
Imke Helene Nachmann

Functional Modeling of
Cyber-Physical Systems

Aachener Informatik-Berichte,
Software Engineering
Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

Band 59

Functional Modeling of Cyber-Physical Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M.Sc.
Imke Helene Nachmann, geb. Drave

aus Hamburg, Germany

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe
Universitätsprofessor Mag. Dr. Manuel Wimmer

Tag der mündlichen Prüfung: 27.März 2025

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online
verfügbar.

[Nac25] I. Nachmann:
Functional Modeling of Cyber-Physical Systems.
Aachener Informatik-Berichte, Software Engineering, Band 59,
ISBN 978-3-8191-0107-6, Shaker Verlag, Jul. 2025.

Shaker Verlag
Düren 2025

Aachener Informatik-Berichte, Software Engineering

herausgegeben von
Prof. Dr. rer. nat. Bernhard Rumpe

Software Engineering
RWTH Aachen University

Band 59

Imke Helene Nachmann
RWTH Aachen University

Functional Modeling of Cyber-Physical Systems

WICHTIG: D 82 überprüfen !!!

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2025)

Copyright Shaker Verlag 2025
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

Print-ISBN 978-3-8191-0107-6
PDF-ISBN 978-3-8191-0081-9
ISSN 1869-9170
eISSN 2944-6910

Shaker Verlag GmbH • Am Langen Graben 15a • 52353 Düren
Phone: 0049/2421/99011-0 • Telefax: 0049/2421/99011-9
Internet: www.shaker.de • e-mail: info@shaker.de

Eidesstattliche Erklärung

Imke Helene Nachmann erklärt hiermit, dass diese Dissertation und die darin dargelegten
Inhalte die eigenen sind und selbstständig, als Ergebnis der eigenen originären Forschung,
generiert wurden. Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser
Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde
stets die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene
Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in:

• [DRW+20] I. Drave, B. Rumpe, A. Wortmann, J. Berroth, G. Hoepfner, G.
Jacobs, K. Spuetz, T. Zerwas, C. Guist, J. Kohl: Modeling Mechanical Func-
tional Architectures in SysML. In: Proceedings of the 23rd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems,
pp. 79-89, ACM, Oct. 2020.

• [ZJS+21] T. Zerwas, G. Jacobs, K. Spuetz, G. Hoepfner, I. Drave, J. Berroth,
C. Guist, C. Konrad, B. Rumpe, J. Kohl: Mechanical Concept Development
Using Principle Solution Models. In: IOP Conference Series: Materials Sci-
ence and Engineering, G. Jacobs, S. Stein (Eds.), Volume 1097:012001, IOP
Publishing, Feb. 2021.

• [HJZ+21] G. Hoepfner, G. Jacobs, T. Zerwas, I. Drave, J. Berroth, C. Guist,
B. Rumpe, J. Kohl: Model-Based Design Workflows for Cyber-Physical Sys-
tems Applied to an Electric-Mechanical Coolant Pump. In: IOP Conference
Series: Materials Science and Engineering, G. Jacobs, S. Stein (Eds.), Volume
1097:012004, IOP Publishing, Feb. 2021.

• [HNZ+23] G. Hoepfner, I. Nachmann, T. Zerwas, J. K. Berroth, J. Kohl,
C. Guist, B. Rumpe, G. Jacobs: Towards a Holistic and Functional Model-
Based Design Method for Mechatronic Cyber-Physical Systems. In: Journal
of Computing and Information Science in Engineering (JCISE), Volume 23(5),
Mar. 2023.

Köln, 25.07.2024

Imke Nachmann

Abstract
Engineering Cyber-Physical Systems faces many challenges including the demand to
integrate many different forms of functionalities and features. Traditional engineering
processes are structured by the physical components and software modules of the final
system and the engineering activities are concerned with evolving these components. In
these approaches, the information, which components realize which functions and, in
particular, which components interact in which way to implement a function, most
often remains implicit. This hinders not only the collaboration of experts from different
domains but also an agile approach to engineering which becomes efficient through
automation, e.g., of V&V tasks. The shift towards functional requirements gives rise to
a conceptual gap between their abstract descriptions and the very detailed descriptions
of the system’s implementation. So far, the involved engineering domains have
established an understanding of what a system’s function is, but these understandings
have not been consolidated and integrated in a suitable interdisciplinary modeling
technique. Therefore, we propose a functional development paradigm that promotes
development by finding realizations of cyber-physical functions, which transform
energy, matter, and data, rather than implementing physical products or software
modules directly. Therein, we model a CPS as a network of interacting timed stream
processing functions, which specify the desired logical behavior and the physical
behavior. By applying this modeling technique to formalize the design process in
mechanical engineering, we show how to integrate the functional understanding of
software and mechanical systems, which paves the way for agile and holistic
model-driven engineering of CPSs. Further, we propose requirements and a
meta-model for implementing modeling languages to model these functions.

Kurzfassung
Die heutigen Cyber-Physischen Systeme müssen immer mehr Funktionalitäten erfüllen,
was ihre Entwicklung vor neue Herausforderungen stellt. Die Aktivitäten traditioneller
Entwicklungsmethoden fokussieren die Entwicklung physikalischer Teile oder Software
Module und nicht der angeforderten Funktionen, deren Realisierung die Interaktion
dieser Komponenten erfordert. Die Information, welche Komponenten, bzw. welche
Interaktion welcher Komponenten die geforderte Funktion erfüllt bleibt in der Regel
implizit und erschwert die Kollaboration der Experten aus den verschiedenen
Domänen. Auch die Validierung und Verifikation der angeforderten Funktionen wird
durch das nicht Vorhandensein dieser Information in formaler Form erschwert.
Zwischen den informell und abstrakt beschriebenen funktionalen Anforderungen und
der Dokumentation ihrer Implementierungen entsteht eine konzeptionelle Lücke. Die in
der Entwicklung Cyber-Physischer Systeme involvierten Domänen haben jeweils ein
eigenes Verständnis dessen etabliert, was die Funktion eines Systems ist. Diese
Verständnisse wurden jedoch noch nicht zu einer holistischen Modellierungstechnik
konsolidiert. Diese Arbeit stellt das funktionale Entwicklungspardigma vor, welches
den Fokus der Entwicklung auf das Finden von Realisierungen der cyber-physischen
Funktionen, die ein System, das Energie, Material und Daten definiert, legt. Dies steht
im Kontrast zu traditionellen Ansätzen, die die Entwicklung von Komponenten zur
Erfüllung funktionaler Anforderungen anstreben. Darin wird ein Cyber-Physisches
System als ein Netzwerk aus interagierenden gezeiteten stromverarbeitenden
Funktionen verstanden und modelliert. Um dieses formale Verständnis des Systems in
der Entwicklung praktisch anwenden zu können wird außerdem ein Meta-Modell
vorgestellt und in Form eines SysML-Profils implementiert, das die wesentlichen
Anforderungen und Konzepte zur Entwicklung von Modellierungssprachen integriert.
Diese Technik wird dann angewandt um einen Konstruktionskatalog aus dem
Maschinenbau zu formalisieren und so aufzuzeigen, dass die Modellierung es schafft,
eine Brücke zwischen Softwareentwicklung und Maschinenbau zu schaffen.

Danksagung
An dieser Stelle möchte ich allen danken, die mich während der Entstehung dieser
Dissertation und insbesondere im Verlauf des Promotionsprozesses begleitet und
unterstützt haben – eines Weges, der nicht nur fachliches Engagement, sondern auch
Ausdauer, Frustrationstoleranz und persönliche Hingabe erfordert hat.
Mein besonderer Dank gilt meinem Doktorvater, Prof. Dr. Bernhard Rumpe. Unsere
konstruktiven Diskussionen haben maßgeblich zur inhaltlichen Ausrichtung und
letztlichen Fertigstellung dieser Arbeit beigetragen. Ebenso danke ich für die
Möglichkeit, im Rahmen zahlreicher Industrie- und Forschungsprojekte Verantwortung,
sei es in der Bearbeitung, Akquise oder Leitung, zu übernehmen. Die inhaltliche
Vielfalt, die ich in meiner Arbeit am Lehrstuhl erfahren durfte, hat meine persönliche
und intellektuelle Entwicklung in entscheidender Weise geprägt.
Mein aufrichtiger Dank gilt außerdem Univ.-Prof. Mag. Dr. Manuel Wimmer für die
Übernahme der Zweitbegutachtung, Prof. Dr. Stefan Decker für den Vorsitz der
Prüfungskommission sowie Prof. Dr. Sebastian Trimpe für seine Rolle als drittem
Prüfer. Die inhaltliche Auseinandersetzung im Rahmen der Prüfungsvorbereitung war
nicht zuletzt durch die spannenden Vorlesungen und Übungen eine bereichernde
Erfahrung.
Für die kollegiale Unterstützung während meiner Zeit am Lehrstuhl danke ich dem
gesamten Team des Lehrstuhls für Software Engineering an der RWTH Aachen
herzlich. Ein besonderer Dank gilt Louis Wachtmeister, Sebastian Stüber, Christian
Kirchhoff, Deni Raco, Evgeny Kusmenko, Steffen Hillemacher, Hendrick Kausch,
Florian Drux und Nico Jansen, die mir wertvolles Feedback zur Dissertation gegeben
haben. Für die hervorragende Zusammenarbeit möchte ich mich außerdem bei David
Schmalzing, Judith Michael, Vincent Bertram, Lukas Netz, Simon Varga, Arkadii
Gerasimov, Max Stachon, Oliver Kautz, Andreas Wortmann, Matthias Markthaler,
Michael von Wenckstern, Timo Greifenberg, Marita Breuer, Galina Volkova und Sylvia
Gunder bedanken.
Mein tief empfundener Dank gilt auch meiner Familie und meinen Freunden. Meinen
Eltern, Volker und Andrea Drave, sowie meiner Schwester Svenja Dick danke ich von
Herzen für ihre stetige Unterstützung und Ermutigung.
Zuletzt möchte ich meinem Ehemann Philipp Nachmann danken – für seine
unermüdliche Geduld, seine Kraft und seine Bereitschaft, mir insbesondere nach der
Geburt unserer Tochter den nötigen Raum und die Zeit zu geben, dieses Vorhaben zu
realisieren.

