segment 2 segment 14 H segment 15

‘ 30 ms ‘ 30 ms 30 ms 30 ms

450 ms

>

Random
sequence 0 0 1

Target for delayed Target for undelayed
classification classification

Input to the
network

Figure 2.3: Input generation for spike pattern-based tasks. The first row shows the
different trials of an experiment and the spike patterns below that represent
a zero or one value for each segment of a single trial. These spike pattern
templates are identical for all trials. The spike patterns at the bottom are
chosen based on and therefore represent the randomly generated sequence
of zeros and ones underneath, which also define the target for the readout
training (value of segment 14 for delayed classification and segment 15 for
the undelayed classification). We give a jittered version of these spike trains
to the network (jittering is not shown). C.f. Figure 4, original publication
(Hausler and Maass, 2007).

2.2.2 Tasks

H&usler and Maass (2007) implemented several different tasks to evaluate the computa-
tional performance of the different network models. Some of the tasks are based on the

37

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

classification of precise spatio-temporal spike patterns and for others, the circuits need
to perform computations on the input firing rates of input spike trains whose spikes are
generated by a Poisson process. All tasks are based on inputs given as two input streams
which are connected to the network as shown in Figure 2.1.

Analogously to the scaling of recurrent connections by the factor Sgrw, the weight
values of the synapses from these streams to the circuit are multiplied by their scaling
factors S; and S2. As can be seen in Table 2.5 the values given in the paper differ from
the values in the code; we use the latter in our implementation.

Depending on the task, the input streams consist of either four (rate-based tasks) or
40 (spike pattern classification tasks) spike trains. Per trial, 15 segments with a duration
of 30 ms are generated, resulting in a spike train of 450 ms for each trial. Only the input
for the retroactive spike pattern classification with fixed inter-stimulus input and the
more finely resolved memory tasks, which are both further explained in the next section,
are exceptions to this scheme.

Figure 2.3 illustrates how these input streams are generated for the spike pattern-
based tasks. For each segment, two different spike patterns are generated which encode
either a zero or a one and the randomly generated input value (bottom row of zeros and
ones in the figure) defines which of them is used in the current trial. These two possible
patterns for each segment remain identical for each trial. In this way, a sequence of 15
zeros and ones is translated into a set of spike trains of 450 ms length. In addition,
each input spike is jittered by a Gaussian distribution with mean 0 ms and a standard
deviation of 1 ms. We apply this jittering once per trial to the selected templates and
each neuron connected to the input receives the same jittered version of the spike train.
Even though some tasks are calculated based on only one of the inputs, both streams
are activated and connected all the time, and the tasks are then evaluated for each input
separately.

The tasks are performed by the networks using a reservoir computing approach and
thus require readout neurons. We connect two different readouts to the systems: the
first readout mimics an excitatory neuron of layer 2/3 and sums up the filtered spike
trains of its inputs. Exactly like a normal layer 2/3 neuron, it does not receive input
from all possible sources in a linked population but is randomly connected to a subset of
the units based on the corresponding connection probability. The second readout mimics
an excitatory layer 4 neuron in the same way. We filter the spikes with an exponential
function using a time constant of 15 ms. Note that inhibitory neurons are connected to
the spike filtering devices with a negative weight, resulting in negative values. This is
important because the readout weights are trained with a linear least squares method
with non-negativity constraints. This results in non-negative readout weights and thus
forces the readouts to be in accordance with Dale’s principle (Eccles, Fatt, and Koketsu,
1954), which states that a neuron releases the same set of transmitters at all of its
synapses. The states on which the readouts are trained and tested are the values of
the filtered spike trains at the end of each 450 ms trial. A specification of the task

38

2.2 METHODS

Pars. | Value | Source | Description

Thlter | 1D MS | paper Time constant for spike filtering

Tirain | 1500 paper Default number of training trials

Thest 300 paper Number of test trials
Ngeg 15 paper Number of segments per trial
Tseg 30 paper Duration of a single input segment

Table 2.6: Task and training parameters.

parameters can be found in Table 2.6.

Spike pattern based tasks We implemented three main spike pattern tasks: spike pat-
tern classification tcl;(¢), where i denotes the input stream for which the classification is
performed, delayed spike pattern classification tcl;(t — At), and the exclusive-or (XOR)
task. The inputs for all of these tasks are exactly the same; the difference lies in the
task-specific training of the readout weights. For the instantaneous spike pattern clas-
sification, the readout weights are trained on the prediction of the value (0 or 1) of the
last segment of each trial (segment 15), whereas the target of the delayed classification
is the value of the penultimate segment (segment 14), see Figure 2.3.

In a further set of experiments that go beyond the original study, we use a step
duration of 5 ms instead of the standard 30 ms and classify the spike patterns of all 15
segments. As these tasks are all based on only one input, we evaluate them for both
input streams separately.

In contrast to this, the XOR task is computed based on the value of the last segment
of both input streams. To evaluate the task performances we use a threshold of 0.5 to
fix the readout predictions to values of zero or one and calculate the kappa coefficient
between the target output and the predicted output. The kappa coefficient is calculated
as:

Pk P

F= e (2.30)

where Py is the agreement between the target and the observed prediction and Pp is
the chance agreement.

In addition to these three task types, we also implemented the retroactive spike pattern
classification with fixed inter-stimulus input, which Hausler and Maass (2007) use to
evaluate the training convergence in dependence on the number of training trials. The
task is to classify spike patterns consisting of four spike trains with a duration of 100 ms
after an intervening fixed spike pattern of 100 ms was given to the network in every
trial. We implemented this by setting the segment duration to 100 ms, the number of
segments per trial to two, the input dimension to four, the second input value of every

39

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

trial to zero and the first input value as the target for the readout. We also disabled
spike jittering for the fixed spike trains between the target stimuli.

Firing rate tasks In addition to the spike pattern-based tasks, computational tasks were
also defined using time-varying firing rates. The structure of the input streams is similar
to the one used in the previously described tasks and the visualization in Figure 2.3.
However, instead of taking one of two pre-generated spike patterns, we define a target
firing rate between 15 and 25 spks/s for each of the 15 segments in both input streams
and generate the spike trains based on this rate. The firing rate of the last 15 ms of each
trial is used as the target for the readouts. To avoid errors resulting from a division by
zero, we ensure that at least one spike is placed in this last 15 ms window of the input
streams. The tasks we implemented are the quotient of the two input streams r1 /79
and the square of their difference (71 — 72)2. As the kappa coefficient can’t be used for
these analog prediction tasks, we evaluate the performance on the basis of the Pearson
correlation coefficient between the prediction and the target.

2.2.3 Simulation and analysis framework

We simulate the spiking neural network experiments with a timestep of 0.2 ms using
NEST 3.0 (Hahne et al., 2021). Since the neuron model we describe above is not included
in NEST, we implement it using NESTML 4.0.0 (Babu et al., 2021). For all other data
analysis and plotting we use Python 3.8.8 and a modified version of the Functional
Neural Architectures library (Duarte et al., 2021).

2.3 Results

2.3.1 Network activity

After establishing that the degree distributions of the various networks were visually
indistinguishable from the published distributions (see Figure 2.2), we then examined
the activity of the data-based network. Figure 2.4A shows a raster plot for the net-
work with input stream two becoming active at 100 ms, and Figure 2.4B provides the
corresponding firing rate histograms for the six populations and, combined, the three
layers (c.f. Figure 2.1). These plots can be compared with Figure 2B,C of the original
publication.

Note that whereas the firing rate histograms in Figure 2.4B are very similar to those
shown in the original paper, the raster plot in Figure 2.4A exhibits some discrepancies.
Most notably, the latency of network activity is longer in our implementation than in the
original. Only a few inhibitory layer 4 neurons show earlier activity, and although both
figures are based on trials of only 450 ms, this behavior is consistent in our experiments.
Less consistent is the measured firing rate of layer 5. In contrast to the original study,

40

2.3 RESULTS

A B exc. inh. both
L2/3 pu
)
., | Y
L4
b
=i 1
L5 A
b
0 200 0 50 1000 50 1000 50 100

duration [ms] firing rate [Hz]

Figure 2.4: Activity of the data-based circuit. A: Raster plot for the data-based circuit
after input stream two was activated at 100 ms. Excitatory neurons are black
and inhibitory neurons are red. B: The corresponding firing rate histograms
for each population and layer. C.f. Figure 2B and 2C, original publication
(Hausler and Maass, 2007).

which reports a stable firing rate of around 8.5 spks/s in this layer, we observe a range of
firing rates between 3 and 9 spks/s for differently seeded runs. A possible explanation for
these discrepancies is that in the original code, the values of Fy; and Vy, are transformed
into a different simulation voltage range to compute the non-inactivating K+ current
Iy;. For this transformation, values of —70 mV for the resting potential and —40 mV
for the threshold potential were used, rather than the values used in the rest of the
study (=80 mV, —30 mV, see Table 2.1). In our implementation, we elected not to
include these transformations in the neuron model, as we could determine neither a
biological basis nor a computational advantage for so doing; as shown in the following
sections, a qualitative reproduction of the task performances is achieved without such
transformations.

2.3.2 Task performance for the circuit variants

Figure 2.5 shows the results of the seven main tasks for the data-based and the amor-
phous circuits. Although the performance values are not identical to the ones in the
original study, the values are close and qualitatively reproduce the key finding that the
data-based circuit outperforms the amorphous control circuit in every task. The main
difference between our results and those reported in the original study is our compara-
tively low performance at rate-based tasks and the delayed spike pattern classification
of input stream one (for both circuits).

Additionally, Figure 2.6A shows the performance of the data-based and amorphous
circuit for the retroactive spike pattern classification task with fixed inter-stimulus input

41

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

performance

performance

layer 2/3 readout

1.0

0.8 1

0.6

0.4 4

0.2 1

T .

0.0

teli(t) tel(t — At) telo(t) tely(t — At) rl/r2 (rl —12)?

layer 5 readout

1.0

0.8

0.6 1

0.4

0.2 1

[data-based
EE 2morphous
no noise

iaf

W ..

0.0

| teli(t) tel(t — At) telo(t) telh(t — At) XO rl/r2 (11 —12)?

spike pattern tasks rate tasks

Figure 2.5: Performance of trained linear readout neurons in layers 2/3 and layer 5 for

42

the classification tasks on spike patterns and computations performed on the
rates of the two input streams (see Section 2.2.2), both for data-based lam-
inar microcircuit models (gray bars) and for the amorphous control circuits
(scrambled laminar structure; black bars). Light purple bars represent the
results for networks with neurons without conductance noise and light or-
ange bars networks consisting of integrate-and-fire neurons. Error bars are
the standard errors of mean. All values are averaged over 20 runs. C.f. Fig-
ure 5, original publication (Hausler and Maass, 2007), likewise averaged over
20 runs.

2.3 RESULTS

classification error

classification error

0.0

ayer readou ayer reaaou
layer 2/3 readout B layer 2/3 readout
0.75 1
3
c
£ .50 -
kS
g 0.25
T T T T
100 200 300 400 0.00 -
S XSS O
layer 5 readout R R SN
layer 5 readout
0.75 - N data-based circuit
g ’ HEl amorphous circuit
c
£ 0.50
T T T T ‘~:°:
100 200 300 400 g 025 7
number of training examples
--F-- training error for data-based circuits 0.00
—J— test error for data-based circuits \(,QQ “)(OQ (-J‘OQ %,\/Q \/QQQ q/QQQ Q)QQQ QQQQ
--F-- training error for amorphous circuits Y
—F— test error for amorphous circuits number of neurons in the circuit

Figure 2.6: A: Training and testing error of readouts from data-based and amorphous

circuit models as functions of the size of the training set. 300 trials are always
used for testing. Error bars indicate the standard error of means. Values
are averaged over 30 runs. C.f. Figure 8, original publication (H&usler and
Maass, 2007), averaged over 20 runs. B: Performance (kappa coefficient) on
the XOR task of projection neurons in layers 2/3 and layer 5 for different
circuit sizes, with and without a data-based laminar structure. All values are
averaged over 30 runs. Error bars indicate the standard error of the means.
C.f. Figure 6, original publication (Hausler and Maass, 2007), averaged over
10 runs.

43

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

. . Data- | Amor- | Small- DC Rand. Static
Tasks/circuits based | phous world bC (no io) | dyn. syn.
telp (t) (L23) 0.87 -0.305 -0.17 -0.106 -0.235 -0.117 0.013
tela(t) (L23) 0.947 | -0.175 -0.171 -0.097 -0.168 -0.44 -0.067
tely (t) (L5) 0.693 | -0.115 -0.145 -0.106 -0.049 -0.407 -0.069
tela(t) (L) 0.968 -0.084 -0.117 -0.065 -0.191 -0.469 -0.159
tely (t—A¢) (L23) | 0.389 -0.224 -0.024 -0.061 -0.131 +0.021 | -0.056
telp (t—AE) (L23) | 0.352 -0.158 -0.02 +0.071 | -0.081 -0.185 -0.091
telp (t—At) (L5) 0.418 | -0.217 -0.073 -0.117 -0.101 -0.136 -0.258
tela (t—AE) (L5) 0.49 -0.175 -0.119 -0.007 -0.187 -0.259 -0.196
XOR (L23) 0.304 | -0.097 -0.145 -0.053 -0.114 -0.174 -0.061
rl/r2 (L23) 0.058 -0.05 +0.083 | +0.043 +0.076 +0.073 -0.007
(r1 —r2)2 (1.23) 0.1 -0.056 +0.026 +0.028 | +0.012 +0.006 -0.013
XOR (L5) 0.383 | -0.132 -0.206 -0.102 -0.198 -0.206 -0.095
rl/r2 (L5) 0.051 -0.04 +0.069 +-0.064 +0.116 | +0.029 -0.025
(rl —r2)2 (L5) 0.11 -0.052 +0.026 | +0.017 +0.014 -0.02 -0.067
memory 0.43 -0.183 -0.07 -0.001 -0.147 -0.17 -0.135
nonlinear 0.168 | -0.072 -0.025 -0.001 -0.016 -0.049 -0.045
other 0.938 | -0.162 -0.144 -0.083 -0.196 -0.373 -0.093

[[all [0.463 [-0.120 [-0.072 [-0024 [-0105 [-0.176 [-0.084]

Table 2.7: Performance measures for all networks and all tasks. Spike-based tasks are
evaluated with the kappa coefficient and rate-based tasks with the correla-
tion coefficient. The data-based column gives the absolute value and the
other columns show the difference from this value. The best performance per
task /row is marked in bold. Grey/blue shading denotes tasks from the cat-
egories memory/nonlinear. All values are averaged over 20 runs (10 runs in
the original paper).

for different numbers of training examples. The original study does not specify which
input stream was used to generate the corresponding figure in their work (Figure 8);
we therefore tested both of them. Our experiments show more similar results for input
stream one, and so we use those results as the basis for Figure 2.6A. As in the original
study, the data-based circuit has a lower test and training error than the amorphous
circuit for all sizes of training set. Taken together, Figure 2.5 and Figure 2.6A support
the argument put forward by the original study that a laminar structure has a positive
effect on the computational performance of a circuit.

The quantitative performance measures for all circuits (Section 2.2.1) and all tasks
(Section 2.2.2) can be found in Table 2.7. These results can also be expressed as per-
centage difference from the performance of the data-based circuit; this analysis is given
in Table 2.8.

The last four rows of both tables show results averaged over both readouts and over a
category of tasks. The memory row averages over all tasks for which the networks need
to memorize earlier inputs (tcl; (¢t — At) and tcly(t — At)), the nonlinear row averages

44

2.3 RESULTS

Task/circuits Amor- | Small- DC DC) Rand. | Static
phous | world (no io) | dyn. syn.
teli (t) (L23) 35.1 -19.6 122 | -27.0 134 15
tela () (L.23) 1185 181 2102 | -17.8 465 | 7.1
telp (t) (L) -16.6 -20.9 -15.3 -7.2 -58.7 -10.0
tela (t) (L) -8.6 -12.1 -6.6 -19.6 -48.4 -16.4

[all

| -27.9

| -15.5

| -5.2

| -22.6

| -381

| -18.2

Table 2.8: Performance measures for all control networks and all tasks expressed as the
average difference (in percent) from the performance of the data-based circuit.
Positive values indicating a performance improvement with respect to the
data-based circuit are marked in bold. All values are averaged over 20 runs.
C.f. Table 2 in original publication (Hausler and Maass, 2007).

45

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

the results over the tasks based on nonlinear computations (XOR, r1/r2 and (r1 —12)?)
and the other row summarizes all other tasks (tcly(t) and tcla(¢)). The last row of the
tables averages the results over all tasks. In the original paper only the last four rows
of Table 2.8 were presented (Table 2 in Hausler and Maass, 2007).

According to the averaged results, the data-based circuit outperforms all other circuits
on all tasks. Here we have broad agreement with the original study, in which only the
degree-controlled network had slightly superior performance in two task categories.

Examining the disaggregated data in Table 2.8, we observe that there are 17 instances
where a control circuit exhibited superior performance to the data-based circuit. In
particular, most networks surpass the data-based circuit on all rate-based tasks. How-
ever, as Table 2.7 shows, the performance for these tasks is very low for all networks,
which means that even a small absolute increase in the correlation coefficient results in
a substantial percentage increase. We therefore consider this partial contradiction of the
original study to be neuroscientifically uninteresting.

In addition to the rigorous analysis of the effect of circuit connectivity, the original
study also considered the influence of network size by increasing the number of neurons
within each population of the circuit. Figure 2.6B shows the dependence of the XOR task
performance as a function of the number of neurons in the circuit. As with the original
study, our results show a systematically better performance for the data-based circuit
over the amorphous circuit, and an increase in performance for both circuit types with
increasing circuit size up to 5000 neurons. While the data-based network still benefits
from increasing the network size to 10000, the performance of the amorphous circuit
reaches its maximum value at 5000 neurons. This effect could not be observed in the
original study, as the maximum size of the network examined was 1000 neurons.

2.3.3 Robustness to neuron model simplifications

The original study demonstrated the computational benefits of lamina-specific connec-
tivity using a fairly complex neuron model. We therefore hypothesize that the details
of the neuron model are not relevant to this key finding. To test this hypothesis, we
examine the robustness of our dynamical and computational results to variations in the
neuron model (see Section 2.2.1). First, we consider the intrinsic noise mechanism. As
shown by the raster plots and firing rate histograms in Figure 2.7, the firing activity in
the networks does not change significantly for the data-based and amorphous circuits
in the absence of intrinsic noise. Moreover, we observe that the data-based connectiv-
ity structure is still superior to all other connectivity patterns in all task types, which
Figure 2.5 (light purple bars) illustrates for the comparison with the amorphous circuit
(see Table A.1 in the appendix for the summarized performance measures for all circuit
types). Figure 2.5 also shows that networks without noise (both data-based and amor-
phous circuits) perform slightly better than their noisy counterparts in most of the tasks
performed, and even considerably better in the nonlinear XOR task.

46

2.3 RESULTS

original disabled noise iaf neuron
4 N\
L2/3 L2/3 4 L2/3
L4 Lad L4
L5 L5 A1 L5
© — . T — = — ‘- L T - et = L
g 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
] duration [ms] duration [ms] duration [ms]
<
E exc. inh. both exc. inh. both exc. inh. both
© Q Q Q
o g L 3 ,..L. . Ykl
- gl -
e S S
0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz])
4 N\
L2/3 L2/3
L4 L4
L5 L5
%] g Cten) : . . EE S ; L
S . T T t T T T T T . T
() 0 100 200 300 400 0 100 200 300 400 100 200 300 400
e duration [ms] duration [ms] duration [ms]
[oX
o
o exc. inh. both exc. inh. both exc inh. both
E Q Q Q
© Sl L | 5l e | 5] A
3 _1_ J_ 3 _L J_ 3 _L | T— I_J_
)] -
L
- - -
0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
¢ firing rate [Hz] firing rate [Hz] firing rate [Hz]

Figure 2.7: Raster plots and firing rate histograms for the data-based and amorphous cir-
cuits for the three different neuron types (original: Hodgkin-Huxley neurons
that were used in the original publication, disabled-noise: Hodgkin-Huxley
neurons without intrinsic conductance noise, iaf neuron: integrate-and-fire
neurons). The spikes of the inhibitory populations are colored red, while
those of the excitatory populations are shown in black. As in Figure 2B and
Figure 2C, original publication (H&usler and Maass, 2007), for the raster
plots input stream two starts at 100 ms.

Second, we reduce the neuron model from a Hodgkin-Huxley to a much simpler
integrate-and-fire neuron model. To obtain firing rate ranges in the data-based circuit
as close as possible to those of the network with Hodgkin-Huxley neurons, we adjust
Vinresh Of the integrate-and-fire neuron model to a different value for each population

47

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

(see Section 2.2.1 for the parameter values and Figure A.3 in the appendix for the firing
rate distributions). The top right part of Figure 2.7 shows the corresponding raster and
firing rate plots.

Also among the circuits consisting of integrate-and-fire units, the data-based network
has the best task performance (see Table A.2 of the appendix for the summarized per-
formance measures). Moreover, Figure 2.5 shows similar results for the Hodgkin-Huxley
neural networks without noise (light purple bars) and the iaf circuits (light orange bars),
with the XOR task values of the amorphous circuits showing the most noticeable differ-
ence.

We conclude that these results confirm our hypothesis that the superiority of the
data-based connectivity structure does not depend on the specifics of the neuron model.
Moreover, they reveal that a reduction in complexity even leads to an increase in per-
formance on the tasks conducted. We hypothesize that the dynamics of the Hodgkin-
Huxley model, which are much more intricate than those of integrate-and-fire neurons,
may effectively act as an additional noise source that reduces task performance.

2.3.4 Detailed memory tasks

To get further insight into the memory capabilities of the networks, we devised a mod-
ification of the retroactive spike pattern classification task, namely reducing the step
size from 30 ms to 5 ms and classifying the spike patterns of all 15 segments (see Sec-
tion 2.2.2). This gives our view on retroactive spike pattern classification a six times
higher resolution with one data point for every 5 ms interval instead of only every 30 ms,
allowing us to determine the memory profile for each circuit variant. Our results for the
more detailed memory tasks are summarized in in Figure 2.8.

We observe that all network variants require some processing time to reach their
peak performance, see Figure 2.8A. For all combinations of network, input stream, and
readout location, the maximum kappa coefficient is reached after a delay of two steps
(10 ms), i.e. the networks have the greatest accuracy in identifying the stimulus inserted
two steps before the current one. The only exception is the layer 5 classification of input
stream 1 of the data-based network with random synaptic dynamics, which reaches its
maximum after a delay of three steps (15 ms). However, in general, the performance
increases steeply up to delay 2 (10 ms) and then decreases more slowly until all circuits
reach a value close to zero at delay 10 (50 ms).

Notably, the performance of the undelayed classification is worse than that of the
short-term delayed classification, in contrast to the results presented in Figure 2.5 for a
step of 30 ms. This can be understood by considering that the networks need more than
5 ms to process the input and generate an informative response from the few neurons on
which the readouts are based. One reason for this is synaptic delays since for example
excitatory-to-excitatory synapses already require an average of 1.5 ms to transmit a
single spike from a presynaptic to a postsynaptic neuron. With the longer step of 30 ms,

48

2.3 RESULTS

A 100 L2/3 readout L5 readout B L2/3 readout L5 readout C
g £ | 2>
© 0.75 - 53 o g ,
z e 2 E g
5 0.50 1 s 2, | © E
put o .
£ = s ol
g 025 : ” é 14 i o3
0.00 0
| o : EEEEEE
1.00 4l D e
v E 0.4
© 0.75 ~ 33 ~ g
g I E €
£ 0.50 s 2 o aE)
£ £ 8 g o2
2 0.25 g1 g
0.00 0- 0.0
0 5 10 150 5 10 15 msLVoQwn=z nmsVUoN0wn=z nUzTWVNoNs
[a)]) [a) %] [a) 0
delay [steps] delay [steps] <° 8 “ v <° 8 = v co 8m<
I data-based (DB) M degree-controlled (DC) I random dynamics (RD) M small-world (SW)

I amorphous (AM) I degree-controlled without i/o (DCio) I static synapses (SS)

Figure 2.8: Results of retroactive spike pattern classification tasks for all network types.
A: Performances (kappa coefficient) for the classification of spike patterns
with a duration of 5 ms at different delays, separated by input stream and
readout (averaged over 40 trials). B: Bars representing the sum of task
performances over all delays for the same task as in A. Error bars represent
the standard error of mean. C: Values from B averaged across all input
streams and readouts. D: Averaged results of the delayed classification of
30 ms spike patterns (data of memory row in Table 2.7).

the network has plenty of time to respond informatively to the undelayed stimulus,
whereas the effects of the previous stimulus have already faded considerably. Likewise,
the longer step duration provides greater possibilities for readout weights to be learned
that accurately distinguish between stimuli, resulting in a better peak performance for
the 30 ms task.

The heights of the bars in Figure 2.8B indicate the sum of the values for all delays
in Figure 2.8A. This illustrates that not only does the peak performance of the circuit
with data-based connectivity surpass that of all other systems at the optimal delay, as
shown in the previous line graph, but also that a more general view encompassing the
task results for all delays reveals the superiority of this circuit. As the data-based circuit
does not retain stimulus information for longer than the other circuits, we conclude that
its superior performance must be due to the laminar connectivity enabling it to generate
more distinct representations of the input stimuli.

Figure 2.8C generalizes this view even further by averaging the results shown in Fig-
ure 2.8B over the input stream and readout location and sorting the networks by perfor-
mance. Here, the degree-controlled circuit follows the best-performing data-based circuit

49

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

and the network with random synaptic dynamics has the lowest result. The next four
systems (SS, SW, AM, DCio; Figure 2.8C) are comparatively at the same level with only
minor differences. Although one can not directly compare the averaged sum over mul-
tiple delays with the performance based on only a single delay, it is interesting to note
that this graph does not display the same order as the results of the previous memory
tasks with the longer step of 30 ms shown in Figure 2.8D and Table 2.7. While in both
cases the data-based circuit is best and the degree-controlled circuit second best, the
difference is much smaller for the original memory tasks and the order of the remaining
networks is different. For both step durations, the amorphous and the degree-controlled
circuit without input and output specificity show results at similar levels to the net-
work with static synapses. For the 30 ms memory task type the small-world network
performs comparatively better than this group, positioning itself in third place, whereas
for the detailed memory tasks with 5 ms resolution, the network with random synaptic
dynamics performs noticeably worse than the other circuits.

Clearly, the stimulus step duration has an effect on the computational capabilities of
the networks and can move a network’s peak performance to different delays. Moreover,
the ordering differences in Figure 2.8C and D suggest that the optimal step duration
for a network depends on the connectivity structure. However, the good performance
of the degree-controlled circuit and especially the data-based circuit for both step dura-
tions tested show that both of these systems have a lower dependence on this duration
parameter and can more robustly handle stimuli of different lengths.

2.4 Replicability

Our results in this chapter demonstrate that we could replicate the circuits of the original
study and both confirm and strengthen their key findings. However, we encountered
significant challenges during this process and it would have been essentially impossible if
we had only had the paper as a source of information. As can be seen in the parameter
tables 2.1, 2.4 and 2.5, several of the neuron and synapse parameters were not given in
the paper, or a different value was reported than was used in the code. For example,
only by examining the code could we determine the specification of the synaptic delay,
namely that it is drawn from a random distribution with a mean value that depends on
the connection type (EE, EI, IE, II).

Likewise, the synaptic time constants were only given in the code and the parame-
terization of the neuron ion channels showed some discrepancies. In addition to minor
differences in the parameters of the Na™ ion channel, there was greater variation in the
definition of the K* ion channel, which is responsible for the current I;. Hiusler and
Maass (2007) provide peak conductance densities for the different ion channels and a
single membrane area, which can be used to calculate the peak conductance of every
channel. Examining the code reveals that for the standard sodium and potassium ion

50

2.4 REPLICABILITY

channels, the reported membrane area is used to calculate the conductivity, however, it
is based on a different (and unreported) area value for the other potassium ion channel
(responsible for Iyr). In addition, the conductance density of the latter channel is twice
as large as that stated in the paper and different factor r was used in equations 2.15
and 2.16 defining the channel dynamics, which is a deviation that is easy to overlook.
These differences in parameters significantly alter the activity of the network and led us
to disable the M ion channel in early experiments to obtain approximately comparable
network responses.

Besides the difficulty in specifying basic synaptic and neuronal parameters, the scaling
parameters of the synaptic weights SRW, S; and S also caused some problems. All
of them were different from the values reported in the paper and it was hard to track
them down in the MATLAB code because the final scaling parameter values were not
set directly, but defined by somewhat convoluted calculations distributed over multiple
source code files. This was a particularly challenging example of a general problem: as
the code was not executable due to its age, it was not possible to simply output the final
values of variables, or examine the parameters and dynamic variables of the neurons and
synapses. Instead, calculations had to be painstakingly reconstructed by analyzing the
source code and replicating the logic.

As a final example of the nature of the replication challenges, the input scaling pa-
rameters in the code are approximately - but not exactly - 1000 times smaller than given
in the paper, because the input weight to be scaled is approximately - but not exactly -
1000 times bigger than reported. In contrast to the weights inside the network, which
are defined in the code as amplitudes of post-synaptic potentials in the same way they
are given in the paper, the input weights are defined as a post-synaptic current of 30 nA.
This results in the following PSP-amplitude:

PSCinput
gL
instead of the reported 1.9 mV. However, the combination of these differences results
in a scaled input weight with the same order of magnitude as the one reported in the
paper.

These hurdles to replicating the paper provide a good demonstration of the argument
presented in Pauli et al. (2018): whereas provision of source code is the absolute mini-
mum requirement for replicating a study in computational neuroscience, the process is
rendered much simpler if appropriate care is taken with the code implementation, e.g.
writing modular, encapsulated, well-commented code with separation of parameters and
program logic. Moreover, many of the hurdles we encountered would have been substan-
tially reduced if the code had been executable. To foster reproducibility, we therefore
recommend - again following Pauli et al. (2018) - that models should not be expressed
in homebrewed code, as this is unlikely to be maintained. Instead, developing the model
using a simulator that is actively developed by a community reduces the maintenance

PSPyt = = 1.924779612734342 V (2.31)

51

CHAPTER 2 INFORMATION PROCESSING IN CORTICAL MICROCIRCUITS

load and increases the likelihood that the model will remain accessible, executable, and
part of the scientific discourse for years to come.

2.5 Conclusion

In this chapter, we have reproduced the cortical column model of Hausler and Maass
(2007) and their experiments with it. By doing so, we provide the scientific community
with a reusable and customizable model implementation that can be leveraged for further
experiments to investigate the computations performed by such neural microcircuits.
The model consists of noisy Hodgkin-Huxley neurons connected by dynamic synapses,
whose connectivity scheme is based on empirical findings from intracellular recordings.
Our analysis confirms the key original finding that the specific, data-based connectivity
structure enhances the computational performance compared to a variety of alternatively
structured control circuits. For this comparison, we use tasks based on spike patterns and
rates that require the systems not only to have simple classification capabilities but also
to retain information over time and to be able to compute nonlinear functions. Going
beyond the scope of the original study, we demonstrate that this finding is independent
of the complexity of the neuron model, which further strengthens the argument that it
is the connectivity that is crucial. Finally, a detailed analysis of the memory capabilities
of the circuits reveals a stereotypical memory profile common across all circuit variants.
Notably, the circuit with laminar structure does not retain a stimulus any longer than
any other circuit type. We therefore conclude that the model’s computational advantage
lies in a sharper representation of the stimuli.

52

Chapter 3
Information Processing Capacity

In the previous chapter, we implemented and analyzed a cortical microcircuit model and
control models derived from it. However, we based this analysis purely on the evaluation
of computational tasks. One metric that enables a much deeper analysis that reveals in
detail the functions dynamical systems compute is the information processing capacity.
This method not only provides us with information about the complexity of a system’s
computations in an interpretable form but also indicates its different processing modes
with different requirements on memory and nonlinearity. In the following chapter, we
provide a guideline for adapting the application of this metric to continuous-time systems
in general and spiking neural networks as well as the microcircuit model of Chapter 2
in particular.

3.1 Introduction

Evaluating the functional capabilities of input-driven systems is crucial for the study of
neural and neuromorphic systems alike. Specifically, it is vital to compare systems quan-
titatively, to uncover relationships between computations and structural or dynamical
features, and to optimize their performance. For this purpose, benchmarking a system’s
performance on standard tasks is illustrative but insufficiently informative, as it cannot
give a comprehensive profile of the functions conducted.

Therefore, in this chapter, we investigate a system-agnostic metric to quantify the
capacity of a dynamical system to perform arbitrary transformations on an input, i.e.
its information processing capacity (IPC). Originally proposed in Dambre et al. (2012),
we extend the notion of passive fading memory (Jaeger, 2001a) to nonlinear transfor-
mations of increasing degrees of complexity. In the original formulation, the evaluation
of the processing capacity is based on discrete inputs and discrete system states. For
continuous-time systems we expand discrete inputs to continuous values and compress
sections of continuous system states into discrete steps. Based on this, we study the
effects the duration of these sections has on the capacity functions computed by the sys-
tem. Since we need to impose few restrictions on systems when evaluating this metric,
it is ideal for analyzing biology-inspired systems, such as spiking neural networks.

53

CHAPTER 3 INFORMATION PROCESSING CAPACITY

We apply the method to systems of gradually increasing complexity and investigate
how different parameterizations of the signal encoding influence the outcomes. First, we
analyse the time-discrete echo state network (ESN), before we consider the continuous-
time Fermi-Pasta-Ulam-Tsingou (FPUT) oscillator chain. With a balanced random net-
work (BRN), we take the step to spiking neural networks (SNNs), in order to consider a
more complex representative of these systems in the next step with a model of a cortical
column.

Since there is no generally accepted way to pass real numbers to SNNs, we evaluate
different methods to achieve this. The signal can be represented by rates of spike trains
or by changes in an injected current, it can be spatially encoded or given to all neurons
simultaneously, either as a fixed value or multiplied by randomly drawn weights.

Using a direct current signal is motivated by the fact that it represents a simple and
precise way of input. However, this mechanism is biologically implausible, since a large
part of the communication in the brain takes place via sequences of spikes. To stay close
to the biology of the brain and thus increase the probability of revealing insights into its
function, it is desirable to rely on signal transmission via spikes. The reasoning behind
the encoding methods is similar. The simplest option is to apply the same signal to every
neuron. If this input causes too little variability in the network, the next possibility is to
weight the inputs to the neurons unequally. However, methods, in which all neurons are
stimulated simultaneously, stand in contrast to the biological implementation, in which
in most cases only a small part of the neurons is activated. Therefore, from a biological
point of view, spatial encoding, which always excites only a small part of the network,
is preferable to the other methods.

SNNs commonly receive spike trains as background input to bring them to a suitable
working point in terms of firing activity and spiking statistics. We need this background
activity because we simulate networks that represent a very small part of the brain and
cannot be considered as completely independent components. They receive spikes from
their environment, which we approximate by random Poisson spike trains. This back-
ground noise reduces the processing capacity (Dambre et al., 2012), as it introduces an
additional input that is not taken into account when evaluating the computed trans-
formations of the main inputs. Therefore, we investigate ways to reach an appropriate
working point without introducing an untreated input signal.

The information processing capacity (Dambre et al., 2012) is based on linear encoded
inputs. Any nonlinearity in the input encoding distorts the capacity profile and com-
plicates its interpretability. However, there are reasons, such as the desire for biological
plausibility, to analyze the system using nonlinear inputs. For these cases, we provide a
method to remove the effects of such encodings and provide a lower bound on the actual
processing capacity of the dynamical system. This extraction of the encoder capacity
allows to investigate parts of complex dynamical systems separately by considering all
signals entering the subsystem as encoded by the rest of the system. For example, com-
putations of parts of a comprehensive brain model could be studied separately without

54

3.2 METHODS

isolating them from the overall system.

As a last step, we show that the capacity profile correlates with the performances
on tasks of different complexity and with different memory requirements and thereby
emphasize the usefulness of this metric in the characterization of dynamical systems.

3.2 Methods

3.2.1 Information processing capacity

The empirical estimation of the information processing capacity of a dynamical system
quantifies the different processing modes it can employ by determining the number of
linearly independent functions of its input that the system can compute. Figure 3.1 shows
a schematic representation of the metric. The dynamical system under investigation is
passively driven by a time-dependent input signal u(k) of finite total length T'. In this
work the discrete values of u(k) are independent and identically drawn (i.i.d.) from a
uniform distribution over the interval [-1, +1]. The aim of the analysis is to quantify
the system’s ability to carry out computations on u. For that purpose, we gather the
system’s states in response to the input x[u(k)], train linear estimators using the Moore-
Penrose pseudoinverse to reconstruct a set of L target functions y; for [= 1,..., L from
these states and evaluate how well the system is able to reconstruct each function by
calculating the squared correlation coefficient between the target functions y; and the
reconstructed functions z;:

) = cov(yr, z1) (3.1)
var(y;) - var(z;)

The sum of the single capacities Cj over all target functions is the total processing
capacity of the system.

We choose the target functions to be orthogonal to the input distribution. This
orthogonality of the target functions ensures that each independent measurement reflects
an independent transformation that the system can perform. Furthermore, we compute
target functions not only based on u(k), but also on time-delayed versions u(k —1i),Vi €
[0, k], in order to measure the amount of linear and nonlinear memory the system can
maintain. The basic components of the orthogonal target functions that we use in this
work are Legendre polynomials, which are defined by

1 d
= 0 Z 139 (s 4+ 1) (3.2)

where d is the degree of the polynomial. Each unique target function is composed by
selecting a degree d; for each considered delay 7 and building the product of the thereby
specified polynomials:

95

CHAPTER 3 INFORMATION PROCESSING CAPACITY

Y = dei (ulk —1])) (3.3)

where Py, are the Legendre polynomials of degree d;. Thus the degree tuple D; =
(dio,di1,dp2,. .., dim,) completely defines a target function y; having a maximum delay
1 = m. The sum of all degrees in D; determines the total degree of the corresponding
target function y;. For example, the degree tuple (2,1,0,4) corresponds to the target
function:

y = Pa(ulk])) - Py (ulk — 1)) - Pa(ulk - 3) (3.4)

which has a total degree of 7. Note that we do not explicitly include the polynomial for
delay ¢ = 2, because its degree is 0 and therefore corresponds to the constant polynomial
Po = 1.

The total degree of a target function specifies the complexity of the required com-
putation (nonlinearity), whereas the delays i specify the memory requirements of the
investigated system. For further details, see Dambre et al. (2012) and Duarte and Mor-
rison (2019).

Since the number of functions in the capacity space is infinite and the computational
resources are finite, we cannot evaluate the capacities for all basis functions. Moreover,
we do not know in advance which functions the dynamical systems can compute, and
therefore we use an exploration strategy to guide our search for nonzero capacities in
the space of target functions, rather than determining in advance which ones we will
evaluate. The basis of this strategy is the assumption that capacities decrease with
the complexity of the target functions and the memory required to compute them. We
increase the degree and delay separately and stop computing more functions of higher
degree or longer delays when the capacity falls below a threshold whose value is on
the order of O(%), where N is the number of readout states per input value. For
more information on the calculation of this threshold, see the supplementary material
of Dambre et al. (2012).

Input encoding for spiking networks

Different dynamical systems may impose very different (physical) constraints on how a
stimulus is encoded. To pass the signal u(k) to continuous time systems, we thus need to
encode this input appropriately depending on the system’s specifications. To do so, we
first define which sub-set of units are to receive input, i.e. we specify the density of input
connections as a fixed connection probability p (see below for model-specific definitions
of the set of potential input units). This results in a random subset of Nj,, = pN units
that are effectively input-driven. We then define a continuous version of the discrete
signal u(k) in a similar way as in Appeltant et al. (2011) and R6hm and Liidge (2018),
ie.

u(t) =u(k)for (k—1)-As <t <k-As (3.5)

56

3.2 METHODS

where As is the stimulus step size and 0 < t < T'As, see Figure 3.1A.

This continuous, time-varying signal is delivered to the system following three different
types of encoding schemes. These were chosen due to the constraints of the systems
under investigation, but are general enough to cover a wide variety of possible encoding
mechanisms in input-driven, continuous, dynamical systems. For the amplitude-value
scheme (Figure 3.1B), the value of u(t) is encoded by amplitude, i.e. u(t) to values in
the range [0, amax] resulting in the scaled amplitude signal:

u(t) +1
CL(t) = (()2) * Qmax (36)
This amplitude signal a(t) is also the basis for the distributed-value scheme illustrated
in Figure 3.1C. Here, encoding variability is introduced by drawing the input weights
from a uniform distribution in [—1,1], i.e. a(t) gets multiplied by a randomly drawn,

target-specific weight w; such that each target neuron j receives a slightly different input.

aj(t) = a(t) - w, (3.7)

The spatial-value scheme (Figure 3.1D) assumes the input can be spatially encoded, i.e.
the target neurons have amplitude-specific receptive fields. The scheme thus considers
different subsets of target neurons are responsive to stimuli of different amplitudes. The
value of u(t) is considered the centre of a Gaussian profile which determines which units
in [1,..., Ninp) receive the input. This encoding scheme is illustrated in the bottom
panel of Figure 3.1. Under this encoding scheme, each input neuron j receives an input
of amplitude:

a](t) _ amaxexp(_j2/2) (] B :u(t)) (38)

oV 2w o

where pu(t) is the distribution’s mean

(u(t) +1)
2

and the standard deviation o is an experimental parameter, which determines the spatial
spread (and overlap) of the input encoding. Note that we do not use periodic boundaries,
in order to be able to distinguish the encoding of u(k) = 1 and u(k) = —1.