Contents

1 Introduction 1
1.1 Motivation and Context: Cyber-Physical Systems 1

1.1.1 The Problem-Implementation Gap in CPS Engineering 1

1.1.2 Functional Model-Driven Engineering of Cyber-Physical Systems . 3

1.2 Research Questions . 6

1.3 Preliminaries . 6

1.3.1 Notation and Conventions . 7

1.3.2 Constituents of a Formal Model-Driven Engineering Methodology 9

1.3.3 The Automotive Cooling System 12

1.3.4 The Architecture Description Language MontiArc 13

1.3.5 SysML . 15

1.4 Publications . 17

1.5 Thesis Organization . 18

2 Cyber-Physical Types 21
2.1 Preliminaries on Types and Classes . 21

2.1.1 Cyber-Physical Class Diagrams . 22

2.2 Modeling Cyber-Physical-Types . 23

2.2.1 Physical Quantities, Units, and Position 23

2.2.2 Energy . 28

2.2.3 Matter . 31

2.2.4 Data . 33

2.3 Summary: Cyber-Physical Types . 36

3 A Theory of Cyber-Physical Functions 37
3.1 Timed Streams . 37

3.1.1 A Complete Partial Order of Timed Streams 39

3.2 Cyber-Physical Streams . 41

3.2.1 Energy streams . 41

3.2.2 Item Streams . 42

3.2.3 Fluid Streams . 43

3.2.4 Data Streams . 44

3.2.5 Signals . 44

3.2.6 Event Streams . 45

xiii

3.3 Timed Stream Processing Functions and Behavior 45

3.3.1 Channels and Histories . 46

3.3.2 Behavior . 46

3.3.3 Composition . 47

3.3.4 Refinement . 49

3.4 Specifying Cyber-Physical Functions . 52

3.4.1 Specification by Interface Assertions 52

3.4.2 Specification by Hybrid Automata 56

3.4.3 Architectural Specification . 61

4 A Methodology for Functional Model-Driven Engineering of CPSs 65
4.1 The Functional Development Paradigm 65

4.1.1 The Five Principles of Functional Development 66

4.2 Formal Methodology for Engineering CPSs 67

4.2.1 Transformations of the Interface of a Functional Specifications . . 69

4.2.2 Transformations of the Behavior 70

4.3 Related Work . 72

5 Formalizing Design Catalogs as Libraries of Physical Functions 77
5.1 Mechanical Design Methodology . 78

5.1.1 Functional Structures . 79

5.1.2 Design Catalogs, Elementary Functions and Principle Solutions . . 80

5.1.3 Challenges of the Functional Synthesis 83

5.1.4 Summary: A Conceptual Model of Physical Functions 85

5.2 Formalizing the Koller Design Catalog . 91

5.2.1 Energy Operations . 93

5.2.2 Material Operations . 103

5.2.3 Operations between Energy and Material 110

5.3 Discussion . 111

5.3.1 Energetic Losses . 112

5.3.2 Delay . 115

5.3.3 Related Work . 116

6 A Language Engineering Perspective on Physical Functions 117
6.1 A Meta-Model for Functional Modeling Languages To Digitalize the Me-

chanical Design Process . 118

6.1.1 Functional Interfaces . 118

6.1.2 Functional Architectures . 120

6.1.3 Discussion . 122

6.2 Modeling Physical Functions and Solutions in SysML 123

6.2.1 Functional Interface . 123

6.2.2 Functions . 127

6.2.3 Solutions . 129

6.3 Implementation of SysML4FMArch in MagicDraw 135

6.3.1 Implementing Graphical DSLs in MagicDraw 135

6.3.2 SysML4FMArch Language Components as a MagicDraw Profile . 137

6.3.3 The Modeling Method of SysML4FMArch in MagicDraw 141

6.3.4 User Experience Features of SysML4FMArch in MagicDraw 145

6.4 A Digital SysML4FMArch Design Catalog in MagicDraw 146

6.5 Discussion and Related Work . 148

7 Evaluation 151

7.1 A Functional Model of an Audio Entertainment System 151

7.1.1 Audio Entertainment Systems . 151

7.1.2 Discussion . 157

7.2 Modeling an Automotive Electric Coolant Pump in SysML4FMArch . . . 158

7.2.1 Channel Types . 158

7.2.2 Architecture of the Electric Coolant Pump 161

7.2.3 Solution-Models . 163

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump 168

7.3.1 Dimensioning . 169

7.3.2 Dimensioning Procedures in SysML4FMArch 171

7.3.3 Testing Principle Solutions in SysML4FMArch 175

7.3.4 Modeling Tests in SysML4FMArch 177

7.3.5 Discussion . 178

7.3.6 Related Work . 179

8 Conclusion and Future Work 181

Bibliography 183

A Definitions of Physical Quantities 205

B Terms and Definitions from Algebra 207

C A Complete Partial Order on The Set of Timed Streams 213

C.1 Complete Partial Orders . 213

D An Algebraic Interpretation of Units 217

D.1 Unit Systems . 217

D.2 Physical Quantities . 218

E The SysML4FMArch MagicDraw Profile 221
E.1 Types . 221
E.2 Functions . 223
E.3 Solutions . 231

Glossary 237

Acronyms 241

List of Figures 243

List of Tables 247

Chapter 1

Introduction

1.1 Motivation and Context: Cyber-Physical Systems

Technical systems have become a part of our daily lives since the industrial revolution
in the 19th century, and have continuously evolved through the 20th and 21st
centuries. Inventions or discoveries such as electricity, the Ottomotor, or Zuse’s Z3
have brought our society forward unlike anything else. In the second half of the 20th
century innovations in these systems were coupled to physical parts. One selling
argument for a vehicle, for example, was an engine with as much power as possible.
Nowadays, however, the focus of the customer or the system user who dictates the
innovation driver has changed: Systems are considered innovative once they offer a
broad range of functionalities and features [DGH+19, CKY05]. Considering, again, the
automotive industry as an example, the selling argument has shifted towards functions
such as assisted, or (semi-) automated driving, connectivity, e.g., for entertainment, or
telephone service [DGH+19]. The implementation of these functions requires the
interaction of software, mechanical, and electrical subsystems [GRSS11]. Modern
systems have, therefore, become cyber-physical, meaning that they comprise software,
mechanical and electrical subsystems that need to interact to achieve the desired
functionality [Lee08]. Hence, Cyber-Physical Systems (CPSs) are technical systems
whose functionalities arise from the interaction of computational with physical
processes [BS08, Lee08, Pto14]. Engineering such systems is highly complex due to the
high levels of interactivity among software, mechanical, and electrical subsystems.
Therein, each subsystem is highly complex by itself.

1.1.1 The Problem-Implementation Gap in CPS Engineering

A part of the complexity of engineering CPSs arises because in traditional systems
engineering development is concerned with implementing the physical parts or
assemblies, software modules, or electrical circuits instead of implementing the system’s
functions [DRW+20, GRSS11]. As the demand for systems to implement smart,
pervasive functions increases this prevalent approach to decomposing CPSs under
development, and distributing the development tasks accordingly, creates accidental

1

Chapter 1 Introduction

complexities [FR07] during the engineering process. Therein, it becomes unclear which
system components contribute to the implementation of the functional requirements
within the overall system. This ambiguity gives rise to a conceptual
problem-implementation gap [FR07] between (documentations of) the functional
requirements and the implementation [BGK+09]. This aggravates the development
process in all phases: During system design and implementation, functional
dependencies remain implicit and may not be regarded such that unwanted side effects
may occur during late development stages when changing the system design is
expensive. The V&V of these systems has become a hot research topic since validating
the high-level functional requirements is most often delayed to late development stages
when expensive prototypes are available. System failures or errors detected at this
stage may imply major changes to the system’s design and re-validating the revised
version of the system, again, requires expensive prototypes. Requirements stated in
natural language with little or no standards that prescribe their structure, further
hinder this process, because their meaning may be ambiguous, and the lack of
structure often prevents automated tests, especially at system level. Additionally,
traditional approaches to systems engineering are document-based [DGH+19] which
further prevents to systematize, and support the development activities, e.g., by
automated tests, automated consistency checks of development artifacts, or through a
common system understanding among all stakeholders.

Model-Driven Engineering (MDE) provides an approach to overcome a
problem-implementation gap [FR07] such as the one between the functional
requirements and system components. Figure 1.1 illustrates the prevalent concepts of
MDE. In MDE, models that abstract from the technical details of a system’s
implementation are the primary development artifacts. The abstraction enables
engineers to focus on their field of expertise. The modeling language provides a syntax
that captures the necessary elements of the engineering domain. The formal semantics
of the modeling languages in which these models are created prescribe a meaning of the
models, i.e., the primary development artifacts in mathematical terms [HR04]. Ideally,
this meaning is commonly understood among humans and computers, and, therefore,
establishes a common system understanding among experts of different
backgrounds [FR07]. Interpreters and generators exploit the formality imposed by the
language and provide automatic analyses and syntheses, which allows, e.g., to link the
functional requirements that describe the problem domain to (models of) the
implementations that represent the solution space [FR07].
MLE is a field that is concerned with creating these modeling languages such that they
enable involved stakeholders to create and understand the models intuitively and
unambiguously [CFJ+16]. A part of this process is to find a mathematical theory that
serves as a formal semantics for models in the language. Following [Esc20], the

2

1.1 Motivation and Context: Cyber-Physical Systems

Requirements

satisfied?

Consistent?

Generator / Interpreter

Models

Language

a  b  ce  1  0n  2 ⇒ ∄x, y, z ∈ :
x  b  z	

   √




Semantik Syntax

Model elements & relations

between model elements

mathematical meaning of the

model elements & relations

Use semantics to

interpret, transform or

synthesize models

Figure 1.1: Modeling languages allow making models explicit and manageable. Seman-
tics define the meaning of syntax in mathematical terms which enables the
implementation of generators or interpreters for automatic analyses, and syn-
theses.

semantics put the ideas obtained from observations of the real world into mathematical
words. Modeling languages in MDE enable experts to express aspects of their domain
in these words without needing deep knowledge of the mathematical theory. Model
interpreters implement a mapping from the model to a set of sentences in the theory,
and answer questions about the properties of the modeled system, or synthesize other
models such as test cases based on this interpretation. The formal semantics thereby
equips each model in the language with a precise meaning that humans and computers
understand equally.

1.1.2 Functional Model-Driven Engineering of Cyber-Physical Systems

The idea of functional systems engineering is similar to an idea from mechanical design
methodology which understands a CPS as a function that transforms streams of
energy, matter, and data, which Figure 1.2 illustrates [Kol85, BG21]. We call such a
function a Cyber-Physical Function (CPF). Very similar to software architectures and
models thereof, a system’s CPF is hierarchically decomposed, i.e., an engineer derives
a specification of such a function from the requirements and throughout the course of
the development process subdivides it into smaller and easier to solve sub-problems.
Considering this idea in a model-driven approach to CPS engineering, such models of
the hierarchical structure of the system’s CPF become the primary development
artifacts. This allows putting the innovation driver of CPSs, i.e., functions, into focus,

3

Chapter 1 Introduction

system boundary

input

Cyber-

Physical

System

Energy

Matter

Data

output

cyber-physical function

CPF

Figure 1.2: Notion of a Cyber-Physical System introduced in mechanical design the-
ory [KK98].

and facilitates coping with the complexities that arise from the functional interactions
among the system’s components. The idea of understanding a system in terms of its
functions is common also in software, and electrical engineering [Bro10, Alu15, Pto14].
However, this common understanding of a system has not yet been exploited to define
systems modeling languages that are holistically understood among the experts of
these heterogeneous domains, and that have formal semantics at the same time.

Employing functional models as part of an MDE methodology for systems engineering
enables identifying which domains need to cooperate in order to implement the
required functions and pave the way to automate, e.g., change propagation, or V&V
activities. However, functional modeling techniques currently lack an unambiguous and
domain-independent definition of the term function, as well as appropriate modeling
languages including a mathematical theory that serves as the semantic domain.

Contribution. This dissertation proposes a functional and model-driven approach to
CPS engineering that that puts the innovation driver of modern systems
engineering [DGH+19], i.e., CPFs, into focus.