Note that for this encoding scheme to target a sufficiently large subset of neurons, we
clip the input connection density to p = 1.

The continuous activity signals a;(t) are converted into input for spiking neural net-
works in two ways (Duarte et al., 2018). In the first method, we interpret amax as a
maximum current, and supply each neuron with a corresponding scaled direct current
a;(t). In the second method, amax is interpreted as the maximum firing rate of a Poisson
generator. Thus, a(t) is converted into the piece-wise rates of an inhomogeneous Poisson
generator providing independent spiking input to the input neurons.

u(t) = * Ninp (3.9)

o7

CHAPTER 3 INFORMATION PROCESSING CAPACITY

3.2.2 Tasks

We let the dynamical systems solve various tasks and encode the required inputs as close
as possible to the way we described for the capacity in the previous section. Continuous
inputs (see NARMA task in Section 3.2.2) are encoded exactly like the inputs for the
capacity calculations. For multidimensional binary inputs, we need to adjust the encod-
ing. In distributed-value encoding, n-dimensional inputs are split into n input streams
that are separately connected to the system (each with its own connectivity matrix).
The value of the activated input streams is set to amax and the value of the inactivated
inputs is set to 0. In spatial-encoding, each active input is encoded by a Gaussian profile
(see Equation 3.8) with a fixed value for its mean. The mean values of the n inputs are
evenly distributed over the input space and inactive streams do not cause any activation
of the system.

XOR task variants

As representatives of tasks requiring nonlinear computations, we use exclusive-or (XOR)
and variations thereof. XOR is based on two binary inputs and results in 1 if the inputs
are different and in 0 if they are not. A more complex version is the nested calculation
of XOR tasks (XORXOR). Unlike the normal XOR task, we need four input signals to
perform this task:

XORXOR(inpy, inpe, inps, inpg) = XOR(XOR(inpy, inps), XOR(inps, inps)) (3.10)

The temporal exclusive-or (tXOR) task is based on a single input stream and requires
additional memory. We define tXOR as the XOR of the current input and the input of
the previous time step. We evaluate all XOR variants with Cohen’s kappa score.

Delayed classification

In this task, we use ten different input signals, only one of which is active in each step.
We then evaluate for how many delay steps in the past a system can identify above
chance level which of these ten one-hot encoded signals was active.

NARMA time series

The nonlinear autoregressive moving average (NARMA) task tests systems for both
nonlinear computation and memory, and its evolution is described by the following
equation:

n—1
y(t+1) = ay(t) + Byt — 1) (Z y(t — z)) +yu(t —n+ 1u(t) +€ (3.11)
i=0

58

3.2 METHODS

We use («, 3,7,¢) = (0.2,0.004,1.5,0.001) and time lag n = 5 as parameter values
and evaluate the results with the squared correlation coefficient.

3.2.3 Investigated models
Echo state network model

The echo state network (ESN), which Dambre et al. (2012) also used as an example,
is a simple, discrete-time recurrent neural network. The evolution of its N = 50 state
variables z; is given by:

N
zi(k+1) = tanh(p Y wiz;(k) + wiu(k)) (3.12)

j=1
where p is the feedback gain that scales the recurrent weights w;; from unit j to
unit ¢, and ¢ is the input gain that scales the weights v; from input u(k) to unit i. We
initialize both the recurrent weight matrix and the input weights with values drawn from
a uniform distribution between —1 and 1. In addition, we orthogonalize w and scale it
to unit spectral radius. To calculate the processing capacity, and given that this system
is used as a baseline, we consider all N units receive the input directly, without further
scaling or input encoding, as shown in Equation 3.12. For the capacity experiments in

this work we use T' = 100, 000 input steps.

Fermi—Pasta—Ulam-Tsingou model (FPUT)

The Fermi-Pasta-Ulam-Tsingou (FPUT) model describes a one-dimensional string of
coupled oscillators and was originally studied to investigate the equipartition of energy
among its degrees of freedom (Fermi et al., 1955). As linear forces between neighboring
oscillators lead to an analytically solvable system, several nonlinear interactions were
studied in the original paper. For our purposes, it is sufficient to consider quadratic
nonlinearities, as they appear in the a-FPUT model.

In contrast to the original paper, however, we are not interested in a closed system,
but an input-forced system. We drive the system via an external time-dependant field
a(t) coupling to all oscillators equally. Different inputs are then represented via different
values of a, whereby we ensure (a(t)); = 0, i.e. we consider an amplitude-value encoding
scheme and a dense input connectivity, p = 1. To deal with the resulting energy put
into the system we also introduce a dampening term with decay constant 7.

These considerations lead to the following differential equation for the oscillators

I; = ($i+1 + XTi—1 — Ql'i) + a((xiH — xi)2 — (a;i_l — xZ)Q) — % - a(t), (313)

where x; is the deflection of oscillator ¢ from the rest position. For the experiments we
used a = 0.25, 7 = 10 and T = 100, 000 input steps.

59

CHAPTER 3 INFORMATION PROCESSING CAPACITY

Balanced random network model

The simpler spiking neural network we use in this study is a balanced random net-
work (BRN) (Brunel, 2000) consisting of N = 1250 leaky integrate-and-fire neurons,
sub-divided into a population E of Ng = 1000 excitatory neurons and a population
of Ny, = 250 inhibitory neurons. The connections between these neurons are crucial for
the functionality and dynamics of the network. Excitatory neurons propagate activation
to other neurons, while inhibitory neurons function to regulate this activation, prevent-
ing potential runaway excitation within the network. The interplay between these two
types of neurons contributes to the balance that allows the network to perform complex
computations while maintaining stability. After the initialisation of the membrane po-
tential Vi, with values drawn from a uniform distribution between Vi, and Viax, the
neuron dynamics follows

AV _ Tm

Tm

where 7, is the membrane time constant, C}, is the membrane capacitance, Ey, is the
resting membrane potential and I(t) is the synaptic current. Synaptic transmission in
this model is considered to elicit a delta-shaped post-synaptic current:

I(t) = E’U)Z'j(S(t — t;p + d) (3.15)

where t;’-p is the time at which neuron j spikes and d is the synaptic delay. When the
membrane potential reaches a fixed threshold Vi, it is set back to the reset potential
Vieset and stays at this value for a refractory period 7f. Recurrent connections among
excitatory and inhibitory populations are established to maintain fixed in-degrees of Cexc
(excitatory synapses) and Cyyy, (inhibitory synapses). To compensate for the effect of the
larger excitatory population, the weight w;,, of inhibitory synapses is ¢ times stronger
than the excitatory one wexc.

In order to obtain responsive networks that operate in biologically meaningful regimes
(see Brunel (2000)), an additional background input is necessary. Besides the input
signal u(t) described in Section 3.2.1 that we potentially give to all excitatory neurons
(based on connection probability p), every neuron in this model is driven by time-varying
spikes that are connected with the same weight wey. as excitatory recurrent synapses and
exhibit a firing rate vyeise. We use two different methods to generate these background
spike trains. In the changing noise version, we use random Poisson spike trains whose
spike times vary for each input step. Since we must consider each source of randomness
that varies for each step as an additional input to the system that reduces the maximum
possible processing capacity, in the frozen noise experiments we generate a single Poisson
spike pattern of length As per neuron and repeat it for each step. As readout values for
the capacity calculation, we use the membrane potentials of all 1000 excitatory neurons

60

3.2 METHODS

to represent the state of the system after each of the 7' = 200, 000 inputs. Table B.1 in
the appendix lists all parameter values for this network.

Cortical microcircuit model

The more complex spiking neural network used in our analysis is the cortical microcircuit
model introduced by Hausler and Maass (2007) and subjected to additional investigation
in Chapter 2 In the first experiments in Chapter 2, the network consists of conductance-
based Hodgkin-Huxley neurons equipped with an additional intrinsic noise mechanism.
However, we have shown that even significantly simplified integrate-and-fire neurons do
not harm the computational performance of the network and can even increase it (see
Section 2.3.3 and Figure 2.5). We take advantage of this finding and use this simpler
neuron model in the current chapter, which gives us the benefit of a significantly reduced
simulation time.

We use all neurons that are not part of the inhibitory populations of layers 2/3 and
5 as input neurons and feed the signal described in Section 3.2.1 into these units. The
reason for this choice is that in the original model description all but the two mentioned
populations are connected to external inputs. Just as with the balanced random network
described above, we also drive this system using spike generators that generate either
changing Poisson spike trains or frozen noise. In this case, we use two input streams
consisting of 40 spike trains connected to the network in the same way, i.e. using the same
synaptic weights and connection probabilities, as the two input streams in Chapter 2.
Since we have an additional signal driving the activity as described above, we halved the
firing rate of the spike trains to 10 spikes per second compared to the original inputs.
To calculate the capacity, we use the membrane potentials of all 447 excitatory neurons
at the end of each of the T"= 100,000 inputs.

3.2.4 Capacity chance level and cut-off value

The theory of the information processing capacity is based on inputs of infinite length.
Since we have to use finite inputs in our experiments, we must account for a systematic
error in the measured capacities. The chance level of the capacity is given by a chi-
squared distribution x*(N) with mean X and variance 2%]2\[(for details see Dambre
et al. (2012)). m and v are equal to 1 for independent state variables. However, since
we cannot assume the independence of the state variables, we do not know the correct
values for m and v. To define a suitable threshold ¢ below which we set all capacities
to 0, we calculate the value cpq for which the probability P(x%(N) < cinq) = 107# for
m =1 and v = 1. We account for the unknown factors m and n by multiplying cinq by

a constant factor. For the experiments in this chapter, we use the factor 6:

c=06"Cng (3.16)

61

CHAPTER 3 INFORMATION PROCESSING CAPACITY

3.3 Results

i.i.d. random input
u(t) € (—1,1)

[0.12,-0.232,0.97, 0.31, ..

-1

Simulation

input

dynamical

encoding

>

u(t)

o

Delayed inputs
u(At)

neuron neuron
index

index

neuron
index

system

A

|

amplitude value

distributed value

spatial value

—_—u(t)

0As 1As 2As 3As 4As 5As 6As 7As

t

Legendre Polynomials

Py(z)

orthogonal target functions

’ one readout per target function |

VAR RN

Readout Readout Readout

reconstructed functions

\L/

Processing Capacity

cov(Tn,Tn)?

T, = [P, (u(t — i)

Polynomial Computation

J

Cp =

var (T,)-var(Ty)

c=y0,

Capacity Computation

J

Figure 3.1: Schematic of processing capacity. Simulation: real-valued random inputs
between -1 and 1 are encoded and fed into the dynamical system. A: tem-
porally unfolded signal.

the squared correlation coefficient.

We investigate systems of varying complexity (see Section 3.2.3) to uncover relation-
ships between input and system parameter configurations and their processing capacity.
The schematic representation in Figure 3.1 shows how the information processing ca-
pacity tests the systems’ ability to calculate orthogonal polynomial functions based on
different delayed inputs. To provide a comprehensive view of the systems’ computa-
tions, we look not only at the total capacities of the dynamical systems, but also at their

62

B: amplitude-value encoding where each neuron
receives the same input. C: distributed encoding where the encoder is con-
nected to the system by randomly drawn weights.
signal. Polynomial computation: Products of Legendre polynomials with
delayed inputs are calculated as target functions. Capacity computation:
the reconstructed functions are evaluated against the target functions using

D: spatially encoded

3.3 RESULTS

composition, based on the maximum polynomial degree and maximum input delay (i.e.
nonlinearity and memory, see Section 3.2.1).

3.3.1 Discrete time system: Echo state network

Our first case study is a discrete-time recurrent neural network, an echo state network.
This model was chosen to validate the metric implementation because it is neuro-inspired
at a fundamental level and due to the simplicity of the system, it allows fast numerical
simulations and, consequently, detailed analyses.

We extend the ESN experiments conducted in Dambre et al. (2012) by performing a
comprehensive parameter scan, evaluating the maximum degree and delay in addition to
the total capacity, looking at more detailed capacity profiles and comparing the capacity
properties with task performance. Figure 3.2 shows the results of the ESN with varying
levels of detail and focus on different aspects of the capacity. Panel A shows the total
capacity of the ESN as a function of input gain ¢ and feedback gain p (see Section 3.2.3),
which scale the input and recurrent weights, respectively. For feedback gain values below
1, the total capacity is close to the maximum of 50 for all «. The capacity decreases
for higher values of p and low values of ¢. However, the processing capacity metric
(see Section 3.2.1) provides more information about the computations performed by the
system. First, we consider the complexity of the computations, expressed by the ability
to reconstruct polynomials with higher degrees. Although the changes in the left part of
the capacity heat map A (p < 1) seem to be minimal, the degree heat map B shows that
the ability to perform nonlinear computations increases with ¢. This can be accounted
for by the shape of the tanh nonlinearity. For input values close to zero, it is almost
linear, while higher and lower values reach the saturating nonlinearity of the transfer
function. Charts D and E illustrate how increasing values of the input gain ¢ shift the
computational capacity away from linear to increasingly nonlinear computations.

With regards to the delays that are representable by the ESN, i.e. the system’s mem-
ory, panel C shows that even in the parameter range with low ¢ and p > 1, which
corresponds to low total capacity, there are notable changes in the computations. Com-
pared to the homogeneous values for the maximum delay at higher input gains, the
maximum delay increases dramatically with the feedback gain up to p = 1.13. Thus,
these results demonstrate that the system can operate at two extremes - linear, high-
memory processing, and nonlinear, low memory processing - as depicted in F and G, i.e.
there is a tradeoff between memory and nonlinearity.

The method allows us to evaluate the system’s ability to compute nonlinear functions
with different memory requirements. To analyze whether these insights hold for struc-
tured instead of random input signals, we evaluate the ability of the systems to solve
tasks requiring varying degrees of nonlinearity and memory and compare the results with
properties of the capacity profiles. Therefore, we compare the maximum capacity degree
with the performance in the nonlinear exclusive-or (XOR) task and test the system on a

63

CHAPTER 3 INFORMATION PROCESSING CAPACITY

A total capacity B maximum degrees C maximum delays
1.9 19 -
17 3 17 - 400 >
15 > 7 15 - o
13 = 13 - 300 9
Ly S L ot ©
0.9 o A 09 - ;
07 a X oo 200 %
0.5 © 3] 0.5 —
03 S 03 - m “IIII -0 E
01 L R A B I | 0'l_IIMIIIIIII
Gmom NG ML Y0 QW oW mInND®E D0
283852380858 28385AT8TRTLS
ERl el AR R R i R
by oy
D capacities (p = 0.9)
50
@& degree 1 @ degree 2 Y
> 40 > @ degree 3 @ degree 4 %
S 30 i) @ degree 5 @S degree 6 ©
I} ® o
% 20 % degree 7 @ degree 8 5
© © degree 9 @ degree 10 IS
) @S degree 11
MM E~ROOHNN T NONEaS
3883335833 552333533] 3333835333 0033335323
L ﬁ L
F capacities (¢ = 2, p = 0.9) G capacities (¢ = 0.1, p = 1.13)
0.20
B’ Py
'G 'G 0.15
(a2} 3]
o 4- o 0.10
© I
o II III o
0- .-— 7 7 7 0.00 7 T T
12 14 16 0 100 200 300 400 500
delay delay

Figure 3.2: ESN results with increasing level of detail from top to bottom. A-C:
Heatmaps of the total capacity, maximum degree and maximum delay for
a parameter scan over p and ¢ and based on all capacity functions (over all
degrees and delays). D and E: Total and degree-specific capacities as a func-
tion of ¢, for the values of p indicated by the correspondingly coloured arrows
in A-C. Values are summed over all delays for each bar. Note that the ESN
only exhibits capacities of odd degree, because of the odd nature of the tanh
nonlinearity. F and G: Capacity profiles showing total and degree-specific
capacities as a function of delay for the parameter configurations indicated
by the correspondingly coloured arrows in D,E

64

3.3 RESULTS

>
vy)

1.0 1.0 | 70
0y \ >
- 10 @ \ © 13 >
i = 60 g 0
0.8 5 o8 A o
g $ g \ N 115
S 0.6 4 -8 o © \ 50 & c
. = T N N
© |
2 0.4 x B \ *a 7 O
Q v F6 o] \ I =
¢} O 047 (8] =
x IS = ~ 30 5 ‘@
0.2 XOR = Sa % 3
— (%] —_—
XORXOR |- 4 2 0.2 N L 2o £ 3
0.0 _ degree O =
’ T T T T T T T T 1
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
L L

Figure 3.3: Comparison of ESN task results with the processing capacity as a function of
t. A: Performance for nonlinear tasks (yellow and blue curves; left y-axis) and
the maximum capacity degrees (green curve; right y-axis). H: Performance
for memory tasks (gray curves; left y-axis) and maximum capacity delay
(blue dashed curve; right y-axis).

delayed classification task that requires deciding which of ten streams was active before
a given number of input steps. We set p to 0.9 and examine the performance of the task
with varying ¢.

Figure 3.3 visualizes the comparison between the results of the tasks performed by the
ESN and the corresponding capacity properties. Panel A shows how the performance of
the XOR task (yellow curve) increases along with ¢ until it saturates near the maximum
value of one. Since the performance is saturated for a large portion of the parameter
range, we also evaluate the more complex nested exclusive-or (XORXOR) task. The blue
curve in A shows that the XORXOR performance of ESNs is also strongly correlated
with the maximum degree.

Panel B compares the maximum capacity delay (dashed curve) with the classification
performance at different delays (indicated by shades of gray). Increased maximum capac-
ity delay corresponds to an increase in the delayed classification performance. However,
the graph shows that the maximum capacity delay is larger than the delay for which the
system can still perform the classification. One explanation is that the capacity at the
maximum delay is usually small, as shown in Figure 3.2 F and G. In addition, for the
classification not only one but ten input streams with different connection weights are
fed into the network. Nevertheless, the results show that the capacity delay is a good
indicator for the memory in ESNs.

3.3.2 Simple continuous time system: Fermi-Pasta-Ulam-Tsingou model

The previous section demonstrates that the processing capacity of a simple discrete time
system, with respect to complexity and memory, depends on the relative strengths of

65

CHAPTER 3 INFORMATION PROCESSING CAPACITY

C >
s 52l
1.50 ®© ©
o5 “o0- II L III!'-— ; degrees
100; 0 5 10 15 20 25 mmm 1
Tz delay e 2
P2 D .10 -3
—o.so§ Jg '
o5 O 8 0.5
@©
- 0.00 © 0.0
0 20 40 60 80 100
delay
E .
0 c I
2 o
© -
©
£ v 0]
h= =
2 g
4 o n
11§ & 3
+ a4
<
=2
— capacity delay 0 XOR I degrees I delays
==nonlin. 0 delay tXOR Hl capacity I nonlin. cap. delay 5
nonlin. delay 5 = NARMA5
reference

Figure 3.4: FPUT results. A: Heatmap of nonlinear capacity with zero delay, where the

66

maximum amplitude a,,q, is a force given in arbitrary units, the input dura-
tion is given in units of simulation time steps. B: Total nonlinear capacity,
nonlinear capacity with zero delay (dashed) and with at least delay 5 (dotted)
as well as performance on XOR (yellow), time delayed XOR (yellow, dash-
dotted), NARMAS5 (maroon) and NARMAS evaluated on a linear reference
system with perfect memory (light maroon, dashed) over input duration for
fixed amqr = 0.033. The performance of both XOR. tasks is measured using
the Cohen’s kappa score and for NARMA it is the squared Pearson’s corre-
lation coefficient. C, D: Capacity profiles showing total and degree-specific
capacities as a function of delay for the parameter configurations indicated
by the correspondingly coloured squares in A. E: Correlations between ca-
pacity and task performances for the same parameter ranges of amplitude
and duration as shown in A.

3.3 RESULTS

input and recurrent weights. Here, we extend the analysis to a simple continuous time
system, the Fermi-Pasta-Ulam-Tsingou (FPUT) model. We investigate a chain of 64
nonlinearly coupled oscillators; input is applied to all equally. To give discretized input
to the chain, we need to decide for what time period we present each input. Panel A
of Figure 3.4 illustrates the impact of different input amplitudes and durations on the
nonlinear capacity with zero delay. Panel B shows the nonlinear instantaneous capacity
for fixed apmq, = 0.033 as a function of As, compared to total instantaneous capacity and
capacity with delay 5. While the total capacity with delay 0 is already non-zero for small
step sizes, the nonlinear capacities both remain zero for small As. This is consistent
with the system’s improved performance in solving XOR and time-delayed XOR tasks,
which exceed chance level (k = 0) as soon as nonlinear capacities become non-zero.

The NARMAS5 performance starts to get close to the performance of a reference im-
plementation of a linear system with perfect memory when the delay 5 capacity becomes
non-zero. For large step sizes, the FPUT marginally exceeds the performance of the lin-
ear reference system. Interestingly, the nonlinear capacity with delay 5 becomes nonzero
for smaller As than its instantaneous counterpart. This can be understood via panels
C and D, which show capacity profiles resolved by delay, revealing that nonlinear ca-
pacities grow with time lag before declining again. Even for large As as in Panel C the
quadratic capacity at zero time lag is small compared to the one for delays up to 10,
and the cubic capacity remains zero. These higher nonlinear capacities come at the cost
of losing ability to reconstruct linear signals with large delays, as seen in the long tail
of panel D. Finally, panel E shows the correlation between capacities and task perfor-
mance. Especially interesting is the negative correlation with delayed capacity for all
tasks. This can be again explained by the shape of the capacity profiles: the ability to
reconstruct signals with larger delays contribute to neither of the XOR tasks, but yield
larger capacities. The NARMAS task is only sensitive to dynamics with a delay of 5,
which is also reflected in the capacity.

3.3.3 Balanced spiking neural network model

Spiking neural networks are continuous time systems that communicate via pulses. Ap-
plying the random signal needed for measuring the computational capacity to spiking
neurons requires extra steps: we encode the signal with an amplitude-value scheme;
a distributed-value scheme or with a spatial-value scheme (see Section 3.2.1 and Fig-
ure 3.1). We use balanced random network (BRN) consisting of two populations of
neurons as an entry model for spiking neural networks. We choose this system because
it is one of the simplest SNN architectures, while still providing rich dynamics through
the interplay of excitation and inhibition (see e.g. Brunel (2000)).

67

CHAPTER

3 INFORMATION PROCESSING CAPACITY

A spatial Total Capacity Max. Degrees — Max. Delays -
2500 1 l
Q
3 - 500 -2
©
o
0=
'0 o L] lm '0
_B - 10
: l
£ - 200
= 50 1
o o -5
£ e -100
ol
].2 5 10 15 20 1 1 1 - 0 1 1 1 1 1 1 1 1 - O
o OO AN OOOOO
ag oM< w0 — AN W0
As
| J - 1000
C amplitude E distributed >4 - i -20
20 L2 40— 4 S 500
> g ‘ - 500
£ T 2- I B 10
% 10 F1 20 -2 Il =B
o=l |====== ! delay 1 0
D F K Lo distributed L spatial
Eanl | g {TX< .
20T >~ s l|
=
£ 100 100 1 i 2 00
£ ——— P i 5 0
0.25 1.0 0.25 1.0 :
p p
g g s gt &8¢ 8¢
e DC, frozen noise g §] x
— rate, frozen noise = = = =
= = DC, changing noise I degrees H capacity B delays B nonlin. cap. delay 5
= == rate, changing noise
Figure 3.5: BRN results for different encoding schemes. A,B: maximum capacity and
memory (product of maximum delay and step duration) for the spatial en-
coding scheme averaged over five trials with different network and input
initializations. The standard deviation across trials is too small to be visible.
C,D: as for A,B, but with amplitude encoding. E,F: as for A,B, but with
distributed encoding. G, H: Heat maps for total capacity, maximum degree
and maximum delay for the parameter scans marked with a circle and a
square in A and B. I, J: Capacity profiles showing total and degree-specific
capacities as functions of delay for the parameter configurations indicated by
the magenta and yellow boxes in G and H. Note the different axis and color
scales in these panels. K-L: Correlations between capacity statistic and task
performances for the same parameter ranges of apax and Ag as shown in G
68 and H, using DC input and frozen noise; p =1 in K and o = 20 in L.

3.3 RESULTS

Encoding schemes distribute memory and nonlinearity

Figure 3.5 visualizes the results of the BRN with different encoding schemes. The dif-
ferent panels focus on distinct properties and details of the processing capacity and its
connection to task performance. Panels A-F show the maximum capacity and maxi-
mum memory measured for the BRN whilst varying the proportion p of input neurons
for the amplitude-value and distributed-value scheme and the standard deviation o of
the spatial-value scheme, respectively. Each data point in A, C and E corresponds to
the maximum capacity resulting from a parameter scan over the maximum amplitude
amax and the step duration As of the input signal. B, D and F show the same analysis
performed on the maximum memory the network can retain, i.e. the maximum number
of delays multiplied by As.

Comparing the positions of the curves in all six plots, we observe that frozen back-
ground noise (solid curves) increases maximum capacity and maximum memory over
changing noise (dashed curves), see Section 3.2.3. This is a consequence of the reduced
randomness in the system. Likely due to the same cause, the performance is higher for a
direct current than a rate input in the frozen noise condition, whereas the input modality
plays little role in the changing noise condition. Comparing A, C and E, we conclude
that spatial-value encoding results in higher maximum capacities than the amplitude-
value and distributed-value schemes. In contrast, the maximum memory (B, D and F)
is higher for the amplitude-value and distributed-value encodings.

Within A and C, reducing the number of neurons receiving input in a given input step,
i.e. p for amplitude-value encoding and o for spatial-value encoding, increases the maxi-
mum capacity for the tested parameter range. Conversely, a wider distribution across the
input neurons is beneficial for the maximum memory when using spatial-value encoding
(B) but plays little role for the amplitude-value encoding (D). However, distributed-
value encoding does not show comparable trends. The input connection probability p
neither significantly changes the total capacity (E) nor the maximum memory (F). The
fluctuations in the results are so minor that their standard deviations are too small to
be visible in these panels.

In summary, these results suggest that spatial encoding maximizes the system’s ability
to compute nonlinear functions whereas amplitude-value encoding maximizes memory,
while both perform best with frozen background noise, direct input current and a smaller
number of input neurons. Motivated by its superior overall capacity, we show a detailed
analysis of the spatial-value approach in G-J. The first row of heat maps shows the total
capacity, the maximum degree and the maximum delay as a function of the maximum
amplitude amax and step duration As, assuming a standard deviation o = 1 for the dis-
tribution of the input over the neurons, which results in the maximum capacity observed
in A (circle). The next row shows the equivalent results, but with a standard deviation
o = 20, which leads to the maximum memory in B (square).

The capacity heat maps for the two input configurations exhibit their maximum ca-

69

CHAPTER 3 INFORMATION PROCESSING CAPACITY

pacity at the maximum step duration As of 50 ms. However, the best values for the
maximum amplitude anax are different for each o. While the system with ¢ = 1 has
its maximum at a low input amplitude of 0.04 pA, we need to increase amax to 0.24 pA
for 0 = 20 to reach the maximum capacity. The green heat maps show that longer
step durations cause higher maximum degrees. The heat maps displaying the maximum
delays show similar trends, i.e. a decrease in the maximum delay as we increase the
step duration, which we attribute to the increase of absolute time the network has to
maintain the information of a previous step with prolonged step durations.

I and J illustrate capacity profiles for a high capacity parameter set and a high delay
parameter set. Together with their positions in G and H (yellow and magenta markers),
they show that these networks obtain their total capacity value based on very different
compositions of target functions. The yellow framed profile consist of many functions
based on delayed inputs, while in J the computations are invariably based on the unde-
layed signal and consist instead of very high degree nonlinear functions.

Correlation with task performance

To assess whether we can infer information about task performance from processing ca-
pacity, we calculate the correlations between task scores and total capacity, maximum
delay and maximum degree, respectively. The bar graphs at the bottom of Figure 3.5
show the results for distributed encoding with p = 1.0 (K) and spatial-valued encoding
with o = 20.0 (L). XOR, tXOR and XORXOR (see Section 3.2.2) show high correlations
with maximum degree and total capacity for both encoding types, while the correlation
with the performance of the XORXOR task and total capacity is lowest for the spatial
encoding setup. The maximum delay is positively correlated with the maximum classi-
fication delay in both cases. The opposite correlation values for the maximum degree
and maximum delay (also observed in the other systems) indicate a trade-off between
nonlinear computation and memory.

The NARMAS task (Atiya and Parlos, 2000) requires both memory and nonlinear
computation. The bars for this task in K and L show lower correlations with capac-
ity, delay and degree compared to other tasks. To account for the dependence on the
combination of memory and nonlinear computation, we also evaluate the correlation of
NARMAS5 task performance with nonlinear capacity at delay 5, resulting in a higher
correlation for the distributed encoding setup.

Encoding effects

Despite being an important component of signal processing in (bio-) physically mean-
ingful systems, the encoding scheme can bias the capacity estimation. As Panel A of
Figure 3.6 illustrates, the effectively measured system includes the effects of the encoder,
although we are only interested in isolating the system itself. The main system can have

70

3.3 RESULTS

A (measured system D E
network
memory
signal network H - | :
HD Il = \
delay delay l
B C F Dered
> ombine E rememberec
£ combined g encoder Cap,,.(y;) - |
5 memory 5 memory capacities
il i1
=i
= 7] = []

x x+tl x+2 x+3

delay ' delay dolay
G encoder H 41 I 520
500 hL 1 !I‘ 20
; -0 -0

Figure 3.6: Schematic for the calculation of remembered encoder capacities. A: Dia-
gram emphasizing that the combination of encoder and network acts as the
measured system. B: Linear memory of the combined measured system. C:
Linear memory of the encoder. D, E: Difference between B and C that
results in the actual linear memory of the network. F: Possibly nonlinear
encoder capacity of target function y; (black border) and its versions re-
membered by the network (green). G: capacity profile for the encoder used
in Figure 3.5J. H-I: Capacity heat maps as in Figure 3.5G,H, but with all
possible encoder capacities subtracted. Note the different scales of the color
bars.

71

CHAPTER 3 INFORMATION PROCESSING CAPACITY

nonlinear capacities without calculating nonlinear functions itself by merely remember-
ing the nonlinear or delayed inputs from the encoder, i.e. the encoder can introduce
nonlinearity and memory which bias the estimate. One solution are linear encoders
without memory. However, when we prefer more complex methods to encode the signal,
for example to increase biological plausibility, we want to exclude encoder effects from
the measured capacity. Figure 3.6B-F outline a way to calculate the encoder effects that
need to be subtracted.

We first calculate the capacity of the encoder output by building the state matrix
from the encoded signals that the neurons get as inputs, instead of taking the membrane
potentials to evaluate the processing capacity. In the case of the spatial value scheme,
this encoder state matrix is built from the Gaussian profiles representing the inputs (see
Figure 3.1D for a time-unfolded version of such a state matrix). With these capacities
and the capacities of the overall system, we calculate the main system’s effective linear
memory by subtracting the encoder memory (degree 1 encoder capacities) from the
combined memory (based on the membrane potentials) for each delay (B-E). Based on
the system and encoder memory values, we calculate the fraction of the encoder input
the system can memorize after each delay. Using these fractions, we compute how much
of a capacity value for a target function can be based on remembering a target function
that is already computed by the encoder. These remembered capacities (F) result from
the linear memory of the system and the nonlinearity and memory of the encoder.
Therefore we subtract them from the capacities of the combined system to obtain the
effective capacity of the main system for all objective functions (see Section B.1 in the
appendix).

With this method we cannot get information about the precise functions the system
computes as with linearly encoded input, because the system computes the function
Fiyys(Fenc(u)) instead of Fyys(u). Therefore a system capacity C**(y;) > 0 does not mean
that the system computes the specific target function y; with the degree d,,. However, it
tells us that the system computes a function that goes beyond remembering the input.

A problem with this procedure is that the capacity values cannot necessarily be sub-
tracted, divided and multiplied, but need to be transformed first to get the correct system
capacity. These transformations can be different for every target function and we need
additional information to calculate them correctly (see Section B.1 in the appendix).
However, we can subtract all encoder capacities and their delayed versions completely,
i.e. we fully remove all capacities of target functions that can be partly a result of the
network remembering the encoder inputs. This results in a lower limit for the total
capacity that can be calculated for any type of encoder and dynamical system. How-
ever, it depends on the scientific question whether it makes sense to remove the encoder
capacities. For example, if the aim is to compare the information processing capacity
with the performance on tasks whose inputs are encoded in the same way, it makes more
sense to analyze the capacity of the entire system. If the intention is to examine the
calculations of the dynamical system independently of the encoder calculations, then

72

3.3 RESULTS

the encoder capacities should be subtracted. For more details on the procedure and the
different ways to remove the encoder capacities, see the corresponding section in the
appendix (Section B.1).

Panel G shows that for the spatially encoded signals the encoder alone has higher
capacities than the network in Figure 3.5J. H and I show the lower limits for the capacity
functions actually calculated by the network. Removing the encoder capacities leaves
only a fraction of the original results for ¢ = 1. In contrast, networks given a wider
input with ¢ = 20 compute target functions beyond those remembered from the input.
Apart from that, the delays remain unchanged because the spatial value encoding does
not introduce any additional memory into the system.

3.3.4 Biophysical spiking network model

We analyze the processing capacity from the biophysically more detailed spiking mi-
crocircuit model of Chapter 2 by using two encoding schemes: distributed encoding
and spatial-value encoding. This network combines neurobiological properties such as
a data-based connectivity and synaptic plasticity in a network size that still allows for
extensive simulations and analyses. Figure 3.7 compares the different encoding schemes
for the microcircuit model at different levels of processing capacity detail. Panels A-E
show the summarized results for the different encoding schemes. There are strong simi-
larities to the BRN, in particular: 1) the use of frozen instead of changing noise increases
computational capacity and memory; 2) spatial coding is superior to distributed coding
when we do not subtract the encoder effects, but gives lower capacities otherwise; 3) DC
input leads to higher capacities in most cases than rate encoded inputs. There is one
exception to this last point, namely the spatial-value encoded signals with very short
stimulus duration, and this effect disappears when we remove all remembered encoder
capacities (C). Although there are some larger standard deviations (shaded areas) than
in the BRN, the overall variation in capacity results is still small.

Although the microcircuit is less uniformly structured and includes synaptic short-
term dynamics, the maximum total capacity is lower than for the BRN, not only in
absolute values (BRN: 686, MC: 49.5), which could be explained by the smaller network
size, but also when we consider the normalized capacity values (right axis of A-C; BRN:
68.6 %, MC: 11 %). These values are the fraction of the number of readout neurons,
since this is the upper limit for the capacity. Each of these maximum values are based
on the spatial encoding scheme. However, if we compare only the normalized capacities
for the distributed encoding, they are around 4 % for both networks. Moreover, if
we subtract the remembered encoder capacities from the spatial encoding values, the
microcircuit (4%, Figure 3.7C) outperforms the BRN (2.5%, Figure 3.5L). In addition,
the microcircuit can store information about past inputs longer than the BRN (D and
E; BRN: 350 ms, MC: 483 ms). This is likely due to the synaptic plasticity and the
biologically inspired connectivity structure, as these features were shown to lead to

73

CHAPTER 3 INFORMATION PROCESSING

CAPACITY

Capacity per Scan Total Capacity Max Delay Capacity per Delay
s
A distributed F G H 20- [.0
3000 - 4
2600 - - - 20
>, 40 L g X 2200 - . - P
5 g | 5 1800
5] i 4
3 ElE 1400 - - R ¢
o 20 L4,©° |® - 20 | I
o N 1000 - -
600 - - 0.4
0 0 200 - =1 h .
T T T T [Y T e B B | 1 [T B U)
025 050 0.5 1.00 ANnmggogogg ANnmgoogg
0.0
p
As As 0 20 40
\ J
B s 3
] J K - 200
60 4 3000 - - - m 20 -
2600 - R - 100
2, 5|, 20- . 1o o W —
i €[g 1800 - y 0 1 2 3
o %5 | @ 1400 - -
g -s M
S 204 < 1000 - - -15
600 — 4
200 - - 2 - 10
TT T T T T LI R A | L R B B | -0
12 5 10 15 20 ANnmg oo "N SR839883 | °
0
o
As As o 5 10
k J
s 3
N O | 200
3000 - - 5 107
2600 - i 10 ﬁ 100
> 2200 - . 0 - =
= « . . .
S g 1800 - - ° 1 2
aQ © 1400 - - -5 Q
S 1000 - =3 . 1
600 — 4
200 - i 02
LI R B R) L R R B |
A NmoooQo A Nnmooogo
SRRSER SRR8SR 00
o .
As As 00 25 50 75 100
delay
k J
D distributed E spatial R distributed spatial
500 1.0
£ 400 - /\ 150 5 o5
= 8 4l
g. 300 4 100 ~ o 00 |-I
€ ——— IS
@ 200 J— 50 4 e S _os
I /,_—._/ /- sad ©
100 4 == - wodg 5 = o2 ¢ ¢ o9
T T T T T T T T T -1 Q Q Q a < Q Q Q 2 s
0.25 050 0.75 1.00 12 5 10 15 20 g o oz 5 o oz
p o x = x =z
—— DC, frozen noise — — DC, changing noise W degrees mm delays
—— rate, frozen noise — rate, changing noise BN capacity W nonlin. cap. delay 5

Figure 3.7: Microcircuit results for different encoding schemes. A-C: Maximum capacity
per input parameter p or o respectively for distributed encoding (A), spatial
encoding (B) and spatial encoding without remembered encoder capacities
(C) averaged over five trials with different network and input initialisations.
Shaded areas indicate the standard deviation across trials. D, E: Maximum
memory (product of maximum delay and step duration) for distributed and
spatial encoding. F-Q: Capacity (F, J, N) and delay (G, K, O) heat
maps of the parameter scans corresponding to the markers in A-C together

74

with capacity profiles for a high capacity (yellow) and high delay (magenta)

parameter configuration. Note the different axis and color scales in the bar
graphs. R-S: Correlations between capacity statistic and task performances
for the same parameter ranges of amax and Ag used in F and J, both with
DC input and frozen noise; p=1in R and ¢ = 20 in S.

3.3 RESULTS

longer memory in Hausler and Maass (2007) and Chapter 2.

Figure 3.7 F-I, J-M and N-Q give details of the parameter scans for distributed en-
coding, spatial-value encoding and spatial-value encoding with removed encoder effects,
respectively. The heat maps for total capacity and maximum delay show that longer
input durations tend to correspond to higher capacities based only on short delays and
thus higher degrees, while shorter steps allow longer delays. We show detailed capacity
profiles with high degrees but small maximum delays (yellow frames) and lower max-
imum degrees but longer delays (magenta frames) in the bar graphs on the right of
Figure 3.7. The differences between the two calculation modes are clearly visible, but
in contrast to the results for the BRN, here even the configurations with high degrees
exhibit memory.

As for the BRN, we evaluate the correlation between the different capacity statistics
and the performance on tasks. Figure 3.7R-S shows the two configurations marked
in A and B. As expected, capacity and degree are positively correlated and the delay
is negatively correlated with the performances of the nonlinear tasks (XOR, tXOR,
XORXOR). The opposite is true for the memory based task, i.e. delayed classification
(class.). Overall, however, the correlations with the spatially encoded tasks (S) are lower
for the microcircuit than for the BRN, especially for the memory tasks, and even the
nonlinear capacity for the NARMAD5 specific delay 5 (dark pink) does not improve the
correlations.

3.3.5 Comparative performance on tasks

ESN | FPUT | BRN | BRN MC MC
distr. | spatial | distr. | spatial

p09]| «025| pl o 20 pl o 20
readout units | 50 64 1000 | 1000 447 447
XOR 1. 0.85 1. 0.99 1. 0.99
XORXOR 0.73 0.17 0.62 0.21 0.22
tXOR 0.72 1. 0.99 1. 0.99
classification 26 18 42 50
NARMAS5 0.88 0.29 0.2 0.43 0.17
capacity 49 55 38 100 49 40
max. degree | 11 3 35 285 71 255
max. delay 69 688 32 10 53 14

Table 3.1: Performance on tasks and capacity measures for different dynamical systems.
Given as Cohen’s kappa score for XOR, tXOR and XORXOR, maximum
delay up to which accuracy is above chance level for delayed classification,
and squared correlation coefficient for NARMAS.