Focus [Rum96, BS01, Bro10, RR11] is a theory that is applied in functional
model-driven approaches to software and embedded systems engineering that
formalizes the idea illustrated in Figure 1.2. We hypothesize that modeling a CPS as a
function that processes streams of energy, matter and data based on a Focus
semantics will overcome the problem-implementation gap. To this effect, we provide an
object-oriented modeling technique that enables to describe types of energy matter and

4

1.1 Motivation and Context: Cyber-Physical Systems

data. Further, we derive a theory of cyber-physical functions by synthesizing the
approaches from [SRS99] and [Bro12] to regard both discrete and dense streams at the
same time. This formalizes our understanding that by processing streams(in the sense
of [Bro12]) of energy, matter and data, a CPS defines a CPF and that the CPF
encapsulates the physical and logical structures of an implementation in which software
and hardware interact. We show that this understanding can be formalized using the
theory of TSPFs over continuous and discrete time
domains [SRS99, BS01, Bro13, Bro10, Bro12]. This theory provides an unambiguous
meaning to specifications of desired functionalities. In the development process refining
these specifications iteratively makes these specifications a reflection of the current
development stage.

We aim to provide an integrated methodology that provides a formal specification of
the system under development, independent of the domain it is implemented in. By
formalizing informal functional requirements, these specifications bridge the gap
between the functional requirements and specifications of how the system performs its
transformations. To this effect, we propose the functional development paradigm as a
set of principles derived from the application of Focus to the domain of CPSs.
Further, we propose a formal methodology that implements these principles by using
the modeling techniques for CPFs and cyber-physical types. In the proposed
methodology, models of the system’s function formalize the functional requirements
and are then iteratively refined throughout the development.

We then show how the modeling technique enables modeling functional
structures [BG21] of mechanical systems such that this model is understood in both
software and mechanical engineering. Eventually, this will enable the decomposition of
a system into reusable components provided in model libraries. Since the modeling
technique rests on an existing sound theory that has been applied in practical software
engineering of CPSs [AVT+15a], existing analyses for software or embedded systems
can be reused to enable agile development driven by automation.
To showcase the proposed approach in practice, we shed light on the engineering of
modeling languages that regard the mechanical development activities in CPS
engineering. The meta-model first published in [DRW+20] provides a language
engineering perspective on the terms, concepts, and relations of mechanical design
methodology. For modeling languages, such as SysML for Functional Mechanical
Architectures (SysML4FMArch) [DRW+20] which implements this meta-model, it is
possible to implement automatic validation and verification procedures. As the
meta-model, SysML4FMArch was first published in [DRW+20]. The second part of
this dissertation adapts the meta-model to abstract from the technical details of an
implementation of the modeling languages. It provides a basis for defining modeling
languages to integrate the engineering of physical components in the functional MDE
of CPSs. We show how SysML4FMArch implements this version of the meta-model
and provide details on its implementation in the modeling tool MagicDraw.

5

Chapter 1 Introduction

1.2 Research Questions

The contribution of this dissertation outlined above is guided by the following research
questions.

Research Question 1. How can functional specifications regard the transformation of
energy, matter and data at once to serve as an abstract, domain-independent model
of a CPS and how can the design of physical components be supported by such a
specification?

This question subdivides into the following questions. Each chapter of this dissertation
provides answers to one of these questions.

RQ1 What are the characteristics of streams of energy, matter, and data and how can
these characteristics be described?

RQ2 How can the theory of TSPFs [Bro10, Bro12, SRS99] describe the functions of
CPSs?

RQ3 What are the constituents of an MDE methodology that targets the development
of system functions?

RQ4 How can functional MDE integrate mechanical engineering activities?

RQ5 What are the constituents of a useful modeling language for specifying CPSs from
a functional point of view? And what does such a modeling language look like?

RQ6 How can these functional specifications facilitate dimensioning and testing to
support agile development of CPSs?

1.3 Preliminaries

This section provides preliminaries on the following:

• Section 1.3.1 introduces and defines the notation and conventions used
throughout this dissertation to establish a mathematically grounded
understanding of the functions of a CPSs.

• Section 1.3.2 summarizes the idea of MDE and defines what a formal
methodology is in this context. The section details the principles that a formal
MDE methodology must implement in order to be practically applicable. The
preliminaries provided in this section are used in Chapter 4.

6

1.3 Preliminaries

• Section 1.3.3 provides insight into the basic setup of an automotive cooling
system which serves as a recurring example throughout this dissertation.

• Section 1.3.4 summarizes the elements of MontiArc’s graphical syntax reused and
enhanced to include logical statements in this dissertation to represent the
functional structure of CPSs.

• Section 1.3.5 summarizes the elements of SysML as specified in the
standard [Man19] which are used to define SysML4FMArch a modeling language
in the form of a SysML profile for the functional and model-driven engineering of
CPS presented in Chapter 6.

1.3.1 Notation and Conventions

Throughout this dissertation, we use the following notation: R+ denotes the set of
positive real numbers including 0. The symbol N denotes the natural numbers, N0

denotes the natural numbers including 0. Let x ∈ R, then |x| denotes the absolute
value of x. Let n ∈ N. For a vector v ∈ Cn, we denote its transpose by vT ∈ C1×n. The
symbol ℘(M) denotes the power set of a set M , and ℘fin(M) denotes the set of all
finite subsets of M .

Logics As in [Bro10], we utilize logical formulas to express interface assertions, i.e.,
logical statements about the relation between the inputs and outputs of a function. To
this effect, we utilize the standard notation, with the connectives ∧ (“and”), ∨ (“or”), ¬
(“not”), ⇒ (“implies”), ⇔ (“if and only iff”). As quantifiers we use ∀ (“for all”), ∃
(“exists”). Propositional logic is subject in many basic literature on mathematical logic.
A definition for a formal language to state formulae in propositional logic can be found
e.g., in [BM97]. Further, v1, v2, . . . with indexes i ∈ N denotes an infinite collection of
variables. Also, we use parentheses) and (, and the symbol = which denotes the “equal
sign”.

Sets, Intervals, Sequences Sets play an important role when specifying the
functional behavior of CPSs, and when defining types of energy, matter, and data. Let
X,Y be arbitrary sets. Then, X × Y denotes the Cartesian product of X and Y , i.e.,
the set of all pairs (x, y) with x ∈ X and y ∈ Y . For z ∈ X × Y we denote by zX the
X-component of z and by zY the Y -component of z. Further, #X denotes the
cardinality of the set X. to indicate that Y is a superset of X, we write X ⊆ Y . A set
X with a partial order < is called discrete iff for all x ∈ X the set {y ∈ X | y < x} is
finite [Bro12]. The set X is called dense iff for all x, y ∈ X such that x < y there exists
z ∈ X such that x < z < y.
We consider the set of real numbers R to be equipped with the generic ordering “<”
(see, e.g., [Foe16]).

7

Chapter 1 Introduction

For Intervals, we use the following set of notations: Let a, b ∈ R∪ {−∞,∞} = R∞ with
a ≤ b

• [a, b] denotes the closed interval from a to b, i.e., the set {r ∈ R∞ | a ≤ r ≤ b}

•]a, b[denotes the open interval from a to b, i.e., the set {r ∈ R∞ | a < r < b}

• in analogy]a, b] and [a, b[denote the half-open intervals from a to b.

• the numbers a and b are called the boundaries of the respective intervals

• we say that an interval is finite, iff −∞ < a, b < ∞.

For sets, we use the following set of notations: Let M be a set

• M∞ denotes the set of all infinite sequences of elements in M

• M∗ denotes the set of all finite sequences of elements in M

• Mω = M∞ ∪M∗ denotes the set of all finite and infinite sequences of elements in
M

Functions We consider functions in the mathematical sense. Throughout this
dissertation we will see that a CPF that processes energy, matter, and data can be
considered such a function. That is, a function is a mapping between two sets that
assigns to each element in the one set, called the domain, exactly one element in the
other set, called the codomain or the image.

Definition 1.1 (Function [Rum96]). A function f on the sets X and Y is a triple
(X,Y, f) where f ∈ X × Y is such that for each x ∈ X there exists at most one image
f(x) ∈ Y .

Here, the set f defines a relation between the domain and the codomain. Typically, we
also write f : X → Y to denote a function instead of the tuple-notation. Functions can
be composed such that for functions f : Y → Z, and g : X → Y the relation h = f ◦ g,
where h(x) = f(g(x)) for all x ∈ X defines another function h : X → Z.

For functions, we use the following set of notations: Let M,N be sets and S ⊆ M and
f : M → N be a function

• f |S denotes the restriction of f to elements in S

• f(S) denotes the image of f under S, i.e., the set {n ∈ N | ∃s ∈ S : f(s) = n}

• [M → N] denotes the set of all functions from M to N and we write
F : [M → N] or F : P(M → N) to denote a set F of functions from M to N .

8

1.3 Preliminaries

• dom(f) denotes the domain of f , i.e., dom(F)
def
= M \ {m ∈ M | ∄f(m) ∈ N}, and

img(f) = N \ {n ∈ N | ∄m ∈ M : f(m) = n} denotes the image of f .

Definition 1.2 (Cauchy Continuous). Let (X, || ||X), (Y, || ||Y) be metric spaces
(cf. Definition B.5) and f : X → Y be a function. Then f is called continuous on X iff
for all ε ∈ R+ there exists δ ∈ R+ such that for all x, x′ ∈ X it holds that

||x− x′||X < δ ⇒ ||f(x)− f(x′)||Y < ε.

Smoothness is a characteristics of functions that we use to distinguish between hybrid
streams that represent energy, fluid material, or signals. We define these properties as
follows:

Definition 1.3 (Smooth Function [SRS99]). Let f : I → M be a function for I ⊆ R+.
Then, f is called smooth iff f is infinitely often differentiable, or, in case M ̸⊆ Rn for
n ∈ N, iff f is constant on I. The set D(f) ⊆ R+ denotes the points in time, where f
is not smooth, i.e., discontinuous

1.3.2 Constituents of a Formal Model-Driven Engineering Methodology

MDE is an engineering paradigm in which development decisions are made based on
the information stored in models. Therein, a model is a purposeful representation of an
original system that is reduced or abstracted from its size, detail, and/or
functionality [Sta73]. The purpose determines what the model is used for in the
development process. In MDE models reflect the state of the system under
development at any point in time during the development process. They serve multiple
purposes, in particular, not only documentation purposes, but enable to automate
specific tasks in the development process. To this effect, the modeling language defines
modeling elements that represent aspects of the system in the real world that are the
focus of the development.

Definition 1.4 (Modeling Language [Rum96, HR04, Kau21]). A modeling language is a
triple (M,S, J K), where

• M is a set of well-formed models

• S is a semantic domain, and

• J K : M → ℘(S) is the semantic mapping that assigns each well-formed model a
meaning, i.e., a set of elements from the semantic domain.

Systems engineering is concerned with the development of highly complex systems that
cannot be described by models in a single language [HKR+07]. These systems are
described by multiple models in heterogeneous languages [Rum13]. The UML is a

9

Chapter 1 Introduction

typical example for a systems modeling language that includes multiple languages to
model software systems. Language composition tackles this challenge [Völ11] and
enables to define a systems modeling language as the composition of multiple modeling
languages that address specific aspects of the system under development.

Model Composition allows describing a system by decomposing it into smaller, and
easier-to-develop subsystems. In the functional development paradigm, composition
refers to decomposing the system along its CPFs rather than its geometric
components. For this composition to be traceable and intuitive, model composition
must be thoroughly defined, in particular, such that it is compatible (associative) with
the semantic mapping. Because modern systems are compositional comprising multiple
components which define a CPF, composition needs to be performed on both the
syntactic and the semantic level [Rum13, HKR+07]. The composition operator on the
syntactic domain and the semantic domain must be compatible [HKR+07]: Let
(M,S, Sem) be a modeling language, and ⊕ : M ×M → M be a syntactic composition
operator, and ⊗ : S × S → S a semantic composition operator. For two models
m1,m2 ∈ M it must hold that

Jm1⊕m2K = Jm1K ⊗ Jm2K. (1.1)

In the following, we assume that (M,SM, J K) is a modeling language with a syntactic
composition operator ⊕ and a semantic composition operator ⊗. The semantics of a
set of models is then the semantics of the composition of the models in the set, i.e., let
M ⊆ M be a set of models. Then JMK = J⊕MK = ⊗JMK.