75

CHAPTER 3 INFORMATION PROCESSING CAPACITY

Table 3.1 shows the maximum task performances of each system, and its corresponding
capacity measures. XOR and tXOR are almost perfectly solvable for the investigated
systems except for the FPUT, whereas XORXOR is difficult for all systems. The ESN
and the BRN with spatial encoding stand out with significantly higher XORXOR values
than the other systems. The microcircuit benefits from its connectivity and short-term
plasticity in delayed classification, as its measured delay is significantly higher compared
to the BRN. The results of the NARMADJ5 task in combination with the maximum delays
and the maximum degrees show that long memory is more important than nonlinear
computations for solving this task. Therefore, especially the FPUT oscillator chain and
the microcircuit with distributed encoding perform better than the other models.

3.4 Conclusion

In order to examine in greater depth the microcircuit model considered in Chapter 2 and
also spiking neural networks in general, in this chapter we have adapted the application
of the information processing capacity which was previously used mainly for simpler
discrete-time dynamical systems. In contrast to the analysis based on computational
task evaluations, the IPC offers a detailed profile of functions that are calculated by
the input-driven dynamical system under investigation and require memory in addition
to nonlinear processing. To obtain a capacity profile for SNN that is as meaningful as
possible, we first looked at various dynamical systems with gradually increasing com-
plexity. In particular, we analyzed different ways of encoding the input signal and their
effects on the information processing capacity. Depending on these different encoding
mechanisms, considerably different information processing was observed in the analyzed
systems, which revealed a trade-off between non-linear processing and the memory of the
corresponding system. Also due to this strong influence of the encoding mechanism used,
especially when it already performed non-linear transformations, and because the en-
coder must therefore also be regarded as part of the system under investigation, we have
presented a method for extracting the polynomial functions calculated by the encoder.
Thus, the processing performed purely by the main system can be analyzed. In further
experiments, we were able to show that the total capacity and important markers such
as the maximum delay and the maximum degree correlate with the performance in dif-
ferent tasks, suggesting that the computational profile determined by the IPC provides
insight into what is generally seen as information retention and nonlinear processing.
Thus, in this chapter, we have created a comprehensive guide for the application of the
information processing capacity to spiking neural networks and can now build on this
to analyze further network models.

76

Chapter 4

Memory prerequisites for temporal
difference learning in cortico-striatal
populations

In the previous chapter, we prepared the information processing capacity for its uti-
lization on spiking neural networks and also applied it to the microcircuit model from
Chapter 2. In the following chapter, we use the findings from these two chapters to
examine the memory capabilities of two cortical populations to see if they can form the
basis for the computation of a temporal difference (TD) error in the brain.

4.1 Introduction

It is assumed that dopamine neurons encode a temporal difference error in the brain
and thus play an important role in learning by trial and error (see paragraph 1.2.5 and
paragraph 1.2.5). Many of the theoretical models presented (Doya, 2002; Joel, Niv, and
Ruppin, 2002; Kawato and Samejima, 2007; Worgotter and Porr, 2005) mainly consider
the processes that take place in the basal ganglia and largely ignore the upstream cortical
circuits. Morita et al. (2012) have therefore proposed a mechanism for computing a
TD error that takes the encoding of the current and previous state in two separate
cortical neuron populations from layer 5 as the basis. These populations are the crossed
corticostriatal (CCS) cells and the corticopontine (CPn) cells (also called pyramidal
tract (PT) cells).

Experiments by Morishima and Kawaguchi (2006) and Morishima et al. (2011) have
shown that these populations have characteristically different properties that should
ensure that they maintain input information in their activity over different periods of
time. A subset of the CCS cells is supposed to encode the current state at each time
step and transmit it to the corresponding subset of CPn cells via unidirectional con-
nections. However, the CCS cells can only maintain this information for a short time
because, in addition to their fast spike frequency adaptation, their recurrent synaptic
connections are weaker compared to those of the CPn population and they exhibit lower
reciprocity and mostly short-term depression. In contrast, the activity of CPn neurons

7

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

(ccs) CPn/PT
S(t

)] Cortex S(t)
Y Y
{ Striatum
V(S(t)) S(t-1))
Key:
> Excitatory
—a Inhibitory

Dopamine
&(t) = R(t) + (S(t)) - V(S(t-1))

Figure 4.1: Hypothetical mechanism of the computation of TD error in the brain. The

78

activity of the CCS cells encodes the current state S(¢) and unidirectional
connections propagate the information to CPn cells, where it is preserved
longer such that their activity represents the previous state S(t — 1). The
state values of the current and previous state are calculated through con-
nections to the striatum. The value of the current state V(S(t)) is trans-
ported via the direct pathway (red arrow) to the substantia nigra pars retic-
ulata (SNr). The previous state value V(S(¢ — 1)) is transported over the
indirect pathway (blue arrow) via the external segment of the globus pal-
lidus (GPe) and the subthalamic nucleus (STN) to the SNr. The SNr passes
this information on to the SNc. The V(S(¢)) activity causes a positive mod-
ulation on the SNc by disinhibition and the V(S(¢t — 1)) activity causes a
net negative modulation by triple inhibition. Together with a reward signal
coming from the pedunculopontine tegmental nucleus (PPN), the SNc¢ com-
putes the TD error. Figure adapted from Morita et al. (2012).

4.2 METHODS

shows non-adaptive repetitive firing and recurrent connections within the population
are significantly stronger, exhibit increased reciprocity and show short-term facilitation.
These properties suggest that the activity of the CPn population can be maintained over
a longer period of time by recurrent synaptic reverberations and thus can potentially
store and transmit previous state information received from the CCS population. In
addition to this representation of the current state S(¢) and the previous state S(t — 1)
by these two populations, Figure 4.1 also shows how the further calculation of the tem-
poral difference error is carried out according to Morita et al. (2012). Through the
corticostriatal projection of the CCS neurons to medium spiny neurons, the instanta-
neous state value is calculated in the striatum and then passed on to the substantia
nigra pars reticulata (SNr) via the direct pathway through the substantia nigra pars
compacta (SNc). Due to the inhibitory connections between striatum and SNr and also
between SNr and SNc, the direct pathway has a net positive effect on the activity of the
dopamine neurons in the SNc. On the other hand, the previous state transferred from
the CCS population to the CPn neurons and sustained there reaches the SNc neurons
via the indirect pathway. Here, the state value calculated in the striatum has a net
negative effect on the activity in the SNc through the triple inhibitory connection via
the external segment of the external segment of the globus pallidus (GPe) and the SNr.
In combination with the reward signal represented by a subset of the pedunculopontine
tegmental nucleus (PPN), the dopamine neurons calculate the TD error.

In this chapter, we investigate whether the basic assumptions of this hypothesis hold:
(1) The activity of CCS cells can represent the current state, (2) the state information is
transmitted from the CCS population to the CPn population and (3) CPn neurons can
retain information about previous states. We first analyze this using network models
consisting of continuous rate neurons and then move on to spiking networks. As in
Chapter 2, we first create data-based networks and then compare them with modified
control circuits in order to investigate the effects of individual network properties. We
apply the linear part of the information processing capacity presented in Chapter 3
to analyze the memory capabilities of the CCS and CPn populations of the respective
networks.

4.2 Methods

4.2.1 Baseline rate-based model

In the first set of experiments, we analyze a continuous-variable firing rate model of a
network of N = 4,000 units. The dynamics of the firing rate r are given by:

d
Td—: = —r+ f(W*r + g(u) + b"°) (4.1)

79

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

where 7 is the decay time constant of the firing rate, W' is the matrix of synaptic
weights of the recurrent connections, and the function g encodes the external input u
before it is given to the input neurons. We use the spatial-value encoding scheme that
is described in Section 3.2.1. The function f is the nonlinear activation function of the
units and in this model.

In the first experiments, we test the effect of different activation functions on the
memory capabilities of the network. Besides the standard tanh function that also exhibits
biologically non-plausible negative rates, we adjust this function to be always positive
by shifting it one unit to the top (tanh+1). Then we scale this shifted tanh function to
values between zero and one:

scaled-tanh(x) = 0.5 - (tanh(x) + 1) (4.2)

The last tanh-based function is the rectified-tanh function. Here we take the tanh
function and replace all negative outputs with zero:

tanh(x) if tanh(xz) >0

) (4.3)
0 otherwise

rectified-tanh(x) = {

Besides these tanh-based functions, we also test the sigmoid and the Heaviside function:

. . 1
SlngId(:L’) = HTP(—Q’;) (44)
1 ifx>0
heaviside(z) = B (4.5)
0 otherwise

Following Masse et al. (2019), we use the first-order Euler approximation to simulate
the network. The dynamics of the network are then given by:

re=(1—a)r—1 +af (W*r 1+ g(u)) (4.6)

where o = At/ is the Euler integration step size.
Since we want to model two different equally sized groups of units (Npep = %) repre-
senting the CCS and CPn populations, we structure the weight matrix W as follows:

CCS—CCS CCS—CPn
e — (W w (4.7)

- WCPHHCCS WCPnHCPn
where the matrices WCCS=CCS and WEPn=CPn Jefine the recurrent connections within
the CCS and CPn populations, the matrix WCCS7CPn defines the forward connection
weights from CCS to CPn and WEPr>CCS the backward connections in the opposite
direction. Unless otherwise stated, input is only given to the first population, i.e. the

80

4.2 METHODS

Connection densities

Name Value Description Source
PCPn—sCPn 0.13(50/381) | connection density inside CPn population 2], [3
PCCS—CCS Boligﬁﬁgzi connection density inside CCS population *2[1’] 3
pccs—scpn | 0.11(11/98) connection density from CCS to CPn [3]
pcpnoccs | 0.01(1/96) connection density from CPn to CCS 3
TCGPn<sCPn 0.32(16/50) reciprocity of recurrent CPn connections 2
0.13(4/30) 2]

reciprocity of recurrent CCS connections

TOCS&CCS | 40.11(4/34) (*[1])

Table 4.1: Parameters for connection densities and reciprocities. Sources: [1] Morishima
and Kawaguchi (2006); [2] Morishima et al. (2011); [3] Morita et al. (2012)

CCS population. Table C.1 shows the mean and standard deviation for each of the weight
matrices together with the literature references from which these values originate. We
draw the weights from a log-normal distribution and in order to produce a distribution
with the desired mean and standard deviation, we transform the mean puy, and standard
deviations o1, from Table C.1 to the corresponding parameters figauss and ogauss of the
underlying Gaussian of the log-normal distribution:

12
Mgauss = log ——tn (48)

\ O T+ 1

2
log ("1; + 1) (4.9)

Hin

Ogauss —

The populations are sparsely connected with each other. Table 4.1 shows the densities
of connections within and between the different populations and the fraction of recipro-
cal connections inside the recurrent weight matrices WCCS—=CCS gnd WCPn—=CPn e
reciprocity parameter defines the fraction of mutual connections between two neurons
inside the respective population, i.e. the probability that a connection from neuron
to neuron j is accompanied by a connection from neuron j to neuron 4. Similar to the
weights of the echo state network in Section 3.2.3, we scale W' such that the spectral
radius of the matrix is equal to 0.9 to ensure stable network dynamics.

4.2.2 Structured rate-based model

Based on the rate-based baseline model, we now extend the model to follow Dale’s prin-
ciple and divide the CCS and CPn populations into inhibitory and excitatory subpopu-
lations (see Figure 4.2). The size of these separate excitatory and inhibitory subpopula-
tions is defined by the proportion of inhibitory neurons fi,n in the network. Therefore,

81

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN

CORTICO-STRIATAL POPULATIONS

Figure 4.2: Scheme of the structured network model. The network is separated into a
CCS (green) and a CPn population (blue). Both populations are further
divided into an excitatory (black) and an inhibitory subpopulation (red).
The input is only given to the CCS population. The connections from CCS
to CPn and the recurrent connections inside the CPn population are stronger

(indicated by thicker arrows).

both the CCS and CPn populations consist of Sinp - Npop inhibitory and (1 — Sinn) - Npop
excitatory neurons. The weight matrix W is then structured as follows:

CCSg—CCSg CCSg—CCSy CCSg—CPng
w w w
WCCSI—>CCSE WCCSI—>CCSI WCCSI—>CPnE
rec __
w - WCPnE—>CCSE WCPnE—>CCSI WCPnE—>CPnE
WCPn1—>CCSE WCPn1—>CCSI WCPn1—>CPnE

WCCSE—)CPHI
WCCSI—>CPnI
WCPnE—>CPn1 (410)

WCPHI%CPHI

where the subscripts E and I denote the excitatory and inhibitory subpopulations,
respectively. Weight matrices corresponding to connections from inhibitory populations
are multiplied by the factor v to ensure a strong inhibitory effect from the activity of
these populations. We scale W'€ in the same way as we describe above in Section 4.2.1
for the baseline continuous rate network. In addition, to ensure only non-negative rates,
we use a sigmoid function as the activation function f (unless stated otherwise) instead
of the tanh non-linearity. To further enhance the biological plausibility of the model,
we also incorporate a dynamic modulation of the synaptic efficacies through short-term
plasticity (STP) in some of the experiments (see Masse et al. (2019) and Mongillo,
Barak, and Tsodyks (2008)). STP is modeled by the interactions between the fraction
of available neurotransmitters x and the neurotransmitter utilization u. The dynamics
of these two variables evolve according to the following equations:

82

4.2 METHODS

_ — u(t)z(t)r(t) At (4.11)
dt D

du(t) _ U —u(t) L UL - u(t)r(t)At (4.12)
dt TF

where 7p and 7p are the time constants of the recovery from depression and facili-
tation, respectively, and U is the neurotransmitter increment. The synaptic input I to
postsynaptic neurons is then given by:

I(t) = W™z (t)u(t)r(t) (4.13)

4.2.3 Spiking baseline model

The spiking baseline model is based on the rate-based model described in Section 4.2.1.
The main difference is that the units are now modeled as spiking neurons. We use the
leaky integrate and fire neuron model with synaptic transmissions that elicit a delta-
shaped post-synaptic current as described in Section 3.2.3, Equation 3.14 and Equa-
tion 3.15. The neuron parameters can be found in Table C.2 in the appendix. As a state
variable for the readout in all spiking networks, we use the filtered spike trains of the
neurons (filter time constant 7 = 50 ms).

4.2.4 Structured spiking model

Just as the spiking baseline model is structured like the continuous-rate baseline model,
the structured spiking model shares the main structure with its continuous rate-based
counterpart described in Section 4.2.2. In addition to dividing each population into
excitatory and inhibitory subpopulations, we also consider short-term synaptic plasticity
and use an adaptive-exponential integrate-and-fire model whose parameters are fitted
to the activity reported in Morishima and Kawaguchi (2006). The resulting parameters
for the CCS and CPn populations are listed in Table C.3 and Table C.4. The spiking
behavior of the two models is shown in Figure 4.3. To obtain a firing behavior that
closely matches the experimental recordings, we measured the spike times from Figure
2 in Morishima and Kawaguchi (2006) and optimized the membrane capacitance Ci,,
the firing threshold V;y, the reset potential Vieset and the spike frequency adaptation
parameters a, b and 7y, using the Python package Optuna (Akiba et al., 2019). We also
use conductance-based exponential synapses with short-term plasticity (Mongillo, Barak,
and Tsodyks, 2008) with parameters from Morishima et al. (2011) (see Table C.6 in the
appendix) instead of the current-based models used in the spiking baseline network.

83

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

CCS

=209 |11 1 | | 12 Hz

—40 -

Vm (mV)

—60 1

20
ph I | R R R IR B IR

—-40 1

Vm (mV)

—50 1

—60 1

0 100 200 300 400 500
Time (ms)

Figure 4.3: Fitted neuron models. Voltage traces in green (CCS) and blue (CPn) in

84

response to a step depolarization of 0.5 nA over 500 ms. Black bars represent
the spike times of the fitted models and red bars the spike times of the
experimental data from Morishima and Kawaguchi (2006).

4.2 METHODS

4.2.5 Network modification experiments

To investigate the effects of the different properties of the network model, we perform
a series of experiments in which we deactivate or homogenize parts of the connectivity
structure or the neuron parameters and measure the linear memory part of the informa-
tion processing capacity (see Section 3.2.1) of the CCS and CPn populations separately.
We evaluate the sum of capacities over all delays and the maximum delay before the
capacity drops below a chance level threshold. As we have already described in Sec-
tion 3.2.4, we cannot exactly define the chance level in advance. We assume that there
won’t be memory longer than 3000 ms in any of the systems and therefore, we evaluate
the capacity for up to a maximum delay of 100 with a stimulus duration of 50 ms, re-
sulting in a maximum memory of 5000 ms. We then calculate the capacities for the last
40 stimuli (after 3000 ms) and use the maximum value multiplied by a factor of 1.05 as
the chance level cut-off. Based on this we evaluate the different network modification
experiments.

Three of these experiments involve adjustments to the connection weights in the net-
works. In the first experiment, we set the mean of the synaptic weights to the same
value for all connections, while leaving the connection type-specific standard deviation
untouched. The next adjustment of the network is to homogenize the standard devia-
tions of the weights but leave the mean values of the weights at their data-based values.
In the last adjustment, we combine the two previous changes and homogenize the means
and standard deviations of the weights together.

In the next two experiments, we change the connectivity structure of the network
by (1) connecting each subpopulation with the same connection probability and (2)
removing the data-based reciprocity properties. Then we test the effect of short-term
plasticity by disabling it, and eventually, for the spiking neural networks, we test the
effect of spike frequency adaptation also by disabling it. In a final experiment, we remove
all connections between the CCS and CPn populations and provide the input to both to
remove the effects of information transfer between the populations and test the memory
of the CPn population under the condition that it has unaltered information about the
input signal.

4.2.6 Conversion networks

The two preceding spiking neural networks are constructed from first principles and data
from the literature (Morishima et al., 2011; Morishima and Kawaguchi, 2006; Morita et
al., 2012). As an intermediate step between these networks and the rate-based networks
described in Section 4.2.1 and Section 4.2.2, we create two additional spiking networks
by transforming the continuous rate-based networks according to Kim, Li, and Sejnowski
(2019). Just like Kim, Li, and Sejnowski (2019), we use leaky integrate-and-fire neurons
following the Equation 3.14 of Section 3.2.3 and parameterised as in Nicola and Clopath

85

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

(2017) (see Table C.5). Incoming spikes trigger an exponentially shaped postsynaptic
current. To obtain a spiking network functionally equivalent to the rate network, we
scale the weights in the SNN by 1/A. We determine the correct value of A by performing
a parameter scan from 20 to 75 with a step size of 5 as in Kim, Li, and Sejnowski (2019).
In this parameter scan, we look for the value of A that maximizes the linear memory
capacity of the CCS and CPn populations.

4.3 Results

4.3.1 How nonlinearities shape the memory in the baseline continuous rate
network

In the first set of experiments, we investigate the effect the nonlinear transfer function
f has on the memory in the baseline rate network described in Section 4.2.1. We test
the six different nonlinearities shown in Figure 4.4A and described in Section 4.2.1.
The main results for these transfer function experiments are shown in Figure 4.4B. The
upper panel shows the sum of capacities above the random threshold for each network
variant, separated into CCS (green) and CPn (blue) populations. The bottom panel
shows the maximum delay before the capacity falls below this threshold (in milliseconds,
as it is multiplied by the stimulus duration of 50 ms). As the first row of bars and panel C
show, the model with tanh-nonlinearity has the largest memory capacities and, especially,
the memory in the CPn population is much higher than in the other systems. Even the
shift to exclusively positive output values (tanh+1) lowers CPn memory significantly
(panel D). In contrast, the differences between tanh+1, scaled-tanh and sigmoid are
only small (panels D-F). The two functions that set all negative inputs to zero, rectified-
tanh and Heaviside, perform worse than the rest, especially when looking at the capacity
sum (panels G and H). There, the CCS population even shows a higher capacity sum
than the CPn population. In all other cases, however, the CPn memory is higher than
the memory of the CCS population, regardless of the shape of the transfer function.
These observations can be explained by two different aspects of the transfer function
f; 1) how close to linear the transfer function is and 2) which output value it has at
zero input. First of all, a linear function results in the optimal memory in the system
because then the information processing capacity only consists of linear memory and is
not distributed over multiple higher-degree capacity functions. The slope of the linear
function is effectively scaling the spectral radius of the weights. Therefore, if we want
our effective spectral radius to be 0.9 we have to use the identity function as f. As
Figure 4.5 shows, the deviation from the identity function can be indicative of how long
the information can be preserved by the system. Here we use the integral of the absolute
difference between the identity function and f between -1 and 1 as a measure for this
deviation from the identity function (Figure 4.5B). We chose these limits because in
the baseline rate network, each neuron is on average excitatory and inhibitory to the

86

4.3 RESULTS

tanh tanh+1 scaled-tanh c tanh

21 i 1.0 —— CCS, tau=20
H 0.8 —— CPn, tau=20
14 1 -
2z
: 506
3
Of—===f====~ g 0.4
1
1
-1 4 ; ' : 0.2
-5 0 5 0.0
0 200 400 600 800 1000
sigmoid rectified-tanh heaviside delay [ms]
g i] i J T tanh
1 1 1 D +1
1 1 1
1 1 E 1 g — Lo —— CCS, tau=20
0 _/— i/ 0.8 - CPntau=20
i o PR SN (S N SN P >
[1 T 06
1 1 1 ®
-1 1 1 1 2,
T T T T T T T T]
-5 0 5 -5 0 5 =5 0 5 0.2
0.0
0 200 400 600 800 1000
B baseline rate network delay [ms]
scaled
8 E tanh
c 10 —— CCS, tau=20
S 61 0.8 —— CPn, tau=20
2 .
>
o S 06
g4 g
3 504
8,/ v
04 0.0
. 5 0 200 400 600 800 1000
delay [ms]
1000 1 . .
= ccs F sigmoid
= CPn 10
& 8004 mmm difference . —— CCS, tau=20
£ 08 —— CPn, tau=20
) 2
o 5 0.6
S 3
X m 0.4
© 9]
E 0.2
0.0
0 200 400 600 800 1000
tanh tanh scaled sigmoid rectified heaviside delay [ms]
+1 tanh tanh
nonlinearity
G rectified H .
tanh heaviside
1.0 —— CCS, tau=20 1.0 —— CCS, tau=20
0.8 —— CPn, tau=20 0.8 —— CPn, tau=20
> >
Zos6 506
© 1]
Q
Soa Q0.4
9] 9]
0.2 0.2
0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
delay [ms] delay [ms]

Figure 4.4: Baseline rate network with different nonlinearities. A: Shapes of the tested
nonlinearities. B: Sum of capacities above the chance level threshold for the
nonlinearities shown in A. C-H: Memory curves for the networks with the
different nonlinearities.

87

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

A Transfer functions B Integral of |x — f(x)|
1.00 4 — sin :
~—— tanh 1 0.7 1
0.75 1 — (sigmoid-0.5)°2 |
= tanh*0.5 1 0.6 1
0501 sigmoid-0.5 :
0.25 - = linear : 0.5 -
1
0.00 f====mm==m= SRty 0.4
~0.25 i 0.3 1
1
—0.50 A : 0.2 1
1
—-0.751 : 0.1
-1.00 A !
T T T T T 0.0 -
-1.0 -05 00 05 1.0 N ‘)*q, &0 0
xS X (\;(\ \6
\b’ <@ &0
o)
‘qé‘ %
&
C CCS capacity sum D CPn capacity sum

Figure 4.5: Deviation of nonlinear transfer functions from the linear identity function.
A: Shapes of the tested nonlinearities between -1 and 1. In addition to
the previously described functions also the trigonometric sine function (sin)
is used. B: Area between the transfer functions and the identity function
as a measure for deviation from the identity function. C and D: Sum of
capacities above the chance level threshold for the different transfer functions
for the CCS (A) and CPn (B) populations.

88

4.3 RESULTS

same extent, resulting in a mean recurrent input to each neuron of 0. Therefore, it is
most important for the transfer function to be linear around 0 inputs to achieve a good
memory performance. This also explains why functions that have their most non-linear
part at zero (rectified-tanh and Heaviside) exhibit the lowest memory. Figure 4.5B-D
show that the amount of deviation from the identity function is anti-correlated with
the memory capacity sum in the CCS and CPn populations. However, this still does
not explain the difference between tanh and tanh+1 because, for the average zero input
to each neuron, tanh+1 is just as linear as tanh. The difference lies in the amount
of variation in activity and therefore in the recurrent inputs that the neurons receive.
Transfer functions that result in a higher output at zero input result in higher variability
in the recurrent inputs because the weight matrix scatters higher values more widely.
If the inputs to the individual neurons are more widely spread, a broader part of the
transfer function is used. This inclusion of the strongly non-linear parts of f reduces
memory. We test this by evaluating networks with differently shifted versions of the
tanh and sigmoid nonlinearity. Figure 4.6 shows the results for the tanh and sigmoid
nonlinearities.

In both cases, the trend can be clearly observed: the more the transfer function is
shifted away from f(0) = 0 the higher the standard deviation of the activity and the
lower the memory in both populations of the system.

4.3.2 How weight distributions shape the memory in the baseline
continuous rate network

After evaluating the transfer functions, we study the effects of the different structural
properties of the baseline network by homogenizing certain features of the connections
(see Section 4.2.5). For this purpose, we analyze the tanh network and the network with
sigmoid nonlinearity. We chose the first system because of its superior performance and
the second because its non-negative outputs are more compatible with the concept of
firing rates in biological neural networks. Figure 4.7 shows the results of these studies. In
panel A, are the sum of the capacities (top) and the maximum capacity delay (bottom)
for the different tanh networks visible. These bar graphs show that there is little dif-
ference between the memory of the unmodified model (rightmost bar and panel B), the
network with the same density for all connections, the network that does not incorporate
the data-based reciprocity features, the network that uses the same standard deviation
for all connections (but different mean values), and the network constructed with the
same weight mean for all synapses (but different standard deviations). However, the
simultaneous change in mean and standard deviation of the weight distributions has a
more pronounced effect. This change increases CCS memory and decreases CPn mem-
ory, with CPn memory remaining higher than memory in the CCS population (leftmost
bars and panel C). Therefore, the memory results are robust to changes in network

89

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

us]

A shifted tanh CCs C CPn

o
o

0.8 1

o
o

0.6 1

0.4 1

Standard deviation
o
S

0.2 1

I

oWl HI NI M0 TN N oW HWNIMLN SN

f(0) f(0)
F shifted sigmoid G ccs H CPn
i 0.4 1
503
5 - =]
ke 0.3 1
$0.2
l o 0.2
¢ s
g0l 0.1
o

0.0 -

o = N
capacity sum
N w S

=y
!

|
EE

o

1
1
1 p B
-5 0 5 owm = inN®mn T inn SN W MmN TN

S A ~& =™ < S +4 &N m™m <
f(0) f(0)

Figure 4.6: Effect of different shifts of the tanh and sigmoid transfer functions on mem-
ory. A: Shifted versions of the tanh transfer function. B and C: Standard
deviation of the activity in the CCS (B) and CPn (C) populations for the
different shifted tanh transfer functions. D and E: Sum of linear capaci-
ties above the chance level threshold for the different shifted tanh transfer
functions for the CCS (D) and CPn (E) populations. F: Shifted versions of
the sigmoid transfer function. G and H: Standard deviation of the activity
in the CCS (G) and CPn (H) populations for the different shifted sigmoid
transfer functions. I and J: Sum of linear capacities above the chance level
threshold for the different shifted sigmoid transfer functions for the CCS (I)
and CPn (J) populations.

90

4.3 RESULTS

structure, and the specificity of the weights plays the most important role. However,
even these changes do not significantly affect the memory profiles in the two populations
unless they are fully homogenized. In the final experiment with the tanh network, we
remove all connections between the CCS and CPn populations and provide both with
input. Thus, we eliminate the effects of information transfer between the populations
and test the memory of the CPn population under the condition that it has unchanged
information about the input signal. This modification significantly reduces the memory
of the CPn population (penultimate set of bars and panel D), demonstrating that infor-
mation transfer between the populations is a critical factor in maintaining information
in the CPn population. The signal of the CCS population already contains information
about previous inputs and passes this on to the CPn population. The CPn population
stores this information just like the information about the current input. This allows an
accumulation of the memory of both populations in the CPn neurons.

The memory differences between the CCS and CPn populations are less pronounced
in all variations of the sigmoid network compared to the tanh networks, as shown in
the bottom half of Figure 4.7. Overall, memory capacity is also lower in these sigmoid
networks. Similar to the tanh networks, the complete homogenization of weights (using
the same mean and standard deviation for all connections) slightly increases the CCS ca-
pacity sum while decreasing the CPn memory compared to the unmodified network (full
model). Further, homogenizing the weight means notably increases the memory capacity
difference between the two populations, primarily due to a decrease in the CCS popula-
tion’s memory (panel G). The separation of the two populations results in a decrease in
the CPn population’s memory, reinforcing the importance of information transfer from
the CCS to the CPn population for memory retention (panel H). Other adjustments to
the sigmoid network, such as homogenization of weight standard deviations, connection
density, and reciprocity, show minimal impact on memory performance. In summary,
both the tanh and sigmoid baseline rate networks display high robustness against most
structural changes, with significant result alterations primarily occurring in response to
modifications in connection weights.

4.3.3 From baseline rate network to the structured rate network

In the previous section, we analyzed the baseline rate networks. In the next step, we
want to bring these artificial networks closer to biological neural networks by accounting
for Dale’s principle (Eccles, Fatt, and Koketsu, 1954) and separating the populations into
exclusively excitatory and exclusively inhibitory neurons. For this to be a meaningful
change we also cannot use the tanh transfer function anymore because the negative
rates could cause an inhibitory effect from excitatory neurons and vice versa. Instead,
we only use the sigmoid function as nonlinearity and first search for the adequate ratio
between excitation and inhibition by adjusting the fraction of inhibitory neurons Siun

91

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

Figure 4.7: Network modification studies for baseline rate networks with tanh and sig-
moid nonlinearity. A: Linear capacity sums (top) and maximum capacity
delay (bottom) for modified networks with tanh nonlinearity. B-D: Memory
curves for the full model and the two networks with the biggest difference
to the full network model. E-H: The same figures as in A-D but for the
networks with sigmoid nonlinearity.

92

A

@

capacity sum

max delay [ms]

m

baseline rate network (tanh)

o

CCs mmm CPn mmm difference

weight weight weight reciprocity density separated full

(me:

an (mean) (std) populations model

+std)

homogenized property

baseline rate network (sigmoid)

o)

IS

capacity sum
N w

-

350
300
T 250
% 200

K]
T 150

]
€ 100
50

weight weight
(mean (mean) (std)

mm CCS

BN CPn mEE difference

weight reciprocity density separated full
populations model

+std)

homogenized property

1.0
0.8

2

£o06

8

g

co04
0.2

0.0

full
model

—— CCs, tau=20
~— CPn, tau=20

200 400 600 800 1000
delay [ms]

weight
(mean
+std)

~—— CCs, tau=20
~—— CPn, tau=20

0 200 400 600 800 1000
delay [ms]

separated
populations

~—— CCS, tau=20
~— CPn, tau=20

0 200 400 600 800 1000
delay [ms]

full
model

— CCS, tau=20
~—— CPn, tau=20

200 400 600 800 1000
delay [ms]

G weight
(mean)
1.0 —— CCS, tau=20
08 —— CPn, tau=20
>
£06
]
4
S04
0.2
0.0
0 200 400 600 800 1000
delay [ms]
H separated
populations
1o —— CCS, tau=20

3
g
S04

~—— CPn, tau=20

0 200 400 600 800 1000
delay [ms]

4.3 RESULTS

and the inhibitory weight factor v in the network. Figure 4.8 shows the results of these
experiments. These heatmaps show us that especially when the inhibition is exactly
balanced with the excitation the memory capacity for both populations is high. This is
the case when the following equation is true:

v ﬂinh =1~ /Binh (414)

However, this effect is weakly pronounced in the CCS population. In contrast, the per-
formance of the CPn population seems to depend more strongly on the exact balance
between excitation and inhibition since especially the v and Si,, combinations that per-
fectly fit Equation 4.14, i.e. (v, Binn) € ((1,0.5),(4,0.2),(9,0.1)), result in higher capacity
sums that can easily be distinguished from the surrounding parameter combinations. In
the CPn population, the area of high memory capacity sums is slightly wider. In gen-
eral, most of the values in the second column are higher (lighter colors) than in the first
column. Therefore, for most parameter combinations the CPn can retain information
for longer than the CCS population.

In Figure 4.9A and B the activity of two of the above-described networks (A: v =
4, fipn = 0.2; B: v = 1,8imn = 0.5) can be seen. In these configurations excitation
and inhibition are perfectly balanced. This leads to very similar activity in the two
configurations, both when comparing the CCS populations and when comparing the
CPn populations. On the one hand, this can be seen in the similar color distributions
in the status matrices in the upper two subpanels of A and B, and on the other hand
in the corresponding histograms in the lower row. The latter shows that the inhibitory
and excitatory parts of the CCS population have a very similar and symmetrical activity
distribution around a value close to 0.5. However, the activity of the two subpopulations
of CPn neurons exhibits higher values around approximately 0.8, which is likely caused
by the additional excitatory feedforward input coming from the CCS population.

The enhanced memory at a distribution near 0.5 in the CCS populations makes sense
in that the sigmoid function is almost linear in this range, favoring the maintenance of
input information rather than the computation of non-linear functions, similar to the
echo state networks in Section 3.3.1. However, the utilization of the higher parts of the
nonlinearity in the CPn population is not optimal for memory.

Panel C gives us more information about the activity distributions of the different
network configurations. These heatmaps look qualitatively very similar to the capacity
sum heatmaps in Figure 4.8. The transition between mean activities above and below
0.5 is along the line where Equation 4.14 is true, which is no surprise since excitation
and inhibition balance out here. The fact that the mean activity of the CCS population
for the marked configurations is slightly above 0.5 is probably due to the additional
positive input signal. The mean activity of the CPn population is also above 0.5 in
these configurations because of the additional excitatory feedforward input. However,
the line of balanced activity is also visible as a line of enlarged standard deviations in

93

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

CCS capacity sum CPn capacity sum

-5
4
3

<

12345678910
<

12345678910

ANMTINO~® O
OO0 Ooco0oooo oo
ﬁmh Binh
CCS maximum delay CPn maximum delay
-400 o . - 400
—
- =f
-350 © - -350
y ~ - H N
@ -
300 o 300
ﬁ' -
250 m - 250
(q\]
200 7 200

Figure 4.8: Effect of balance between excitation and inhibition on memory. Top:
Heatmaps of linear capacity sum for a parameter scan of inhibitory weight
factor v and fraction of inhibitory neurons S, for the CCS (left) and CPn
(right) populations. Bottom: Maximum capacity delay for the same pa-
rameter scan for the CCS (left) and CPn (right) populations.

94

4.3 RESULTS

A Binh =0.2,y=4
CCS activity matrix 1o CPn activity matrix 1o
e [. [.
% 1503 - 0.8 0.8
© 1336 -
£ 1169 - = -0.6 -0.6
51902
5 3333 -0.4 -0.4
L 501-
334 - & s -0.2 0.2
167 - l 7 [
O-v v v v 0.0 L S B B B 0.0
024 6 81012141618 024 6 81012141618
Time step Time step
CCS state distribution CPn state distribution
8000
6000 1 excitatory
6000 4 inhibitory
4000 A
4000 -
2000 4 20001
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
State value State value
Binh = 0.5,y =1
CCS activity matrix 10 CPn activity matrix 1o
W Lo 18 [.
% 1503 - = 08 1503 08
T 1336 - = 1336
£ 1169 - © - = -06 1169 -0.6
5% 1902
3 B S
Z 334.- 0.2 334 0.2
167 - sEs= 16
S 0.0 ST Loo
024 6 81012141618 02 4 6 81012141618
Time step Time step
CCS state distribution CPn state distribution
excitatory
4000 - 3000 inhibitory
2000 -
2000 -
1000 A
0 4 0
00 02 04 06 08 10 00 02 04 06 08 10
State value State value

CCS mean
10.0 - [1o
9.0 -
8.0 - 08
7.0 -
6.0 - 06
5.0 -
a0- % -0.4
3.0 -
2.0- [0.2
1'0'....).(.... 0.0
CCS std
10.0 |
90 0.12
8.0
70 0.10
6.0
5.0 0.08
4.0
3.0 0.06
2.0
10 0.04
CPn mean
[1.0
0.8
-0.6
-0.4
[0.2
0.0
-0.12
0.10
0.08
0.06
0.04

Figure 4.9: State matrix data of networks with different El-ratios. A: State matrices
of the CCS (left) and CPn (right) population of a network with v = 4 and
Binh = 0.2 at the top and their corresponding state distributions at the
bottom (based on the same data as the activity matrices above). B: The
same figure as in A but for a network with v = 1 and By, = 0.5. C:
Heatmaps of mean activity and standard deviation of the activity for the
parameter scan over v and Siy,n. The blue mark corresponds to the network

in A and the red mark to the network in B.

95

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

the corresponding standard deviation heatmaps. The reason for this is likely the fact
that the sigmoid function has its steepest slope at an input value of 0.5. Therefore, the
activity of the neurons is more strongly affected by small changes and this results in a
broader distribution of activities.

Since the activity of the CPn population seems to be too high for optimal information
retention, we test whether increased inhibition in this population has a positive effect
on CPn memory. We adjusted the factor for inhibitory weights in the CPn population
Ycpn, keeping vocs = 4 and fSiyn = 0.8 constant. Figure 4.10 shows the results of
this experiment. The first panel shows that the capacity sum in the CPn population
increases up to a ycpn value of 4 and then does not change significantly. However, the
optimal capacity sum shows up at a slightly higher ycp, value of 4.8 (green bar). In
panels B-D it can be seen that the activity mean of the CPn population is still above
0.5 for this configuration. While the mean is already close to the most linear part of
the sigmoid nonlinearity, the distribution of activities in this configuration is wider than
in the surrounding configurations, as can be seen from the higher bar in the standard
deviation subfigure in panel E and also from the wider histogram in panel C. With this
larger standard deviation, much of the almost linear component of the sigmoid function
is used, although the mean activity is above 0.5. The reason for the lower storage
capacity sum for higher values of ycpy, is probably that the storage capacity of the CCS
population decreases for these higher values (panel F). This is likely due to the higher
inhibition weights in the CPn population, so the entire weight matrix must be scaled
by a higher factor to achieve the same spectral radius. This scaling also reduces the
weights within the CCS population and may reduce its memory. If the signal from the
CCS population to the CPn population no longer contains the information of previous
inputs as long, the CPn population will also not be able to retain this information to
the same extent.

4.3.4 Structured continuous rate network

Based on the above studies, we choose the parameters S, = 0.2 and v = 4 for the
further experiments. We avoided strengthening the inhibitory weights of the two popu-
lations with different scaling factors to avoid increasing the complexity of the network
and because this separation did not lead to significantly different results. Just as for the
baseline rate network in Section 4.3.2, we analyze which aspect of the network struc-
ture has the strongest effect on memory in the two populations by successively omitting
data-based structural aspects of the network. The results of these structural reduction
experiments are presented in Figure 4.11. Panel A shows that most structural changes
have negligible effects on the sum of memory capacity in the two populations. Only
when we adjust the mean values of the weight distributions do the results change. Ho-
mogenizing the mean weights while retaining the individual standard deviations has
little effect on CCS memory but increases memory in the CPn population (second set

96

4.3 RESULTS

Ycpn Scan for yces = 4 and Binn = 0.2

A CPn capacity sum B CPn state mean
51 0.8
£ £
] o 0.6
2 €
23 s | DU R
z § 049
O 24 c
=l o
G O 0.2
0 0.0
A S A S
C Ycpn D

CPn state histogram (ycpn, = 4.8)

1.
4000 excitatory ' ,
inhibitory
0.5 —-—=~=- - -Y--F-¥--V-¥-V-
2000
T T - .
1 2 :

0._|—#_ 0.0

0.0 0.2 0.4 0.6 0.8 1.0 Lo A 4

R o
< S S < < <
Ycpn
E CPn state standard deviation F CCS capacity sum
0.125 4 41
£
B 0.100 1 73
Q =
% 0.075 4 9
7 g2
c ©
£ 0.050 A o
o (%]
Ul_
0.025 4 O
0.000 - 0-
HNMTANMSENON®OQONON®OOO HNMTANMTINON®OONON©OOO
A S S A S S S S

Figure 4.10: Scan over the inhibitory weight factor for the CPn population ycp, for
fixed parameters for the CCS population (yccs = 4 and Binn,cos = 0.2).
A: Linear capacity sum of the CPn population for different values of ycopy,.
Bars with darker color mark a shift from step size 1 to step size 0.1. The
green bar marks the highest capacity sum. B: Mean activity of the CPn
population for the same configurations as in A. Again a color change marks
the change in step size and the green bar marks the network with the highest
capacity sum in the CPn population. C: Histogram of the activity of the
CPn population for the network with the highest capacity sum, separated
into excitatory and inhibitory neurons. D: Violin plot showing the state
distributions of the CPn populations for each ycp,. Colors mean the same
as in B. E: Standard deviation of the activity of the CPn population for each
network. Colors mean the same as in B. F: Linear capacity sum of the CCS
population (instead of the CPn population) for the same configurations as
in A. The grey bar marks the maximum capacity for the CCS population.

97

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

of bars and panel C). The additional homogenization of the standard deviations reduces
the storage capacity in the CPn population while increasing the storage capacity in the
CCS population. This leads to almost equal linear capacity sums in the two populations
(first set of bars and panel B). Just as in the baseline rate network, the specificity of the
weights is the most important factor for the memory properties of the CCS and CPn
populations in the full data-based network model (rightmost set of bars and panel D),
and the results are robust to other changes.

4.3.5 Spiking neural networks

We have investigated the continuous rate-based networks in detail and now make the
step to spiking neural networks. Also for these networks, we start with a baseline
model that does not incorporate Dale’s principle and then separate both populations into
excitatory and inhibitory subpopulations in a second step. Both types of populations
are made of neurons of the fitted adaptive-exponential model described in Section 4.2.2.
In addition to the structural properties we have changed in the rate-based networks, we
add two new property reduction experiments, namely we disable the plasticity and the
firing rate adaptation of the neurons. The results of these experiments can be seen in
Figure 4.12 (baseline network) and Figure 4.13 (structured network). Both of these sets
of experiments give us qualitatively the same results.

Neither in the baseline network nor in the structured network is information being
transferred from the CCS population to the CPn population. Already the memory in
the CCS population is significantly reduced compared to the results in the rate-based
networks (see Figure 4.7F and Figure 4.11D), but in the CPn population not even the
undelayed input signal can be reconstructed from the state matrix. Only when we
separate the populations and give input to both we can retrieve information from the
CPn population (penultimate set of bars in Figure 4.12A and C and Figure 4.13A and C).
However, the memory in the CPn population is still lower than in the CCS population.

4.3.6 Spiking networks constructed from rate networks

The above experiments show that we cannot extract a long memory from spiking net-
works if we construct them according to first principles. However, since the continuous
rate networks show results that support our underlying hypothesis of longer memory
in the CPn population, we test the procedure from Kim, Li, and Sejnowski (2019) to
construct spiking networks from existing rate networks. To do so, as explained in Sec-
tion 4.2.6, we use less complex leaky integrate-and-fire neurons, perform a scan over
the weight scaling parameter A, and calculate the memory capacity of both populations
for each configuration. Figure 4.14 shows the memory capacity curves of the best con-
figurations for the spiking networks based on the baseline rate network (Panel A) and
the structured rate network (Panel B). The line graphs show that also in these spiking

98

4.3 RESULTS

structured rate networks

A
5
N o weight (mean + std)
€ 3
2’ 10 —— CCS, tau=20
g2 0.8 —— CPn, tau=20
M >
o] £ 0.6
3501 e CCS mem CPn EEE diff g
300 4 8 0.4
2 250 1
:.%200- 0.2
% 150 1
£ 200, 0.0 1
501 0 200 400 600 800 1000
o weight weight weight reciprocity density separated full delay [mS]
(T;Z!)‘l (mean) (std) populations model
homogenized property
C We|ght (mean) D full model
1.0¢
1.0 1 —_— =
—— CCS, tau=20 CCS, tau=20
0.8 1 —— CPn, tau=20 0.8 — CPn, tau=20
> 2
£ 0.6 G 0.6]
@©
3 Q
2 S 4
© 0.4 © 0.
0.2 k 0.2
0.0 0.0 , : : ,
0 200 400 600 800 1000 0 200 400 600 800 1000
delay [ms] delay [ms]

Figure 4.11: Modified network studies for structured rate networks with sigmoid nonlin-
earity. A: Linear capacity sums (top) and maximum capacity delay (bot-
tom) for modified networks. B-D: Memory curves for the full model and
the two networks with the biggest difference to the full network model.

99

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

A baseline spiking model

A

capacity sum

-1.5

400

200 A “

—200 1

—400 A B CCS s CPn mm difference

weight weight weight reciprocity density plasticity firing separated full
(mean (mean) (std) patterns populations model
+std)

max delay [ms]
o

homogenized property

B full model C separated populations
1.0 — CCS 1.0 - CCS
> > CCS cutoff
5os — SE: cutet 208 —— CPn
& & CPn cutoff
S 0.6 CPn cutoff 0.6
g >
g 0.4 % 0.4
[0}
€022 €0.2
0.0 0.0 & , , : :
0 200 400 600 800 1000 0 200 400 600 800 1000
delay [ms] delay [ms]

Figure 4.12: Modified network studies for baseline spiking network. A: Linear capacity
sums (top) and maximum capacity delay (bottom) for modified networks.
B: Memory curves for the full model. C: Memory curves for the network
with separated populations and input to both populations.

100

4.3 RESULTS

full spiking model

A
ey

weight weight weight reciprocity density plasticity firing separated full

capacity sum
I |
[o o o =
o [6,] o w o

|
=
U

max delay [ms]
o

(mean (mean) (std) patterns populations model
+std
std) homogenized property
full model separated populations
1.0 | — CCs 1.0 1 —— CCs
> CCS cutoff - CCS cutoff
S 0.8 1 — G 0.8 —— cpn
8 CPn cutoff of ' CPn cutoff
8 0.6 | S o6
- >
% 0.4 1 2 0.4
()
€021 € 0.2
0.0 — 0.0 bt
0 200 400 600 800 1000 0 200 400 600 800 1000
delay [ms] delay [ms]

Figure 4.13: Modified network studies for full data-based spiking network. A: Linear
capacity sums (top) and maximum capacity delay (bottom) for modified
networks. B: Memory curves for the full model. C: Memory curves for the
network with separated populations and input to both populations.

101

CHAPTER 4 MEMORY PREREQUISITES FOR TEMPORAL DIFFERENCE LEARNING IN
CORTICO-STRIATAL POPULATIONS

A Baseline SNN B Structured SNN

1.0 —— CCS 1.0 — CCS
> CCS cutoff > CCS cutoff

o

§0 6 CPn cutoff S 0.6 CPn cutoff
g >
go0.4 g 0.4
(0] ()
£ 02 E 0.2-\/_'

0.0 0.0

0 500 1000 1500 2000 2500 3000 0 200 400 600 800 1000
delay [ms] delay [ms]

Figure 4.14: Modified network studies for spiking networks constructed from rate net-
works. A: Memory curves for the best configuration of a spiking network
that is based on the baseline rate network (A = 20). B: Memory curves for
the best configuration of a spiking network that is based on the structured
rate network (A = 40).

networks, even the undelayed input signal can hardly be reconstructed from the CPn
population state. The reconstruction of the undelayed signal in the CCS population is
also not perfect. Although the memory capacity for all delays in the CPn population is
very small, it remains above the random value threshold for more than two seconds in
the baseline network. Thus, there appears to be a positive memory effect, but it is un-
likely that these small memory capacities are sufficient to calculate a temporal difference
error signal for reinforcement learning based on them.

4.4 Conclusion

In this chapter, we built on the methods developed in Chapter 2 and 3 to test the hypoth-
esis proposed by Morita et al. (2012) on the computation of temporal difference errors
in the brain by investigating the memory properties of a neural network model repre-
senting two populations of cortical layer 5 neurons: the crossed corticostriatal (CCS)
cells and the corticopontine (CPn) cells. We collected data on neuronal and structural
properties of these populations from the literature and implemented different network
models. Similar to Chapter 3, we used progressively more complex network types as
the basis for our models by starting with the study of continuous rate networks, then
adapting them to follow Dale’s principle in a second step, and finally moving on to
spiking models. Following the approach from Chapter 2, we then created different con-
trol circuits based on these network types to investigate the effects of the individual

102

4.4 CONCLUSION

biological network properties. To evaluate the memory capabilities of the systems, we
applied the linear part of the information processing capacity presented in Chapter 3
with the spatial input encoding scheme. Our experiments with continuous rate networks
support the hypothesis of Morita et al. (2012) that these two populations of neurons can
represent the current state (CCS population) and the previous state (CPn population)
and therefore can be used as a basis for computing a temporal difference error in the
brain. In our experiments, we found that the distribution of the weights, i.e. their mean
and standard deviation, plays the most important role in the population difference in
memory performance. Against other parameter changes, the results show a high robust-
ness. In contrast, the spiking networks show different behavior. There was hardly any
information transfer from the CCS neurons to the CPn population and their ability to
maintain information about input signals is very limited. Even the method of Kim, Li,
and Sejnowski (2019) to convert the earlier successfully tested rate networks into equiv-
alent spiking counterparts did not result in satisfactory transfer and retention of inputs
and therefore does not seem to work properly to transform untrained rate networks into
spiking versions.

103

Part |11

Discussion

105

Chapter 5
Discussion

The main focus of this thesis was to shed light on the information processing in neural
network models as a step towards an understanding of the computations performed in
the mammalian cortex. In Chapter 2 we built a model of a cortical column, analyzed its
ability to solve tasks with different demands in non-linear processing and memory and
tested which aspects of its connectivity structure play the most important role in the
computations of the network. In order to deepen the analysis of this network model and
facilitate analyses of further spiking networks in the future, Chapter 3 deals in detail
with the information processing capacity. In this chapter, we first examine in increas-
ingly complex steps which adjustments are necessary in order to be able to apply this
metric not only to discrete-time dynamical systems but also to simple continuous-time
systems and finally to spiking neural networks in such a way that it provides the most
meaningful insights possible. In Chapter 4, we use the insights from the previous two
chapters to investigate the hypothesis proposed by Morita et al. (2012) that two sepa-
rate populations of neurons in layer 5 of the neocortex, the crossed corticostriatal (CCS)
and corticopontine (CPn), respectively encode the current and previous state and thus
provide the basis of biological temporal difference learning. Similar to Chapter 2, we
have implemented network models based on biological data from the literature, initially
based on rate neurons and finally also consisting of spiking units. Using the processing
capacity from Chapter 3, we then examined the memory of these networks and struc-
turally adapted control models to determine how structural and neural properties affect
the ability of the two populations to maintain information.

5.1 Cortical microcircuit

In Chapter 2, we analyzed how the laminar structure of a cortical column model affects
the computational capabilities of spiking neural networks. In a first step, we replicated
the models and experiments described by H&usler and Maass (2007). The similarity
in network activity and the degree histograms convincingly demonstrate the success of
our replication, although the task results were not absolutely identical. Our findings
on the tasks defined in the original study validate their key result. Specifically, we
confirm that the degree distribution exhibited by the laminar structure of the data-

107

CHAPTER 5 DISCUSSION

based circuit confers a computational advantage over circuits with modified connectivity
patterns that destroy the laminar connectivity whilst maintaining the global statistics of
the network. We reach this conclusion by training readout weights to solve tasks based
on spike patterns and firing rates that require linear and non-linear computations on
two separate input signals and the memorization of prior information.

The microcircuit model at the heart of the project shares many properties with bi-
ological microcircuits. In addition to its data-based structure (based on intracellular
recordings from rats and cats by Thomson et al. (2002)), it consists of Hodgkin-Huxley
neurons with multiple different ion channel dynamics and a conductance-based back-
ground noise mechanism, and its synapses exhibit short-term plasticity. For further
biological plausibility, its readouts receive only inputs restricted to layer 2/3 and layer
5 specific connections. The readout weights obey Dale’s principle (Eccles, Fatt, and
Koketsu, 1954): excitatory neurons contribute only positive values to the activity func-
tion of the readout neuron, and inhibitory neurons only negative values.

Given the superior performance of the data-based circuit, we formulated the hypothesis
that the results should be robust with respect to the specifics of the neuron model.
We extended the analysis of the original study by decreasing the complexity of the
neuron model, first removing the intrinsic noise and then reducing the dynamics to
that of an integrate-and-fire neuron. The results confirmed our hypothesis that neuron
model details were not important to the key result: in both cases, the data-based circuit
continued to exhibit superior performance over all other variants. Our results also rule
out the possibility that a complex neuron model is necessary for the data-based circuit
to reach a good performance since the two simpler neuron types tested outperform it in
the majority of tasks.

To obtain a higher temporal resolution in the examination of the memory capabilities
of the circuit variants, we additionally extended the original analysis to include retro-
spective classification of spike patterns of much shorter segments with a duration of 5 ms
instead of 30 ms and classifying all of the segments rather than just the last two. Here
we observe a stereotypical memory profile for all circuit types, where the data-based
circuit beats the other networks in peak performance and summed reconstruction capa-
bility across all delays, with comparable performance for the degree-controlled circuit.
However, there is no significant difference between the various networks when comparing
the maximum delay up to which the signal can still be at least partially reconstructed.
Thus, we conclude that the advantage of the laminar connectivity structure lies pri-
marily in the clarity of the internal representation rather than in significantly longer
information retention. These results also highlight the characteristic time scale of the
input as a relevant parameter for determining the computational capacities of a spiking
neural network.

In future work, the scientific community can use our NEST implementation of the
data-based microcircuit model, which is now freely available to all researchers, to lay the
groundwork for further experiments to investigate the computational properties of corti-

108

5.2 INFORMATION PROCESSING CAPACITY

cal columns and to make quantitative comparisons with alternative microcircuit models.
In this context it would also be reasonable to tune the network to obtain biologically
more realistic long-tailed firing rate distributions with a mean below 1 spks/s instead of
the comparatively high activity currently exhibited by the model (about 40 spks/s for
layers 2/3 and 4). For the simplified network with integrate-and-fire neurons, this can
probably be achieved by adjusting the firing threshold per population based on in-vivo
data rather than using the activity of the original model as a basis. Similarly, for the
network with Hodgkin-Huxley neurons, it is likely that population-level tuning of neu-
ron parameters and probably adjusted scaling of recurrent weights will be required to
achieve the intended firing rates.

From here it is also possible to add other biological details such as additional or
different plasticity mechanisms, or to investigate the computational capacities of larger
networks using this microcircuit as a basic building block for systems representing the
meso- or macroscopic level. This could be achieved, for example, by adjusting the
weight scaling parameters along with the network size and connecting multiple differently
parameterized instances of the microcircuit using inter-area connectivity that is based
on experimental findings.

5.2 Information processing capacity

The information processing capacity enables thorough investigations of dynamical sys-
tems in terms of the functions they can compute. It produces a comprehensive computa-
tional profile with intuitively interpretable indicators of complexity (polynomial degree)
and required memory (maximum delay).

We explored ways of applying the information processing capacity to dynamical sys-
tems with increasing complexity, culminating in and focusing on biologically inspired
spiking neural networks. Our initial experiments extend the analysis of the (discrete-
time) ESN used in Dambre et al. (2012). By investigating the FPUT model, we expand
the scope of our study to continuous-time systems, and then make the step into SNNs
with a balanced random network. Finally, we apply the measure to the cortical column
model developed in Chapter 2.

We evaluate the effects of different input parameterizations to provide a guide for
future application of the capacity measure to similar systems and especially to spiking
neural networks. Although the metric is highly informative, it can be computationally
expensive and any restriction on the parameter search space drastically saves computa-
tional costs.

As reported in previous work such as Verstraeten et al. (2010) and Dambre et al.
(2012), we found no single optimal parameterization that simultaneously maximizes
nonlinearity and memory capacity. All dynamical systems show a trade-off between
memory and nonlinear processing since their processing capacity is bounded by the

109

CHAPTER 5 DISCUSSION

number of readout units. Therefore, for a given use case, one would have to tune
the parameters appropriately to achieve optimal results. For continuous-time systems,
an increase in step duration is accompanied by a shift to the nonlinear regime. Our
explanation is that the systems have more time to transform a single input step, but
in return, they also need to retain information for a longer period to process previous
signals. The ESN has a small parameter range that results in particularly long memory.
In this range, the input scaling is so small that the signal is transformed mainly by the
linear part of the tanh activation function, while a spectral radius slightly larger than
one ensures a strong influence of previous inputs.

A reduction of capacity by introducing noise into the dynamical system has previously
been reported by Dambre et al. (2012). Consistent with these findings, we also find that
sources of randomness commonly used in spiking neural networks, such as driving the
network with Poisson spike trains and encoding the inputs as firing rates of such spike
trains, reduce the processing capacity. We, therefore, propose to first operate the systems
deterministically using frozen background noise and direct current as inputs, and later
to analyze the robustness to random perturbations as a separate property.

While the ESN for most parameters has near-maximum capacity, there are both high
and low capacity configurations for the FPUT. In contrast, the SNNs achieve only a
fraction of the possible capacity. We note that in our study, the information processing
capacity or different aspects of it, such as the maximum degree and delay, generally
show strong correlations with task performance. Whereas even systems whose processing
capacity is low can solve tasks such as XOR or tXOR almost perfectly, higher capacity
systems such as the ESN have a clear advantage for more demanding tasks such as
XORXOR.

An explanation for the low capacity of SNNs may be the frequent reset of the mem-
brane potential after a spike, especially since we use the membrane potential as a state
variable for the readout. If these results are indicative of the computational power of
biological neural networks, and under the assumption that the information processing
capacity captures a large portion of the relevant information processing that dynamical
systems, including the brain, can perform, this suggests a limitation. It indicates that
the reservoir computing approach may not be an effective tool for determining, or a
model for understanding, the computational capabilities of cortical systems.

To prevent a distortion of the capacity results we must encode the signal linearly. With
nonlinear encoding, systems can reconstruct polynomial functions by remembering the
nonlinear inputs over several time steps without transforming them. Thus, we advise to
use only linear encoders if possible.

However, there are reasons to use nonlinear inputs such as the desire for biological
realism in models in computational neuroscience. Therefore, we presented a procedure
to remove nonlinear encoder effects and provide a lower bound on the main system’s ac-
tual capacity. The procedure can also handle encoders with memory. This enables, for
example, to analyze specific parts of larger systems, for example models of the brain, sep-

110

5.3 TEMPORAL DIFFERENCE LEARNING IN CORTICO-STRIATAL POPULATIONS

arately. For this purpose, we consider all components feeding signals into the subsystem
as part of the encoder and remove their capacity from the results.

Overall, we have laid the foundation for detailed analyses of various systems, en-
compassing discrete and continuous-time systems as well as biologically inspired neural
networks. This method can now be used, for example, to test computational hypotheses
on spiking neural networks and even in-vitro experiments, or to optimize the parameter
configuration and input encoding of neuromorphic hardware for a given computational
goal.

5.3 Temporal difference learning in cortico-striatal populations

After having mainly dealt with the information processing of a scaled-down model of
an entire cortical column among other models in Chapter 2 and Chapter 3, we have
investigated a more granular subset of neurons in cortical layer 5 in Chapter 4. This
part of the doctoral thesis deals with the hypothesis of Morita et al. (2012), which
states that the activities of the crossed corticostriatal (CCS) and corticopontine (CPn)
cells in layer 5 of the cortex represent the current and previous states, respectively, and
are thus fundamental for the calculation of a reward prediction error downstream in
the basal ganglia and dopaminergic neurons. Therefore, it must be possible to read out
current inputs to the CCS population from this group of neurons and to extract previous
signals that were transferred from the CCS to the CPn population from the activity of
the CPn neurons. Thus, there should be a signal transmission from the CCS to the
CPn population and the CPn population must be able to store this information over a
sustained period of time. To test this hypothesis, we created data-based models as in
Chapter 2 and measured their linear memory with the information processing capacity
from Chapter 3. We started with continuous rate networks and initially focused only
on the connectivity properties of the populations in order to start with models of lower
complexity, as in Chapter 3, and then gradually move on to more complex systems.
As a first step, we tested different activation functions and found that the use of the
tanh function, which is not particularly biologically plausible due to its partly negative
outputs, leads to significantly longer memory, especially in the CPn population, than the
other non-linearities tested. Overall, the results of these experiments suggest that for
the persistent maintenance of input information, it is important that the utilized part of
the activation function is approximately linear and that the slope in combination with
the connectivity matrix yields the appropriate spectral radius close to 1. In the next
step, we used the data-based model as a starting point and, following the procedure
in Chapter 2, created control circuits in which certain properties were systematically
adapted in order to determine their influence on memory in both populations. This
showed that the population-specific distributions of the synaptic weights, i.e. their
mean and standard deviations, have the decisive effect on the measured memory, both

111

CHAPTER 5 DISCUSSION

when using the tanh function as non-linearity and the consistently positive and thus
biologically more plausible sigmoid function. Other factors such as the reciprocity and
density of the connections only marginally influence the results. In general, however, it
can be seen that the information in all tested configurations is retained longer in the
CPn population than in the CCS neurons, as assumed by the hypothesis.

The next set of experiments divides the populations of the network into excitatory
and inhibitory subpopulations according to Dale’s principle. Since this division does
not make sense for the tanh activation function, because even neurons with positive
(negative) output weights can have an inhibitory (excitatory) effect on subsequent neu-
rons due to the partially negative output values, we restricted ourselves to the sigmoid
non-linearity in these models. The first part of these experiments showed that the cor-
rect ratio between the strength of inhibitory weights and the proportion of inhibitory
neurons in the network plays a decisive role for the memory capacity. In particular,
configurations that ensure a balance between excitation and inhibition exhibit an in-
creased memory performance. Also for this well-balanced network, we created control
circuits whose analysis, similar to the systems in which we did not differentiate between
excitatory and inhibitory populations, showed that the weight distributions in particular
have a prominent influence on memory retention. In addition, here it also became ap-
parent that the CPn population represents previous states better than the CCS neurons.
Thus, the results of the rate networks can be seen as a reinforcement of the hypothesis
of Morita et al. (2012), regardless of whether we use separate excitatory and inhibitory
subpopulations or not.

In order to further increase the biological plausibility of our models and to better
address the characteristics of the neurons themselves, we next investigated networks
of spiking units and extended them to include plastic synapses and population-specific
adaptation behavior. Again, we first examined a homogeneous network and its control
circuits and then moved on to networks with a separation between excitatory and in-
hibitory units. However, in both cases, there was hardly any transfer of information
between CCS and CPn and only a direct signal input into the CPn population made it
possible to extract information from this population. Moreover, the reconstruction of
the unmodified input signal in the CCS population was already not optimal. Based on
these results, we transformed our previously successfully investigated rate models into
spiking equivalents via the method presented by Kim, Li, and Sejnowski (2019). How-
ever, these models also showed little improvement in information transfer between the
populations. Even though the memory curve of the CPn population had a long tail with
values just above the threshold, such a minimal reconstruction accuracy is not sufficient
to be used as a basis for calculating reward prediction errors. The method of Kim, Li,
and Sejnowski (2019) therefore does not appear to be fully applicable to all types of
networks, even if the same parameters are used as in the original publication for the rate
and spiking networks. One reason for this could be the difference in the network sizes
used. Kim, Li, and Sejnowski (2019) test networks with a maximum size of 400 units,

112

5.4 OUTLOOK AND FUTURE WORK

but use 250 neurons in the majority of the experiment because this leads to the smallest
deviation between the performance of spiking and rate networks. The networks we use
are an order of magnitude larger. In addition, unlike those of Kim, Li, and Sejnowski
(2019), our connections are not trained to solve a specific task but are comparatively
unstructured and only defined by random distributions. It is therefore possible that
these specific network structures resulting from the training are an important factor for
the success of this transformation from rate networks to functionally equivalent spiking
networks.

In general, the results from Chapter 4 are a bit ambiguous. The rate network experi-
ments support the hypothesis that the activity of the CCS and CPn populations can be
used as a basis for calculating a reward prediction error. However, we cannot say the
same for the SNN experiments. Despite strict adherence to biological conditions and a
later less biologically inspired transformation from rate to spiking networks, the SNN
did not show an adequate memory capacity. This suggests that we might have over-
looked key aspects of computation in biological neural systems and need to investigate
potentially important properties in future work.

5.4 Outlook and future work

There are several directions in which research could be conducted to reduce the dis-
crepancy between the comparatively poor performance of spiking network models and
that of biological neural systems. On the one hand, it may be necessary to integrate
other biological properties that are fundamentally important for calculations with spikes
into the models. For example, previous work has shown that heterogeneity in synaptic
and especially neuronal parameters can have a positive effect on the ability to process
information (Duarte and Morrison, 2019). Furthermore, in reality, neurons are not di-
mensionless points but have a complex morphology that can enable even a single neuron
to perform complex computations. One example is the processing in dendrites and the
associated generation of long-lasting depolarizations through the activation of glutamate-
sensitive N-methyl-D-aspartate (NMDA) receptors, the so-called NMDA spikes. In gen-
eral, there are also many other ion channels and receptors that are ignored here and in
most other studies on spiking neuronal networks in order to reduce complexity. There
is also the possibility that non-neuronal glial cells make an important contribution to
computations in the brain or that various often neglected synaptic connection properties
such as gap junctions, which can bridge the gap between cell membranes, can have a
significant influence. In addition to properties such as the density of connections be-
tween populations, more localized connection motifs (in addition to reciprocity) can also
have an impact on the processes in the networks (H&usler, Schuch, and Maass, 2009;
Perin, Berger, and Markram, 2011; Song et al., 2005). Of course, it is also possible that
the spiking network-specific computational advantages only occur in systems that have

113

CHAPTER 5 DISCUSSION

a critical minimum size that is significantly larger than the ones we tested. However,
there are biological organisms that already require considerably smaller nervous systems
of spiking neurons. For example, the nematode Caenorhabditis elegans has only 302
or 385 neurons, depending on sex (Jarrell et al., 2012; Sammut et al., 2015). In most
cases, however, an increase in biological plausibility is also accompanied by an increase
in complexity and the number of free parameters in the system. On the one hand, this
makes it more complex to simulate these systems and, on the other hand, it can reduce
the interpretability and make it more difficult to derive functional concepts from the
experiments with these networks. At a certain point, the models lose the advantages
that modeling is supposed to bring.

Considering these potential problems in bringing the models closer to biology, research
based on this thesis could go in a different direction and further adapt the measurement
methods, such as the information processing capacity, to biology instead of extending
the systems under investigation. The encodings we use, including those based on spike
trains, convert the signals in such a way that the information is not contained in the
precise spike times, but in the firing rates. It is therefore plausible that systems that
are fundamentally based on the processing of firing rates can process the information
encoded in this way more effectively than those that react differently to differently timed
spikes. Moreover, there is good reason to believe that communication in the brain is
not fundamentally based on firing rates (Brette, 2015). In the future, encoding methods
that make use of the timing of the spikes should therefore be tested. For example,
temporal kernels could be used instead of spatial coding (see Chapter 3) or for each
input neuron long spike trains could be pre-generated, of which a different section serves
as a spike pattern depending on the input value (see Figure 5.1 A). By spreading and
compressing pre-generated spike trains, it is also possible to create an encoding that
carries the information both in the rates and in the precise spike times (see Figure 5.1
B). To use an encoding with a constant rate, two spike trains per input neuron can be
pre-generated. Then the first spike train is warped using the normal signal (e.g., 0.7)
and the second using the inverted signal (e.g., -0.7). These resulting spike trains are then
combined into one. These temporal encoding methods can of course also be combined
with the spatial encoding scheme.

Another possible point of improvement could be that the biological plausibility of the
input signal itself could also be increased, as it is unlikely that the brain often has to
directly process floating point numbers in the range between -1 and +1. Therefore,
it can be further investigated how sounds, visual impressions or other stimuli based
on the sensory system of humans or other animals can be used as input signals. In
connection with the information processing capacity, a continuous transition is required.
For example, the individual images of a video could represent values between -1 and
+1. This initially only enables a discrete resolution of the signal, as the number of
images is limited. However, videos with a high number of images can mitigate this effect
and it can even be completely avoided by interpolating between the individual frames.

114

5.4 OUTLOOK AND FUTURE WORK

A R
=1 L|| I

wo=o I [[

I N =

L . step duration .)
B ~
co= ||| LTI 1T T
ao=o |[] T 1T 11
wer || |
L . step duration ./

Figure 5.1: Encodings with precise spike times. A: Input encoding with a constant
rate (on average). A window with the duration of one step (colored horizontal
bars) can be moved across a fixed pre-generated spike train (black) to select
the subsection that is used as input. The position of the window is defined by
the input w(¢). B: Input encoding with information in the rate and precise
spike times. A spike train with the maximum firing rate (black spikes) is pre-
generated. Depending on the input value u(t), the spikes times are stretched
(multiplied with a corresponding factor) and all spikes that are outside the
step duration window are cut off. This results in the final input spike trains
(colored spikes).

115

CHAPTER 5 DISCUSSION

Another similar possibility would be the rendering of a 3D model in which a parameter
is changed according to the input signal. A slightly more flexible method could be to
traverse the latent state space of trained variational autoencoders (VAEs) or generative
adversarial networks (GANs) according to the input signal to generate images (Klys,
Snell, and Zemel, 2018; Shen and Zhou, 2021; Shen et al., 2022; Winant, Schreurs, and
Suykens, 2021), sounds (Madhu and Kumaraswamy, 2019) or speech (Saito, Takamichi,
and Saruwatari, 2018) that differ only in one continuously changing property. You could
also use an audio signal whose pitch is changed according to the input value. However,
these stimuli should still be encoded as biologically inspired as possible. For example,
one can use the method of Smith and Lewicki (2006) for encoding audio and a retina
model (Kenyon et al., 2003) for the encoding of visual stimuli. Even if such inputs
are much closer to stimuli occurring in biology, these encodings are very non-linear and
therefore influence the result of the information processing capacity. If the focus is solely
on memory, as in Chapter 4, this is not a problem. Otherwise, the method presented in
Chapter 3 must be used to subtract the encoder capacities. However, in its current form,
this method only provides a lower bound of the capacity. Therefore, further research
could also develop a more precise removal of the encoder effects that includes additional
metrics gathered during the reconstruction of the individual target functions.

In addition to these suggestions for adapting the input encoding, it is also possible
to make adjustments to the state variable for the linear readout. In order to rely on
precise spike times here too, the relative time of the first (or last) spike within an input
step could be used as a state variable. With low firing rates and comparatively short
step durations, the probability of more than one spike occurring per step is very low and
therefore very little information would be lost. The information about the first spike
time can also be used, for example, in backpropagation-based learning algorithms to
solve complex tasks (Goltz et al., 2021). Of course, the state could also be extended
to the times of the first two or more spikes (for example, to reflect bursts). However,
this would lead to a significantly larger dimension of the state space and thus require
more inputs (to minimize the noise cut-off), longer simulations and thus more computing
power and time.

In general, however, experiments could also be carried out to find out to what extent
a state matrix that has been reduced in size through different dimensionality reduction
mechanisms can lead to meaningful results for spiking neural networks. The possibility
of reducing the size of the state space would be particularly desirable with regard to
significantly larger network models in order to reduce the number of simulation steps
required.

116

5.5 CONCLUSION

5.5 Conclusion

In conclusion, in this doctoral thesis we have achieved many of the goals set out in
Chapter 1. In addition to confirming and consolidating previous research results by
reproducing them in Chapter 2, we also have gained new insights into information pro-
cessing in cortical networks. For example, we have shown that the connectivity structures
inside a cortical column do not extend the maximum duration of information retention,
as suggested by Hausler and Maass (2007), but rather sharpen the clarity of internal
representations. We were also able to confirm in Chapter 4, at least in part by our
experiments with rate networks, that the specific properties of cortical CCS and CPn
populations give rise to the memory characteristics required for the computation of
temporal difference errors in the brain. However, most importantly, we have laid the
foundation for further research. The reimplementation of the microcircuit model using
the highly performant NEST simulator (Hahne et al., 2021), which is constantly being
developed further by an active community, and the extension and publication of the
model also enable other research groups to carry out further experiments and give them
the possibility to extend the microcircuit model further. With the work in Chapter 3,
we have created even more extensive possibilities for future research into the analysis
of computational processes in the brain by working out which adjustments are needed
to apply the information processing capacity to spiking neuronal networks. This paves
the way for the future creation and analysis of detailed profiles of the computations
performed by biology-inspired dynamical systems.

117

Bibliography

Capek, Karel (1920). RUR-Rossum’s Universal Robots: Rossumovi univerzln roboti. Aventinum.

Akiba, Takuya et al. (2019). “Optuna: A Next-generation Hyperparameter Optimization
Framework”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Appeltant, Lennert et al. (2011). “Information processing using a single dynamical node
as complex system”. In: Nature communications 2.1, p. 468.

Aristotle (1911). De partibus animalium. Trans. by William Ogle. Oxford: Clarendon
Press.

Atiya, A.F. and A.G. Parlos (2000). “New results on recurrent network training: unify-
ing the algorithms and accelerating convergence”. In: IEEE Transactions on Neural
Networks 11.3, pp. 697-709. po1: 10.1109/72.846741.

Babu, Pooja Nagendra et al. (June 2021). “NESTML 4.0”. Version 4.0. In: po1: 10.
5281/zenodo.4740083. URL: https://doi.org/10.5281/zenodo.4740083.

Bayer, Hannah M and Paul W Glimcher (2005). “Midbrain dopamine neurons encode a
quantitative reward prediction error signal”. In: Neuron 47.1, pp. 129-141.

Belliveau, Jack W et al. (1991). “Functional mapping of the human visual cortex by
magnetic resonance imaging”. In: Science 254.5032, pp. 716-719.

Bellman, Richard (1957). Dynamic Programming. Dover Publications. ISBN: 9780486428093.

Benureau, Fabien C. Y. and Nicolas P. Rougier (2018). “Re-run, Repeat, Reproduce,
Reuse, Replicate: Transforming Code into Scientific Contributions”. In: Frontiers in
Neuroinformatics. 1SSN: 1662-5196. DOI: 10 . 3389/ fninf . 2017 . 00069. URL:
https://www.frontiersin.org/article/10.3389/fninf.2017.00069.

Berger, Hans (1929). “Uber das elektroenkephalogramm des menschen”. In: Archiv fiir
psychiatrie und nervenkrankheiten 87.1, pp. 527-570.

Billeh, Yazan N. et al. (2020). “Systematic Integration of Structural and Functional Data
into Multi-scale Models of Mouse Primary Visual Cortex”. In: Neuron 106.3, 388—
403.e18. 18SN: 08966273. DOI: 10.1016/3j.neuron.2020.01.040. URL: https:
//linkinghub.elsevier.com/retrieve/pii/50896627320300672.

119

https://doi.org/10.1109/72.846741
https://doi.org/10.5281/zenodo.4740083
https://doi.org/10.5281/zenodo.4740083
https://doi.org/10.5281/zenodo.4740083
https://doi.org/10.3389/fninf.2017.00069
https://www.frontiersin.org/article/10.3389/fninf.2017.00069
https://doi.org/10.1016/j.neuron.2020.01.040
https://linkinghub.elsevier.com/retrieve/pii/S0896627320300672
https://linkinghub.elsevier.com/retrieve/pii/S0896627320300672

BIBLIOGRAPHY

Birkhoff, George David (1927). Dynamical systems. Vol. 9. American Mathematical Soc.

Bono, James J (1984). “Medical spirits and the medieval language of life”. In: Traditio
40, pp. 91-130.

Brette, Romain (2015). “Philosophy of the Spike: Rate-Based vs. Spike-Based Theories
of the Brain”. In: Frontiers in Systems Neuroscience 9. 1SSN: 1662-5137. URL: https:
//www.frontiersin.org/articles/10.3389/fnsys.2015.00151 (visited
on 11/21/2023).

Brette, Romain and Wulfram Gerstner (Nov. 2005). “Adaptive Exponential Integrate-
and-Fire Model as an Effective Description of Neuronal Activity”. en. In: Journal of
Neurophysiology 94.5, pp. 3637-3642. 1ssN: 0022-3077, 1522-1598. por: 10.1152/
jn.00686.2005. URL: https://www.physiology.org/doi/10.1152/3n.
00686.2005 (visited on 04/03/2023).

Brunel, Nicolas (2000). “Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons”. In: Journal of computational neuroscience 8, pp. 183—
208.

Biirger, Jens et al. (July 2015). “Hierarchical composition of memristive networks for
real-time computing”. en. In: Proceedings of the 2015 IEEE/ACM International Sym-
posium on Nanoscale Architectures (NANOARCH “15). Boston, MA, USA: IEEE,
pp- 33-38. ISBN: 978-1-4673-7849-9. pOI: 10.1109/NANOARCH. 2015 .7180583.
URL: http://ieeexplore.ieee.org/document/7180583/ (visited on 10/11/2023).

Butler, Samuel (1872). Erewhon, or, Over the range. London: Triitbner & Co. URL:
https://archive.org/details/ErewhonOverrang00Butl /page/ ii/
mode/2up.

Castaldi, Elisa et al. (2020). “Neuroplasticity in adult human visual cortex”. In: Neuro-
science & Biobehavioral Reviews 112, pp. 542-552.

Catani, Marco and Stefano Sandrone (2015). Brain renaissance: from Vesalius to modern
neuroscience. Oxford University Press.

Chen, Jiayin et al. (2020). “Temporal Information Processing on Noisy Quantum Com-
puters”. In: Phys. Rev. Appl. 14 (2), p. 024065. po1: 10.1103/PhysRevApplied.
14.024065. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.
14.024065.

Cobb, Matthew (2002). “Exorcizing the animal spirits: Jan Swammerdam on nerve func-
tion”. In: Nature Reviews Neuroscience 3.5, pp. 395—400.

— (2020). The idea of the brain: The past and future of neuroscience. Hachette UK.

120

https://www.frontiersin.org/articles/10.3389/fnsys.2015.00151
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00151
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
https://www.physiology.org/doi/10.1152/jn.00686.2005
https://www.physiology.org/doi/10.1152/jn.00686.2005
https://doi.org/10.1109/NANOARCH.2015.7180583
http://ieeexplore.ieee.org/document/7180583/
https://archive.org/details/ErewhonOverrang00Butl/page/ii/mode/2up
https://archive.org/details/ErewhonOverrang00Butl/page/ii/mode/2up
https://doi.org/10.1103/PhysRevApplied.14.024065
https://doi.org/10.1103/PhysRevApplied.14.024065
https://link.aps.org/doi/10.1103/PhysRevApplied.14.024065
https://link.aps.org/doi/10.1103/PhysRevApplied.14.024065

BIBLIOGRAPHY

Coulombe, Jean C. et al. (June 2017). “Computing with networks of nonlinear mechani-
cal oscillators”. en. In: PLOS ONE 12.6. Ed. by Gennady Cymbalyuk, e0178663. 1SSN:
1932-6203. por: 10.1371/journal .pone.0178663. URL: https://dx.plos.
org/10.1371/journal.pone.0178663 (visited on 10/11/2023).

Dale, Kyran and Phil Husbands (Jan. 2010). “The Evolution of Reaction-Diffusion Con-
trollers for Minimally Cognitive Agents”. In: Artificial Life 16.1, pp. 1-19. 1SSN: 1064-
5462. DOI: 10.1162/art1.2009.16.1.16100. eprint: https://direct.mit.
edu/artl/article-pdf/16/1/1/1662621/artl1.2009.16.1.16100.pdf.
URL: https://doi.org/10.1162/art1.2009.16.1.16100.

Dambre, Joni et al. (2012). “Information processing capacity of dynamical systems”. In:
Scientific reports 2.1, pp. 1-7.

DeFelipe, Javier (June 2012). “The neocortical column”. In: Frontiers in Neuroanatomy
6, p. 22. 1SSN: 16625129. DOI: 10 .3389/ fnana.2012.00022. URL: http://
journal . frontiersin.org/article/10.3389/ fnana.?2012.00022/
abstract.

Deneve, Sophie and Christian K Machens (2016). “Efficient codes and balanced net-
works”. In: Nature neuroscience 19.3, pp. 375-382.

Descartes, René (1994). Tractatus de homine. apud Danielem Elseverium.

Destexhe, A et al. (Nov. 2001). “Fluctuating synaptic conductances recreate in vivo-like
activity in neocortical neurons”. In: Neuroscience 107.1, pp. 13—24. 1SSN: 03064522.
DOI: 10.1016/5S0306-4522(01)00344-X. URL: https://www.sciencedirect.
com/science/article/pii/S030645220100344X.

Destexhe, Alain and Denis Paré (1999). “Impact of network activity on the integrative
properties of neocortical pyramidal neurons in vivo”. In: Journal of neurophysiology
81.4, pp. 1531-1547.

Doya, Kenji (2002). “Metalearning and neuromodulation”. In: Neural Networks 15.4,
pp- 495-506. 18sN: 0893-6080. pDOI: https:/ /doi .org/10.1016 /350893~
6080 (02) 00044 —-8. URL: https://www.sciencedirect .com/science/
article/pii/sS0893608002000448.