Model Consistency assures that the set of models that describe the status of the
system under development do not contain contradictions. Because CPSs are so
complex which leads to a very high number of models present in their development,
automated checks to identify contradictions as soon as possible are crucial for efficient
development.

Definition 1.5 (Consistency of a Set of Models [Rum96]). A set of models M ⊆ M is
consistent, iff their semantics is not empty, i.e.,

M is consistent ⇔ JMK ̸= ∅.

Besides consistency, the set of documents that describes a system under development
must not be redundant. In practice, the danger of two or more models describing the
same aspect or extract of a system lies in the possibility that these models evolve
separately from each other which will lead to the inconsistency of the set of all
documents. Further, it is highly inefficient to work on two models describing the same
thing. Therefore, an agile approach to CPS engineering must allow the detection of
redundant models automatically.

10

1.3 Preliminaries

Definition 1.6 (Implication for Models [Rum96]). A set of models M ⊆ M implies
another model m ∈ M \ {m} if adding m to M does not yield a change in the
semantics of M , i.e.,

M |= m ⇔ JMK = JM ⊕mK = JMK ⊗ JmK.

The implication relation reveals a formal condition that determines whether or not a
model is redundant [Rum96].

Refinement formalizes development steps that transform models. On the way from
high-level system specifications that describe what a system shall do, to a technical
description of how the system performs a transformation, models are iteratively
refined. That is, through each development step the models evolve to regard more and
more details that become available during the engineering process [DKMR19]. A model
m refines a model m′, iff every element in the semantics of m is also an element in the
semantics of m′ [Rum96, Bro10].

Definition 1.7 (Refinement). Let m,m′ ∈ M be two models. Then, m refines n iff
JmK ⊆ Jm′K.

In systems engineering, decomposition is a means to overcome complexity and stems
from the principle of divide-and conquer. It refers to a system, or more accurate for
this work, a function is specified by the composition of many sub-functions. To support
engineering in distributed teams, refinement must be compositional, i.e., composition
must be defined such that the following property is met: Let m,m′, n ∈ M be models
and assume that m |= m′. Then, JmK ⊗ JnK ⊆ Jm′K ⊗ JnK and Jm⊕ nK ⊆ Jm′ ⊕ nK, i.e.,
replacing the model m′ by a refined version in the composition with n yields a
refinement of the overall composition.
In contrast to a refinement, a refactoring means a transformation of a model such that
its syntax remains unchanged. Formally, a refactoring is an implication in both
directions:

Definition 1.8 (Refactoring). Let m,m′ ∈ M, and G be two models. Then, the model m
refactors the model n iff JmK = Jm′K.

Formal Methodologies systematize MDE by enabling the application of formal
methods not only for interpreting models but also for defining relations among different
models possibly written in multiple modeling languages. We adapt the notion of a
formal methodology has been defined in [Rum96]. The methodology for the functional
MDE of CPSs is based on the ideas presented in [Rum96] and aims to implement the
principles published there. The formality of the methodology allows to implement it
with different modeling languages, tools and processes.

11

Chapter 1 Introduction

Engine

Fuel

Pmech

Exhaust Gas

Ptherm

Ptherm

Combustion

Cooling Medium

Electrical

Coolant Pump

Cooler

Cooling

System

Figure 1.3: Diagrammatic illustration of an automotive combustion engine with a cooling
system [DRW+20].

Definition 1.9 (Formal Methodology [Rum96]). A formal methodology consists of

• a (systems) modeling language that defines kinds of models together with a
semantic domain and a semantic mapping for each kind,

• a set of development steps that transform the models that are also formally
grounded, and

• a set of guidelines of when and with which aim to apply each transformation.

1.3.3 The Automotive Cooling System

As in [DRW+20], the automotive electrical coolant pump which is a subsystem of the
automotive cooling system will serve as a recurring example throughout this
dissertation. The section summarizes the setup and working principle of such a system
to enhance the understanding of the examples.

The drive system of a vehicle converts input energy into mechanical energy and
transfers the mechanical energy onto the road, where friction causes the vehicle to
move. Speaking in terms of components, the engine performs the former, while the

12

1.3 Preliminaries

drive train and the wheels perform the latter task. For example, combustion drives
convert the chemical energy held by fuel into mechanical energy. In contrast, electric
drives, convert electrical to mechanical energy. The engine of a vehicle is responsible for
converting an incoming energy to mechanical energy. Combustion drives, for instance,
convert the chemical energy held by fuel into mechanical energy. In contrast, electric
drives, convert electrical to mechanical energy. Figure 1.3 illustrates the principle setup
of a combustion engine diagrammatically. By combustion, a portion of the chemical
energy held by the incoming fuel is transformed into thermal energy which causes the
pressure in the combustion chamber to increase. The released exhaust gas holds the
rest of the chemical energy while the increasing pressure acts on the surface of the
engine’s piston as mechanical energy (Pmech) causing the piston to move. However,
some of the thermal energy (Ptherm) is released as heat and causes the engine’s
temperature to increase. Once above a maximum threshold, the engine overheats and
stops functioning. To prevent the engine from overheating, it has to be cooled, i.e., the
excess heat has to be dissipated. In automotive systems, water cooling systems, as
sketched at the bottom of Figure 1.3, often take on this task. Driven by an electric
motor, a cooling medium circulates between the combustion engine and a cooler. By
the law of convection [Ste94], the circulating cooling medium absorbs the combustion
heat at the engine. The cooler releases the heat from the cooling medium to the
surrounding air to cool it down. For convection to work, the cooling medium needs to
circulate, i.e., keep moving. In the technical implementation shown in Figure 1.3, the
circulation is achieved by a cooling medium pump, which uses electrical energy to
circulate the cooling medium. Because the coolant pump and its control to adjust the
current power it generates, have a great impact on the engine’s efficiency [JDL+17] and
because its failure leads to expensive adjustments [JDL+17] its engineering is a critical
task in automotive development. The hydrodynamic processes together with a
software-based control, however, make the cooling system complex [Gü10]. Validating a
design of the pump requires considering other system components [Gü10], e.g., the
engine, and changes in the environment [KHSE15], e.g., the temperature.

1.3.4 The Architecture Description Language MontiArc

This preliminary section presents MontiArc’s graphical syntax which is for presentation
purposes. MontiArc is a powerful ADL that comes with a lot of infrastructure for code
generation, e.g., for simulations, and analyses in the context of V&V. The theory of
TSPFs over discrete time domains [BS01, RR11] provides the foundation on which
MontiArc’s semantics is built. We reuse MontiArc’s graphical syntax to model CPFs as
TSPFs over continuous time domains as MontiArc already includes the necessary
language constructs for types, channels, and components. Here, we include an
expression language to specify the behavior of the components as interface assertions
and a version of hybrid automata that enables to specify functional behavior in a

13

Chapter 1 Introduction

GenerateVolumeFlow

TransformElEnToMechEn(0.8)

elToMech

cm_out

p_el

p_mech_out

SetRotationalVelocity

p_mech

fluid_out

pEl

fluid_in
cm_in

pEl_out

ApplyFluidWithMechEn

Double

control

pEl_in

connector of

type Fluid
incoming Port

of type Fluid

outgoing Port of

type Fluid

flowControl

ElectricalEnergy

ElectricalEnergy

RotationalEnergy

Fluid
Fluid

composed component

Paramterized subcomponent elToMech

of type TransformElenToMechEn

UML/P CD type

Fluid

MA

Figure 1.4: A MontiArc [Hab16] example that models the architecture of a hydraulic
pump.

state-based manner. The semantics of these models is established in Chapter 3. This
dissertation provides an extension of the theory of TSPFs over discrete time
domains [BS01, RR11], the foundation on which MontiArc’s semantics is built, to
enable extending architecture-centric MDE of software systems to CPSs. The
infrastructure provided by MontiCore [HKR21] allows to extend MontiArc to include
respective language concepts easily.

MontiArc [Hab16, HRR10, HRR12b] enables an architecture centered approach to
software engineering and implements the (discrete) Focus semantics [BS01] for
software systems. The language follows the C&C paradigm [Kus21] to. Components
encapsulate a functionality. The interface of a component comprises typed ports and
message exchange between components is represented by connectors between these
ports. In MontiArc, components are hierarchically arranged to represent the
decomposition of a (software) system into functions that are easier to implement. The
top-level functionality is the composition of these sub-components. MontiArc has been
extended to enable modeling the behavior of components, e.g., in the form of
automata [Wor16]. MontiArc is implemented with the MontiCore language
workbench [HKR21], which offers mechanisms for language composition that enable to
integrate different behavioral languages. Figure 1.4 shows an example of a MontiArc
architecture that includes all elements of the graphical syntax which we will reuse to

14

1.3 Preliminaries

model the composition of CPFs. The component GenerateVolumeFlow is
decomposed into three subcomponents. In MontiArc, it is possible to omit the name of
a component instance, which is the case for the other two subcomponents of type
SetRotationalVelocity and ApplyFluidWithMechEn. The interface of the
topmost component GenerateVolumeFlow contains four ports: The three input
ports flowControl of type Double, pEl of type ElectricalEnergy, and cm_in
of type Fluid, as well as the output port cm_out also of type Fluid. The types
ElectricalEnergy, and Fluid are custom types that are defined in a UML/P
CD [Rum16, Sch12]. The messages that the component receives via the
flowControl, and pEl ports are passed to the control, and pEl_in ports of the
SetRotationalVelocity component, respectively.

1.3.5 SysML

The SysML profile introduced in [DRW+20], which is detailed in Section 6.2 is tailored
for mechanical engineering and provides a language for modeling the functional
structure of a mechanical system, which is understood as a reusable foundation of the
mechanical product development cycle in [BG21]. This section provides a summary of
the relevant SysML elements that are extended or reused in SysML4FMArch based
on [DRW+20].