Duarte, Renato and Abigail Morrison (Apr. 2019). “Leveraging heterogeneity for neural
computation with fading memory in layer 2/3 cortical microcircuits”. In: PLOS Com-
putational Biology 15.4, pp. 1-43. DOI: 10.1371/journal .pcbi.1006781. URL:
https://doi.org/10.1371/journal .pcbi.1006781.

Duarte, Renato et al. (2018). “Encoding symbolic sequences with spiking neural reser-
voirs”. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1-8.
DOI: 10.1109/TIJCNN.2018.8489114

121

https://doi.org/10.1371/journal.pone.0178663
https://dx.plos.org/10.1371/journal.pone.0178663
https://dx.plos.org/10.1371/journal.pone.0178663
https://doi.org/10.1162/artl.2009.16.1.16100
https://direct.mit.edu/artl/article-pdf/16/1/1/1662621/artl.2009.16.1.16100.pdf
https://direct.mit.edu/artl/article-pdf/16/1/1/1662621/artl.2009.16.1.16100.pdf
https://doi.org/10.1162/artl.2009.16.1.16100
https://doi.org/10.3389/fnana.2012.00022
http://journal.frontiersin.org/article/10.3389/fnana.2012.00022/abstract
http://journal.frontiersin.org/article/10.3389/fnana.2012.00022/abstract
http://journal.frontiersin.org/article/10.3389/fnana.2012.00022/abstract
https://doi.org/10.1016/S0306-4522(01)00344-X
https://www.sciencedirect.com/science/article/pii/S030645220100344X
https://www.sciencedirect.com/science/article/pii/S030645220100344X
https://doi.org/https://doi.org/10.1016/S0893-6080(02)00044-8
https://doi.org/https://doi.org/10.1016/S0893-6080(02)00044-8
https://www.sciencedirect.com/science/article/pii/S0893608002000448
https://www.sciencedirect.com/science/article/pii/S0893608002000448
https://doi.org/10.1371/journal.pcbi.1006781
https://doi.org/10.1371/journal.pcbi.1006781
https://doi.org/10.1109/IJCNN.2018.8489114

BIBLIOGRAPHY

Duarte, Renato et al. (2021). “Functional Neural Architectures”. In: por: 10.5281/
zenodo.5752597.

Duport, Francois et al. (Sept. 2012). “All-optical reservoir computing”. In: Optics Express
20.20, p. 22783. 1SSN: 1094-4087. por: 10.1364/0E.20.022783. URL: https:
//www.osapublishing.org/oe/abstract.cfm?uri=oe-20-20-22783.

Eccles, J. C. et al. (1954). “Cholinergic and Inhibitory Synapses in a Pathway from
Motor-Axon Collaterals to Motoneurones”. In: The Journal of Physiology 126.3, pp. 524—
562. 1SSN: 00223751. DOI: 10.1113/ jphysiol.1954.sp005226. URL: https:
//onlinelibrary.wiley.com/doi/10.1113/jphysiol.1954.sp005226.

Eliot, George (1879). Impressions of theophrastus such. Collection of british and american
authors. tex.lccn: 07000301. Harper & brothers. 1ISBN: 978-1-4142-8858-1. URL: https:
//books.google.cg/books?id=1xTOAAAAYAAJ.

Fermi, E. et al. (1955). studies of the nonlinear problems I. Tech. rep. LA-1940. Los
Alamos National Lab. (LANL), Los Alamos, NM (United States). por: 10.2172/
4376203. URL: https://www.osti.gov/biblio/4376203.

Fernando, Chrisantha and Sampsa Sojakka (2003). “Pattern Recognition in a Bucket”.
In: Advances in Artificial Life. Ed. by Wolfgang Banzhaf et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 588-597. 1SBN: 978-3-540-39432-7.

Finger, Stanley (2001). Origins of neuroscience: a history of explorations into brain
function. Oxford University Press, USA.

Fourcaud-Trocmé, Nicolas et al. (Dec. 2003). “How Spike Generation Mechanisms De-
termine the Neuronal Response to Fluctuating Inputs”. en. In: The Journal of Neuro-
science 23.37, pp. 11628-11640. 1sSN: 0270-6474, 1529-2401. pO1: 10.1523/JNEUROSCI.
23-37-11628.2003. URL: https://www. jneurosci.org/lookup/doi/10.
1523 /JNEUROSCI.23-37-11628.2003.

Goltz, J. et al. (Sept. 2021). “Fast and energy-efficient neuromorphic deep learning with
first-spike times”. en. In: Nature Machine Intelligence 3.9. Number: 9 Publisher: Na-
ture Publishing Group, pp. 823—-835. 1SSN: 2522-5839. DOI: 10.1038/s42256-021—-
00388-x. URL: https://www.nature.com/articles/s42256-021-00388-x
(visited on 11/29/2023).

Gerstner, Wulfram et al. (2014). Neuronal dynamics: From single neurons to networks
and models of cognition. Cambridge University Press.

Ghosh, Sanjib et al. (Apr. 2019). “Quantum reservoir processing”. en. In: npj Quantum
Information 5.1, p. 35. 1SSN: 2056-6387. DOI: 10.1038/s41534-019-0149-8.
URL: https://www.nature.com/articles/s41534-019-0149-8 (visited on
10/10/2023).

122

https://doi.org/10.5281/zenodo.5752597
https://doi.org/10.5281/zenodo.5752597
https://doi.org/10.1364/OE.20.022783
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-20-22783
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-20-22783
https://doi.org/10.1113/jphysiol.1954.sp005226
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1954.sp005226
https://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1954.sp005226
https://books.google.cg/books?id=1xIOAAAAYAAJ
https://books.google.cg/books?id=1xIOAAAAYAAJ
https://doi.org/10.2172/4376203
https://doi.org/10.2172/4376203
https://www.osti.gov/biblio/4376203
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.23-37-11628.2003
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1038/s42256-021-00388-x
https://www.nature.com/articles/s42256-021-00388-x
https://doi.org/10.1038/s41534-019-0149-8
https://www.nature.com/articles/s41534-019-0149-8

BIBLIOGRAPHY

Glimcher, Paul W (2011). “Understanding dopamine and reinforcement learning: the
dopamine reward prediction error hypothesis”. In: Proceedings of the National Academy
of Sciences 108.supplement_ 3, pp. 15647-15654.

Golgi, C (1873). “Sulla struttura della sostanza grigia del cervelo. Gazzetta Medica
Italiana”. In: Lombardia 33, p. 244.

Gray, Henry (2000). Anatomy of the human body, by Henry Gray. 20th ed., thoroughly
rev. and re-edited by Warren H. Lewis. Vol. 8. Lea & Febiger, 1918. URL: www .
bartleby.com/107/.

Grollier, Julie et al. (2020). “Neuromorphic spintronics”. In: Nature electronics 3.7,
pp. 360-370.

Habenschuss, Stefan et al. (20013). “Stochastic Computations in Cortical Microcircuit
Models”. In: PLoS Computational Biology 9.11. Ed. by Olaf Sporns, e1003311. 1SSN:
1553-7358. DOI: 10.1371/journal .pcbi.1003311. URL: https://dx.plos.
org/10.1371/journal.pcbi.1003311 (visited on 08/10/2022).

Hahne, Jan et al. (2021). “NEST 3.0”. In: pOI: 10.5281/zenodo.4739103.

Harris, Kenneth D. and Gordon M.G. Shepherd (Jan. 2015). “The neocortical circuit:
Themes and variations”. In: Nature Neuroscience 18 (2), pp. 170-181. 1SSN: 15461726.
DOI: 10.1038/nn.3917.

Héusler, Stefan and Wolfgang Maass (Feb. 2007). “A Statistical Analysis of Information-
Processing Properties of Lamina-Specific Cortical Microcircuit Models”. In: Cerebral
Corter 17.1, pp. 149-162. 1sSN: 1047-3211. DOI: 10.1093/cercor/bhjl132. eprint:
https://academic.oup.com/cercor/article-pdf/17/1/149/797744/
bhjl132.pdf. URL: https://doi.org/10.1093/cercor/bhjl32.

Hausler, Stefan et al. (2009). “Motif Distribution, Dynamical Properties, and Com-
putational Performance of Two Data-Based Cortical Microcircuit Templates”. In:
Journal of Physiology-Paris 103.1-2, pp. 73-87. 1SSN: 09284257. por: 10.1016/ 7.
jphysparis.2009.05.006. URL: https://linkinghub.elsevier.com/
retrieve/pii/S50928425709000266.

Hebb, Donald O. (June 1949). The organization of behavior: A neuropsychological theory.
New York: Wiley. 1SBN: 0-8058-4300-0.

Hippocrates (1868). On the Sacred Disease. Trans. by Charles Darwin Adams. Oxford:
Clarendon Press. URL: http://www.perseus.tufts.edu/hopper/text?doc=
urn:cts:greekLit:t1g0627.t1g027.perseus—engl:1l.

123

www.bartleby.com/107/
www.bartleby.com/107/
https://doi.org/10.1371/journal.pcbi.1003311
https://dx.plos.org/10.1371/journal.pcbi.1003311
https://dx.plos.org/10.1371/journal.pcbi.1003311
https://doi.org/10.5281/zenodo.4739103
https://doi.org/10.1038/nn.3917
https://doi.org/10.1093/cercor/bhj132
https://academic.oup.com/cercor/article-pdf/17/1/149/797744/bhj132.pdf
https://academic.oup.com/cercor/article-pdf/17/1/149/797744/bhj132.pdf
https://doi.org/10.1093/cercor/bhj132
https://doi.org/10.1016/j.jphysparis.2009.05.006
https://doi.org/10.1016/j.jphysparis.2009.05.006
https://linkinghub.elsevier.com/retrieve/pii/S0928425709000266
https://linkinghub.elsevier.com/retrieve/pii/S0928425709000266
http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0627.tlg027.perseus-eng1:1
http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:greekLit:tlg0627.tlg027.perseus-eng1:1

BIBLIOGRAPHY

Hodgkin, Alan L and Andrew F Huxley (1952). “A quantitative description of membrane
current and its application to conduction and excitation in nerve”. In: The Journal of
physiology 117.4, p. 500.

Horton, Jonathan C and Daniel L. Adams (Apr. 2005). “The cortical column: a struc-
ture without a function.” In: Philosophical transactions of the Royal Society of Lon-
don. Series B, Biological sciences 360 (1456), pp. 837-862. 1SSN: 0962-8436. DOI:
10.1098/rstb.2005.1623. URL: http://www.pubmedcentral .nih.gov/
articlerender. fcgi?artid=1569491 &tool=pmcentrez & rendertype=
abstract.

Izhikevich, Eugene M (2007). Dynamical systems in neuroscience. MIT Press.

Jaeger, Herbert (2001a). “Short term memory in echo state networks”. In: URL: https:
//publica.fraunhofer.de/handle/publica/291107.

— (2001b). “The “echo state” approach to analysing and training recurrent neural networks-
with an erratum note”. In: 148.34, p. 13.

Jarrell, Travis A. et al. (2012). “The Connectome of a Decision-Making Neural Net-
work”. In: Science 337.6093, pp. 437-444. DOI1: 10.1126/science.1221762. eprint:
https://www.science.org/doi/pdf/10.1126/science.1221762. URL:
https://www.science.org/doi/abs/10.1126/science.1221762.

Joel, Daphna et al. (2002). “Actor—critic models of the basal ganglia: new anatomical and
computational perspectives”. In: Neural Networks 15.4, pp. 535-547. 1SsN: 0893-6080.
DOI: https://doi.org/10.1016/50893-6080(02) 00047~3. URL: https:
//www.sciencedirect.com/science/article/pii/S0893608002000473.

Kaiser, Marcus and Claus C. Hilgetag (Mar. 2004). “Spatial growth of real-world net-
works”. In: Physical Review E 69.3, p. 036103. 1ssN: 1539-3755, 1550-2376. DOI: 10.
1103/PhysRevE.69.036103. URL: https://link.aps.org/doi/10.1103/
PhysRevE.69.036103.

Kawato, Mitsuo and Kazuyuki Samejima (2007). “Efficient reinforcement learning: com-
putational theories, neuroscience and robotics”. In: Current Opinion in Neurobiology
17.2. Cognitive neuroscience, pp. 205-212. 1SSN: 0959-4388. DOI: https://doi.
org/10.1016/j.conb.2007.03.004. URL: https://www.sciencedirect.
com/science/article/pii/S0959438807000372.

Kenyon, Garrett T. et al. (Sept. 2003). “A model of high-frequency oscillatory potentials
in retinal ganglion cells”. en. In: Visual Neuroscience 20.5, pp. 465-480. 1SSN: 0952-
5238, 1469-8714. por: 10.1017/50952523803205010. URL: https: // www .
cambridge.org/core/product/identifier/S0952523803205010/type/
journal_article (visited on 11/29/2023).

124

https://doi.org/10.1098/rstb.2005.1623
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569491&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569491&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569491&tool=pmcentrez&rendertype=abstract
https://publica.fraunhofer.de/handle/publica/291107
https://publica.fraunhofer.de/handle/publica/291107
https://doi.org/10.1126/science.1221762
https://www.science.org/doi/pdf/10.1126/science.1221762
https://www.science.org/doi/abs/10.1126/science.1221762
https://doi.org/https://doi.org/10.1016/S0893-6080(02)00047-3
https://www.sciencedirect.com/science/article/pii/S0893608002000473
https://www.sciencedirect.com/science/article/pii/S0893608002000473
https://doi.org/10.1103/PhysRevE.69.036103
https://doi.org/10.1103/PhysRevE.69.036103
https://link.aps.org/doi/10.1103/PhysRevE.69.036103
https://link.aps.org/doi/10.1103/PhysRevE.69.036103
https://doi.org/https://doi.org/10.1016/j.conb.2007.03.004
https://doi.org/https://doi.org/10.1016/j.conb.2007.03.004
https://www.sciencedirect.com/science/article/pii/S0959438807000372
https://www.sciencedirect.com/science/article/pii/S0959438807000372
https://doi.org/10.1017/S0952523803205010
https://www.cambridge.org/core/product/identifier/S0952523803205010/type/journal_article
https://www.cambridge.org/core/product/identifier/S0952523803205010/type/journal_article
https://www.cambridge.org/core/product/identifier/S0952523803205010/type/journal_article

BIBLIOGRAPHY

Kim, Robert et al. (2019). “Simple framework for constructing functional spiking re-
current neural networks”. In: Proceedings of the national academy of sciences 116.45,
pp. 22811-22820.

Klys, Jack et al. (Dec. 2018). “Learning latent subspaces in variational autoencoders”.
In: Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., pp. 6445-6455.
(Visited on 11/21/2023).

Loépez-Muiioz, Francisco et al. (Oct. 2006). “Neuron theory, the cornerstone of neuro-
science, on the centenary of the Nobel Prize award to Santiago Ramoén y Cajal”. en.
In: Brain Research Bulletin 70.4-6, pp. 391-405. 1sSN: 03619230. pO1: 10.1016/ 7.
brainresbull.2006.07.010. URL: https://linkinghub.elsevier.com/
retrieve/pii/$0361923006002334 (visited on 10/31/2023).

Lapicque, L (1907). “Recherches quantitatives sur I’excitation électrique des nerfs traitée
comme une polarisation”. In: J Physiol Pathol Gen 9, pp. 620-635.

Larger, Laurent et al. (2012). “Photonic information processing beyond Turing: an opto-
electronic implementation of reservoir computing”. In: Optics express 20.3, pp. 3241—
3249.

Lauterbur, Paul C (1973). “Image formation by induced local interactions: examples
employing nuclear magnetic resonance”. In: nature 242.5394, pp. 190-191.

Lefévre, Julien and Jean-Frangois Mangin (Apr. 2010). “A Reaction-Diffusion Model of
Human Brain Development”. In: PLOS Computational Biology 6.4, pp. 1-10. DOI:
10.1371/ journal .pcbi . 1000749. URL: https://doi.org/10.1371/
journal .pcbi.10007409.

Levien, R. B. and S. M. Tan (Nov. 1993). “Double pendulum: An experiment in chaos”.
In: American Journal of Physics 61.11, pp. 1038-1044. por: 10.1119/1.17335.
URL: https://doi.org/10.1119/1.17335.

Lugnan, Alessio et al. (2020). “Photonic neuromorphic information processing and reser-
voir computing”. In: APL Photonics 5.2, p. 020901.

Maass, Wolfgang (2014). “Noise as a Resource for Computation and Learning in Net-
works of Spiking Neurons”. In: Proceedings of the IEEE 102.5, pp. 860-880. ISSN:
0018-9219, 1558-2256. DOI: 10 .1109/JPROC . 2014 .2310593. URL: http://
ieeexplore.ieee.org/document/6797856/.

Maass, Wolfgang and Henry Markram (Mar. 2002). “Synapses as dynamic memory
buffers”. In: Neural Networks 15.2, pp. 155-161. 1ssN: 08936080. por: 10 . 1016/
S0893-6080(01) 00144-"7. URL: https://linkinghub.elsevier.com/
retrieve/pii/s0893608001001447 (visited on 10/27/2021).

125

https://doi.org/10.1016/j.brainresbull.2006.07.010
https://doi.org/10.1016/j.brainresbull.2006.07.010
https://linkinghub.elsevier.com/retrieve/pii/S0361923006002334
https://linkinghub.elsevier.com/retrieve/pii/S0361923006002334
https://doi.org/10.1371/journal.pcbi.1000749
https://doi.org/10.1371/journal.pcbi.1000749
https://doi.org/10.1371/journal.pcbi.1000749
https://doi.org/10.1119/1.17335
https://doi.org/10.1119/1.17335
https://doi.org/10.1109/JPROC.2014.2310593
http://ieeexplore.ieee.org/document/6797856/
http://ieeexplore.ieee.org/document/6797856/
https://doi.org/10.1016/S0893-6080(01)00144-7
https://doi.org/10.1016/S0893-6080(01)00144-7
https://linkinghub.elsevier.com/retrieve/pii/S0893608001001447
https://linkinghub.elsevier.com/retrieve/pii/S0893608001001447

BIBLIOGRAPHY

Maass, Wolfgang et al. (2002). “Real-time computing without stable states: A new frame-
work for neural computation based on perturbations”. In: Neural computation 14.11,
pp. 2531-2560.

Madhu, Aswathy and Suresh Kumaraswamy (Sept. 2019). “Data Augmentation Using
Generative Adversarial Network for Environmental Sound Classification”. In: 2019
27th European Signal Processing Conference (EUSIPCO). ISSN: 2076-1465, pp. 1-5.
DOI: 10.23919/EUSIPC0.2019.8902819. URL: https://ieeexplore.iecee.
org/abstract/document /8902819 (visited on 11/22/2023).

Mainen, Zachary F et al. (1995). “A Model of Spike Initiation in Neocortical Pyramidal
Neurons”. In: Neuron 15.6. Publisher: Cell Press, pp. 1427-1439. 1SSN: 0896-6273. DOTI:
10.1016/0896-6273(95) 90020-9. URL: http://dx.doi.org/10.1016/
0896-6273(95)90020-9.

Markram, Henry et al. (2015). “Reconstruction and Simulation of Neocortical Micro-
circuitry”. In: Cell 163.2, pp. 456-492. 1ssN: 00928674. por: 10.1016/j.cell.
2015.09.029. URL: https://linkinghub.elsevier.com/retrieve/pii/
S50092867415011915.

Masse, Nicolas Y et al. (2019). “Circuit mechanisms for the maintenance and manip-
ulation of information in working memory”. In: Nature neuroscience 22.7, pp. 1159—
1167.

May, Robert M (1976). “Simple mathematical models with very complicated dynamics”.
In: Nature 261.5560, pp. 459-467.

McCarthy, John et al. (1955). “A proposal for the dartmouth summer research project
on artificial intelligence, august 31, 1955”. In: Al magazine 27.4, pp. 12-12.

McClure, Samuel M et al. (2003). “Temporal prediction errors in a passive learning task
activate human striatum”. In: Neuron 38.2, pp. 339-346.

McCulloch, Warren S and Walter Pitts (1943). “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5, pp. 115-133.

McDonnell, Mark D. and Lawrence M Ward (2011). “The Benefits of Noise in Neural
Systems: Bridging Theory and Experiment”. In: Nature Reviews Neuroscience 12.7,
pp. 415-425. 18SN: 1471-003X. DOI: 10.1038 /nrn3061. pmid: 21685932. URL:
http://dx.doi.org/10.1038/nrn3061.

McDougal, Robert A et al. (2017). “Twenty years of ModelDB and beyond: building
essential modeling tools for the future of neuroscience”. In: Journal of computational
neuroscience 42.1, pp. 1-10.

126

https://doi.org/10.23919/EUSIPCO.2019.8902819
https://ieeexplore.ieee.org/abstract/document/8902819
https://ieeexplore.ieee.org/abstract/document/8902819
https://doi.org/10.1016/0896-6273(95)90020-9
http://dx.doi.org/10.1016/0896-6273(95)90020-9
http://dx.doi.org/10.1016/0896-6273(95)90020-9
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://linkinghub.elsevier.com/retrieve/pii/S0092867415011915
https://linkinghub.elsevier.com/retrieve/pii/S0092867415011915
https://doi.org/10.1038/nrn3061
21685932
http://dx.doi.org/10.1038/nrn3061

BIBLIOGRAPHY

Metropolis, Nicholas and Stanislaw Ulam (1949). “The monte carlo method”. In: Journal
of the American statistical association 44.247, pp. 335-341.

Mikula, Shawn et al. (2007). “Internet-enabled high-resolution brain mapping and virtual
microscopy”. In: Neuroimage 35.1, pp. 9-15.

Miller, Earl K et al. (2002). “The prefrontal cortex: categories, concepts and cognition”.
In: Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences 357.1424, pp. 1123-1136.

Mongillo, Gianluigi et al. (2008). “Synaptic theory of working memory”. In: Science
319.5869, pp. 1543-1546.

Montague, P Read et al. (1996). “A framework for mesencephalic dopamine systems
based on predictive Hebbian learning”. In: Journal of neuroscience 16.5, pp. 1936—
1947.

Morishima, M. et al. (July 2011). “Highly Differentiated Projection-Specific Cortical
Subnetworks”. en. In: Journal of Neuroscience 31.28, pp. 10380-10391. 1ssN: 0270-
6474, 1529-2401. por: 10.1523 /JNEUROSCTI . 0772-11.2011. URL: https://
www. jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0772-11.2011.

Morishima, Mieko and Yasuo Kawaguchi (2006). “Recurrent Connection Patterns of
Corticostriatal Pyramidal Cells in Frontal Cortex”. In: Journal of Neuroscience 26.16,
pp. 4394-4405. 18SN: 0270-6474. DOI: 10 . 1523 / JNEUROSCI . 0252 -06 . 2006.
eprint: https://www. jneurosci.org/content/26/16/4394 . full. pdf.
URL: https://www. jneurosci.org/content/26/16/4394.

Morishima, Mieko et al. (Dec. 2017). “Segregated Excitatory—Inhibitory Recurrent Sub-
networks in Layer 5 of the Rat Frontal Cortex”. en. In: Cerebral Cortex 27.12, pp. 5846—
5857. 1SSN: 1047-3211, 1460-2199. por: 10.1093/cercor/bhx276. URL: https:
//academic.oup.com/cercor/article/27/12/5846/4555263.

Morita, Kenji et al. (Aug. 2012). “Reinforcement learning: computing the temporal dif-
ference of values via distinct corticostriatal pathways”. en. In: Trends in Neurosciences
35.8, pp. 457-467. 1sSN: 01662236. DO1: 10.1016/j.tins.2012.04.009. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0166223612000719
(visited on 11/09/2021).

Mountcastle, Vernon B. (1997). “The columnar organization of the neocortex”. In: Brain
120 (4), pp. 701-722. 18SN: 00068950. DOI: 10 .1093 /brain/120.4.701. URL:
http://www.ncbi.nlm.nih.gov/pubmed/9153131.

Nakajima, Kohei et al. (2015). “Information processing via physical soft body”. In: Sci-
entific reports 5.1, p. 10487.

127

https://doi.org/10.1523/JNEUROSCI.0772-11.2011
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0772-11.2011
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0772-11.2011
https://doi.org/10.1523/JNEUROSCI.0252-06.2006
https://www.jneurosci.org/content/26/16/4394.full.pdf
https://www.jneurosci.org/content/26/16/4394
https://doi.org/10.1093/cercor/bhx276
https://academic.oup.com/cercor/article/27/12/5846/4555263
https://academic.oup.com/cercor/article/27/12/5846/4555263
https://doi.org/10.1016/j.tins.2012.04.009
https://linkinghub.elsevier.com/retrieve/pii/S0166223612000719
https://doi.org/10.1093/brain/120.4.701
http://www.ncbi.nlm.nih.gov/pubmed/9153131

BIBLIOGRAPHY

Nakajima, Kohei et al. (Mar. 2019). “Boosting Computational Power through Spatial
Multiplexing in Quantum Reservoir Computing”. en. In: Physical Review Applied 11.3,
p- 034021. 1ssN: 2331-7019. por: 10.1103/PhysRevApplied.11.034021. URL:
https://1link.aps.org/doi/10.1103/PhysRevApplied.11.034021
(visited on 10/10/2023).

Nicola, Wilten and Claudia Clopath (2017). “Supervised learning in spiking neural net-
works with FORCE training”. In: Nature communications 8.1, p. 2208.

O’Doherty, John P et al. (2003). “Temporal difference models and reward-related learn-
ing in the human brain”. In: Neuron 38.2, pp. 329-337.

O’Doherty, John et al. (2004). “Dissociable roles of ventral and dorsal striatum in in-
strumental conditioning”. In: science 304.5669, pp. 452-454.

Ogawa, Seiji et al. (1990). “Brain magnetic resonance imaging with contrast dependent
on blood oxygenation.” In: proceedings of the National Academy of Sciences 87.24,
pp. 9868-9872.

Paquot, Y. et al. (Feb. 2012). “Optoelectronic Reservoir Computing”. en. In: Scientific
Reports 2.1, p. 287. 1SSN: 2045-2322. DOI: 10 .1038 /srep00287. URL: https :
//www.nature.com/articles/srep00287 (visited on 05/21/2023).

Paquot, Yvan et al. (Apr. 2010). “Reservoir computing: a photonic neural network
for information processing”. en. In: ed. by Benjamin J. Eggleton et al. Brussels,
Belgium, 77280B. por: 10.1117/12.854050. URL: http://proceedings .
spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.854050
(visited on 10/10/2023).

Pauli, Robin et al. (2018). “Reproducing Polychronization: A Guide to Maximizing the
Reproducibility of Spiking Network Models”. In: Frontiers in Neuroinformatics 12.
ISSN: 1662-5196. DOI: 10 . 3389/ fninf . 2018 .00046. URL: https:// www .
frontiersin.org/article/10.3389/fninf.2018.00046.

Pavlov, Ivan Petrovich (1927). Conditioned reflexes: an investigation of the physiological
activity of the cerebral cortex. Oxford University Press: Humphrey Milford.

Perin, Rodrigo et al. (2011). “A synaptic organizing principle for cortical neuronal
groups”. In: Proceedings of the National Academy of Sciences 108.13, pp. 5419-5424.
DOI: 10.1073/pnas.1016051108. eprint: https://www.pnas.org/doi/pdf/
10.1073/pnas.1016051108. URL: https://www.pnas.org/doi/abs/10.
1073/pnas.1016051108.

Piccinini, Gualtiero and Sonya Bahar (2013). “Neural Computation and the Computa-
tional Theory of Cognition”. In: Cognitive Science 37.3, pp. 453-488. DOI: https:
//doi.org/10.1111/cogs.12012. eprint: https://onlinelibrary.wiley.

128

https://doi.org/10.1103/PhysRevApplied.11.034021
https://link.aps.org/doi/10.1103/PhysRevApplied.11.034021
https://doi.org/10.1038/srep00287
https://www.nature.com/articles/srep00287
https://www.nature.com/articles/srep00287
https://doi.org/10.1117/12.854050
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.854050
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.854050
https://doi.org/10.3389/fninf.2018.00046
https://www.frontiersin.org/article/10.3389/fninf.2018.00046
https://www.frontiersin.org/article/10.3389/fninf.2018.00046
https://doi.org/10.1073/pnas.1016051108
https://www.pnas.org/doi/pdf/10.1073/pnas.1016051108
https://www.pnas.org/doi/pdf/10.1073/pnas.1016051108
https://www.pnas.org/doi/abs/10.1073/pnas.1016051108
https://www.pnas.org/doi/abs/10.1073/pnas.1016051108
https://doi.org/https://doi.org/10.1111/cogs.12012
https://doi.org/https://doi.org/10.1111/cogs.12012
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cogs.12012
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cogs.12012

BIBLIOGRAPHY

com/doi/pdf/10.1111/cogs.12012. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cogs.12012.

Plesser, Hans E. (2018). “Reproducibility vs. Replicability: A Brief History of a Confused
Terminology”. In: Frontiers in Neuroinformatics 11. 1SSN: 1662-5196. DOI: 10.3389/
fninf.2017.00076. URL: https://www. frontiersin.org/article/10.
3389/fninf.2017.00076.

Poincaré, Henri (1892). Les méthodes nouvelles de la mécanique céleste. Vol. 3. Gauthier-
Villars et fils.

Popper, Karl (2005). The logic of scientific discovery. Routledge.

Potjans, Tobias C. and Markus Diesmann (2014). “The Cell-Type Specific Cortical Mi-
crocircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model”. In:
Cerebral Cortex 24.3, pp. 785-806. 1SSN: 1460-2199. DOI: 10.1093/cercor/bhs358.
pmid: 23203991. URL: https://academic . oup.com/cercor/article-
lookup/doi/10.1093/cercor/bhs358.

Purkinje, Johannes Evangelista (1837). “Neueste Untersuchungen aus der Nerven und
Hirn Anatomie”. In: Bericht iber die Versammlung deutscher Naturforscher und Aerzte
in Prag im September 1883, pp. 177-180.

Putnam, Hilary (1967). “Psychological Predicates”. In: Art, Mind, and Religion. Ed. by
W. H. Capitan and D. D. Merrill. University of Pittsburgh Press, pp. 37-48.

Pyle, Ryan and Robert Rosenbaum (July 2019). “A Reservoir Computing Model of
Reward-Modulated Motor Learning and Automaticity”. In: Neural Computation 31.7,
pp. 1430-1461. 1ssN: 0899-7667. DOI: 10.1162/neco_a_01198. eprint: https:
//direct.mit.edu/neco/article-pdf/31/7/1430/1053175/neco_a\
_01198.pdf. URL: https://doi.org/10.1162/neco_a_01198.

Rohm, André and Kathy Liidge (2018). “Multiplexed networks: reservoir computing with
virtual and real nodes”. In: Journal of Physics Communications 2.8, p. 085007. DOTI:
10.1088/2399-6528/aad56d. URL: https://dx.doi.org/10.1088/2399-
6528/aad56d.

Ramon y Cajal, Santiago (1888). Estructura de los centros nerviosos de las aves. Vol. 1.
— (1899). Comparative study of the sensory areas of the human cortex. Clark University.

Rasch, Malte J. et al. (2011). “Statistical Comparison of Spike Responses to Natural
Stimuli in Monkey Area V1 With Simulated Responses of a Detailed Laminar Network
Model for a Patch of V1”. In: Journal of Neurophysiology 105.2, pp. 7T57-778. ISSN:
0022-3077, 1522-1598. poI: 10.1152/ 3n.00845.2009. URL: https://www.
physiology.org/doi/10.1152/9n.00845.20009.

129

https://onlinelibrary.wiley.com/doi/pdf/10.1111/cogs.12012
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cogs.12012
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cogs.12012
https://onlinelibrary.wiley.com/doi/abs/10.1111/cogs.12012
https://onlinelibrary.wiley.com/doi/abs/10.1111/cogs.12012
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.3389/fninf.2017.00076
https://www.frontiersin.org/article/10.3389/fninf.2017.00076
https://www.frontiersin.org/article/10.3389/fninf.2017.00076
https://doi.org/10.1093/cercor/bhs358
23203991
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhs358
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhs358
https://doi.org/10.1162/neco_a_01198
https://direct.mit.edu/neco/article-pdf/31/7/1430/1053175/neco_a_01198.pdf
https://direct.mit.edu/neco/article-pdf/31/7/1430/1053175/neco_a_01198.pdf
https://direct.mit.edu/neco/article-pdf/31/7/1430/1053175/neco_a_01198.pdf
https://doi.org/10.1162/neco_a_01198
https://doi.org/10.1088/2399-6528/aad56d
https://dx.doi.org/10.1088/2399-6528/aad56d
https://dx.doi.org/10.1088/2399-6528/aad56d
https://doi.org/10.1152/jn.00845.2009
https://www.physiology.org/doi/10.1152/jn.00845.2009
https://www.physiology.org/doi/10.1152/jn.00845.2009

BIBLIOGRAPHY

Rescorla, Michael (2020). “The Computational Theory of Mind”. In: The Stanford En-
cyclopedia of Philosophy. Ed. by Edward N. Zalta. Fall 2020. Metaphysics Research
Lab, Stanford University.

Rosenblatt, Frank (1958). “The perceptron: A probabilistic model for information storage
and organization in the brain.” In: Psychological review 65.6, p. 386.

Rumelhart, David E et al. (1986). “Learning representations by back-propagating errors”.
In: nature 323.6088, pp. 533-536.

Saito, Yuki et al. (Jan. 2018). “Statistical Parametric Speech Synthesis Incorporating
Generative Adversarial Networks”. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 26.1. Conference Name: IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, pp. 84-96. 1ssN: 2329-9304. por: 10.1109/
TASLP.2017.2761547. URL: https://ieeexplore.ieee.org/abstract/
document /8063435 (visited on 11/22/2023).

Sammut, Michele et al. (2015). “Glia-derived neurons are required for sex-specific learn-
ing in C. elegans”. In: Nature 526.7573, pp. 385-390.

Schulte to Brinke, Tobias et al. (2022). “Source code for "Characteristic columnar con-
nectivity caters to cortical computation: replication, simulation and evaluation of a
microcircuit model"”. In: DOI: 10.5281/zenodo.7037649.

Schultz, Wolfram et al. (1997). “A neural substrate of prediction and reward”. In: Science
275.5306, pp. 1593-1599.

Sharp, Thomas et al. (2012). “Power-efficient simulation of detailed cortical microcircuits
on SpiNNaker”. In: Journal of neuroscience methods 210.1, pp. 110-118.

Shen, Yujun and Bolei Zhou (2021). “Closed-Form Factorization of Latent Seman-
tics in GANSs”. en. In: pp. 1532-1540. URL: https : / / openaccess . thecvf .
com/ content / CVPR2021 /html / Shen_Closed - Form_ Factorization_
of _Latent _ Semantics_in_ GANs_CVPR_ 2021 _ paper . html (Visited on
11/21/2023).

Shen, Yujun et al. (Apr. 2022). “InterFaceGAN: Interpreting the Disentangled Face Rep-
resentation Learned by GANs”. In: IEEFE Transactions on Pattern Analysis and Ma-
chine Intelligence 44.4. Conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 2004—2018. 1SSN: 1939-3539. pDO1: 10.1109/TPAMI.2020.
3034267. URL: https://ieeexplore . ieee . org/abstract / document /
9241434 (visited on 11/21/2023).

Skinner, BF (1938). The behavior of organisms: an experimental analysis. Appleton-
Century.

130

https://doi.org/10.1109/TASLP.2017.2761547
https://doi.org/10.1109/TASLP.2017.2761547
https://ieeexplore.ieee.org/abstract/document/8063435
https://ieeexplore.ieee.org/abstract/document/8063435
https://doi.org/10.5281/zenodo.7037649
https://openaccess.thecvf.com/content/CVPR2021/html/Shen_Closed-Form_Factorization_of_Latent_Semantics_in_GANs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Shen_Closed-Form_Factorization_of_Latent_Semantics_in_GANs_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Shen_Closed-Form_Factorization_of_Latent_Semantics_in_GANs_CVPR_2021_paper.html
https://doi.org/10.1109/TPAMI.2020.3034267
https://doi.org/10.1109/TPAMI.2020.3034267
https://ieeexplore.ieee.org/abstract/document/9241434
https://ieeexplore.ieee.org/abstract/document/9241434

BIBLIOGRAPHY

Smith, Evan C. and Michael S. Lewicki (Feb. 2006). “Efficient auditory coding”. en. In:
Nature 439.7079. Number: 7079 Publisher: Nature Publishing Group, pp. 978-982.
ISSN: 1476-4687. pOI: 10.1038 /nature04485. URL: https://www. nature.
com/articles/nature04485 (visited on 11/21/2023).

Smith, Linda B. and Esther Thelen (Aug. 2003). “Development as a dynamic system”.
en. In: Trends in Cognitive Sciences 7.8, pp. 343-348. 1SSN: 13646613. DoI1: 10.1016/
S1364-6613(03) 00156—-6. URL: https://linkinghub.elsevier.com/
retrieve/pii/S1364661303001566 (visited on 01/05/2023).

Song, Sen et al. (Mar. 2005). “Highly Nonrandom Features of Synaptic Connectivity
in Local Cortical Circuits”. In: PLOS Biology 3.3, null. Do1: 10.1371/ journal.
pbio.0030068. URL: https://doi.org/10.1371/journal.pbio.0030068.

Stein, R.B. (1967). “Some Models of Neuronal Variability”. In: Biophysical Journal 7.1,
pp. 37-68. 18SN: 0006-3495. DOI: https://doi.org/10.1016/50006-3495(67)
86574-3. URL: https://www.sciencedirect.com/science/article/pii/
S0006349567865743.

Steno, Nicolas (1669). Discours de Monsieur Stenon, sur l'anatomie du cerveau. A
messieurs de [’Assemblée que se fait chez Monsieur Thevenot. French. A Paris, chez
Robert de Ninville. URL: https://archive.org/details/BIUSante_31863/
page/n25/mode/2up.

Sussillo, David and Larry F Abbott (2009). “Generating coherent patterns of activity
from chaotic neural networks”. In: Neuron 63.4, pp. 544-557.

Sutton, Richard S (1988). “Learning to predict by the methods of temporal differences”.
In: Machine learning 3, pp. 9-44.

Sutton, Richard S and Andrew G Barto (1981). “Toward a modern theory of adaptive
networks: expectation and prediction.” In: Psychological review 88.2, p. 135.

Tanaka, Gouhei et al. (2019). “Recent advances in physical reservoir computing: A re-
view”. In: Neural Networks 115, pp. 100-123.

Taylor, Tim and Alan Dorin (2020). “Rise of the Self-Replicators”. In: Cham, Switzer-
land: Springer.

Thomson, Alex M. et al. (Sept. 2002). “Synaptic Connections and Small Circuits Involv-
ing Excitatory and Inhibitory Neurons in Layers 2-5 of Adult Rat and Cat Neocortex:
Triple Intracellular Recordings and Biocytin Labelling In Vitro”. In: Cerebral Cortex
12.9, pp. 936-953. 1SSN: 1047-3211. DOI: 10.1093/cercor/12.9.936. eprint:
https://academic.oup.com/cercor/article-pdf/12/9/936/9752427/
1200936.pdf. URL: https://doi.org/10.1093/cercor/12.9.936.

131

https://doi.org/10.1038/nature04485
https://www.nature.com/articles/nature04485
https://www.nature.com/articles/nature04485
https://doi.org/10.1016/S1364-6613(03)00156-6
https://doi.org/10.1016/S1364-6613(03)00156-6
https://linkinghub.elsevier.com/retrieve/pii/S1364661303001566
https://linkinghub.elsevier.com/retrieve/pii/S1364661303001566
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/https://doi.org/10.1016/S0006-3495(67)86574-3
https://doi.org/https://doi.org/10.1016/S0006-3495(67)86574-3
https://www.sciencedirect.com/science/article/pii/S0006349567865743
https://www.sciencedirect.com/science/article/pii/S0006349567865743
https://archive.org/details/BIUSante_31863/page/n25/mode/2up
https://archive.org/details/BIUSante_31863/page/n25/mode/2up
https://doi.org/10.1093/cercor/12.9.936
https://academic.oup.com/cercor/article-pdf/12/9/936/9752427/1200936.pdf
https://academic.oup.com/cercor/article-pdf/12/9/936/9752427/1200936.pdf
https://doi.org/10.1093/cercor/12.9.936

BIBLIOGRAPHY

Thorndike, Edward Lee (1911). Animal intelligence: Experimental studies. Transaction
Publishers.

Turing, A. M. (Oct. 1950). “I.—~COMPUTING MACHINERY AND INTELLIGENCE".
In: Mind LIX.236, pp. 433—-460. 1SSN: 0026-4423. pOoI: 10.1093/mind/LIX.236.
433. URL: https://doi.org/10.1093/mind/LIX.236.433.

Turing, Alan M. (1936). “On Computable Numbers, with an Application to the Entschei-
dungsproblem”. In: Proceedings of the London Mathematical Society 2.42, pp. 230-265.
URL: http://www.cs.helsinki.fi/u/gionis/cc05/0OnComputableNumbers.
pdf.

Van Vreeswijk, Carl and Haim Sompolinsky (1996). “Chaos in neuronal networks with
balanced excitatory and inhibitory activity”. In: Science 274.5293, pp. 1724-1726.

Vandoorne, Kristof et al. (2014). “Experimental demonstration of reservoir computing
on a silicon photonics chip”. In: Nature communications 5.1, p. 3541.

Verstraeten, David et al. (2010). “Memory versus non-linearity in reservoirs”. In: The
2010 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. DOI: 10.
1109/IJCNN.2010.5596492.

Vesalius, Andreas (1543). De Humani Corporis Fabrica Libri Septem. Basel: Joannes
Oporinus.

von Neumann, J. (1993). “First draft of a report on the EDVAC”. In: IEEE Annals of
the History of Computing 15.4, pp. 27-75. DOI: 10.1109/85.238389.

Worgotter, Florentin and Bernd Porr (2005). “Temporal Sequence Learning, Prediction,
and Control: A Review of Different Models and Their Relation to Biological Mecha-
nisms”. In: Neural Computation 17.2, pp. 245-319. D0O1: 10.1162/0899766053011555.

Watts, Duncan J and Steven H Strogatz (1998). “Collective dynamics of ‘small-world'networks”.
In: nature 393.6684, pp. 440-442.

Wiesenfeld, Kurt and Frank Moss (1995). “Stochastic Resonance and the Benefits of
Noise: From Ice Ages to Crayfish and SQUIDs”. In: Nature 373.6509, pp. 33-36. ISSN:
0028-0836, 1476-4687. poI: 10.1038/373033a0. URL: http://www.nature.
com/articles/373033a0.

Winant, David et al. (May 2021). “Latent Space Exploration Using Generative Kernel
PCA”. In: arXiv:2105.13949 [cs, stat]. DOI: 10.48550/arXiv.2105.13949. URL:
http://arxiv.org/abs/2105.13949 (visited on 11/21/2023).

Yang, Vicky Chugiao et al. (2021). “Dynamical system model predicts when social learn-
ers impair collective performance”. In: Proceedings of the National Academy of Sci-
ences 118.35, €2106292118. DO1: 10.1073/pnas .2106292118. eprint: https:

132

https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
http://www.cs.helsinki.fi/u/gionis/cc05/OnComputableNumbers.pdf
https://doi.org/10.1109/IJCNN.2010.5596492
https://doi.org/10.1109/IJCNN.2010.5596492
https://doi.org/10.1109/85.238389
https://doi.org/10.1162/0899766053011555
https://doi.org/10.1038/373033a0
http://www.nature.com/articles/373033a0
http://www.nature.com/articles/373033a0
https://doi.org/10.48550/arXiv.2105.13949
http://arxiv.org/abs/2105.13949
https://doi.org/10.1073/pnas.2106292118
https://www.pnas.org/doi/pdf/10.1073/pnas.2106292118
https://www.pnas.org/doi/pdf/10.1073/pnas.2106292118

BIBLIOGRAPHY

//www .pnas .org/doi/pdf/10.1073/pnas.2106292118. URL: https :
//www.pnas.org/doi/abs/10.1073/pnas.2106292118.

Yildiz, Izzet B. et al. (2012). “Re-visiting the echo state property”. In: Neural Networks
35, pp. 1-9. 18sN: 0893-6080. DOI: https://doi.org/10.1016/ J.neunet .
2012.07.005. URL: https://www.sciencedirect.com/science/article/
pPii/S0893608012001852.

Zhong, Yanan et al. (Jan. 2021). “Dynamic memristor-based reservoir computing for
high-efficiency temporal signal processing”. en. In: Nature Communications 12.1, p. 408.
ISSN: 2041-1723. DOI: 10.1038/s41467-020-20692-1. URL: https://www.
nature.com/articles/s41467-020-20692-1 (visited on 10/11/2023).

133

https://www.pnas.org/doi/pdf/10.1073/pnas.2106292118
https://www.pnas.org/doi/pdf/10.1073/pnas.2106292118
https://www.pnas.org/doi/pdf/10.1073/pnas.2106292118
https://www.pnas.org/doi/abs/10.1073/pnas.2106292118
https://www.pnas.org/doi/abs/10.1073/pnas.2106292118
https://doi.org/https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/https://doi.org/10.1016/j.neunet.2012.07.005
https://www.sciencedirect.com/science/article/pii/S0893608012001852
https://www.sciencedirect.com/science/article/pii/S0893608012001852
https://doi.org/10.1038/s41467-020-20692-1
https://www.nature.com/articles/s41467-020-20692-1
https://www.nature.com/articles/s41467-020-20692-1

Appendix A

Microcircuit
Tasks/circuits sﬁg 32_ ‘SJ:SE_ DC 2100 i0) dR;id' ?;f:lc
memory -25.8 -25.8 -7.9 | -28.6 -46.7 -17.3
nonlinear -30.1 31.6 | -22.8 | -29.2 -52 -18.9
other 5.1 122 |4 17 -39.7 | -1.6
[all [-162 |20 [-89 [-228 [-442 [-97 |

Table A.1: Performance measures for all control networks consisting of Hodgkin-Huxley
neurons without intrinsic conductance noise expressed as average difference
(in percent) from the performance of the data-based circuit. All values are
averaged over 20 runs.

Tasks /circuits Amor- | Small- DC DC . Rand. | Static
phous | world (no io) | dyn. syn.

memory -34.6 -23.6 -9.5 | -31.3 -59.8 -24.8

nonlinear -42.8 -21.8 -28.8 | -28.8 -62.3 =27

other -8.6 -9.9 -6.6 |-18.1 -46.3 -8

all 237 |-16.6 [-12 [-245 [-538 |-17.2 |

Table A.2: Performance measures for all control networks consisting of integrate-and-fire
neurons expressed as average difference (in percent) from the performance of

the data-based circuit. All values are averaged over 20 runs.

135

APPENDIX A MICROCIRCUIT

data-based amorphous smallworld
exc. inh. both exc. inh. both inh. both

L e | il
m

L2/3
L2/3

-
d3a

flds
F

P

Iaa

| S— N Y
n n h
- - -
0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz]
degree-controlled degree-controlled without i/o random dynamics

inh. both exc inh. both exc. inh. both

. |k
A |

L2/3
L2/3

idd

HF

M
r

FF
F.F
;

L2/3

n n n
- - -
0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz]
static
exc. inh. both
)
o~
-}

L5

-
~}-

o

1000 1000 100
firing rate [Hz]

Figure A.1: Firing rate histograms of the control circuits consisting of Hodgkin-Huxley
neurons with conductance noise.

136

data-based amorphous smallworld
exc. inh. both exc. inh. both exc. inh. both

-y
ha |

L2/3

s
flaa

e
F

d3a

L.
- - -

0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz]
degree-controlled degree-controlled without i/o random dynamics
exc. inh. both exc. inh. both exc. inh. both

.
d
L

L2/3

FF
)

L2/3

fad
TFE

L2/3

fldd

n wn n
- - -
0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz]
static
exc. inh. both
Q
3

L5

aim®
o=

o

1000 1000 100
firing rate [Hz]

Figure A.2: Firing rate histograms of the control circuits consisting of Hodgkin-Huxley
neurons without conductance noise.

137

APPENDIX A MICROCIRCUIT

data-based amorphous smallworld
exc. inh. both exc. inh. both exc. inh. both

L2/3
L2/3

TE
THF
r-rﬁlri
e
FrE

ddld

I —
n n n
- - -
- e .
0 1000 1000 100 0 1000 1000 100 0 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz]
degree-controlled degree-controlled without i/o random dynamics

exc. inh. both inh. both exc. inh. both

L2/3
L2/3
L2/3

L5
L5
L5

ida
dad
i
THF
.y
33

i,

1000 1000 100 1000 1000 100 1000 1000 100
firing rate [Hz] firing rate [Hz] firing rate [Hz]

o
o
o
o

static
inh.

L2/3

L5

b
[Fs

o

1000 1000 100
firing rate [Hz]

Figure A.3: Firing rate histograms of the control circuits consisting of integrate-and-fire
neurons.

138

Appendix B

Information processing capacity

par. value description

Vinin 0mV maximum of the membrane potential distribution
Viax 20 mV minimum of the membrane potential distribution
Tm 20 ms membrane time constant

Cm 1 pF membrane capacitance

FEy, 0 mV resting membrane potential

d 1.5 ms synaptic delay

Vin 20 mV threshold potential

Vieset | 10 mV reset potential

Tref 2 ms refractory period

N 1250 network size

Nexc 1000 number of excitatory neurons

Ninh 250 number of inhibitory neurons

Cloxc 100 number of incoming excitatory synapses

Cinh 25 number of incoming inhibitory synapses

g 5 ratio of inhibitory to excitatory weight

Wexc 0.2 pA excitatory synaptic weight

Sinh —gWexc = —1 pA | inhibitory synaptic weight

Unoise | 4000 spk/sec rate of background noise

Table B.1: Parameters for balanced random network

The lower half of Figure B.1 shows the capacity heat maps for a fixed v value of 1.
We have thus removed all encoder capacities and their delayed versions, resulting in
a lower capacity bound. The fact that there are no differences between the results of
the different transformation functions tells us that the networks do not compute target
functions y; with an encoder capacity C°"“(y;) > 0 better than the encoder does.

B.1 Details on removing the nonlinear encoder effects

First, we take a closer look at the reconstructions of the target signal and the squared
correlation coefficient, which forms the basis for the capacity evaluation. The recon-
structed function z; is a weighted sum of g; and an uncorrelated noise signal b;:

2] :al~yl+(1—al)-bl (Bl)

139

APPENDIX B INFORMATION PROCESSING CAPACITY

identity

capacities std 1

sqrt

capacities std 1

beta=1

capacities std 1

0.6 - 0.6 - 15
052- 20 0.52- [| ‘
— 0.44 - 0.44 -
15 > 1.0 2 -
ol 0.36 - g % 0.36- g
5 ©028- 108 &028- 2
n 0.2- © 0.2- 0.5 °
0.12- 0.5 0.12-
0.04 -ME= -0.0 0.04 -ME=, -0.0
299999909 99999999
- NN O O O O O - NN O O O O O
- N M < N — N M < N
As As
capacities std 20 capacities std 20
0.6 - 0.6-
o 0.52 - 20 0.52 - - 20
0.44 - 0.44 -
N 152 -15 2
% 0.36 - g % 0.36-]
O 028- 108 ©028- “108
+J 02- - ° 0.2- e
AP -5 0.12 - -5
0.04 -SEEEEEEE———— L, 0.04 -SREEEEE—— 1,
O O 0O 0o o o oo o O O 0O o0 o oo
A~ Nin oS o oo ~ N1 oo o oo
- N ™M < N - N M < N
As As
capacities std 1 capacities std 1 capacities std 1
0.6 - = 15 0.6 - = 15 0.6 - =
0.52 - 0.52 - 0.52 -
0.44 - 0.44 - 0.44 -
- % 0.36 - L0 % % 0.36- 10 ‘?, % 0.36 - L0
O £ ® g ® £
45 ©028- a © 0.28 - o © 0.28 -
7)) 0.2- 05 0.2- 0.5 ° 0.2- 0.5
— 012- 0.12- 012-
Il 004~ F5 -0.0 0.04- B -0.0 0.04-, FF -0.0
2999990909 9999 cco9oa9 29999 ccc9g
- N InN O O O O O - N1 O O O O O - N InN O O O O O
(‘U - N ™M < n - N M < 0 - N M < N
E As As As
E capacities std 20 capacities std 20
© 0.6 - 0.6 - 0.6 -
0.52 - 0.52 - - 20 0.52 - 20
20
o O gus- o 0.44 - . 0.44 -
N . 036- 152 .036- "15E c036- 15
£ © £ © £
T © 0.28 - 102 © 0.28 - -10 & © 0.28 - 10
+— 0.2- - © 0.2- v 0.2-
0N o12- -5 0.12- -5 0.12- -5
0.04 -fiEEmEmEm———— R, 0.04 -f mEmEmEmEm— 1, 0.04 - I EEESESEm— R
29999999 99999999 29999999
- N N O O ©O © O - N N O O O O O - N 1N ©O ©O © © O
— N ™M < N — N M < N - N M S N
As As As

capacity

capacity

capacity

capacity

Figure B.1: BRN results, spatial encoding, removed remembered encoder capacities

where «; is the relative weight of 1; compared to b; and is related to the capacity:

140

B.1 DETAILS ON REMOVING THE NONLINEAR ENCODER EFFECTS

cov(yr, 21)*
var(y;) - var(z;)
oz?vaur(yl)2
var(y;) (o - var(y;) + (1 — oy)? - var(by))
var(y;) (B.2)
var(y;) + var(bl)%

1
var(b) (1—oay)?
var(y)) of

1+

Therefore, the relationship between capacity C; and «; is nonlinear and depends on
the ratio between the variances of b; and y;, as Equation B.2 and also Figure B.2A show.
Note that this ratio can be different for each target function.

var(by)
var(y) A 10
0.01
— 01
— 05 § 05 -
o

— 2
— 10 0.0 L : . 0.0 1 . .
— 100 0.0 0.5 1.0 0.0 0.5 1.0

linear

Figure B.2: capacity transformation

Following Equation B.2 we can define the function fr that calculates «; based on the
capacity C; and the ratio of variances §; of b; and y;:

1

[A -1
]
B +1

To remove the encoder effects, we first calculate the capacity of the encoder output.
We use the resulting capacity profile together with the capacities of the overall system to
calculate the effective linear memory that the main system introduces in addition to the
encoder memory. To do this, we subtract the encoder memory M*®"¢ from the combined
memory M for each delay i (main Figure 6 B-E):

fr(CLB) = o = (B.3)

141

APPENDIX B INFORMATION PROCESSING CAPACITY

MY = M{o™ — M (B.4)
1 1 1 °
M; is the capacity with input u delayed by i steps as target function.

M; = fT(C[u(k - 7’)]7 /Bm) (B'5)

The transformation fr allows us to obtain meaningful results when we add, subtract
or divide the M values under the assumption that we know f3,,.

Based on the system and encoder memory values, we calculate the memory ratio
for all delays, i.e., the fraction of the encoder input that the system can memorize after
a delay i:

Sys
_ M;
enc
M
Using these memory ratios, we compute the remembered encoder capacities C™™, i.e.,

how much a capacity value for a target function can be based on remembering a previous
target function that is already computed by the encoder:

Yi (B.6)

C™™(yn) = fr ' (fr(CE"(Ym), Brm) - Yir Bim) (B.7)

where C™™(y,,) is the remembered capacity for the target function y,, which cor-
responds to the target function y,, delayed by ¢ steps. These remembered capacities
are the result of the linear memory of the system and the nonlinearity and memory of
the encoder, and therefore we must subtract them from the capacities of the combined
system to obtain the effective capacity of the main system for all objective functions y;:

C™(y) = frt (fT(Ccomb(yl)aﬁz) - fT(maw(CenC(yz),mafv(crem(yz)),ﬁz)) (B.8)

where C°™P is the measured capacity of the combined system including the encoder
and the main system. With this method we can not get information about the precise
functions the system can compute as with a linearly encoded input, because the system
does not compute the function Fyys(u), but the function Fiys(Fenc(u)). Therefore a
system capacity C*%(y;) > 0 does not mean that the system computes the specific
target function y; with the degree d,,. However, it tells us that the system computes a
function which goes beyond remembering the input signal.

The problem with the transformation fr is that we do not know the variance ratio
£ and therefore cannot remove the exact encoder effects. However, we test different
ways to approximate fr. The simplest approximation is to use the identity function and
not transform the capacities before calculating + and subtracting the encoder values.
Other possibilities are to take the square root of the capacities to obtain the correlation
coefficient instead of its squared value or to set 5 to a fixed value (e.g. 1) for each target

142

B.1 DETAILS ON REMOVING THE NONLINEAR ENCODER EFFECTS

function. To obtain a lower bound for the capacities, we can set v to 1 for all linear
capacities Clu(k —)] > 1. This leads to a complete subtraction of all encoder capacities
and their delayed versions and thus to a lower limit for the capacity.

143

Appendix C

Temporal-difference learning in
cortico-striatal populations

145

APPENDIX C TEMPORAL-DIFFERENCE LEARNING IN CORTICO-STRIATAL

POPULATIONS

Weights

‘Name ‘Value ‘Description ‘Source ‘
32.3 4+ 27.4 pA, .
WCPn—CPn | o 99 g weight from CPn to CPn |[2]
17.0 £ 13.7 pA, 9]
woes—scces | median: 13.9 weight from CCS to CCS ([1’])
(17.8 £ 15.4 pA)
14.7+ 9.2 pA, .
WCCS—CPn | a1 1 weight from CCS to CPn |[2]
WCPn—CCS | WCECS—sCPn weight from CPn to CCS |-

Table C.1: Synaptic weights. References: [1] Morishima and Kawaguchi (2006) [2] Mor-

ishima et al. (2011)

Neuron Model baseline SNIN

Name Value Description

Chn 250 pF Membrane capacitance

Er —70 mV Resting membrane potential

Tm 10 ms Membrane time constant

Vit 55 mV Me@brane pf)tenti'al threshold for
action-potential firing

Vieset —70mV Reset potential

Tref 2 ms Absolute refractory period

Table C.2: Neuron model parameters for baseline spiking neuronal networks

146

Neuron Model CCS

Name |Value Description

Cn 236 pF (Optuna) Membrane capacitance

Ar 2.0

Er —66.4 mV Resting membrane potential

Ee, 0mV

Ein —80 mV

Tm 22.6 ms Membrane time constant
Membrane potential thresh-

Vin ~40mV (Optuna) old for actioE—potential firing

Vieset —53mV (Optuna) |Reset potential

Tref 2 ms Absolute refractory period

gL 10.44nS (Cy, / Tm) |Leak conductance

a 5. (Optuna)

b 52. (Optuna)

Tw 536 ms (Optuna)

Table C.3: Neuron model parameters for the CCS population.

Neuron Model CPn ‘

Name Value Description

Cm 496 pF (Optuna) Membrane capacitance

A 2.0

Er —62.1 mV Resting membrane potential

E., 0mV

Em —80 mV

Tm 15.5 ms Membrane time constant
Membrane potential threshold for

Vin —53mV (Optuna) action—poteniial firing

Vieset —51mV (Optuna) |Reset potential

Tref 2 ms Absolute refractory period

gL 32.nS (Cp, / Tm) Leak conductance

a 6. (Optuna)

b 194. (Optuna)

Tw 88 ms (Optuna)

Table C.4: Neuron model parameters for the CPn population.

147

APPENDIX C TEMPORAL-DIFFERENCE LEARNING IN CORTICO-STRIATAL

POPULATIONS

Neuron Model SNN from Rate Network ‘

Name Value Description

Cn 20 pF Membrane capacitance

Er 0 mV Resting membrane potential

Tm 20 ms Membrane time constant

Ve A0 mV Me@brane p(.)tenti.al threshold for
action-potential firing

Vieset —65 mV Reset potential

Tref 2 ms Absolute refractory period

I, —40 mA External input current

Table C.5: Neuron model parameters spiking neuronal networks that are reconstructed

based on the procedure proposed in Kim, Li, and Sejnowski (2019)

Synapse Model (CPn)

Name |Value Description Source

U 0.37+0.14 Increase of release probability with| (1)
each spike

™ 317 ms + 146 Time constant for depression (1)

TF 519 ms + 981 Time constant for facilitation (1)

Synapse Model (CCS)

Name |Value Description Source

U 0.41+0.19 Increase of release probability with| (1)
each spike

™ 532 ms =+ 244 Time constant for depression (1)

TF 65 ms &+ 110 Time constant for facilitation (1)

Table C.6: Synapse short-term plasticity parameters for the CPn and CCS populations.

References: (1) Morishima et al. (2011)

C: Synapse Model

R 5 ms Synaptic decay time constant for ex-
citatory synapses

T 10 ms Synaptic decay time constant for in-
hibitory synapses

Ve 0 mV Excitatory reversal potential

% —80 mV | Inhibitory reversal potential

Table C.7: Synapse parameters for the CPn and CCS populations.

148

dcpnscpn |1.6 £0.3 delay between CPn to CPn | [2]

doos—cos Z(lfG:I:iO(.fﬁr)ns delay between CCS to CCS EQ[]H)

dcos—scpn | 1.8+ 0.5 ms delay between CCS to CPn|[2], [1]

C: Synapse Model

TE,CPn—CPn | 6.9 £ 1.9 ms Synaptic decay time | [2]
constant for excitatory
synapses

TE,CCS—CCS 0.8 ij:lég S Synaptic decay time [2]1

(6.0 £2.0ms) constant for excitatory (1)

synapses

TE,cCS—CPn| 6.3 £ 2.5 ms Synaptic decay time | [1], [2]
constant for excitatory
synapses

I 10 ms Synaptic decay time
constant for inhibitory
synapses

Ve 0 mV Excitatory reversal poten-
tial

% —80mV Inhibitory reversal poten-
tial

ishima and Kawaguchi (2006) [2] Morishima et al. (2011)

Table C.8: Synapse parameters for the CPn and CCS populations. References: [1] Mor-

149

APPENDIX C TEMPORAL-DIFFERENCE LEARNING IN CORTICO-STRIATAL

POPULATIONS

Table C.9: Neuronal parameters for the CPn and CCS populations.

150

Neuronal parameters

Name Value Description Source
Er, ccs —66.4 £ 5.4 mV |Resting membrane poten- |[1]

tial
Er,.cpn —62.1 4.1 mV |Resting membrane poten- |[1]

tial
Tm,CCS 22.6 +11.5 ms |Membrane time constant |[2]
Tm,CPn 15.5 4.6 ms Membrane time constant | [2]

References: [1]

Morishima et al. (2011) [2] Morishima and Kawaguchi (2006)

List of Figures

1.1

1.2
1.3

2.1

2.2

2.3

Cortical architecture. A: Drawing of a human brain from Henry Gray’s
Anatomy of the Human Body (Gray, 2000). B: Slice of a macaque mon-
key brain with Nissl stained cell bodies (retrieved from BrainMaps Atlas
(Mikula et al., 2007)). C: Historical drawing of the Nissl stained visual
cortex of a human adult seen through a microscope by Santiago Ramén
y Cajal (Ramén y Cajal, 1899).
Neuronal action potential generation and transmission
Schematic illustration of the reservoir computing paradigm. The
input is linearly transformed by the weight matrix W and the reservoir
processes these inputs so that the desired outputs can be read out using

the linear transformation matrix W°“. Adapted from Tanaka et al. (2019). 15

Structure of the data-based microcircuit model. The connection arrows
are labeled with the connection strength (mean amplitude of PSPs in
mV, c.f. parameter A in Table 2.5) and the connection probability (in
parentheses). Red arrows represent inhibitory connections and excitatory
connections are black. The excitatory input connections are represented
as grey dashed arrows. Neuron numbers are based on a network size of
N = 560 neurons. C.f. Figure 1, original publication (Héusler and Maass,
2007). © oo
Histograms of degrees (number of incoming and outgoing connections per
neuron) per population for each circuit. Values are aggregated for 100 runs
with different seeds for each model. C.f. Figure 7, original publication
(Hausler and Maass, 2007).o oo
Input generation for spike pattern-based tasks. The first row shows the
different trials of an experiment and the spike patterns below that rep-
resent a zero or one value for each segment of a single trial. These spike
pattern templates are identical for all trials. The spike patterns at the
bottom are chosen based on and therefore represent the randomly gener-
ated sequence of zeros and ones underneath, which also define the target
for the readout training (value of segment 14 for delayed classification and
segment 15 for the undelayed classification). We give a jittered version of
these spike trains to the network (jittering is not shown). C.f. Figure 4,
original publication (Hausler and Maass, 2007).

151

LisT oF FIGURES

152

24

2.5

2.6

2.7

2.8

Activity of the data-based circuit. A: Raster plot for the data-based
circuit after input stream two was activated at 100 ms. Excitatory neurons
are black and inhibitory neurons are red. B: The corresponding firing rate
histograms for each population and layer. C.f. Figure 2B and 2C, original
publication (H&éusler and Maass, 2007)..
Performance of trained linear readout neurons in layers 2/3 and layer 5 for
the classification tasks on spike patterns and computations performed on
the rates of the two input streams (see subsection 2.2.2), both for data-
based laminar microcircuit models (gray bars) and for the amorphous
control circuits (scrambled laminar structure; black bars). Light purple
bars represent the results for networks with neurons without conductance
noise and light orange bars networks consisting of integrate-and-fire neu-
rons. Error bars are the standard errors of mean. All values are averaged
over 20 runs. C.f. Figure 5, original publication (Hausler and Maass,
2007), likewise averaged over 20 runs.
A: Training and testing error of readouts from data-based and amorphous
circuit models as functions of the size of the training set. 300 trials are
always used for testing. Error bars indicate the standard error of means.
Values are averaged over 30 runs. C.f. Figure 8, original publication
(Hausler and Maass, 2007), averaged over 20 runs. B: Performance (kappa
coefficient) on the XOR task of projection neurons in layers 2/3 and layer 5
for different circuit sizes, with and without a data-based laminar structure.
All values are averaged over 30 runs. FError bars indicate the standard
error of the means. C.f. Figure 6, original publication (H&usler and
Maass, 2007), averaged over 10 runs.
Raster plots and firing rate histograms for the data-based and amor-
phous circuits for the three different neuron types (original: Hodgkin-
Huxley neurons that were used in the original publication, disabled-noise:
Hodgkin-Huxley neurons without intrinsic conductance noise, iaf neuron:
integrate-and-fire neurons). The spikes of the inhibitory populations are
colored red, while those of the excitatory populations are shown in black.
As in Figure 2B and Figure 2C, original publication (H&usler and Maass,
2007), for the raster plots input stream two starts at 100 ms.
Results of retroactive spike pattern classification tasks for all network
types. A: Performances (kappa coefficient) for the classification of spike
patterns with a duration of 5 ms at different delays, separated by input
stream and readout (averaged over 40 trials). B: Bars representing the
sum of task performances over all delays for the same task as in A. Error
bars represent the standard error of mean. C: Values from B averaged
across all input streams and readouts. D: Averaged results of the delayed
classification of 30 ms spike patterns (data of memory row in Table 2.7). .

49

LisT oF FIGURES

3.1

3.2

3.3

3.4

Schematic of processing capacity. Simulation: real-valued random in-
puts between -1 and 1 are encoded and fed into the dynamical system.
A: temporally unfolded signal. B: amplitude-value encoding where each
neuron receives the same input. C: distributed encoding where the en-
coder is connected to the system by randomly drawn weights. D: spatially
encoded signal. Polynomial computation: Products of Legendre poly-
nomials with delayed inputs are calculated as target functions. Capacity
computation: the reconstructed functions are evaluated against the tar-
get functions using the squared correlation coefficient.

ESN results with increasing level of detail from top to bottom. A-C:
Heatmaps of the total capacity, maximum degree and maximum delay for
a parameter scan over p and ¢ and based on all capacity functions (over
all degrees and delays). D and E: Total and degree-specific capacities
as a function of ¢, for the values of p indicated by the correspondingly
coloured arrows in A-C. Values are summed over all delays for each bar.
Note that the ESN only exhibits capacities of odd degree, because of the
odd nature of the tanh nonlinearity. F and G: Capacity profiles showing
total and degree-specific capacities as a function of delay for the parameter
configurations indicated by the correspondingly coloured arrows in D,E

Comparison of ESN task results with the processing capacity as a function
of t. A: Performance for nonlinear tasks (yellow and blue curves; left y-
axis) and the maximum capacity degrees (green curve; right y-axis). H:
Performance for memory tasks (gray curves; left y-axis) and maximum
capacity delay (blue dashed curve; right y-axis).

FPUT results. A: Heatmap of nonlinear capacity with zero delay, where
the maximum amplitude a4, is a force given in arbitrary units, the input
duration is given in units of simulation time steps. B: Total nonlinear
capacity, nonlinear capacity with zero delay (dashed) and with at least
delay 5 (dotted) as well as performance on XOR (yellow), time delayed
XOR (yellow, dash-dotted), NARMAS5 (maroon) and NARMAS evaluated
on a linear reference system with perfect memory (light maroon, dashed)
over input duration for fixed a,;;q; = 0.033. The performance of both
XOR tasks is measured using the Cohen’s kappa score and for NARMA
it is the squared Pearson’s correlation coefficient. C, D: Capacity profiles
showing total and degree-specific capacities as a function of delay for
the parameter configurations indicated by the correspondingly coloured
squares in A. E: Correlations between capacity and task performances for
the same parameter ranges of amplitude and duration as shown in A.

64

66

153

LisT oF FIGURES

154

3.5

3.6

3.7

BRN results for different encoding schemes. A,B: maximum capacity and
memory (product of maximum delay and step duration) for the spatial
encoding scheme averaged over five trials with different network and input
initializations. The standard deviation across trials is too small to be
visible. C,D: as for A,B, but with amplitude encoding. E,F: as for
A,B, but with distributed encoding. G, H: Heat maps for total capacity,
maximum degree and maximum delay for the parameter scans marked
with a circle and a square in A and B. I, J: Capacity profiles showing
total and degree-specific capacities as functions of delay for the parameter
configurations indicated by the magenta and yellow boxes in G and H.
Note the different axis and color scales in these panels. K-L: Correlations
between capacity statistic and task performances for the same parameter
ranges of amax and Ay as shown in G and H, using DC input and frozen
noise; p=1linKando=20inL.

Schematic for the calculation of remembered encoder capacities. A: Di-
agram emphasizing that the combination of encoder and network acts
as the measured system. B: Linear memory of the combined measured
system. C: Linear memory of the encoder. D, E: Difference between
B and C that results in the actual linear memory of the network. F:
Possibly nonlinear encoder capacity of target function y; (black border)
and its versions remembered by the network (green). G: capacity profile
for the encoder used in Figure 3.5J. H-I: Capacity heat maps as in Fig-
ure 3.5G,H, but with all possible encoder capacities subtracted. Note the
different scales of the color bars.

Microcircuit results for different encoding schemes. A-C: Maximum ca-
pacity per input parameter p or ¢ respectively for distributed encoding
(A), spatial encoding (B) and spatial encoding without remembered en-
coder capacities (C) averaged over five trials with different network and
input initialisations. Shaded areas indicate the standard deviation across
trials. D, E: Maximum memory (product of maximum delay and step
duration) for distributed and spatial encoding. F-Q: Capacity (F, J, N)
and delay (G, K, O) heat maps of the parameter scans corresponding
to the markers in A-C together with capacity profiles for a high capacity
(vellow) and high delay (magenta) parameter configuration. Note the dif-
ferent axis and color scales in the bar graphs. R-~S: Correlations between
capacity statistic and task performances for the same parameter ranges
of amax and A used in F and J, both with DC input and frozen noise;
p=1linRando=20inS.

LisT oF FIGURES

4.1 Hypothetical mechanism of the computation of TD error in the brain.
The activity of the CCS cells encodes the current state S(¢) and unidi-
rectional connections propagate the information to CPn cells, where it
is preserved longer such that their activity represents the previous state
S(t — 1). The state values of the current and previous state are calcu-
lated through connections to the striatum. The value of the current state
V(S(t)) is transported via the direct pathway (red arrow) to the SNr. The
previous state value V(S(t — 1)) is transported over the indirect pathway
(blue arrow) via the GPe and the STN to the SNr. The SNr passes this
information on to the SNc. The V(S(t)) activity causes a positive mod-
ulation on the SNc¢ by disinhibition and the V/(S(t — 1)) activity causes
a net negative modulation by triple inhibition. Together with a reward
signal coming from the PPN, the SNc¢ computes the TD error. Figure
adapted from Morita et al. (2012). 78

4.2 Scheme of the structured network model. The network is separated into a
CCS (green) and a CPn population (blue). Both populations are further
divided into an excitatory (black) and an inhibitory subpopulation (red).
The input is only given to the CCS population. The connections from
CCS to CPn and the recurrent connections inside the CPn population are
stronger (indicated by thicker arrows). L. 82

4.3 Fitted neuron models. Voltage traces in green (CCS) and blue (CPn)
in response to a step depolarization of 0.5 nA over 500 ms. Black bars
represent the spike times of the fitted models and red bars the spike times
of the experimental data from Morishima and Kawaguchi (2006). 84

4.4 Baseline rate network with different nonlinearities. A: Shapes of the
tested nonlinearities. B: Sum of capacities above the chance level thresh-
old for the nonlinearities shown in A. C-H: Memory curves for the net-
works with the different nonlinearities. 87

4.5 Deviation of nonlinear transfer functions from the linear identity function.
A: Shapes of the tested nonlinearities between -1 and 1. In addition to the
previously described functions also the trigonometric sine function (sin)
is used. B: Area between the transfer functions and the identity function
as a measure for deviation from the identity function. C and D: Sum
of capacities above the chance level threshold for the different transfer
functions for the CCS (A) and CPn (B) populations. 88

155

LisT oF FIGURES

156

4.6

4.7

4.8

4.9

Effect of different shifts of the tanh and sigmoid transfer functions on
memory. A: Shifted versions of the tanh transfer function. B and C:
Standard deviation of the activity in the CCS (B) and CPn (C) popula-
tions for the different shifted tanh transfer functions. D and E: Sum of
linear capacities above the chance level threshold for the different shifted
tanh transfer functions for the CCS (D) and CPn (E) populations. F:
Shifted versions of the sigmoid transfer function. G and H: Standard
deviation of the activity in the CCS (G) and CPn (H) populations for the
different shifted sigmoid transfer functions. I and J: Sum of linear ca-
pacities above the chance level threshold for the different shifted sigmoid
transfer functions for the CCS (I) and CPn (J) populations.

Network modification studies for baseline rate networks with tanh and
sigmoid nonlinearity. A: Linear capacity sums (top) and maximum ca-
pacity delay (bottom) for modified networks with tanh nonlinearity. B-D:
Memory curves for the full model and the two networks with the biggest
difference to the full network model. E-H: The same figures as in A-D
but for the networks with sigmoid nonlinearity.

Effect of balance between excitation and inhibition on memory. Top:
Heatmaps of linear capacity sum for a parameter scan of inhibitory weight
factor v and fraction of inhibitory neurons i,y for the CCS (left) and CPn
(right) populations. Bottom: Maximum capacity delay for the same
parameter scan for the CCS (left) and CPn (right) populations.

State matrix data of networks with different El-ratios. A: State matrices
of the CCS (left) and CPn (right) population of a network with v = 4
and Binn = 0.2 at the top and their corresponding state distributions at
the bottom (based on the same data as the activity matrices above). B:
The same figure as in A but for a network with v = 1 and B, = 0.5.
C: Heatmaps of mean activity and standard deviation of the activity for
the parameter scan over v and Biyn. The blue mark corresponds to the
network in A and the red mark to the network in B.

LisT oF FIGURES

4.10

4.11

4.12

4.13

4.14

Scan over the inhibitory weight factor for the CPn population ~cp, for
fixed parameters for the CCS population (yccs = 4 and Sinn,ccs = 0.2).
A: Linear capacity sum of the CPn population for different values of ycpy.
Bars with darker color mark a shift from step size 1 to step size 0.1. The
green bar marks the highest capacity sum. B: Mean activity of the CPn
population for the same configurations as in A. Again a color change
marks the change in step size and the green bar marks the network with
the highest capacity sum in the CPn population. C: Histogram of the
activity of the CPn population for the network with the highest capacity
sum, separated into excitatory and inhibitory neurons. D: Violin plot
showing the state distributions of the CPn populations for each ~vycpy.
Colors mean the same as in B. E: Standard deviation of the activity
of the CPn population for each network. Colors mean the same as in
B. F: Linear capacity sum of the CCS population (instead of the CPn
population) for the same configurations as in A. The grey bar marks the
maximum capacity for the CCS population.

Modified network studies for structured rate networks with sigmoid non-
linearity. A: Linear capacity sums (top) and maximum capacity delay
(bottom) for modified networks. B-D: Memory curves for the full model

97

and the two networks with the biggest difference to the full network model. 99

Modified network studies for baseline spiking network. A: Linear capacity
sums (top) and maximum capacity delay (bottom) for modified networks.
B: Memory curves for the full model. C: Memory curves for the network
with separated populations and input to both populations.

Modified network studies for full data-based spiking network. A: Linear
capacity sums (top) and maximum capacity delay (bottom) for modified
networks. B: Memory curves for the full model. C: Memory curves for
the network with separated populations and input to both populations.

Modified network studies for spiking networks constructed from rate net-
works. A: Memory curves for the best configuration of a spiking network
that is based on the baseline rate network (A = 20). B: Memory curves for
the best configuration of a spiking network that is based on the structured
rate network (A=40).o

. 101

102

157

LisT oF FIGURES

158

5.1 Encodings with precise spike times. A: Input encoding with a con-
stant rate (on average). A window with the duration of one step (colored
horizontal bars) can be moved across a fixed pre-generated spike train
(black) to select the subsection that is used as input. The position of the
window is defined by the input u(¢). B: Input encoding with information
in the rate and precise spike times. A spike train with the maximum firing
rate (black spikes) is pre-generated. Depending on the input value u(t),
the spikes times are stretched (multiplied with a corresponding factor)
and all spikes that are outside the step duration window are cut off. This
results in the final input spike trains (colored spikes).

A.1 Firing rate histograms of the control circuits consisting of Hodgkin-Huxley
neurons with conductance noise. oo

A.2 Firing rate histograms of the control circuits consisting of Hodgkin-Huxley
neurons without conductance noise.

A.3 Firing rate histograms of the control circuits consisting of integrate-and-
fire neurons.o

B.1 BRN results, spatial encoding, removed remembered encoder capacities
B.2 capacity transformation oL o oL oL

. 140

List of Tables

2.1

2.2

2.3
2.4

2.5

2.6
2.7

2.8

3.1

Main neuron Parameters. The source column indicates where the value
can be found, searching in the following order: main replicated paper,
referenced papers, source code. If a value was given in the paper which
differs from the one used in the code, the paper value is written in paren-
thesis. References: (1) Destexhe and Paré (1999), (2) Destexhe et al.
(2001) . . .
Ion channel parameters. Source definitions as in Table 2.1. References:
(3) Mainen, Huguenard, and Sejnowski (1995)
Neuronal conductance noise parameters; source definition as in Table 2.1 .
Population type dependent synaptic parameters; source definition as in
Table 2.1 e e
Synapse parameters. Source definitions as in Table 2.1. References: (2)
Destexhe et al. (2001) L
Task and training parameters. L oo L.
Performance measures for all networks and all tasks. Spike-based tasks
are evaluated with the kappa coeflicient and rate-based tasks with the
correlation coefficient. The data-based column gives the absolute value
and the other columns show the difference from this value. The best
performance per task/row is marked in bold. Grey/blue shading denotes
tasks from the categories memory/nonlinear. All values are averaged over
20 runs (10 runs in the original paper). L.
Performance measures for all control networks and all tasks expressed
as the average difference (in percent) from the performance of the data-
based circuit. Positive values indicating a performance improvement with
respect to the data-based circuit are marked in bold. All values are av-
eraged over 20 runs. C.f. Table 2 in original publication (H&usler and
Maass, 2007).

Performance on tasks and capacity measures for different dynamical sys-
tems. Given as Cohen’s kappa score for XOR, tXOR and XORXOR,
maximum delay up to which accuracy is above chance level for delayed
classification, and squared correlation coefficient for NARMAS5.