SysML is a general-purpose modeling language family for systems engineering [Man19]
that includes modeling languages for behavior, structure, and requirements. The
SysML reuses and extends a subset of the UML 2.5 [Man15] for describing aspects of
system software and hardware in an integrated way [JKPB12]. The structure modeling
languages include, e.g., BDDs, and IBDs that describe the structure, interfaces, and
properties of blocks. While BDDs model the external structure and dependencies
among blocks, IBDs model the internal structure of a block. Figure 1.5 shows
illustrative examples for a BDD and an IBD which contain most of the SysML
modeling elements reused or specialized in the profile presented in Section 6.2: Blocks
extend UML classes and model system decomposition, system interaction, and other
system properties such as values [Man19]. The properties of blocks are organized in
compartments. The values-compartment lists a block’s ValueProperties, which are
ValueTypes having composite aggregation, e.g., nW of the block Hydrodynamics.
PartProperties, listed in the parts-compartment, are blocks that have composite
aggregation [Man19], e.g., wheel of WheelCyl. ConstraintBlocks are specific blocks
for integrating analyses, e.g., of reliability, but also to specify physical constraints as
mathematical formulas [Man19]. ConstraintProperties of a block are ConstraintBlocks
and have composite aggregation, e.g., centriForce of Hydrodynamics
in Figure 1.5. ConstraintParameters are the ValueProperties of ConstraintBlocks and
model the variables of such expressions. ProxyPorts are properties of a block and make
features or internal parts of the block available for other components. They do not

15

Chapter 1 Introduction

IBD [Architecture] GenerateVolumeFlow

«ElementaryFunction»

elToMech :

TransformElEnToMechEn

cm_out: fluid_out

p_el: ElectricalEn_in

p_mech_out :

RotMechEn_out

«Function»

setVRot : SetRotationalVelocity

p_mech :

RotMechEn_in

fluid_out: Fluid_out

pEl : ElectricalEn_in

fluid_in: Fluid_in
cm_in : Fluid_in

pEl_out :

ElectricalEn_out

«ElementaryFunction»

moveFluid: ApplyFluidWithMechEn

flowControl:

ControlSignal_in
control: ControlSignal_in

pEl_in : ElectricalEn_in

connector

incoming

ProxyPort

outgoing ProxyPort

BDD [Package] AFWME

«ElementaryEffect»

EE_AFWME

«ElementaryGeometry»

EG_AFWME

1

elGeometry

elEffect

«PrincipleGeometry»

WheelCyl

parts

wheel : PaddleWheel

cyl : Cylinder

geometry

{redefines elGeometry}

effect {redefines elEffect}

1

1

1

«ElementaryFunction»

ApplyFluidWithMechEn

properties

«proxy» fluid_in : Fluid_in

«proxy» p_mech : RotMechEn_in

«proxy» fluid_out: Fluid_out

constraints

interfaceAssertion : IA_AFWME

«PrincipleSolution»

HydrodynamicPump

constraints

^interfaceAssertion: IA_AFWME

pressure : PressureDifference

«PrincipleEffect»

Hydrodynamics

values

nW : Integer

oWDia : Length

iWDia : Length

wWidth : Length

w : RotVelocity

p : Pressure

q : VolumeFlowRate

oCylWidth : Length

oCylDia : Length

constraints

centriForce : CentrifugalForce

constraints-

compartment

composite

aggregation

generalization

blockstereotype ValueTypevalues-compartment

parts-compartment

Figure 1.5: Top: SysML BDD of the functional architecture of the running example.
Bottom: IBD of GenerateVolumeFlow. For details on stereotypes and
contents see Chapter 6. [DRW+20]

16

1.4 Publications

model separate parts of the system and neither exhibit behavior nor comprise internal
parts [Man19]. InterfaceBlocks provide the types for ProxyPorts and hold the
stereotype «proxy», e.g., fluid_in of the block ApplyFluidWithMechEn typed by
the InterfaceBlock Fluid_in. InterfaceBlocks specify the elements that flow between
a block and its environment through FlowProperties with direction in, out or,
inout [Man19]. Section 6.2 gives more insight into the applications of InterfaceBlocks.
An internal structure, i.e., the interconnection of a composition of blocks, is modeled
by an IBD that is associated with the composed block. The bottom of Figure 1.5
shows an IBD that models the functional structure of an automotive coolant pump,
which will be further explained in the upcoming chapters. The IBD shows the
interaction between the PartProperties of the block GenerateVolumeFlow through
Connectors between the ProxyPorts of the PartProperties. In IBDs, ProxyPorts, typed
by InterfaceBlocks that have FlowProperties of only one direction which is not inout,
indicate this unique direction through an arrow. For instance, p_el typed by the
InterfaceBlock ElEnergy_in in the IBD in Figure 1.5, has only FlowProperties of
direction in. Parametric diagrams are restricted IBDs that show only the usage of
ConstraintBlocks. BindingConnectors are connectors with stereotype «equal» that
specify the equality of the numeric values of the properties at both ends [Man19]. As
an extension of UML [Man17], SysML provides infrastructure to create profiles by
defining stereotypes as extensions of meta-classes or as sub-stereotypes [Man19], which
we exploit to define SysML4FMArch in Section 6.2.

1.4 Publications

The contributions of this thesis are the result of extensive research over the course of
multiple years. The results on the application of SysML as a modeling language to
bring the formal modeling technique into practice come from a long-standing
cooperation with experts from mechanical engineering. The SysML profile
SysML4FMArch which is presented in detail in Chapter 6 together with the
meta-model that captures concepts from mechanical design theory are a result of this
cooperation. Also, the model of the automotive cooling system and the concepts for
modeling testing and dimensioning procedures in SysML have emerged from our
collaboration. Therefore, this dissertation is partially based on the following
publications of which I, Imke Nachmann, am the author or co-author:

• [DRW+20] I. Drave, B. Rumpe, A. Wortmann, J. Berroth, G. Hoepfner, G.
Jacobs, K. Spuetz, T. Zerwas, C. Guist, J. Kohl: Modeling Mechanical
Functional Architectures in SysML. In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
pp. 79-89, ACM, Oct. 2020.

17

Chapter 1 Introduction

• [ZJS+21] T. Zerwas, G. Jacobs, K. Spuetz, G. Hoepfner, I. Drave, J. Berroth, C.
Guist, C. Konrad, B. Rumpe, J. Kohl: Mechanical Concept Development Using
Principle Solution Models. In: IOP Conference Series: Materials Science and
Engineering, G. Jacobs, S. Stein (Eds.), Volume 1097:012001, IOP Publishing,
Feb. 2021.

• [HJZ+21] G. Hoepfner, G. Jacobs, T. Zerwas, I. Drave, J. Berroth, C. Guist, B.
Rumpe, J. Kohl: Model-Based Design Workflows for Cyber-Physical Systems
Applied to an Electric-Mechanical Coolant Pump. In: IOP Conference Series:
Materials Science and Engineering, G. Jacobs, S. Stein (Eds.), Volume
1097:012004, IOP Publishing, Feb. 2021.

• [HNZ+23] G. Hoepfner, I. Nachmann, T. Zerwas, J. K. Berroth, J. Kohl, C.
Guist, B. Rumpe, G. Jacobs: Towards a Holistic and Functional Model-Based
Design Method for Mechatronic Cyber-Physical Systems. In: Journal of
Computing and Information Science in Engineering (JCISE), Volume 23(5), Mar.
2023.

1.5 Thesis Organization

This thesis provides answers to the research questions posed in Section 1.2. Analyzing
and providing (formal) definitions for energy, matter and data is inevitable as a basis
for unifying the engineering domains. The research question RQ1 “What are the
characteristics of streams of energy, matter and datahow can these characteristics be
described?” which is the focus of Chapter 2 addresses this. The chapter elaborates on
the characteristics of energy, matter and data in the context of CPS engineering. To
integrate the provided notions in a respective modeling technique, the chapter defines a
CD-like notation for modeling types of energy, matter and data which enables to
distinguish entities by their physical or logical characteristics.

Chapter 3 addresses the research question RQ2 “How can the theory of
TSPFs [Bro10, Bro12, SRS99] describe the functions of CPSs?”. This chapter
synthesizes a theory of CPFs from two versions of Focus: The first [Bro12] allows
discrete and hybrid streams at the same time but specifies functional behavior in a
set-based manner [RR11] which is not practical for functional CPS engineering. The
second [SRS99] allows only hybrid streams but specifies functional behavior as sets of
TSPFs which is the appropriate technique in our setting.

Chapter 4 defines the functional development paradigms by deriving five principles
from some of the contributions that use Focus to define a formal semantics for
modeling languages in software or embedded systems engineering. This set of
principles can be understood as a framework for defining a functional approach to the
development of a system in any systems engineering domain. The chapter then defines

18

1.5 Thesis Organization

a formal methodology based on the contributions on cyber-physical types and on CPFs
provided in Chapter 2 and Chapter 3.
To address the research question RQ4 “How can functional MDE integrate mechanical
engineering activities”, Chapter 5 elaborates on mechanical design methodology which
understands a (mechanical) system as illustrated by Figure 1.2. The chapter puts the
concepts into the words of the theory of CPFs provided in Chapter 3 and showcases
the applicability of the modeling technique in the mechanical domain by formalizing
most of the functions from a mechanical design catalog [KK98].
Chapter 6 addresses the research question RQ5 “What are the constituents of a useful
modeling language for specifying CPSs from a functional point of view? And what
does such a modeling language look like?” by providing an updated version of the
meta-model and the SysML profile from [DRW+20].
Chapter 7 evaluates the approach by providing two extensive modeling examples. The
automotive electric coolant pump example was initiated in [DRW+20] and is adapted
to the new version of the profile, here. Further, this chapter addresses the research
question RQ6 “How can these functional specifications facilitate dimensioning and
testing to support agile development of CPSs”.
Finally, Chapter 8 concludes the thesis and gives an outlook to future work.

19

Chapter 2

Cyber-Physical Types

While software systems interact by exchanging (data) messages, CPSs define functions
in the sense of Definition 1.1 that exchange energy, matter, and data via their
interfaces. An entity represents an instantaneous interaction among components that
involves the exchange of energy, matter, or data. Functional specifications define the
behavior of the functions defined by a CPS as transformations of streams of energy,
matter and data. This dissertation proposes, among others, to specify these
transformations in mathematical terms through interface assertions and hybrid
automata. These mechanisms require to talk about the characteristics of different
types of energy, matter, and data. Similar to data messages, entities of energy and
matter have a type that defines the common characteristics of a set of entities. In the
physical or mechanical domains, these characteristics of energy and material types are
modeled by physical quantities which are described by units. In the software domain,
classes define the characteristics of data messages of a specific type by attributes and
methods. Here, we propose to transfer these ideas to the physical domain and to
describe kinds of entities through attributes and methods.

This chapter, therefore, addresses the research question RQ1 “What are the
characteristics of streams of energy, matter, and data how can these characteristics be
described?”.

2.1 Preliminaries on Types and Classes

A formal modeling technique for types is introduced in [Rum96] where a type is
modeled by a class with attributes and methods. In this dissertation, we utilize classes
to represent types of entities that are exchanged among the functions of a CPS. To this
effect, we summarize the notions from [Rum96].

Let CU be a universe of class names, and U be a universe of entities. The mapping
class : U → CU assigns each entity a class. The relation ≼∈ CU × CU defines a partial
order on CU which represents the class hierarchy. We say that an entity m ∈ U is of
type c ∈ CU iff class(m) ≼ c [Rum96]. Let T be a set of types. The mapping
ent : T → ℘(U) assigns each type a set of entities. A cyber-physical type becomes a set

21

Chapter 2 Cyber-Physical Types

of entities assuming that CU ⊆ T and for all c ∈ CU it holds that
ent(c) = {m ∈ U | class(m) ≼ c}.
Using classes to specify types allows us to define the characteristics of entities in the
type via attributes and methods which are modeled using typed variables. Now, let V
be a set of names for variables, and let methods be a set of names for methods. To this
effect, the mapping attributes : CU → ℘(V) assigns each class a set of attributes, and
the mapping methods : CU → ℘(Meth) assigns each class a set of methods. Let c ∈ CU

be a class, a ∈ attributes(c) be an attribute, and b ∈ methods(c) be a method. Then,
for all entities m ∈ U with class(m) ≼ c we write m.a or m.b to denote the value of the
attribute a or a call of the method b on the entity m. Every method obtains a set of
arguments via the mapping args : Meth → ℘fin(V) [Rum96]. The former includes the
integers, reals, characters, Booleans, etc., while the latter is defined based on the
elementary types according to the records and variants paradigm [BS01].