30

159

LIsT OF TABLES

160

4.1

Al

A2

B.1

C.1
C.2
C.3
C4
C.5
C.6

C.7
C.8

C.9

Parameters for connection densities and reciprocities. Sources: [1] Mor-
ishima and Kawaguchi (2006); [2] Morishima et al. (2011); [3] Morita et
al. (2012) . . . 81

Performance measures for all control networks consisting of Hodgkin-
Huxley neurons without intrinsic conductance noise expressed as average
difference (in percent) from the performance of the data-based circuit. All
values are averaged over 20 runs. 135
Performance measures for all control networks consisting of integrate-
and-fire neurons expressed as average difference (in percent) from the
performance of the data-based circuit. All values are averaged over 20 runs.135

Parameters for balanced random network 139

Synaptic weights. References: [1] Morishima and Kawaguchi (2006) [2]

Morishima et al. (2011) 146
Neuron model parameters for baseline spiking neuronal networks 146
Neuron model parameters for the CCS population. 147
Neuron model parameters for the CPn population. 147
Neuron model parameters spiking neuronal networks that are reconstructed
based on the procedure proposed in Kim, Li, and Sejnowski (2019) 148
Synapse short-term plasticity parameters for the CPn and CCS popula-
tions. References: (1) Morishima et al. (2011) 148
Synapse parameters for the CPn and CCS populations. 148
Synapse parameters for the CPn and CCS populations. References: [1]
Morishima and Kawaguchi (2006) [2] Morishima et al. (2011) 149
Neuronal parameters for the CPn and CCS populations. References: [1]
Morishima et al. (2011) [2] Morishima and Kawaguchi (2006) 150

Appendix D
Index of Abbreviations

AdEx adaptive exponential integrate-and-fire
Al artificial intelligence

BRN balanced random network

CCS crossed corticostriatal

CPn corticopontine

EEG electroencephalography

ESN echo state network

fMRI functional magnetic resonance imaging
FPUT Fermi-Pasta-Ulam-Tsingou

GAN generative adversarial network

GPe external segment of the globus pallidus
iaf integrate-and-fire

IPC information processing capacity

LGN lateral geniculate nucleus

LIF leaky integrate-and-fire

LSM liquid state machine

MRI magnetic resonance imaging
NARMA nonlinear autoregressive moving average

NMDA N-methyl-D-aspartate

161

APPENDIX D INDEX OF ABBREVIATIONS

PPN pedunculopontine tegmental nucleus
PSP post-synaptic potential

PT pyramidal tract

RL reinforcement learning

RPE reward prediction error

SNc substantia nigra pars compacta
SNr substantia nigra pars reticulata
SNN spiking neural network

STN subthalamic nucleus

STP short-term plasticity

TD temporal difference

tXOR temporal exclusive-or

VAE variational autoencoder

VTA ventral tegmental area

XOR exclusive-or

XORXOR nested exclusive-or

162

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview of related work done at the SE Group, RWTH Aachen.
More details can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The
work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods
for innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum0O4c]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question of
how digital and organizational techniques help to cope with the physical distance of developers
and [RRSW17] addresses how to teach agile modeling,.

Modeling will increasingly be used in development projects if the benefits become evident early,
e.g with executable UML [Rum02] and tests [Rum03]. In [GKR+06], for example, we concentrate
on the integration of models and ordinary programming code. In [Rum11l, Rum12] and [Rum16,
Rum17], the UML/P, a variant of the UML especially designed for programming, refactoring,
and evolution is defined.

The language workbench MontiCore [GKR+406, GKR+08, HKR21] is used to realize the UM-
L/P [Sch12]. Links to further research, e.g., include a general discussion of how to manage and
evolve models [LRSS10], a precise definition for model composition as well as model languages
[HKR+09], and refactoring in various modeling and programming languages [PR03]. To better
understand the effect of an agile evolving design, we discuss the need for semantic differencing
in [MRR10].

In [FHRO8] we describe a set of general requirements for model quality. Finally, [KRV06]
discusses the additional roles and activities necessary in a DSL-based software development
project. In [CEG+14] we discuss how to improve the reliability of adaptivity through models
at runtime, which will allow developers to delay design decisions to runtime adaptation. In
[KMA+16] we have also introduced a classification of ways to reuse modeled software components.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, the size, and the number of artifacts developed and used
during a project together with their complex relationships is not trivial [BGRW17].

To keep track of relevant structures, artifacts, and their relations in order to be able, e.g., to
evolve or adapt models and their implementing code, the artifact model [GHR17, Grel9] was
introduced. [BGRW18] and [HJK+21] explain its applicability in systems engineering based on
MDSE projects and [BHR+18] applies a variant of the artifact model to evolutionary develop-
ment, especially for CPS.

163

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

An artifact model is a meta-data structure that explains which kinds of artifacts, namely code
files, models, requirements files, etc. exist and how these artifacts are related to each other.
The artifact model, therefore, covers the wide range of human activities during the development
down to fully automated, repeatable build scripts. The artifact model can be used to optimize
parallelization during the development and building, but also to identify deviations of the real
architecture and dependencies from the desired, idealistic architecture, for cost estimations, for
requirements and bug tracing, etc. Results can be measured using metrics or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19].
We have developed a compositional technique to integrate neural networks into larger software
architectures [KRRW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks.

For analysis of MLOps in an agile development, a software 2.0 artifact model distinguishing
different kinds of artifacts is given in [AKK+21].

According to [MRR11g] the semantic difference between two models are the elements contained
in the semantics of the one model that are not elements in the semantics of the other model.
A smart semantic differencing operator is an automatic procedure for computing diff witnesses
for two given models. Such operators have been defined for Activity Diagrams [MRR11d], Class
Diagrams [MRR11b], Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven
Component and Connector Architectures [BKRW17, BKRW19]. We also developed a modeling
language-independent method for determining syntactic changes that are responsible for the
existence of semantic differences [KR18a].

We apply logic, knowledge representation, and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests, or find counterexamples using a theorem
prover. We have defined a core theory in [BKR+20], which is based on the core concepts of Broy’s
Focus theory [RR11, BRO7], and applied it to challenges in intelligent flight control systems and
assistance systems for air or road traffic management [KRRS19, KMP+21, HRR12].

Intelligent testing strategies have been applied to automotive software engineering [EJK+19,
DGH+19, KMS+18], or more generally in systems engineering [DGH+18]. These methods are
realized for a variant of SysML Activity Diagrams (ADs) and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11, KLPR12] and city quarters [GLPR15] to optimize operational
efficiency and prevent unneeded CO5 emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+-20].

Generative Software Engineering

The UML/P language family [Ruml12, Rumll, Ruml6] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible
generator for the UML/P, [Hab16] for MontiArc is used in domains such as cars or robotics

164

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[HRR12], and [AMN+20a] for enterprise information systems based on the MontiCore language
workbench [KRV10, GKR+06, GKR+08, HKR21].

In [KRVO06], we discuss additional roles necessary in a model-based software development
project. [GKR+06, GHK+15, GHK+15a] discuss mechanisms to keep generated and handwrit-
ten code separated. In [Weil2, HRW15, Hoel8], we demonstrate how to systematically derive a
transformation language in concrete syntax and, e.g., in [HHR+15, AHRW17] we have applied
this technique successfully for several UML sub-languages and DSLs.

[HNRW16] presents how to generate extensible and statically type-safe visitors. In [NRR16],
we propose the use of symbols for ensuring the validity of generated source code. [GMR+16]
discusses product lines of template-based code generators. We also developed an approach for
engineering reusable language components [HLN+15, HLN+15a].

To understand the implications of executability for UML, we discuss the needs and the advan-
tages of executable modeling with UML in agile projects in [Rum04c|, how to apply UML for
testing in [Rumo03], and the advantages and perils of using modeling languages for programming
in [Rum02].

Unified Modeling Language (UML) & the UML-P Tool

Starting with the early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the books [Rum16,
Rum17] and is implemented in [Sch12].

Semantic variation points of the UML are discussed in [GR11]. We discuss formal semantics for
UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09], [BCGR09a/,
[BCRO7b] and [BCROT7a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGRO08]. A precisely defined semantics for variations is applied when checking
variants of class diagrams [MRR11e] and object diagrams [MRR11c] or the consistency of both
kinds of diagrams [MRR11f]. We also apply these concepts to activity diagrams [MRR11a] which
allows us to check for semantic differences in activity diagrams [MRR11d]. The basic semantics
for ADs and their semantic variation points are given in [GRR10].

We also discuss how to ensure and identify model quality [FHRO08], how models, views, and
the system under development correlate to each other [BGH+98b], and how to use modeling in
agile development projects [Rum04c], [Rum03] and [Rum02].

The question of how to adapt and extend the UML is discussed in [PFR02] describing product
line annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99a], [FEL+98] and [SRVK10].

The UML-P tool was conceptually defined in [Rum16, Rum17, Rum12, Rum11], got the first
realization in [Sch12], and is extended in various ways, such as logically or physically distributed
computation [BKRW17a]. Based on a detailed examination [JPR+22], insights are also trans-
ferred to the SysML 2.

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use
than general-purpose programming languages but need appropriate tooling. The MontiCore
language workbench [GKR+06, KRV10, Kral0, GKR+08, HKR21] allows the specification of
an integrated abstract and concrete syntax format [KRV07b, HKR21] for easy development.

165

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

New languages and tools can be defined in modular forms [KRV08, GKR+07, Voell, HLN+15,
HLN+15a, HRW18, BEK+18b, BEK+19, Sch12] and can, thus, easily be reused. We discuss the
roles in software development using domain specific languages already in [KRV06] and elaborate
on the engineering aspect of DSL development in [CFJ+16].

[Weil2, HRW15, Hoel8] present an approach that allows the creation of transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GRI11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses, and model evolution
have been discussed in [LRSS10] and [SRVK10]. [BJRW18] describes a mapping bridge between
both. DSL quality in [FHRO08], instructions for defining views [GHK+07] and [PFR02], guidelines
to define DSLs [KKP+09], and Eclipse-based tooling for DSLs [KRV07a] complete the collection.

A broader discussion on the global integration of DSMLs is given in [CBCR15] as part of
[CCF+15a], and [TAB+21] discusses the compositionality of analysis techniques for models.

The MontiCore language workbench has been successfully applied to a larger number of do-
mains, resulting in a variety of languages documented, e.g., in [AHRW17, BEH+20, BHR+21,
BPR+20, HHR+15, HJIRW20, HMR+19, HRR12, PBI+16, RRW15] and Ph.D. theses like
[Ber10, Grel9, Hab16, Her19, Kus21, Lool7, Pinl4, Plo18, Reil6, Rot17, Sch12, Worl6].

Software Language Engineering

For a systematic definition of languages using a composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15a]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRVO7b, Kral0, KRV10, HR17, HKR21, HRW18, BPR+20, BEK+19].

In [SRVK10] we discuss the possibilities and the challenges of using metamodels for language
definition. Modular composition, however, is a core concept to reuse language components like
in MontiCore for the frontend [Voell, Naz17, KRV08, HLN+15, HLN+15a, HNRW16, HKR21,
BEK+18b, BEK+19] and the backend [RRRW15b, NRR16, GMR+16, HKR21, BEK+18b,
BBC+18]. In [GHK+15, GHK+15a], we discuss the integration of handwritten and generated
object-oriented code. [KRV10] describes the roles in software development using domain specific
languages.

Language derivation is to our belief a promising technique to develop new languages for a
specific purpose, e.g., model transformation, that relies on existing basic languages [HRW18].

How to automatically derive such a transformation language using a concrete syntax of the
base language is described in [HRW15, Weil2] and successfully applied to various DSLs.

We also applied the language derivation technique to tagging languages that decorate a base
language [GLRR15] and delta languages [HHK+15, HHK+13] that are derived from base lan-
guages to be able to constructively describe differences between model variants usable to build
feature sets.

The derivation of internal DSLs from grammars is discussed in [BDL+18] and a translation of
grammars to accurate metamodels in [BJRW18].

166

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services.

We use streams, statemachines, and components [BR07] as well as expressive forms of com-
position and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete tooling
infrastructure called MontiArc [HRR10, HRR12] for architecture design and extensions for states
[RRW13c, BKRW17a, RRW14a, Worl6]. In [RRW13], we introduce a code generation framework
for MontiArc. [RRRW15b] describes how the language is composed of individual sublanguages.

MontiArc was extended to describe variability [HRR+-11] using deltas [HRRS11, HKR+11] and
evolution on deltas [HRRS12]. Other extensions are concerned with modeling cloud architectures
[PR13], security in [HHR+15], and the robotics domain [AHRW17, AHRW17b]. Extension
mechanisms for MontiArc are generally discussed in [BHH+17].

[GHK+07] and [GHK+08] close the gap between the requirements and the logical architecture
and [GKPRO8] extends it to model variants.

[MRR14b] provides a precise technique for verifying the consistency of architectural views
[Rin14, MRR13] against a complete architecture to increase reusability. We discuss the synthesis
problem for these views in [MRR14a]. An experience report [MRRW16] and a methodological
embedding [DGH+19] complete the core approach.

Extensions for co-evolution of architecture are discussed in [MMR10], for powerful analyses
of software architecture behavior evolution provided in [BKRW19), techniques for understand-
ing semantic differences presented in [BKRW17], and modeling techniques to describe dynamic
architectures shown in [HRR98, HKR+16, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09, TAB+21] motivate the basic mechanisms for modularity and compositionality for
modeling. The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically
grounded in [HKR4-07]. Semantic and methodical aspects of model composition [KRV08] led to
the language workbench MontiCore [KRV10, HKR21] that can even be used to develop mod-
eling tools in a compositional form [HKR21, HLN+15, HLN+15a, HNRW16, NRR16, HRW18,
BEK+18b, BEK+19, BPR+20, KRV07b]. A set of DSL design guidelines incorporates reuse
through this form of composition [KKP+09].

[Voell] examines the composition of context conditions respectively the underlying infrastruc-
ture of the symbol table. Modular editor generation is discussed in [KRVO07a]. [RRRW15b]
applies compositionality to robotics control.

[CBCR15] (published in [CCF+15a]) summarizes our approach to composition and remaining
challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information, we have developed the concept of tagging languages in
[GLRR15, MRRW16]. It allows the description of additional information for model elements in
separated documents, facilitates reuse, and allows typing tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision, and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by

167

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96, RK96]. An extended
version especially suited for the UML is given in [GRR09], [BCGR09a] and in [BCGRO09] its
rationale is discussed. [BCRO7a, BCRO7b| contain detailed versions that are applied to class
diagrams in [CGRO8] or sequence diagrams in [BGH+98a].

To better understand the effect of an evolved design, detection of semantic differencing, as
opposed to pure syntactical differences, is needed [MRR10]. [MRR11d, MRR11a] encode a part
of the semantics to handle semantic differences of activity diagrams. [MRR11f, MRR11{] compare
class and object diagrams with regard to their semantics. And [BKRW17] compares component
and connector architectures similar to SysML’ block definition diagrams.

In [BRO7, RR11], a precise mathematical model for distributed systems based on black-box
behaviors of components is defined and accompanied by automata in [Rum96]. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of exemplary object interaction, today called sequence diagram. [BGH+98b| discusses
the relationships between a system, a view, and a complete model in the context of the UML.

[GR11] and [CGRO09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these to class and object diagrams in
[MRRI11f] as well as activity diagrams in [GRR10].

[Rum12] defines the semantics in a variety of code and test case generation, refactoring,
and evolution techniques. [LRSS10] discusses the evolution and related issues in greater de-
tail. [RW18] discusses an elaborated theory for the modeling of underspecification, hierarchical
composition, and refinement that can be practically applied to the development of CPS.

A first encoding of these theories in the Isabelle verification tool is defined in [BKR+20].

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code, they are not initially
correct and need to be changed, evolved, and maintained over time. Model transformation is
therefore essential to effectively deal with models [CFJ+16].

Many concrete model transformation problems are discussed: evolution [LRSS10, MMRI10,
Rum04c, MRR10], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20], synthe-
sis [MRR14a], refactoring [Rum12, PRO03], translating models from one language into another
[MRR11le, Ruml2], systematic model transformation language development [Weil2, HRW15,
Hoel8, HHR+15], repair of failed model evolution [KR18a].

[Rum04c] describes how comprehensible sets of such transformations support software develop-
ment and maintenance [LRSS10], technologies for evolving models within a language and across
languages, and mapping architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97] and refining pipe-and-filter architectures is explained
in [PR99]. This has e.g. been applied for robotics in [AHRW17, AHRW17b].

Refactorings of models are important for model driven engineering as discussed in [PRO1,
PRO03, Rum12]. [HRRS11, HRR+11, HRRS12] encode these in constructive Delta transforma-
tions, which are defined in derivable Delta languages [HHK+13].

Translation between languages, e.g., from class diagrams into Alloy [MRR11e] allows for com-
paring class diagrams on a semantic level. Similarly, semantic differences of evolved activity
diagrams are identified via techniques from [MRR11d] and for Simulink models in [RSW+15].

168

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example, cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+408, GKPRO08] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12].

Delta modeling is a bottom up technique starting with a small, but complete base variant.
Features are additive, but also can modify the core. A set of commonly applicable deltas config-
ures a system variant. We discuss the application of this technique to Delta-MontiArc [HRRS11,
HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe special variability
but also temporal variability which allows for using them for software product line evolution
[HRRS12]. [HHK+13, HHK+15] and [HRW15] describe an approach to systematically derive
delta languages.

We also apply variability modeling languages to describe syntactic and semantic variation
points, e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we spec-
ified a systematic way to define variants of modeling languages [CGR09], leverage features for
their compositional reuse [BEK+18b, BEK+19], and applied it as a semantic language refinement
on Statecharts in [GR11].

Digital Twins and Digital Shadows in Engineering and Production

The digital transformation of production changes the life cycle of the design, the production,
and the use of products [BDJ+22]. To support this transformation, we can use Digital Twins
(DTs) and Digital Shadows (DSs). In [DMR+20] we define: "A digital twin of a system consists
of a set of models of the system, a set of digital shadows, and provides a set of services to use
the data and models purposefully with respect to the original system."

We have investigated how to synthesize self-adaptive DT architectures with model-driven meth-
ods [BBD+21a] and have applied it e.g. on a digital twin for injection molding [BDH+20]. In
[BDR+-21] we investigate the economic implications of digital twin services.

Digital twins also need user interaction and visualization, why we have extended the infrastruc-
ture by generating DT cockpits [DMR+20]. To support the DevOps approach in DT engineering,
we have created a generator for low-code development platforms for digital twins [DHM+-22] and
sophisticated tool chains to generate process-aware digital twin cockpits that also include con-
densed forms of event logs [BMR+-22].

[BBD+21b] describes a conceptual model for digital shadows covering the purpose, relevant
assets, data, and metadata as well as connections to engineering models. These can be used
during the runtime of a DT, e.g. when using process prediction services within DTs [BHK+21].

Integration challenges for digital twin systems-of-systems [MPRW22] include, e.g., the hori-
zontal integration of digital twin parts, the composition of DTs for different perspectives, or how
to handle different lifecycle representations of the original system.

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12, BBR20] are complex, distributed systems that control
physical entities. In [RW18], we discuss how an elaborated theory can be practically applied to

169

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

the development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12, KRRW17], autonomous driving [BR12b, KKR19], and digital twin develop-
ment [BDH+20] to processes and tools to improve the development as well as the product itself
[BBRO7].

In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest to European avionics [ZPK+11]. Optimized [KRS+18a] and domain specific
code generation [AHRW17b], and the extension to product lines of CPS [RSW+15, KRR+16,
RRS+16] are key for CPS.

A component and connector architecture description language (ADL) suitable for the specific
challenges in robotics is discussed in [RRW13c, RRW14a, Worl6, RRSW17, Wor21]. In [RRW12],
we use this language for describing requirements and in [RRW13], we describe a code generation
framework for this language. Monitoring for smart and energy efficient buildings is developed as
an Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition of con-
tributing to systems engineering in automotive [FND+98] and [GHK+08a], which culminated
in a new comprehensive model-driven development process for automotive software [KMS+18,
DGH+19]. We leveraged SysML to enable the integrated flow from requirements to implemen-
tation to integration.

To facilitate the modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for production engineering based on these con-
cepts [BKL+18] and addressed to bridge the gap between functions and the physical product
architecture by modeling mechanical functional architectures in SysML [DRW+20]. For that
purpose, we also did a detailed examination of the upcoming SysML 2.0 standard [JPR+22]
and examined how to extend the SPES/CrEST methodology for a systems engineering approach
[BBR20].

Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20], and have proposed model-driven architectures for DT cockpit
engineering [DMR+20).

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR0O7b, BCGR09a, BCGR09], (2) understanding the
refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18] of statema-
chines, and (3) applying statemachines for modeling systems.

170

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

In [Rum96, RW18]| constructive transformation rules for refining automata behavior are given
and proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded
in the composition and behavioral specification concepts of Focus [GKR96, BRO7].

We apply these techniques, e.g., in MontiArcAutomaton [RRW13, RRW14a, RRW13, RW1§],
in a robot task modeling language [THR+13], and in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behavior (2) based on information from previously stored and real-time monitored
structural context and behavior data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include
DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20, MRZ21] or UML/P based languages [MNRV19]. [MM15] describes
a process of how languages for assistive systems can be created. MontiGem [AMN+20a] is used
as the underlying generator technology.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered privacy-
driven systems in the IoT domain in combination with process mining systems [MKM+19],
differential privacy on event logs of handling and treatment of patients at a hospital [MKB+19],
the mark-up of online manuals for devices [SM18a] and websites [SM20], and solutions for privacy-
aware environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view of the system design allows to track who does what, when, why, where, and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modeling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires the composition and the interaction of diverse distributed
software modules. This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers the broad propagation of robotics applica-
tions.

The MontiArcAutomaton language [RRW12, RRW14a] extends the ADL MontiArc and inte-
grates various implemented behavior modeling languages using MontiCore [RRW13c, RRRW15b,
HKR21] that perfectly fit robotic architectural modeling.

The iserveU modeling framework describes domains, actors, goals, and tasks of service robotics
applications [ABH+16, ABH+17] with declarative models. Goals and tasks are translated into
models of the planning domain definition language (PDDL) and then solved [ABK+17]. Thus,
domain experts focus on describing the domain and its properties only.

The LightRocks [THR+13, BRS+15] framework allows robotics experts and laymen to model
robotic assembly tasks. In [AHRW17, AHRW17b], we define a modular architecture model-
ing method for translating architecture models into modules compatible with different robotics

171

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

middleware platforms.
Many of the concepts in robotics were derived from automotive software [BBR07, BR12b].

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment, and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed, and tested. A consistent require-
ment management connecting requirements with features in all development phases for the au-
tomotive domain is described in [GRJA12].

The conceptual gap between requirements and the logical architecture of a car is closed in
[GHK+07, GHK+08]. A methodical embedding of the resulting function nets and their quality
assurance using automated testing is given in the SMaRDT method [DGH+19, KMS+18].

[HKM+13] describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses
the means to extract a well-defined Software Product Line from a set of copy and paste variants.

Potential variants of components in product lines can be identified using similarity analysis
of interfaces [KRR+16], or execute tests to identify similar behavior [RRS+16]. [RSW+15]
describes an approach to using model checking techniques to identify behavioral differences of
Simulink models. In [KKR19], we model dynamic reconfiguration of architectures applied to
cooperating vehicles.

Quality assurance, especially of safety-related functions, is a highly important task. In the
Carolo project [BR12b, BR12], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBRO7]. This technique allows a dramatic
speedup in the development and the evolution of autonomous car functionality, and thus enables
us to develop software in an agile way [BR12b].

[MMR10] gives an overview of the state-of-the-art in development and evolution on a more
general level by considering any kind of critical system that relies on architectural descriptions.

MontiSim simulates autonomous and cooperative driving behavior [GKR+-17] for testing vari-
ous forms of errors as well as spatial distance [FIK+18, KKRZ19]. As tooling infrastructure, the
SSELab storage, versioning, and management services [HKR12] are essential for many projects.

Internet of Things, Industry 4.0 & the MontiThings Tool

The Internet of Things (IoT) requires the development of increasingly complex distributed
systems. The MontiThings ecosystem [KRS+22] provides an end-to-end solution to model-
ing, deploying [KKR+22], and analyzing [KMR21] failure-tolerant [KRS+22] IoT systems and
connecting them to synthesized digital twins [KMR+20]. We have investigated how model-
driven methods can support the development of privacy-aware [ELR+17, HHK+14] cloud sys-
tems [PR13], distributed systems security [HHR+15], privacy-aware process mining [MKM+19],
and distributed robotics applications [RRRW15b).

In the course of Industry 4.0, we have also turned our attention to mechanical or electrical appli-
cations [DRW+20]. We identified the digital representation, integration, and (re-)configuration
of automation systems as primary Industry 4.0 concerns [WCB17]. Using a multi-level modeling
framework, we support machine as a service approaches [BKL+18].

172

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing COs
emissions are important challenges. Thus, energy management in buildings as well as in neigh-
borhoods becomes equally important to efficiently use the generated energy. Within several
research projects, we developed methodologies and solutions for integrating heterogeneous sys-
tems at different scales.

During the design phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12,
KPR12] is used for the technical specification of building services already.

We adapted the well-known concept of statemachines to be able to describe different states
of a facility and validate it against the monitored values [FLP+11b]. We show how our data
model, the constraint rules, and the evaluation approach to compare sensor data can be applied
[KLPR12].

Cloud Computing and Services

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-
based application and service architectures with high complexity, criticality, and new application
domains. It promises to enable new business models, facilitate web-based innovations, and
increase the efficiency and cost-effectiveness of web development [KRR14].

Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15a], Big
Data, Apps, and Service Ecosystems bring attention to aspects like responsiveness, privacy, and
open platforms. Regardless of the application domain, developers of such systems need robust
methods and efficient, easy-to-use languages and tools [KRS12].

We tackle these challenges by perusing a model-based, generative approach [PR13]. At the
core of this approach are different modeling languages that describe different aspects of a cloud-
based system in a concise and technology-agnostic way. Software architecture and infrastructure
models describe the system and its physical distribution on a large scale.

We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the
Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and our development
platforms. New services, e.g., for collecting data from temperature sensors, cars, etc. are now
easily developed and deployed, e.g., in production or Internet-of-Things environments.

Security aspects and architectures of cloud services for the digital me in a privacy-aware
environment are addressed in [ELR+17].

Model-Driven Engineering of Information Systems & the MontiGem Tool

Information Systems provide information to different user groups as the main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HKR21], we
developed several generators for such data-centric information systems.

MontiGem [AMN+20a] is a specific generator framework for data-centric business applica-
tions that uses standard models from UML/P optionally extended by GUI description models
as sources [GMN+20]. While the standard semantics of these modeling languages remains un-
touched, the generator produces a lot of additional functionality around these models. The
generator is designed flexible, modular, and incremental, handwritten and generated code pieces
are well integrated [GHK+15a, NRR15a], tagging of existing models is possible [GLRR15], e.g.,
for the definition of roles and rights or for testing [DGH+18].

173

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

We are using MontiGem for financial management [GHK+20, ANV+18], for creating digital
twin cockpits [DMR+20], and various industrial projects. MontiGem makes it easier to create
low-code development platforms for digital twins [DHM+22]. When using additional DSLs, we
can develop assistive systems providing user support based on goal models [MRV20], privacy-
preserving information systems using privacy models and purpose trees [MNRV19], and process-
aware digital twin cockpits using BPMN models [BMR+22].

We have also developed an architecture of cloud services for the digital me in a privacy-aware
environment [ELR+17] and a method for retrofitting generative aspects into existing applications
[DGM+21].

174

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[ABH-+16]

[ABH+17]

[ABK+17]

[AHRW17]

[AHRW17b]

[AKK+21]

[AMN+20a]

[ANV418]

[BBC+18]

Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Model-Driven Separation of Concerns for Service Robotics.
In International Workshop on Domain-Specific Modeling (DSM’16), pages 22-27.
ACM, October 2016.

Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Jérome Pfeiffer, Bernhard
Rumpe, and Andreas Wortmann. Modeling Robotics Tasks for Better Separation
of Concerns, Platform-Independence, and Reuse. Aachener Informatik-Berichte,
Software Engineering, Band 28. Shaker Verlag, December 2017.

Kai Adam, Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wort-
mann. Executing Robot Task Models in Dynamic Environments. In Proceedings
of MODELS 2017. Workshop EXE, CEUR 2019, September 2017.

Kai Adam, Katrin Hoélldobler, Bernhard Rumpe, and Andreas Wortmann. En-
gineering Robotics Software Architectures with Exchangeable Model Transfor-

mations. In International Conference on Robotic Computing (IRC’17), pages
172-179. IEEE, April 2017.

Kai Adam, Katrin Hélldobler, Bernhard Rumpe, and Andreas Wortmann. Mod-
eling Robotics Software Architectures with Modular Model Transformations.
Journal of Software Engineering for Robotics (JOSER), 8(1):3-16, 2017.

Abdallah Atouani, Jorg Christian Kirchhof, Evgeny Kusmenko, and Bernhard
Rumpe. Artifact and Reference Models for Generative Machine Learning Frame-
works and Build Systems. In Eli Tilevich and Coen De Roover, editors, Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE 21), pages 55—68. ACM, Octo-
ber 2021.

Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga.
Enterprise Information Systems in Academia and Practice: Lessons learned
from a MBSE Project. In 40 Years EMISA: Digital Ecosystems of the Future:
Methodology, Techniques and Applications (EMISA’19), LNI P-304, pages 59—66.
Gesellschaft fiir Informatik e.V., May 2020.

Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe, Patricia
Heuser, and Peter Letmathe. Model-Based Generation of Enterprise Information
Systems. In Michael Fellmann and Kurt Sandkuhl, editors, Enterprise Modeling
and Information Systems Architectures (EMISA’18), CEUR Workshop Proceed-
ings 2097, pages 75-79. CEUR-WS.org, May 2018.

Inga Blundell, Romain Brette, Thomas A. Cleland, Thomas G. Close, Daniel
Coca, Andrew P. Davison, Sandra Diaz-Pier, Carlos Fernandez Musoles, Padraig
Gleeson, Dan F. M. Goodman, Michael Hines, Michael W. Hopkins, Pramod
Kumbhar, David R. Lester, Béris Marin, Abigail Morrison, Eric Miiller, Thomas
Nowotny, Alexander Peyser, Dimitri Plotnikov, Paul Richmond, Andrew Row-
ley, Bernhard Rumpe, Marcel Stimberg, Alan B. Stokes, Adam Tomkins, Guido
Trensch, Marmaduke Woodman, and Jochen Martin Eppler. Code Generation
in Computational Neuroscience: A Review of Tools and Techniques. Journal
Frontiers in Neuroinformatics, 12, 2018.

175

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[BBD+21b)

[BBD+21a]

[BBRO7]

[BBR20]

[BCGROY]

[BCGRO09a]

[BCRO7a)

[BCROTb]

[BDH-+20]

[BDJ+22]

176

Fabian Becker, Pascal Bibow, Manuela Dalibor, Aymen Gannouni, Viviane Hahn,
Christian Hopmann, Matthias Jarke, Istvan Koren, Moritz Kroger, Johannes
Lipp, Judith Maibaum, Judith Michael, Bernhard Rumpe, Patrick Sapel, Niklas
Schéfer, Georg J. Schmitz, Glinther Schuh, and Andreas Wortmann. A Con-
ceptual Model for Digital Shadows in Industry and its Application. In Aditya
Ghose, Jennifer Horkoff, Vitor E. Silva Souza, Jeffrey Parsons, and Joerg Ever-
mann, editors, Conceptual Modeling, ER 2021, pages 271-281. Springer, October
2021.

Tim Bolender, Gereon Biirvenich, Manuela Dalibor, Bernhard Rumpe, and An-
dreas Wortmann. Self-Adaptive Manufacturing with Digital Twins. In 2021 In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 156-166. IEEE Computer Society, May 2021.

Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving In-
telligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158-1174, 2007.

Manfred Broy, Wolfgang Bohm, and Bernhard Rumpe. Advanced Systems Engi-
neering - Die Systeme der Zukunft. White paper, fortiss. Forschungsinstitut fir
softwareintensive Systeme, Munich, July 2020.

Manfred Broy, Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor,
UML 2 Semantics and Applications, pages 43—61. John Wiley & Sons, November
20009.

Manfred Broy, Maria Victoria Cengarle, Hans Grénniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63-93. John Wiley & Sons, November 2009.

Manfred Broy, Maria Victoria Cengarle, and Bernhard Rumpe. Towards a Sys-
tem Model for UML. Part 2: The Control Model. Technical Report TUM-10710,
TU Munich, Germany, February 2007.

Manfred Broy, Maria Victoria Cengarle, and Bernhard Rumpe. Towards a Sys-
tem Model for UML. Part 3: The State Machine Model. Technical Report
TUM-10711, TU Munich, Germany, February 2007.

Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bernhard
Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wortmann. Model-
Driven Development of a Digital Twin for Injection Molding. In Schahram Dust-
dar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik Pant, editors, Inter-
national Conference on Advanced Information Systems Engineering (CAiSE’20),
Lecture Notes in Computer Science 12127, pages 85-100. Springer International
Publishing, June 2020.

Philipp Brauner, Manuela Dalibor, Matthias Jarke, Ike Kunze, Istvin Ko-
ren, Gerhard Lakemeyer, Martin Liebenberg, Judith Michael, Jan Pennekamp,
Christoph Quix, Bernhard Rumpe, Wil van der Aalst, Klaus Wehrle, Andreas

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[BDL+18)]

[BDR+21]

[BEH+20]

[BEK+18b)]

[BEK+19]

[Ber10]

[BGH+97]

[BGH+984]

[BGH-+98D)

[BGRW17]

Wortmann, and Martina Ziefle. A Computer Science Perspective on Digital
Transformation in Production. Journal ACM Transactions on Internet of Things,
3:1-32, February 2022.

Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and An-
dreas Wortmann. Deriving Fluent Internal Domain-specific Languages from

Grammars. In International Conference on Software Language Engineering
(SLE’18), pages 187-199. ACM, 2018.

Christian Brecher, Manuela Dalibor, Bernhard Rumpe, Katrin Schilling, and An-
dreas Wortmann. An Ecosystem for Digital Shadows in Manufacturing. In 54th
CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0. Elsevier, September
2021.

Arvid Butting, Robert Eikermann, Katrin Hoélldobler, Nico Jansen, Bernhard
Rumpe, and Andreas Wortmann. A Library of Literals, Expressions, Types, and

Statements for Compositional Language Design. Journal of Object Technology
(JOT), 19(3):3:1-16, October 2020.

Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and An-
dreas Wortmann. Modeling Language Variability with Reusable Language Com-
ponents. In International Conference on Systems and Software Product Line
(SPLC’18). ACM, September 2018.

Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Systematic Composition of Independent Language Features. Journal
of Systems and Software (JSS), 152:50-69, June 2019.

Christian Berger. Automating Acceptance Tests for Sensor- and Actuator-based
Systems on the Example of Autonomous Vehicles. Aachener Informatik-Berichte,
Software Engineering, Band 6. Shaker Verlag, 2010.

Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schw-
erin. Towards a Precise Semantics for Object-Oriented Modeling Techniques. In
Jan Bosch and Stuart Mitchell, editors, Object-Oriented Technology, ECOOP’97
Workshop Reader, LNCS 1357. Springer Verlag, 1997.

Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Kriiger, Bern-
hard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Com-
plete Object Interaction Descriptions. Journal Computer Standards & Interfaces,
19(7):335-345, November 1998.

Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schw-
erin. Systems, Views and Models of UML. In Proceedings of the Unified Model-
ing Language, Technical Aspects and Applications, pages 93-109. Physica Verlag,
Heidelberg, Germany, 1998.

Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
Taming the Complexity of Model-Driven Systems Engineering Projects. In Part
of the Grand Challenges in Modeling (GRAND’17) Workshop, July 2017.

177

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[BGRW18]

[BHH+17]

[BHK+17]

[BHK+21]

[BHP+98]

[BHR+18]

[BHR+21]

[BJRW18]

[BKL+18]

178

Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
On the Need for Artifact Models in Model-Driven Systems Engineering Projects.
In Martina Seidl and Steffen Zschaler, editors, Software Technologies: Applica-
tions and Foundations, LNCS 10748, pages 146-153. Springer, January 2018.

Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard
Rumpe, and Andreas Wortmann. Systematic Language Extension Mechanisms
for the MontiArc Architecture Description Language. In Furopean Conference
on Modelling Foundations and Applications (ECMFA’17), LNCS 10376, pages
53-70. Springer, July 2017.

Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. A Classification of Dynamic Reconfiguration in

Component and Connector Architecture Description Languages. In Proceedings
of MODELS 2017. Workshop ModComp, CEUR. 2019, September 2017.

Tobias Brockhoff, Malte Heithoff, Istvan Koren, Judith Michael, Jéréme Pfeiffer,
Bernhard Rumpe, Merih Seran Uysal, Wil M. P. van der Aalst, and Andreas
Wortmann. Process Prediction with Digital Twins. In Int. Conf. on Model
Driven Engineering Languages and Systems Companion (MODELS-C), pages
182-187. ACM/IEEE, October 2021.

Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katha-
rina Spies. Software and System Modeling Based on a Unified Formal Seman-
tics. In Workshop on Requirements Targeting Software and Systems Engineering
(RTSE’97), LNCS 1526, pages 43—68. Springer, 1998.

Arvid Butting, Steffen Hillemacher, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. Shepherding Model Evolution in Model-Driven Develop-
ment. In Joint Proceedings of the Workshops at Modellierung 2018 (MOD-WS
2018), CEUR, Workshop Proceedings 2060, pages 67-77. CEUR-WS.org, Febru-
ary 2018.

Arvid Butting, Katrin Holldobler, Bernhard Rumpe, and Andreas Wortmann.
Compositional Modelling Languages with Analytics and Construction Infrastruc-
tures Based on Object-Oriented Techniques - The MontiCore Approach. In Hein-
rich, Robert and Duran, Francisco and Talcott, Carolyn and Zschaler, Steffen,
editor, Composing Model-Based Analysis Tools, pages 217-234. Springer, July
2021.

Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann. Trans-
lating Grammars to Accurate Metamodels. In International Conference on Soft-
ware Language Engineering (SLE’18), pages 174-186. ACM, 2018.

Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe, Simon
Storms, Stephan Wein, Michael von Wenckstern, and Andreas Wortmann. Multi-
Level Modeling Framework for Machine as a Service Applications Based on Prod-
uct Process Resource Models. In Proceedings of the 2nd International Symposium
on Computer Science and Intelligent Control (ISCSIC’18). ACM, September
2018.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[BKR+20] Jens Christoph Biirger, Hendrik Kausch, Deni Raco, Jan Oliver Ringert, Bern-
hard Rumpe, Sebastian Stiiber, and Marc Wiartalla. Towards an Isabelle The-
ory for distributed, interactive systems - the untimed case. Aachener Informatik
Berichte, Software Engineering, Band 45. Shaker Verlag, March 2020.

[BKRW17a) Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Ar-
chitectural Programming with MontiArcAutomaton. In In 12th International
Conference on Software Engineering Advances (ICSEA 2017), pages 213-218.
TARIA XPS Press, May 2017.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Se-
mantic Differencing for Message-Driven Component & Connector Architectures.
In International Conference on Software Architecture (ICSA’17), pages 145-154.
IEEE, April 2017.

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Con-
tinuously Analyzing Finite, Message-Driven, Time-Synchronous Component &
Connector Systems During Architecture Evolution. Journal of Systems and Soft-
ware (JSS), 149:437-461, March 2019.

[BMR+22] Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, and Matthias
Weske. Process-Aware Digital Twin Cockpit Synthesis from Event Logs. Journal
of Computer Languages (COLA), 70, June 2022.

[BPR+20] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. A
Compositional Framework for Systematic Modeling Language Reuse. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 35-46. ACM, October 2020.

[BROT] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3—
18, Februar 2007.

[BR12b] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after
the Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In
Automotive Software Engineering Workshop (ASE’12), pages 789-798, 2012.

[BR12] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Soft-
ware. In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban
Challenge, pages 243-271. Springer, Germany, 2012.

[BRS+15] Arvid Butting, Bernhard Rumpe, Christoph Schulze, Ulrike Thomas, and An-
dreas Wortmann. Modeling Reusable, Platform-Independent Robot Assembly
Processes. In International Workshop on Domain-Specific Languages and Mod-
els for Robotic Systems (DSLRob 2015), 2015.

[CBCRI15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe.
Conceptual Model of the Globalization for Domain-Specific Languages. In Glob-
alizing Domain-Specific Languages, LNCS 9400, pages 7—20. Springer, 2015.

[CCF+15a] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS
9400. Springer, 2015.

179

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[CEG+14]

[CFJ+16]

[CGROS]

[CGROY]

[DEKR19]

[DGH+18]

[DGH+19)]

[DGM+21]

[DHH+20]

180

Betty H.C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Miiller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bern-
hard Rumpe, Daniel Schneider, Frank Trollmann, and Norha M. Villegas. Us-
ing Models at Runtime to Address Assurance for Self-Adaptive Systems. In
Nelly Bencomo, Robert France, Betty H.C. Cheng, and Uwe Afimann, editors,
Models@run.time, LNCS 8378, pages 101-136. Springer International Publishing,
Switzerland, 2014.

Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. FEngineering Modeling Languages: Turning
Domain Knowledge into Tools. Chapman & Hall/CRC Innovations in Software
Engineering and Software Development Series, November 2016.

Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig,
Germany, 2008.

Maria Victoria Cengarle, Hans Gronniger, and Bernhard Rumpe. Variability
within Modeling Language Definitions. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’09), LNCS 5795, pages 670-684.
Springer, 2009.

Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. Semantic
Differencing of Statecharts for Object-oriented Systems. In Slimane Hammoudi,
Luis Ferreira Pires, and Bran Seli¢, editors, Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD’19), pages 274-282. SciTePress, February 2019.

Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Matthias
Markthaler, Bernhard Rumpe, and Andreas Wortmann. Model-Based Testing of
Software-Based System Functions. In Conference on Software Engineering and
Advanced Applications (SEAA’18), pages 146-153, August 2018.

Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny Kus-
menko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and
Andreas Wortmann. SMArDT modeling for automotive software testing. Jour-
nal on Software: Practice and Experience, 49(2):301-328, February 2019.

Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe,
and Simon Varga. A Methodology for Retrofitting Generative Aspects in Existing
Applications. Journal of Object Technology (JOT), 20:1-24, November 2021.

Imke Drave, Timo Henrich, Katrin Holldobler, Oliver Kautz, Judith Michael,
and Bernhard Rumpe. Modellierung, Verifikation und Synthese von validen Pla-
nungszustidnden fiir Fernsehausstrahlungen. In Dominik Bork, Dimitris Kara-
giannis, and Heinrich C. Mayr, editors, Modellierung 2020, pages 173-188.
Gesellschaft fir Informatik e.V., February 2020.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[DHM+22]

[DKMR19]

[DMR+20]

[DRW+20]

[EFLR99)

[EFLR99a]

[EJK+19]

[ELR+17]

[FEL+98]

Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérome Pfeif-
fer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. Generating Cus-
tomized Low-Code Development Platforms for Digital Twins. Journal of Com-
puter Languages (COLA), 70, June 2022.

Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic
Evolution Analysis of Feature Models. In Thorsten Berger, Philippe Collet, Lau-
rence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Radl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Térnava, Thomas
Thiim, and Tewfik Ziadi, editors, International Systems and Software Product
Line Conference (SPLC’19), pages 245-255. ACM, September 2019.

Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas
Wortmann. Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits. In Gillian Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle,
and Heinrich C. Mayr, editors, Conceptual Modeling, pages 377-387. Springer
International Publishing, October 2020.

Imke Drave, Bernhard Rumpe, Andreas Wortmann, Joerg Berroth, Gregor
Hoepfner, Georg Jacobs, Kathrin Spuetz, Thilo Zerwas, Christian Guist, and
Jens Kohl. Modeling Mechanical Functional Architectures in SysML. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 79-89. ACM, October 2020.

Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behav-
ioral Specifications of Businesses and Systems, pages 45—60. Kluver Academic
Publisher, 1999.

Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a
Formal Modeling Notation. In J. Bézivin and P.-A. Muller, editors, The Unified
Modeling Language. « UML»’98: Beyond the Notation, LNCS 1618, pages 336—
348. Springer, Germany, 1999.

Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin Pru-
enster, Bernhard Rumpe, and Karin Samira Salman. Applying Product Line
Testing for the Electric Drive System. In Thorsten Berger, Philippe Collet, Lau-
rence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Raul Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Térnava, Thomas
Thiim, and Tewfik Ziadi, editors, International Systems and Software Product
Line Conference (SPLC’19), pages 14-24. ACM, September 2019.

Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and An-
dreas Wortmann. Architecting Cloud Services for the Digital me in a Privacy-
Aware Environment. In Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel,
and Bruce Maxim, editors, Software Architecture for Big Data and the Cloud,
chapter 12, pages 207-226. Elsevier Science & Technology, June 2017.

Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a
formal modeling notation. Journal Computer Standards & Interfaces, 19(7):325—
334, November 1998.

181

RELATED INTERESTING WORK FROM THE SE GRouP, RWTH AACHEN

[FHROS]

[FIK+18]

[FLP+11]

[FLP+11b]

[FND-+98]

[FPPR12]

[GHK+07]

[GHK+08]

[GHK+08a]

[GHK+15]

[GHK+15a]

182

Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualitat als Indika-
tor fiir Softwarequalitét: eine Taxonomie. Informatik-Spektrum, 31(5):408-424,
Oktober 2008.

Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bernhard
Rumpe, and Alexander Ryndin. Distributed Simulation of Cooperatively In-
teracting Vehicles. In International Conference on Intelligent Transportation
Systems (ITSC’18), pages 596-601. IEEE, 2018.

M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. Der Energie-Navigator - Performance-Controlling fiir Gebdude und An-
lagen. Technik am Bau (TAB) - Fachzeitschrift fir Technische Gebdudeausriis-
tung, Seiten 36-41, Mérz 2011.

M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011.

Max Fuchs, Dieter Nazareth, Dirk Daniel, and Bernhard Rumpe. BMW-ROOM
An Object-Oriented Method for ASCET. In SAE’98, Cobo Center (Detroit,
Michigan, USA), Society of Automotive Engineers, 1998.

M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management.
In Energy Efficiency in Commercial Buildings Conference (IEECB’12), 2012.

Hans Gronniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER/’07), 2007.

Hans Gronniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Roth-
hardt, and Bernhard Rumpe. Modelling Automotive Function Nets with Views
for Features, Variants, and Modes. In Proceedings of 4th European Congress
ERTS - Embedded Real Time Software, 2008.

Hans Gronniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Roth-
hardt, and Bernhard Rumpe. View-Centric Modeling of Automotive Logical
Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IV, Informatik Bericht 2008-02. TU Braun-
schweig, 2008.

Timo Greifenberg, Katrin Holldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Miiller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk
Reifl, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-
mann. A Comparison of Mechanisms for Integrating Handwritten and Generated
Code for Object-Oriented Programming Languages. In Model-Driven Engineer-
ing and Software Development Conference (MODELSWARD’15), pages 74-85.
SciTePress, 2015.

Timo Greifenberg, Katrin Holldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Miiller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[GHK+20]

[GHR17]

[GKPROS]

[GKR96]

[GKR+06]

[GKR+07]

[GKR+08]

[GKR+17]

[GLPR15]

Reif3, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-
mann. Integration of Handwritten and Generated Object-Oriented Code. In
Model-Driven Engineering and Software Development, Communications in Com-
puter and Information Science 580, pages 112-132. Springer, 2015.

Arkadii Gerasimov, Patricia Heuser, Holger Kettenif}, Peter Letmathe, Judith
Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Generated Enterprise
Information Systems: MDSE for Maintainable Co-Development of Frontend and
Backend. In Judith Michael and Dominik Bork, editors, Companion Proceedings
of Modellierung 2020 Short, Workshop and Tools & Demo Papers, pages 22-30.
CEUR Workshop Proceedings, February 2020.

Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a Sus-
tainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects.
Aachener Informatik-Berichte, Software Engineering, Band 30. Shaker Verlag,
December 2017.

Hans Gronniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Model-
ing Variants of Automotive Systems using Views. In Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76—89.
TU Braunschweig, 2008.

Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-19631, TU Munich, Germany, July
1996.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. MontiCore 1.0: Ein Framework zur Erstellung und Verarbeitung domén-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultdt, TU Braun-
schweig, August 2006.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. Textbased Modeling. In 4th International Workshop on Software Lan-
guage Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-
Universitiat Mainz, 2007.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. MontiCore: A Framework for the Development of Textual Domain Spe-
cific Languages. In 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925-926,
2008.

Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and
Michael von Wenckstern. Simulation Framework for Executing Component and
Connector Models of Self-Driving Vehicles. In Proceedings of MODELS 2017.
Workshop EXFE, CEUR 2019, September 2017.

Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard Rumpe. En-
ergieeffiziente Stadte - Herausforderungen und Losungen aus Sicht des Software
Engineerings. In Linnhoff-Popien, Claudia and Zaddach, Michael and Grahl,
Andreas, Editor, Marktplitze im Umbruch: Digitale Strategien fiir Services im

183

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[GLRR15]

[GMN+-20]

[GMR+16]

[GRY5)]

[GR11]

[Grel9]

[GRJA12]

[GRRO9)]

[GRR10]

[Hab16]

[Her19]

184

Mobilen Internet, Xpert.press, Kapitel 56, Seiten 511-520. Springer Berlin Hei-
delberg, April 2015.

Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engi-
neering Tagging Languages for DSLs. In Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’15), pages 34-43. ACM/IEEE, 2015.

Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. Continuous Transition from Model-Driven Prototype to Full-Size Real-
World Enterprise Information Systems. In Bonnie Anderson, Jason Thatcher,
and Rayman Meservy, editors, 25th Americas Conference on Information Sys-
tems (AMCIS 2020), AIS Electronic Library (AISeL), pages 1-10. Association
for Information Systems (AIS), August 2020.

Timo Greifenberg, Klaus Miiller, Alexander Roth, Bernhard Rumpe, Christoph
Schulze, and Andreas Wortmann. Modeling Variability in Template-based Code
Generators for Product Line Engineering. In Modellierung 2016 Conference, LNI
254, pages 141-156. Bonner Koéllen Verlag, March 2016.

Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-19533, TU Munich, Germany, October 1995.

Hans Gronniger and Bernhard Rumpe. Modeling Language Variability. In Work-
shop on Modeling, Development and Verification of Adaptive Systems, LNCS
6662, pages 17-32. Springer, 2011.

Timo Greifenberg. Artefaktbasierte Analyse modellgetriebener Softwareentwick-
lungsprojekte. Aachener Informatik-Berichte, Software Engineering, Band 42.
Shaker Verlag, August 2019.

Tim Giilke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development
Projects: A Problem Statement. In Requirements Engineering: Foundation for
Software Quality (REFSQ’12), 2012.

Hans Gronniger, Jan Oliver Ringert, and Bernhard Rumpe. System Model-based
Definition of Modeling Language Semantics. In Proc. of FMOODS/FORTE 2009,
LNCS 5522, Lisbon, Portugal, 2009.

Hans Gronniger, Dirk Reifl, and Bernhard Rumpe. Towards a Semantics of
Activity Diagrams with Semantic Variation Points. In Conference on Model
Driven Engineering Languages and Systems (MODELS’10), LNCS 6394, pages
331-345. Springer, 2010.

Arne Haber. MontiArc - Architectural Modeling and Simulation of Interactive
Distributed Systems. Aachener Informatik-Berichte, Software Engineering, Band
24. Shaker Verlag, September 2016.

Lars Hermerschmidt. Agile Modellgetriebene Entwicklung von Software Secu-
rity & Privacy. Aachener Informatik-Berichte, Software Engineering, Band 41.
Shaker Verlag, June 2019.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[HHK+13]

[HHK+14]

[HHK+15]

[HHK+15a]

[HHR+15]

[HIK+21]

[HIJRW20]

[HKM+13]

[HKR+07]

[HKR+09)

Arne Haber, Katrin Hoélldobler, Carsten Kolassa, Markus Look, Klaus Miiller,
Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In
Software Product Line Conference (SPLC’13), pages 22-31. ACM, 2013.

Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Hauflling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based
Services in the Internet of Things. In Conference on Future Internet of Things
and Cloud (FiCloud’14). IEEE, 2014.

Arne Haber, Katrin Hoélldobler, Carsten Kolassa, Markus Look, Klaus Miiller,
Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of
Delta Modeling Languages. Journal on Software Tools for Technology Transfer
(STTT), 17(5):601-626, October 2015.

Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Héuflling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Journal Future Generation Computer Systems, 56:701—
718, 2015.

Lars Hermerschmidt, Katrin Holldobler, Bernhard Rumpe, and Andreas Wort-
mann. Generating Domain-Specific Transformation Languages for Component &
Connector Architecture Descriptions. In Workshop on Model-Driven Engineer-
ing for Component-Based Software Systems (ModComp’15), CEUR Workshop
Proceedings 1463, pages 18-23, 2015.

Steffen Hillemacher, Nicolas Jéckel, Christopher Kugler, Philipp Orth, David
Schmalzing, and Louis Wachtmeister. Artifact-Based Analysis for the Devel-
opment of Collaborative Embedded Systems. In Model-Based Engineering of
Collaborative Embedded Systems, pages 315-331. Springer, January 2021.

Katrin Holldobler, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Komposition Doménenspezifischer Sprachen unter Nutzung der MontiCore Lan-
guage Workbench, am Beispiel SysML 2. In Dominik Bork, Dimitris Karagiannis,
and Heinrich C. Mayr, editors, Modellierung 2020, pages 189-190. Gesellschaft
fir Informatik e.V., February 2020.

Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bern-
hard Rumpe, and Ina Schaefer. First-Class Variability Modeling in Mat-
lab/Simulink. In Variability Modelling of Software-intensive Systems Workshop
(VaMoS’13), pages 11-18. ACM, 2013.

Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Volkel. An Algebraic View on the Semantics of Model Composition.
In Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA’07), LNCS 4530, pages 99-113. Springer, Germany, 2007.

Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Volkel. Scaling-Up Model-Based-Development for Large Heterogeneous
Systems with Compositional Modeling. In Conference on Software Engineeering
in Research and Practice (SERP’09), pages 172176, July 2009.

185

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[HKR+11]

[HKR12]

[HKR+16]

[HKR21]

[HLN+15a]

[HLN+15]

[HMR+19)

[HNRW16]

[Hoel8]

[HRO4]

[HR17]

186

Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architec-
ture Conference (ECSA’11), pages 6:1-6:10. ACM, 2011.

Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-
In-Based Framework for Web-Based Project Portals. In Developing Tools as
Plug-Ins Workshop (TOPI’12), pages 61-66. IEEE, 2012.

Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and Andreas
Wortmann. Retrofitting Controlled Dynamic Reconfiguration into the Architec-
ture Description Language MontiArcAutomaton. In Software Architecture - 10th
European Conference (ECSA’16), LNCS 9839, pages 175-182. Springer, Decem-
ber 2016.

Katrin Hoélldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore Language
Workbench and Library Handbook: Edition 2021. Aachener Informatik-Berichte,
Software Engineering, Band 48. Shaker Verlag, May 2021.

Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Volkel, and Andreas Wortmann. Composition of Het-
erogeneous Modeling Languages. In Model-Driven Engineering and Software
Development, Communications in Computer and Information Science 580, pages
45-66. Springer, 2015.

Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Volkel, and Andreas Wortmann. Integration of Het-
erogeneous Modeling Languages via Extensible and Composable Language Com-
ponents. In Model-Driven Engineering and Software Development Conference
(MODELSWARD’15), pages 19-31. SciTePress, 2015.

Katrin Hoélldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe, and
Andreas Wortmann. Innovations in Model-based Software and Systems Engi-
neering. Journal of Object Technology (JOT), 18(1):1-60, July 2019.

Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wort-
mann. Compositional Language Engineering using Generated, Extensible, Static
Type Safe Visitors. In Conference on Modelling Foundations and Applications
(ECMFA), LNCS 9764, pages 67-82. Springer, July 2016.

Katrin Holldobler. MontiTrans: Agile, modellgetriebene Entwicklung von und
mit domdnenspezifischen, kompositionalen Transformationssprachen. Aachener
Informatik-Berichte, Software Engineering, Band 36. Shaker Verlag, December
2018.

David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics
of "Semantics”? IEEE Computer Journal, 37(10):64-72, October 2004.

Katrin Holldobler and Bernhard Rumpe. MontiCore 5 Language Workbench
Edition 2017. Aachener Informatik-Berichte, Software Engineering, Band 32.
Shaker Verlag, December 2017.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[HRROS)]

[HRR10]

[HRR+11]

[HRR12]

[HRRS11]

[HRRS12]

[HRRW12]

[HRW15]

[HRW18]

[JPR+22]

[JWCR18]

[KER99]

Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Com-
ponent Interfaces. In Technology of Object-Oriented Languages and Systems
(TOOLS 26), pages 58-70. IEEE, 1998.

Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Architectural
Programming of Embedded Systems. In Tagungsband des Dagstuhl- Workshop
MBEES: Modellbasierte Entwicklung eingebetteterSysteme VI, Informatik-
Bericht 2010-01, pages 13 — 22. fortiss GmbH, Germany, 2010.

Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150-159. IEEE, 2011.

Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03, RWTH Aachen University, February 2012.

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling
for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 — 10. fortiss GmbH,
2011.

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Sys-
tems. Development, Operation and Management, 17th Monterey Workshop 2012,
LNCS 7539, pages 183-208. Springer, 2012.

Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einfithrung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel
von Steuergerétesoftware. In Software Engineering Conference (SE’12), LNI 198,
Seiten 181-192, 2012.

Katrin Holldobler, Bernhard Rumpe, and Ingo Weiseméller. Systematically De-
riving Domain-Specific Transformation Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 136-145.
ACM/IEEE, 2015.

Katrin Holldobler, Bernhard Rumpe, and Andreas Wortmann. Software Lan-
guage Engineering in the Large: Towards Composing and Deriving Languages.
Journal Computer Languages, Systems & Structures, 54:386—405, 2018.

Nico Jansen, Jerome Pfeiffer, Bernhard Rumpe, David Schmalzing, and Andreas
Wortmann. The Language of SysML v2 under the Magnifying Glass. Journal of
Object Technology (JOT), 21:1-15, July 2022.

Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe. Does
Distance Still Matter? Revisiting Collaborative Distributed Software Design.
IEEE Software Journal, 35(6):40-47, 2018.

Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In
A. Moreira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99
Workshop Reader, LNCS 1743, Berlin, 1999. Springer Verlag.

187

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[KKP+09]

[KKR19]

[KKR+22]

[KKRZ19]

[KLPR12]

[KMA-+16]

[KMP+21]

[KMR+20]

[KMR21]

[KMS+18]

188

Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Volkel. Design Guidelines for Domain Specific Languages.
In Domain-Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7—
13. Helsinki School of Economics, October 2009.

Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dynamic
Architectures of Self-Adaptive Cooperative Systems. Journal of Object Technol-
ogy (JOT), 18(2):1-20, July 2019.

Jorg Christian Kirchhof, Anno Kleiss, Bernhard Rumpe, David Schmalzing,
Philipp Schneider, and Andreas Wortmann. Model-driven Self-adaptive Deploy-
ment of Internet of Things Applications with Automated Modification Proposals.
Journal ACM Transactions on Internet of Things, 3:1-30, November 2022.

Jorg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and Hengwen
Zhang. Simulation as a Service for Cooperative Vehicles. In Loli Burguenio,
Alexander Pretschner, Sebastian Voss, Michel Chaudron, Jorg Kienzle, Markus
Volter, Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse, Arend Rensink,
Fiona Polack, Gregor Engels, and Gerti Kappel, editors, Proceedings of MODELS
2019. Workshop MASE, pages 28-37. IEEE, September 2019.

Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Mod-
eling Cyber-Physical Systems: Model-Driven Specification of Energy Efficient
Buildings. In Modelling of the Physical World Workshop (MOTPW’12), pages
2:1-2:6. ACM, October 2012.

Jorg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schottle, Nicolas Bel-
loir, Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and
Bernhard Rumpe. VCU: The Three Dimensions of Reuse. In Conference on
Software Reuse (ICSR’16), LNCS 9679, pages 122-137. Springer, June 2016.

Hendrik Kausch, Judith Michael, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe,
and Andreas Schweiger. Model-Based Development and Logical Al for Secure and
Safe Avionics Systems: A Verification Framework for SysML Behavior Specifica-
tions. In Aerospace Europe Conference 2021 (AEC 2021). Council of European
Aerospace Societies (CEAS), November 2021.

Jorg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. Model-driven Digital Twin Construction: Synthesizing the
Integration of Cyber-Physical Systems with Their Information Systems. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 90-101. ACM, October 2020.

Jorg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. Understand-
ing and Improving Model-Driven IoT Systems through Accompanying Digital
Twins. In Eli Tilevich and Coen De Roover, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE 21), pages 197-209. ACM, October 2021.

Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,
Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[KNP+19)]

[KPR97]

[KPR12]

[KPRS19)]

[KR18a]

[Kral0]

[KRB96]

[KRR14]

[KRR+16]

[KRRS19]

Philipp Orth, and Johannes Richenhagen. Improving Model-based Testing in
Automotive Software Engineering. In International Conference on Software En-
gineering: Software Engineering in Practice (ICSE’18), pages 172-180. ACM,
June 2018.

Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard Rumpe,
and Thomas Timmermanns. Modeling and Training of Neural Processing Sys-
tems. In Marouane Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss,
and Loli Burgueiio, editors, Conference on Model Driven Engineering Languages
and Systems (MODELS’19), pages 283-293. IEEE, September 2019.

Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification
and Refinement with State Transition Diagrams. In Workshop on Feature In-
teractions in Telecommunications Networks and Distributed Systems, pages 284—
297. I0S-Press, 1997.

Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navi-
gator. In H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von
Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-
Berichte, Software Engineering, Band 14. Shaker Verlag, Aachen, Deutschland,
2012.

Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian
Stiiber. On the Engineering of Al-Powered Systems. In Lisa O’Conner, editor,
ASE19. Software Engineering Intelligence Workshop (SEI19), pages 126-133.
IEEE, November 2019.

Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Repair Failed
Model Refinements. In Conference on Model Driven Engineering Languages and
Systems (MODELS’18), pages 289-299. ACM, October 2018.

Holger Krahn. MontiCore: Agile Entwicklung von domdnenspezifischen Sprachen
im Software-Engineering. Aachener Informatik-Berichte, Software Engineering,
Band 1. Shaker Verlag, Mérz 2010.

Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathemati-
cal model for distributed information processing systems - SysLab system model.
In Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP
Advances in Information and Communication Technology, pages 323-338. Chap-
mann & Hall, 1996.

Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Comput-
ing. Springer, Schweiz, December 2014.

Philipp Kehrbusch, Johannes Richenhagen, Bernhard Rumpe, Axel Schlofer, and
Christoph Schulze. Interface-based Similarity Analysis of Software Components
for the Automotive Industry. In International Systems and Software Product
Line Conference (SPLC ’16), pages 99-108. ACM, September 2016.

Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stiiber. Model-
Based Engineering for Avionics: Will Specification and Formal Verification e.g.

189

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[KRRW17]

[KRS12

[KRS+18a]

[KRS+22]

[KRV06]

[KRV07a]

[KRVO7b)]

[KRV08]

[KRV10]

190

Based on Broy’s Streams Become Feasible? In Stephan Krusche, Kurt Schnei-
der, Marco Kuhrmann, Robert Heinrich, Reiner Jung, Marco Konersmann, Eric
Schmieders, Steffen Helke, Ina Schaefer, Andreas Vogelsang, Bjérn Annighofer,
Andreas Schweiger, Marina Reich, and André van Hoorn, editors, Proceedings of
the Workshops of the Software Engineering Conference. Workshop on Avionics
Systems and Software Engineering (AvioSE’19), CEUR Workshop Proceedings
2308, pages 87-94. CEUR Workshop Proceedings, February 2019.

Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. Modeling Architectures of Cyber-Physical Systems. In Furopean Con-
ference on Modelling Foundations and Applications (ECMFA’17), LNCS 10376,
pages 34-50. Springer, July 2017.

Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical
Systems - eine Herausforderung fiir die Automatisierungstechnik? In Proceedings
of Automation 2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012.

Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von
Wenckstern. Highly-Optimizing and Multi-Target Compiler for Embedded Sys-
tem Models: C++ Compiler Toolchain for the Component and Connector Lan-
guage EmbeddedMontiArc. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’18), pages 447 — 457. ACM, October 2018.

Jorg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and Andreas
Wortmann. MontiThings: Model-driven Development and Deployment of Reli-
able IoT Applications. Journal of Systems and Software (JSS), 183:1-21, January
2022.

Holger Krahn, Bernhard Rumpe, and Steven Vélkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150-158. Jyviskyld Uni-
versity, Finland, 2006.

Holger Krahn, Bernhard Rumpe, and Steven Voélkel. Efficient Editor Genera-
tion for Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop
(DSM’07), Technical Reports TR-38. Jyviskyla University, Finland, 2007.

Holger Krahn, Bernhard Rumpe, and Steven Volkel. Integrated Definition of
Abstract and Concrete Syntax for Textual Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’07), LNCS 4735, pages
286-300. Springer, 2007.

Holger Krahn, Bernhard Rumpe, and Steven Voélkel. Monticore: Modular De-
velopment of Textual Domain Specific Languages. In Conference on Objects,
Models, Components, Patterns (TOOLS-FEurope’08), LNBIP 11, pages 297-315.
Springer, 2008.

Holger Krahn, Bernhard Rumpe, and Stefen Voélkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Jour-
nal on Software Tools for Technology Transfer (STTT), 12(5):353-372, Septem-
ber 2010.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[KRW20)]

[Kus21]

[LMK+11]

[Lool7]

[LRSS10]

[MKB+19]

[MKM+19]

[MM13]

[MM15]

[MMR10]

[MMR+17]

Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated semantics-
preserving parallel decomposition of finite component and connector architec-
tures. Automated Software Engineering Journal, 27:119-151, April 2020.

Evgeny Kusmenko. Model-Driven Development Methodology and Domain-
Specific Languages for the Design of Artificial Intelligence in Cyber-Physical
Systems. Aachener Informatik-Berichte, Software Engineering, Band 49. Shaker
Verlag, November 2021.

Philipp Leusmann, Christian Mollering, Lars Klack, Kai Kasugai, Bernhard
Rumpe, and Martina Ziefle. Your Floor Knows Where You Are: Sensing and
Acquisition of Movement Data. In Arkady Zaslavsky, Panos K. Chrysanthis,
Dik Lun Lee, Dipanjan Chakraborty, Vana Kalogeraki, Mohamed F. Mokbel,
and Chi-Yin Chow, editors, 12th IEEE International Conference on Mobile Data
Management (Volume 2), pages 61-66. IEEE, June 2011.

Markus Look. Modellgetriebene, agile Entwicklung und Evolution mehrbenutzer-
fahiger Enterprise Applikationen mit MontiEE. Aachener Informatik-Berichte,
Software Engineering, Band 27. Shaker Verlag, March 2017.

Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schétz, and Jonathan Sprin-
kle. Model Evolution and Management. In Model-Based Engineering of Embed-
ded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241-270.
Springer, 2010.

Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Weidlich,
and Judith Michael. Privacy-Preserving Process Mining: Differential Privacy for
Event Logs. Business & Information Systems Engineering, 61(5):1-20, October
2019.

Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Baracaldo, and
Bernhard Rumpe. User-Centered and Privacy-Driven Process Mining System
Design for IoT. In Cinzia Cappiello and Marcela Ruiz, editors, Proceedings of
CAiSE Forum 2019: Information Systems Engineering in Responsible Informa-
tion Systems, pages 194-206. Springer, June 2019.

Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient assis-
tance. In Conceptual Modeling - ER 2013, LNCS 8217, pages 403—413. Springer,
2013.

Judith Michael and Heinrich C. Mayr. Creating a domain specific modelling
method for ambient assistance. In International Conference on Advances in ICT
for Emerging Regions (ICTer2015), pages 119-124. IEEE, 2015.

Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer Journal, 43(5):42-48, May
2010.

Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A. Shekhovtsov,
and Claudia Steinberger. Model Centered Architecture, pages 85—104. Springer
International Publishing, 2017.

191

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[MNRV19]

[MPRW22]

[MRR10]

[MRR11d]

[MRR11a]

[MRR11e]

[MRR11b]

[MRR11¢]

[MRR11{]

[MRR11g]

[MRR13]

192

Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Towards
Privacy-Preserving IoT Systems Using Model Driven Engineering. In Nico-
las Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Solberg, Manuel Wim-
mer, and Andreas Wortmann, editors, Proceedings of MODELS 2019. Workshop
MDE41oT, pages 595-614. CEUR Workshop Proceedings, September 2019.

Judith Michael, Jérome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. In-
tegration Challenges for Digital Twin Systems-of-Systems. In 10th IEEE/ACM
International Workshop on Software Engineering for Systems-of-Systems and
Software Ecosystems, pages 9-12. ACM, May 2022.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Seman-
tic Model Differencing. In Proceedings Int. Workshop on Models and Evolution
(ME’10), LNCS 6627, pages 194-203. Springer, 2010.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic
Differencing for Activity Diagrams. In Conference on Foundations of Software
Engineering (ESEC/FSE ’11), pages 179-189. ACM, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Seman-
tics for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH
Aachen University, Aachen, Germany, July 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Di-
agrams Analysis Using Alloy Revisited. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’11), LNCS 6981, pages 592-607.
Springer, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic
Differencing for Class Diagrams. In Mira Mezini, editor, ECOOP 2011 - Object-
Oriented Programming, pages 230-254. Springer Berlin Heidelberg, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Dia-
grams. In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813,
pages 281-305. Springer, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Config-
urable Consistency Analysis for Class and Object Diagrams. In Conference on
Model Driven Engineering Languages and Systems (MODELS’11), LNCS 6981,
pages 153-167. Springer, 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing Seman-
tic Model Differences. In Bernhard Schéatz, Dirk Deridder, Alfonso Pierantonio,
Jonathan Sprinkle, and Dalila Tamzalit, editors, MFE 2011 - Models and Evolu-
tion, October 2011.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Compo-
nent and Connector Models from Crosscutting Structural Views. In Meyer, B.
and Baresi, L. and Mezini, M., editor, Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’13), pages 444-454. ACM New York, 2013.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[MRR14a]

[MRR14b)]

[MRRW16]

[MRV20]

[MRZ21]

[MS17]

[Nazl7]

[NRR15a]

[NRR16]

[PR13]

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views (extended abstract).
In Wilhelm Hasselbring and Nils Christian Ehmke, editors, Software Engineering
2014, LNI 227, pages 63-64. Gesellschaft fiir Informatik, Kéllen Druck+Verlag
GmbH, 2014.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component
and Connector Models against Crosscutting Structural Views. In International
Conference on Software Engineering (ICSE’14), pages 95-105. ACM, 2014.

Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael von Wenck-
stern. Consistent Extra-Functional Properties Tagging for Component and Con-
nector Models. In Workshop on Model-Driven Engineering for Component-Based
Software Systems (ModComp’16), CEUR Workshop Proceedings 1723, pages 19—
24, October 2016.

Judith Michael, Bernhard Rumpe, and Simon Varga. Human behavior, goals and
model-driven software engineering for assistive systems. In Agnes Koschmider,
Judith Michael, and Bernhard Thalheim, editors, Enterprise Modeling and In-
formation Systems Architectures (EMSIA 2020), pages 11-18. CEUR Workshop
Proceedings, June 2020.

Judith Michael, Bernhard Rumpe, and Lukas Tim Zimmermann. Goal Modeling
and MDSE for Behavior Assistance. In Int. Conf. on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 370-379. ACM/IEEE,
October 2021.

Judith Michael and Claudia Steinberger. Context modeling for active assistance.
In Cristina Cabanillas, Sergio Espana, and Siamak Farshidi, editors, Proc. of
the ER Forum 2017 and the ER 2017 Demo Track co-located with the 36th Int.
Conference on Conceptual Modelling (ER 2017), pages 221-234, 2017.

Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Composed Mod-
eling Language Essentials. Aachener Informatik-Berichte, Software Engineering,
Band 29. Shaker Verlag, June 2017.

Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. Mixed Gen-
erative and Handcoded Development of Adaptable Data-centric Business Appli-
cations. In Domain-Specific Modeling Workshop (DSM’15), pages 43-44. ACM,
2015.

Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An Extended
Symbol Table Infrastructure to Manage the Composition of Output-Specific Gen-
erator Information. In Modellierung 2016 Conference, LNI 254, pages 133—140.
Bonner Kollen Verlag, March 2016.

Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures
as Interactive Systems. In Model-Driven Engineering for High Performance and
Cloud Computing Workshop, CEUR Workshop Proceedings 1118, pages 1524,
2013.

193

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[PBI+16]

[PFRO2]

[Pin14]

[Plo18]

[PR94]

[PROY)]

[PRO1]

[PRO3]

[Reil6]

[Rin14]

[RK96]

[RKB95]

[Rot17]

194

Dimitri Plotnikov, Inga Blundell, Tammo Ippen, Jochen Martin Eppler, Abigail
Morrison, and Bernhard Rumpe. NESTML: a modeling language for spiking neu-
rons. In Modellierung 2016 Conference, LNI 254, pages 93-108. Bonner Kollen
Verlag, March 2016.

Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Anno-
tations with UML-F. In Software Product Lines Conference (SPLC’02), LNCS
2379, pages 188-197. Springer, 2002.

Claas Pinkernell. FEnergie Navigator: Software-gestiitzte Optimierung der En-
ergieeffizienz von Gebduden und technischen Anlagen. Aachener Informatik-
Berichte, Software Engineering, Band 17. Shaker Verlag, 2014.

Dimitri Plotnikov. NESTML - die domdnenspezifische Sprache fiir den NEST-
Simulator neuronaler Netzwerke im Human Brain Project. Aachener Informatik-
Berichte, Software Engineering, Band 33. Shaker Verlag, February 2018.

Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for
Behaviour Modelling with Automata. In Proceedings of the Industrial Benefit of
Formal Methods (FME’94), LNCS 873, pages 154-174. Springer, 1994.

Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architec-
tures. In Congress on Formal Methods in the Development of Computing System
(FM’99), LNCS 1708, pages 96-115. Springer, 1999.

Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Ba-
clavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15. Northeastern University, 2001.

Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications.
In Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and
System Specifications, pages 281-297. Kluwer Academic Publishers, 2003.

Dirk Reif. Modellgetriebene generative Entwicklung wvon Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engineering,
Band 22. Shaker Verlag, May 2016.

Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Con-
nector Systems. Aachener Informatik-Berichte, Software Engineering, Band 19.
Shaker Verlag, Aachen, Germany, December 2014.

Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265-286. Kluwer Academic Publishers, 1996.

Bernhard Rumpe, Cornel Klein, and Manfred Broy. FEin strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme - Syslab-
Systemmodell. Technischer Bericht TUM-19510, TU Miinchen, Deutschland,
Marz 1995.

Alexander Roth. Adaptable Code Generation of Consistent and Customizable
Data Centric Applications with MontiDez. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 31. Shaker Verlag, December 2017.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing. International Journal
of Software and Informatics, 2011.

[RRRW15b] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. Journal of Software Engineering
for Robotics (JOSER), 6(1):33-57, 2015.

[RRS+16] Johannes Richenhagen, Bernhard Rumpe, Axel Schlofler, Christoph Schulze,
Kevin Thissen, and Michael von Wenckstern. Test-driven Semantical Similar-
ity Analysis for Software Product Line Extraction. In International Systems and
Software Product Line Conference (SPLC ’16), pages 174-183. ACM, September
2016.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-
mann. Teaching Agile Model-Driven Engineering for Cyber-Physical Systems.
In International Conference on Software Engineering: Software Engineering and
Education Track (ICSE’17), pages 127-136. IEEE, May 2017.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Requirements
Modeling Language for the Component Behavior of Cyber Physical Robotics
Systems. In Seyff, N. and Koziolek, A., editor, Modelling and Quality in Re-
quirements Engineering: FEssays Dedicated to Martin Glinz on the Occasion of
His 60th Birthday, pages 133—146. Monsenstein und Vannerdat, Miinster, 2012.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software
Architecture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems. In Software Engineering Workshopband (SE’18), LNI 215,
pages 155-170, 2013.

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAu-
tomaton: Modeling Architecture and Behavior of Robotic Systems. In Confer-
ence on Robotics and Automation (ICRA’13), pages 10-12. IEEE, 2013.

[RRW14a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aach-
ener Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, Decem-
ber 2014.

[RRW15] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Tailoring the
MontiArcAutomaton Component & Connector ADL for Generative Develop-
ment. In MORSE/VAO Workshop on Model-Driven Robot Software Engineering
and View-based Software-Engineering, pages 41-47. ACM, 2015.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral Compatibility of Simulink Models for
Product Line Maintenance and Evolution. In Software Product Line Conference
(SPLC’15), pages 141-150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Herbert Utz Verlag Wissenschaft, Miinchen, Deutschland, 1996.

195

RELATED INTERESTING WORK FROM THE SE GrRoupP, RWTH AACHEN

[Rum02]

[Rum03]

[Rum04c]

[Rum11]

[Rum12]

[Rum16]

[Rum17]

[RW18]

[Sch12]

[SHH+20]

[SM18a]

[SM20]

196

Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697-701. Idea Group
Publishing, London, 2002.

Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Sympo-
sium on Formal Methods for Components and Objects (FMCO’02), LNCS 2852,
pages 380-402. Springer, November 2003.

Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical
Innovations of Software and Systems Engineering in the Future (RISSEF’02),
LNCS 2941, pages 297-309. Springer, October 2004.

Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, Septem-
ber 2011.

Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfdlle,
Refactoring, 2te Auflage. Springer Berlin, Juni 2012.

Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing, Refac-
toring. Springer International, May 2017.

Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement in Hi-
erarchically Decomposable and Underspecified CPS-Architectures. In Lohstroh,
Marten and Derler, Patricia Sirjani, Marjan, editor, Principles of Modeling: Es-
says Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, LNCS
10760, pages 383—-406. Springer, 2018.

Martin Schindler. Fine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker
Verlag, 2012.

Giinther Schuh, Constantin Héfner, Christian Hopmann, Bernhard Rumpe,
Matthias Brockmann, Andreas Wortmann, Judith Maibaum, Manuela Dali-
bor, Pascal Bibow, Patrick Sapel, and Moritz Kroger. Effizientere Produk-
tion mit Digitalen Schatten. ZWF Zeitschrift fiir wirtschaftlichen Fabrikbetrieb,
115(special):105-107, April 2020.

Claudia Steinberger and Judith Michael. Towards Cognitive Assisted Living
3.0. In International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops 2018), pages 687-692. IEEE, march 2018.

Claudia Steinberger and Judith Michael. Using Semantic Markup to Boost Con-
text Awareness for Assistive Systems. In Smart Assisted Living: Toward An Open
Smart-Home Infrastructure, Computer Communications and Networks, pages
227-246. Springer International Publishing, 2020.

RELATED INTERESTING WORK FROM THE SE GrRoUP, RWTH AACHEN

[SRVK10]

[TAB+21]

[THR+13)

[Voell]

[WCB17]

[Weil2]

[Worl6)

[Wor21]

[ZPK+11]

Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai.
Metamodelling: State of the Art and Research Challenges. In Model-Based Engi-
neering of Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100,
pages 57-76. Springer, 2010.

Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale, Robert
Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bernhard Rumpe, Pa-
trizia Scandurra, and Hans Vangheluwe. Composition of Languages, Models, and
Analyses. In Heinrich, Robert and Duran, Francisco and Talcott, Carolyn and
Zschaler, Steffen, editor, Composing Model-Based Analysis Tools, pages 45-70.
Springer, July 2021.

Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and An-
dreas Wortmann. A New Skill Based Robot Programming Language Using UM-
L/P Statecharts. In Conference on Robotics and Automation (ICRA’13), pages
461-466. IEEE, 2013.

Steven Volkel. Kompositionale Entwicklung domdnenspezifischer Sprachen.
Aachener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag,
2011.

Andreas Wortmann, Benoit Combemale, and Olivier Barais. A Systematic Map-
ping Study on Modeling for Industry 4.0. In Conference on Model Driven Engi-
neering Languages and Systems (MODELS’17), pages 281-291. IEEE, September
2017.

Ingo Weisemdller. Generierung domdnenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag,
2012.

Andreas Wortmann. An FExtensible Component & Connector Architecture De-
scription Infrastructure for Multi-Platform Modeling. Aachener Informatik-
Berichte, Software Engineering, Band 25. Shaker Verlag, November 2016.

Andreas Wortmann. Model-Driven Architecture and Behavior of Cyber-Physical
Systems. Aachener Informatik-Berichte, Software Engineering, Band 50. Shaker
Verlag, October 2021.

Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Ku-
mardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data
Analysis and Filtering for Inaccurate Flight Trajectories. In Proceedings of the
SESAR Innovation Days. EUROCONTROL, 2011.

197

	Declaration
	Publications and contributions

	Table of Contents
	Introduction
	Introduction
	Background and History
	Fundamental principles
	The human cortex
	Neurons and synapses
	Neuron modelling
	Dynamical systems theory
	Learning paradigms

	Aims and structure of the thesis
	Computations in cortical microcircuit models
	Information processing capacity
	Memory prerequisites for temporal difference learning in cortico-striatal populations

	Experiments
	Information processing in cortical microcircuits
	Introduction
	Methods
	Microcircuit model
	Tasks
	Simulation and analysis framework

	Results
	Network activity
	Task performance for the circuit variants
	Robustness to neuron model simplifications
	Detailed memory tasks

	Replicability
	Conclusion

	Information Processing Capacity
	Introduction
	Methods
	Information processing capacity
	Tasks
	Investigated models
	Capacity chance level and cut-off value

	Results
	Discrete time system: Echo state network
	Simple continuous time system: Fermi-Pasta-Ulam-Tsingou model
	Balanced spiking neural network model
	Biophysical spiking network model
	Comparative performance on tasks

	Conclusion

	Memory prerequisites for temporal difference learning in cortico-striatal populations
	Introduction
	Methods
	Baseline rate-based model
	Structured rate-based model
	Spiking baseline model
	Structured spiking model
	Network modification experiments
	Conversion networks

	Results
	How nonlinearities shape the memory in the baseline continuous rate network
	How weight distributions shape the memory in the baseline continuous rate network
	From baseline rate network to the structured rate network
	Structured continuous rate network
	Spiking neural networks
	Spiking networks constructed from rate networks

	Conclusion

	Discussion
	Discussion
	Cortical microcircuit
	Information processing capacity
	Temporal difference learning in cortico-striatal populations
	Outlook and future work
	Conclusion

	Bibliography
	Microcircuit
	Information processing capacity
	Details on removing the nonlinear encoder effects

	Temporal-difference learning in cortico-striatal populations
	List of Figures
	List of Tables
	List of Abbreviations
	Index of Abbreviations