2.1.1 Cyber-Physical Class Diagrams

A common notation for classes are CDs, which we will use to model cyber-physical
types. Here, we use a CD-like notation to specify classes which we call Cyber-Physical
Class Diagrams (CPCDs).

«energy»
RotationalEnergy

Torque3 torque
AngularVelocity3 angularVelocity

CPCD

«data»
Audio

Voltage voltage
N id

«material»
Coolant

Temperature temperature
MotionEnergy e

«event»
ButtonPress

ON
OFF

Table 2.1: Examples for the specification of cyber-physical types. The illustration shows
all modeling elements used for specifying cyber-physical types in this disser-
tation.

Table 2.1 shows examples for specifications of cyber-physical types as classes. The
illustration includes all notational elements. In the cyber-physical context, we need to
indicate the kind of type, i.e., energy matter, and data. The type of the kind will
impose restrictions on which streams accurately represent a flow of the entities of that

22

2.2 Modeling Cyber-Physical-Types

type which is detailed in Section 3.2. The classes are therefore stereotyped.
As Section 2.2.4 elaborates, events are a special form of data, which we model as
enums for which we utilize a respective stereotype. Here, the attributes of the
energy-type MotionEnergy are given by attributes(MotionEnergy) = {velocity, force},
and their types are determined by type(velocity) = R3(m s−1)

def
= Velocity3, and

type(force) = R3(N)
def
= Force3. Here, the types are physical quantities which we model

as Dn(U) where D is a number domain, n ∈ {1, 2, 3} is the dimensionality, and U is an
SI-unit. This notation is taken from [Kus21] and explained in detail in Section 2.2.1.
The tag in the upper right corner identifies a type specification as a CPCD.

An extensive CD language together with formal semantics is defined, e.g.,
in [NRSS22, RRS23]. The notational elements presented in Table 2.1 suffice for
modeling cyber-physical types in the context of this thesis. Since modeling types is not
the focus of this work, we will utilize the very simplified version of CDs. Since all
elements are present in the language defined in [NRSS22], it is possible to apply the
formal semantics detailed there to CPCDs. Also, we have not yet needed to specify
methods for types, which is possible, by including the common CD-like notation for
methods.

2.2 Modeling Cyber-Physical-Types

The previous section has established a general notion of a type together with a
modeling technique. This section elaborates on the characteristics of cyber-physical
types. Among others, we provide details on what physical quantities are and how they
are used to model energy and matter types as classes with attributes (and possibly also
methods) in terms of their characterizing quantities. Data types are commonly
understood in software engineering and we integrate the prevalent notion in the
cyber-physical setting.

2.2.1 Physical Quantities, Units, and Position

The characteristics of energy and material types are typically described by physical
quantities. Physical quantities are the “words” used to describe physical phenomena
and express a quantitative relation, or a comparison between physical
systems [FR76, FR83]. Examples of physical quantities are length, energy, or
momentum. A unit describes a measurement procedure that assigns a numerical value
to a physical quantity, which allows describing a physical quantity as the product of a
number and a unit [Tay08]. Unit systems define the set of units and thereby a set of
available measurement procedures, which in turn defines a set of physical quantities,
i.e., those that are quantifiable by the available set of measurements. By defining units
for physical quantities, the differentiation between ”base quantities” such as, e.g.,

23

Chapter 2 Cyber-Physical Types

length, and “derived quantities” such as, e.g., force, becomes meaningful [FR83]. As
each unit stands for an available measurement procedure, it makes sense to define units
for those quantities that are well presentable through experiments, easy to access, and
reproducible [FR83]. The derived quantities that do not exhibit these properties can
then be calculated from the base quantities, and their units are defined accordingly.
The unit system assigns base and derived units to these quantities,
respectively [Tay08]. Therein, a derived unit is obtained from the products of powers of
the base units [Tay08]. A product of two physical quantities is, therefore, defined by
the product of the numeric values and the product of their units. In our context, we
use physical quantities to model the characteristics that define a type of energy, or
matter. Mathematically, physical quantities are captured as variables. Therein, scalar
physical quantities only have a magnitude, while vectorial quantities are also associated
with a direction [Arf85].

Modeling Physical Quantities Physical quantities are described by a number and a
unit [Tay08]. Literature that uses or deals with physical quantities distinguishes
between vectorial and scalar quantities [Arf85], where the former distinguish by the
number being a vector in the n-dimensional real- or complex-valued vector space,
where n ∈ N. For scalar physical quantities, the number is, as the name suggests, a
scalar, i.e., a real or complex number. We define the SI-unit system following the
standard [Tay08] and the formalization proposed in Appendix D.

Definition 2.1 (SI-Unit System). The system of SI-units denoted SI, is the unit system
generated by the following set of base units:

{1SI , s,m, kg,A,K,mol, cd, s−1,m−1, kg−1,A−1,K−1,mol−1, cd−1}.

Every unit in the SI-unit system has a representation as a product of powers of the
base units (i.e., the SI-unit system is generated by the base units). The units in the
SI-unit system that are not base units are called derived units. A DSL that implements
the concept of a physical quantity consisting of a number and a unit is provided
in [Kus21] which also provides insights into a language engineering point of view for
SI-units. The DSL also implements the multiplication of physical quantities and
addition of physical quantities with compatible units. The concepts presented
in Appendix D provide a formal meaning to this notation. We reuse the language
introduced in [Kus21] for physical quantities. It integrates common primitive types and
SI-units. The language offers the following number domains:

• the natural numbers N,

• the natural numbers including 0, i.e., N0,

• the integers Z,

24

2.2 Modeling Cyber-Physical-Types

• the rational numbers Q,

• the real numbers R,

• the complex numbers C = {a+ ib | a, b ∈ R}, and

• the Booleans B.

We denote this set of types by D = {N,N0,Z,Q,R,C,B}. Following the ideas
introduced with the SI-DSL from [Kus21], physical quantities are considered primitive
types and consist of a number and a unit.

These types are written in the form Dn(u), where u ⊆ SI is an SI-unit and n ∈ Nk for
k ∈ {1, 2, 3} indicates the quantity’s dimensionality. We denote the set of all such
physical quantities by Dn[SI], where D is a number domain. The type system
from [Kus21] offers mechanisms to define vectors, matrices, and cubes which allows to
represent vectorial quantities accurately. To improve the readability of type
specifications, we utilize names for physical quantities, i.e., we define Current

def
= R(A).

We utilize subscripts to let the modelers choose the dimensionality of vectorial
quantities, i.e., Temperature

def
= R(K) for n ∈ {1, 2, 3}. The rest of this dissertation uses

the physical quantities defined in Appendix A.

Note, that in the implementation provided in [Kus21], the provided numeric domains
do not include R and C which cannot be implemented by a computer. Instead,
modelers can choose the rationals Q or the Gaussian rationals Q[j] = {a+ jb | a, b ∈ Q}
as approximations, respectively. The set Dn[SI] denotes the set of physical quantities.
As in [Kus21], we consider physical quantities to extend the set of primitive types.

Definition 2.2 (Primitive Type). A primitive type is a cyber-physical type P ∈ T from
which all other types are constructed. Here, the set of primitive types is defined as

P def
= Dn ∪ Dn×m ∪ Dn[SI]

where D = {N,N0,Z,Q,R,C,B} and n ∈ {1, 2, 3},m ∈ 0, 1, 2, 3.

To every SI-unit that is not a base unit, there exist alternative notations. Two units
u, v ∈ SI fall into the same equivalence class of SI-units iff there exists a set of base
units such that u can be expressed as a product of powers of the base units and v
(cf. Section D.1). The mapping unit : U → Dn(SI) assigns each entity an SI-unit.

Position Modeling CPSs requires talking about position. Physics and mechanical
engineering often consider the position of an object as a part of its state. For the
functional modeling of CPSs, however, this interpretation is not appropriate because
the CPF encapsulates the state, i.e., the state of the system is not visible to an
outsider. The position of a system, however, can be determined by an outside observer.

25

Chapter 2 Cyber-Physical Types

Object O of the physical world

Coordinate System CS1

Coordinate System CS2

Place of O in CS1

Place of O in CS2

Figure 2.1: Place is the physical quantity that describes the position of an object in the
real world with respect to a coordinate system.

In our modeling approach, the position of the object is determined at its interface: We
consider physical entities, i.e., energy and matter, to have a position. The interface of
a CPF that receives or transmits these entities must be present at their position.

Part of every CPS is a physical structure that comprises physical parts, and assemblies
(consider, e.g., the chassis, engine, wheels, etc. of a car) that interact with the
computational structures to realize these functionalities. Implementing and integrating
these structures requires talking about the position of each physical part of the system.
In physics, the position is often considered part of the physical state of an object. In a
functional interpretation, the state is not visible from the outside. Because the position
is visibile for outsiders, we do not consider it a part of the system’s state. Physical
quantities are always measured at a physical position and matter is always present at a
physical position [Sti89]. Euclidean vector spaces (cf. Appendix B) are a common
mathematical modeling tool to describe the position. In physics, place is a physical
quantity that describes the position of an object with respect to a specific coordinate
system. Therein, the modeler defines a (Cartesian) coordinate system
(cf. Appendix B), and provides a model of a position through a coordinate vector. The
value of the quantity Place is a vector in Rn for n ∈ {1, 2, 3}, which is a translation
from the origin of the coordinate system to the (center of) the object (cf. Appendix B).
Descriptions of physical systems heavily depend on the choice of the coordinate system,
because computations, such as dimensioning or other simulations take the geometric
models as input to reveal answers to questions regarding optimal dimensions,
materialistic properties, or predictions. Models of the physical world often get more
complex when analyzed in three-dimensional space; therefore, when analyzing a model

26

2.2 Modeling Cyber-Physical-Types

of the physical world, model users may abstract from one or the other dimension.
Depending on how the coordinate system is chosen by the modeler, the place of an
object may differ. The value of the physical quantity place depends on the coordinate
system a model user has chosen. A common way of dealing with multiple coordinate
systems is to set a global coordinate system. Through change of basis [KM03], vectors
in coordinates of other coordinate systems can be transformed into the global
coordinate system, which Figure 2.1 illustrates.

Modeling Physical Position Considering the cyber-physical functions of a system,
the position of parts and assemblies belongs to the physical implementation of the
system. The function thus encapsulates their position. However, a functional
specification must talk about the position of the entities, e.g., for specifying the
transport of an object [KK98]. In this dissertation, every entity has a position that can
be referenced in specifications.
We model the position by a primitive type Positionn = An(R(m)) ∪ ξ. Each position
entity is then equipped with the SI-unit meter, i.e., we consider the vectors to have a
unit, which implies that distances can also be determined with the unit m. The special
character ξ denotes the irrelevance of position which is the case, e.g., for data
messages. The variable n ∈ {1, 2, 3} indicates the dimensionality of the space
considered in the specifications. It makes sense to define the primitive type Position in
this way instead of just as R(m) because setting up a modeling project will require
defining the coordinate system in which all positions throughout the project will be
defined and, also, respective vector operations to be predefined.
The mapping posn : U → Positionn assigns each entity a position in a global (i.e.,
project/company/system/... wide) coordinate system. We consider the position as a
point in the Euclidean affine space (see Appendix B).
Also, we do not consider other number domains than the real numbers, as positions are
typically measured in this domain. In an implementation, it is certainly reasonable to
use Q. This position represents the position of the entity in the real world. Extending
the mapping to apply to streams of entities is straightforward: Let s ∈ [TDs → U] be a
timed stream, then posn(s) is defined as the timed stream TDs → An(R), t 7→ pos(s[t]).
As an example, consider a function that changes the position of an incoming entity m1.
A specification of the behavior of such a function is

m1 = m2 && (2.1)

pos3(m2) = pos3(m1) · v. (2.2)

(2.3)

Here, we represent that the output of the function m2 is unchanged with respect to all
characteristics except for its position. The position of the output entity m2 is linearly
translated by v ∈ R3(m) which is e.g., a data message.

27

Chapter 2 Cyber-Physical Types

2.2.2 Energy

In general, energy is a physical quantity that describes the capacity to do work. The
law of energy conservation states that energy is never created nor destroyed [FR76].
Energy can only be stored by the system or exchanged between the system and its
environment via the system’s interface. In this case only, energy appears in a specific
form [FR76]. The form can be determined by observing other physical quantities
change, such as electrical current, forces, or velocity [Sta10, FR76, KK98]. The
exchange of energy in a specific form is always bound to a change of at least two
physical quantities, one being an intensive quantity, the other an extensive
quantity [FR76, GB07], the so called energy components. In physics, quantities are
distinguished into extensive and intensive quantities. For our purposes the simplified
definitions of extensive are sufficient: The value of an extensive quantity increases
proportionally with the number of particles [Sti89]. Another simplified version of the
definition states that a quantity is extensive iff it doubles its value when combining two
equal systems [FR76]. Examples of extensive quantities are mass and entropy. A
quantity is intensive iff its value may stay constant over two consecutive aggregate
phases [Sti89]. This is because the amount of energy a system receives or transmits is
determined by the forces contributing to a change in the value of an external
parameter together with the amount this parameter has changed.

Definition 2.3 (Energy Component [KK98]). The physical quantities that an exchange
of energy in a specific form is bound to, are the energy components of that form of
energy.

The exchange of energy is bound to the change in the value of the extensive variable
and the amount of transferred energy is proportional to that change. The
proportionality factor is the intensive quantity [FR76]. Mathematically, a form of
energy is defined by the following general form [FR76]:

form of energy = intensive quantity · d(extensive quantity). (2.4)

It is very interesting that literature about mathematical models of streaming energy
such as [FR76] in principle uses streams in the sense of Focus to model streams of
energy: A stream of energy describes the amount of energy that is transferred within a
fixed interval of time [FR76]. Considering in Equation 2.4, the change of the extensive
quantity over time yields the stream of energy [FR76], i.e.,

stream of energy = intensive quantity · d(extensive quantity)

dt
. (2.5)

In this definition, the product has the unit of energy (Equation 2.4) or power
(Equation 2.5), respectively.

28

2.2 Modeling Cyber-Physical-Types

In the running example of an automotive cooling system (cf. Section 1.3.3) a pump
transforms electrical energy into rotational motion. In this example, the exchange of
energy causes rotational motion [FR76]. The physical quantity that specifies this form
of energy is angular momentum, or torque, which is also bound to a conservation law.
That is, whenever the angular momentum of a system increases or decreases, it has to
receive or transmit angular momentum from or to its environment, respectively [FR76].
The amount of rotational energy that the system receives or transmits per unit of time
is determined by the product of the change in angular momentum, and the angular
velocity of the system. The pairs of physical quantities that define a flow of energy in a
specific form are predefined [FR76].

The messages that CPS components exchange may carry energy. Consider, for
example, a sound signal which transmits information through pressure energy which is
exchanged between the sender, e.g., a speaker, and a receiver, e.g., a human listener.
Therefore, we consider the mapping power : U → Power, where Power

def
= R(W) to

describe the amount of energy, a message transmits per unit of time.

Modeling Energy Types Whenever system components exchange or process energy it
appears in a specific form and as mentioned above the exchange of energy is modeled
by two physical quantities, i.e., the energy components that determine the form of
energy and how much energy is transferred. An energy type describes such a form of
energy. A (standardized [FR76]) pair of physical quantities defines a type of energy,
such that their product yields the change of energy.

Definition 2.4 (Energy Type). An energy type is represented by a class c ∈ CU such that
there exist attributes p, q ∈ attributes(c) with type(p) = P , type(q) = Q, where

P,Q ∈ Dn[SI] are physical quantities such that unit(P) unit(Q) = W
def
= kgm2 s−1.

In the theory of [FR76], a form of energy is fully defined by a standardized pair of
intensive and extensive quantities. Definition 2.4 considers a type of energy to be
represented through a class that has attributes of the respective types of the intensive
and extensive quantities that define this type of energy. Rotational energy, for
example, is a form of energy whose exchange causes rotational motion [FR76] and is
defined by the product of torque and angular velocity, i.e.,
RotationalEnergyn = Torquen×Velocityn, where the energy components are defined as

Torquen
def
= Rn(Nm), AngularVelocityn

def
= Rn(rad s−1), and n ∈ {1, 2, 3} indicates the

dimensionality. In this dissertation, we leave choosing the dimensionality n to the
modeler as it will have a major impact on the specifications of physical phenomena.
This allows modeling the form in which the energy is transmitted while also enabling
us to talk about the amount of energy that is transmitted per unit of time, i.e., the
power, which is calculated as the product of the two quantities. In the following, let E
denote the set of all energy types.

29

Chapter 2 Cyber-Physical Types

Example 2.1. Electrical energy is a form of energy that is bound to the physical
quantities current and voltage. These quantities are defined as Current

def
= R(A) and

Voltage
def
= R(V). ElectricalEnergy = Voltage×Current represents energy that is

exchanged in the form of electricity. The cooling system in the running example
(cf. Section 1.3.3) uses a coolant to dissipate the heat from the components of the
vehicle. To model the functions that perform the dissipation, we consider the coolant’s
temperature and motion energy. These quantities are defined as Temperature

def
= R(K)

and MotionEnergy
def
= Force3×Velocity3 [FR76] with Force3

def
= R3(N) and

Velocity3 = R3(m s−1). A pump will cause the fluid coolant to flow. The pump uses an
electric drive that causes a paddle wheel to rotate. Functionally, the pump transforms
electrical to rotational energy. Rotational energy is a form of energy that is bound to
the physical quantities torque and angular velocity. These quantities are defined as
Torque3

def
= R3(Nm) and AngularVelocity3

def
= R3(rad s−1). Table 2.2 shows the classes

that represent electrical energy, rotational energy, motion energy, and coolant.

«energy»
ElectricalEnergy

Current current
Voltage voltage

CPCD

«energy»
RotationalEnergy

Torque3 torque
AngularVelocity3 angularVelocity

«energy»
MotionEnergy

Force3 force
Velocity3 velocity

«material»
Coolant

Temperature temperature
MotionEnergy e

Table 2.2: Example for the specification of the energy type that represents rotational
energy.

Related Work: Bond Graphs Bond Graphs are a mathematical technique for
modeling the exchange of energy among components [GB07] that emerged in the
domain of control engineering. Bond Graph models are used to design and analyze the
processes in dynamic or control systems [GS96, Alu15]. Thus, Bond Graphs describe
the expected behavior of a system design in terms of physical laws. There exist many
state-of-the-art tools that offer functionalities for the generation of symbolic
representations, for model inversion, parametric identification or even for deriving
simulations or other design aids [GB07].

30

2.2 Modeling Cyber-Physical-Types

Control systems are very often described by systems of differential equations. The idea
for creating the technique emerged from the observation that dynamic systems generate
similar equations across different energy domains (e.g., electrical, fluid, or mechanical).
From a mathematical point of view, these systems are therefore analogous[GB07].

Bond Graphs consist of components that exhibit energy ports and bonds between these
ports. The bonds specify the exchange of energy among the components and the ports
define an energy interface of a component [GS96]. Very similar to our approach, Bond
Graphs consider a form of energy to be described by a pair of two variables such that
their product is power [GS96]. A Bond Graph model is a graphical representation of a
system of differential equations that describe the exchange of energy within a
dynamical system. Because of the analogy of the different energy domains, Bond
Graphs provide a universal modeling technique that is understood among the experts
of these domains. The modeling of types is certainly analogous to the Bond Graph and
our approach. However, Bond Graphs are a modeling technique to represent the actual
behavior of a system. That is, an engineer thinks of the design of a system, i.e., a
constellation of geometric parts, or (controller) software modules, and creates a Bond
Graph model of this setup to analyze whether his/her idea meets the requirements.
This is very different from our approach which aims to describe the desired behavior of
a system while abstracting from a technical design. Another major difference between
Bond Graphs compared to our approach is that a Bond Graph model describes a set of
differential equations. These models may be hierarchical in the sense that components
encapsulate other components, but interpreters flatten the hierarchy and derive a
system of equations from the flattened model [GS96]. Solvers that are used, e.g., to
generate simulations of the behavior, will produce different results when the hierarchy
is not flattened. In contrast, our approach describes a system as the composition of
functions in the mathematical sense (cf. Section 1.3.1). For functions that are not
decomposed, we use logical formulae to describe properties of the function’s
transformation. Both approaches follow the principle of underspecification: A system
of differential equations possibly has many solutions, and there exist possibly many
functions that exhibit the properties described by a logical formula or automaton.

2.2.3 Matter

In physics, everything that takes up space, i.e., has a volume and has a mass, is
matter [SB91]. Mass and volume are, therefore, inherent properties of any piece of
matter, independent of its manifestation. The presence or absence of matter can
therefore be determined by the mass or volume being zero. Materials are types of
matter that are distinguished by material characteristics which are described by a finite
subset of physical quantities, i.e., the material constants [Sti89], to which, e.g., the
density or specific heat capacity belong. A generic scheme for the definition of material
constants is described in [Sti89]. For a specific material, the values of the

31

Chapter 2 Cyber-Physical Types

characterizing material constants do not change during system runtime. Depending on
the surrounding temperature, pressure, electric and magnetic field, there exist fixed
values of these constants which hold during system runtime.
When cyber-physical components exchange matter, physical entities flow between the
geometric parts of the system. These entities are made of such materials. A major
concern in material engineering is to find or create materials such that designated
material constants have optimal values concerning an engineering objective. In this
field, materials are the “systems” that define functions. From a systems engineering
point of view, these functions result from the requirements imposed by a technical
solution to implement a higher-level system function. This dissertation focuses on
modeling and developing these functions to enable the development of a conceptual
solution (a principle solution) which includes a notion of geometry and allows deriving
the materialistic requirements.
Due to the equivalence of mass and energy expressed through the famous equation
E = mc2, exchanging matter is inherently bound to an exchange of energy [PBFG07],
which does not necessarily hold vice versa. For example, whenever a system changes its
volume it transmits or receives matter and the system’s pressure changes its value. The
latter indicates that the system also receives or transmits an amount of so-called
pressure energy determined by the product of pressure and volume [FR76]. In this
case, the volume specifies this form of energy, and the pressure specifies the amount of
transmitted energy [FR76]. Specifying a flow of matter often requires specifying the
type of transmitted energy as well as the material that is transmitted via the respective
physical quantities. The type of the exchanged matter determines the characteristics
that are relevant for the processing of the material by the system’s function.

Modeling Material Since mass and volume are inherent properties of materialistic
entities, we define mappings that represent these real-world properties:

• mass : U → Mass, which returns the mass of a material as an element of the
physical quantity mass represented by real numbers with the SI-unit kilogram ,
i.e., Mass

def
= kg, and

• vol : U → Volume which returns the volume of a material as an element of the
physical quantity volume represented by the real numbers with the SI-unit cubic
meter, i.e., Volume

def
= m3.

Matter is characterized by physical quantities that define a material through material
constants, the geometric shape of a discrete piece of matter, or characterize a fluid
material. For specifying the functions of a CPS that processes material, it makes sense
to let the modeler choose the relevant physical quantities. In some cases, the model
needs to reflect that the exchange of matter is bound to an exchange of energy. For
example when modeling the transfer of heat away from the engine of a vehicle through

32

2.2 Modeling Cyber-Physical-Types

a cooling medium, as in the running example (cf. Section 1.3.3). The modeler can
express that, for example by adding an attribute to the class defining the material that
has an energy type that models the respective form of energy. In the running example
a material type with an attribute of a type that models the energy form heat to
indicate that coolants carry heat.

Definition 2.5 (Material). A material Mat is a type that is represented by a class
c ∈ CU such that for all a ∈ attributes(c) it holds that type(a) ∈ Dn[SI]× E. The set of
all material types is denoted Mat.

Since the exchange of material is inherently bound to an exchange of energy, the power
of a material message is defined as the sum of the powers of its energy-attributes, i.e.,
pow(m) =

∑
e∈attributes(m):type e∈E m.e > 0W for all m ∈ U with type(m) ∈ Mat.

Example 2.2. Automotive cooling systems utilize a coolant, i.e., a flowing fluid, to
absorb heat, e.g., from the engine’s components, and transport it to a radiator which
cools down the coolant while releasing the heat into the surrounding air. A pump
controls the volume flow rate of the coolant, i.e., it applies energy in the form of
compression to the coolant. In this process, energy is exchanged between the pump and
the fluid in the form of compression energy which is determined by the physical
quantities pressure with SI-unit Pa and angular velocity with the SI-unit rad s−1.
Table 2.3 shows a CPCD that specifies the coolant and the energy type compression.

«material»
Coolant

Compression cmpr

CPCD

«energy»
Compression

Pressure p
AngularVelocity ω

Table 2.3: Specification of the types that represent a coolant material and compression
energy (see [FR76] for a definition of compression energy).

2.2.4 Data

Besides energy and material, CPSs also process information, i.e., data. A characteristic
of software systems is that they solely process information in the form of discrete data
messages [Bro10].

When two systems exchange data, they exchange discrete messages [BS01]. Such
systems are most likely software systems. Electric or mechanical systems, on the other
hand, process materials and energy which appear discrete in the case of items,

33

Chapter 2 Cyber-Physical Types

continuous in the case of fluids, gases, or energy, and piecewise continuous in the case
of signals.

The exchange and modeling of discrete data are well understood in the domain of
software engineering. Data types are those that contain information, in the
cyber-physical context, this information is often about something from the physical
world, e.g., a measurement. To this effect, data types are composed of physical
quantities and primitive types. Data types must not have attributes whose type is an
energy or material type. Further, data types contain a special message ξ ∈ T that
represents the absence of a message.

Definition 2.6 (Data Type). A data type is represented by a class c ∈ CU such that for
all a ∈ attributes(c) it holds that type(a) ∈ D ∪ Dn[SI]. The set of all data types is
denoted by D. All data types include the empty message, i.e., ξ ∈ D for all D ∈ D.

Since data messages are solely information, they do not exhibit physical properties,
thus, it holds that for all T ∈ D and all messages d ∈ T that pow(d) = 0W,
vol(d) = 0m3, and mass(d) = 0kg.

Note, that the meaning of a data message differs from that of other entities: The data
message carries information about a phenomenon from the real world while physical
quantities, energy, or material entities represent the actual phenomenon. This will
make a significant difference when modeling cyber-physical types and their relations
which is discussed in Chapter 6.

Example 2.3 (Audio Data). Audio data encodes the course of a voltage that represents
information from the recording. Here, we model audio data as a class with stereotype
«data» that holds two attributes, i.e., attributes(Audio) = {voltage, id}, with types

type(voltage) = Voltage
def
= R(V) and type(id) = N. Table 2.4 shows this class.

«data»
Audio

Voltage voltage
N id

Table 2.4: Specification a type that represents audio data.

Events Mathematically, we consider an event as a logical observation on a timed
stream (a timed stream is a function s : TD → U , where TD ⊆ R+ is a time domain.
See Section 3.1):

34

2.2 Modeling Cyber-Physical-Types

Definition 2.7 (Event [Bro12]). An event is a predicate e : TS × R+ → B, where TS is
the set of all timed streams. We say that the event e occurs in the stream s ∈ TS at
time t ∈ R+ iff e(s, t) holds.

An event models an observation within a timed stream and conveys information about
the order and/or time slice in which the observation has occurred. Definition 2.7
defines the interpretation of event messages in the functional specifications considered
in this dissertation.
In this dissertation, we specify the extraction of event information from a dense or
discrete stream by a CPF which is detailed in Section 3.4.3. The CPFs that define the
occurrence of an event in another stream can be interpreted as sensors.

Modeling Events In the functional specification of a CPS, in particular at an early
stage during the development, it may be necessary to abstract from the stream on
which the event occurs, and simply define that a system reacts on a certain event.
Consider for example a system that offers the user the functionality to switch it on or
off. At a very early stage of development it may not be relevant or known how this
functionality is implemented and therefore the kind of stream that is input to the
function that senses the event is not known, yet. To this effect, we consider event types
to solely give an event a name, and event streams as streams of event messages. Let Ev
be the set of all events.

Definition 2.8 (Event Type). An event type is a set of events E ⊆ Ev. For all events e
it holds that pow(e) = 0W, vol(e) = 0m3, and mass(e) = 0kg.

Enums solicit for modeling event types, where the literals represent names of events.
Table 2.5 provides an example for an event type definition.

CPCD

«event»
ButtonPress

ON
OFF

Table 2.5: Definition of an event type that represents a button press.

This integrates the principle of underspecification for modeling events: Modelers can
define events as types without referencing the stream in which the events modeled by
the type occur. At a later stage in the development when the kind and type of this
stream in which the events occur is known, the modeler can create a CPF that models
a “sensor” to sense the occurrence of the event. The Example 3.7 of an electrical switch

35

Chapter 2 Cyber-Physical Types

that generates a stream of electrical energy upon a button press event in Section 3.4
illustrates this. The function defines the button press event to occur in a stream of
force iff the incoming force is large enough.

2.3 Summary: Cyber-Physical Types

In the cyber-physical context, we need to consider the “physical” properties of entities
defined by the following mappings on U :

• pow : U → Power which indicates the amount of energy a message transports per
unit of time

• mass : U → Mass which indicates the mass of a message

• vol : U → Volume which indicates the volume a message takes up in space.

With these properties, we can distinguish the kind of type of an entity: In the following
table, let T be a type and m ∈ T .

Type Form Position Power Mass Volume

Energy Dn[SI]2 pos(m) ̸= ξ pow(m) > 0W mass(m) = 0kg vol(m) = 0m3

Material Dn[SI]n × E pos(m) ̸= ξ pow(m) ≥ 0W mass(m) ̸= 0kg vol(m) ̸= 0m3

Data P ×Mat× E pos(m) = ξ pow(m) = 0W mass(m) = 0kg vol(m) = 0m3

Table 2.6: Classification of the different kinds of types.

A type of energy is defined by a tuple of two physical quantities, one is the extensive
and one the intensive quantity. Their product is the physical quantity of energy. Thus,
the power transmitted by an entity of energy is greater than zero, while the mass and
volume of such an entity are zero. For material, the type consists of attributes that
hold an energy type plus additional attributes that represent material constants, i.e.,
physical quantities that define fixed characteristics of the material. Data entities
convey information about things from the real world. Therefore, a data type may
contain attributes whose type is primitive (including physical quantities but also the
general primitive number types and Booleans). The position of a data message is the
empty set, as it represents a piece of information. For the same reason, the power,
mass, and volume are all equal to zero.

36

Chapter 3

A Theory of Cyber-Physical Functions

This chapter addresses the research question RQ2 “How can the theory of
TSPFs [Bro10, Bro12] describe the functions of CPSs?”. The Focus theory provides a
formalism to represent software or embedded systems as message-exchanging
components. Therein, a component is represented by an interface that consists of a set
of input channels, a set of output channels, and a behavior. The latter is a set of so
called Timed Stream Processing Functions (TSPFs) which are higher-order functions
that map histories of the input channels to histories of the output channels. For each
channel, a history describes the incoming messages (or, in our context, entities) over
time on that channel.
Formalizing the idea of a CPF illustrated in Figure 1.2, we here, consider a functional
specification to model a CPF through sets of typed input and typed output channels
together with the system’s behavior. The previous Chapter 2 has introduced the
notion and modeling technique for cyber-physical types that are used here to provide
types for the interface of a CPF. Timed streams represent the exchange of entities via
the channels. Channel histories map timed streams to each channel of the system’s
interface and thereby represent the interaction history of that component. Section 3.4
elaborates that the type of each channel, in a functional specification, includes an
identifier to define the kind of stream that represents the exchange of messages of that
type over time. Sets of TSPFs is the most expressive way to specify functional
behavior [RR11]. Section 3.4 introduces interface assertions, hybrid automata or
architectural specification to specify the behavior of a CPF as a set of TSPFs.

3.1 Timed Streams

Timed Streams describe the communication histories of channels, i.e., communication
links within a system (cf. next paragraph), the flow of values assumed by a variable of
a system, or a sequence of actions executed [Bro01].
From now on, let U be a universe of entities, that includes a pseudo entity ξ ∈ U , that
represents the empty entity, or the absence of any entities. Some stream specifications
also use a time tick, denoted

√
which is a pseudo entity to include timing information

in a discrete stream. A timed stream is a function s : TDs → U on a time domain

37

Chapter 3 A Theory of Cyber-Physical Functions

TDs ⊆ R+. We consider the interval of a timed stream s to be the smallest interval
that contains the time domain of s, i.e.,

interval(s) = [inf(TDs), sup(TDs)[, (3.1)

(3.2)

where inf(TDs) exists because TDs ⊆ R+ which is bounded and we consider
sup(TDs) ∈ R+ ∪ {∞}.
We distinguish between different kinds of discrete and dense streams [Bro01, RR11],
where a stream is called discrete iff its time domain is discrete and dense iff its time
domain is dense. The kinds of streams are listed in Table 3.1. The kind of a stream s is
denoted kind(s). A stream s is called continuous iff its time domain is an interval in
R+, and img(s) is a metric space (cf. Definition B.5) such that s is Cauchy continuous
(cf. Definition 1.2) on the set TDs [Bro12]. We use streams to represent the exchange
of energy, matter, and data over time. In this dissertation, we model CPSs as sets of
functions that process discrete and continuous timed streams at the same time. In this
setting, the idea is that for a discrete timed stream s : N → U∗, the sequence s(t) for
t ∈ N denotes the sequence of entities communicated during the time interval
[(t− 1)δ, tδ[, where δ ∈ R+ is a time granularity [Bro12]. The prefix of s until time t is
denoted s ↓ t, given by s|TDs∩[0,t[, which is the restriction of s to the interval
[0, t[[Bro12]. The set TS denotes the set of all timed streams, and TS|[0,t[the set of all
prefixes of timed streams until time t. Table 3.1 provides a summary of the stream
categories defined and discussed in [RR11].

Topology Kind of Stream Basic Form

discrete event stream Uω

discrete time-synchronous stream N → U
discrete timed event stream Uω ∪ {

√
}

discrete time slice stream N → U⋆

dense hybrid streams R+ → U
dense signal set streams R+ → ℘(U)
super dense super dense streams R+ → U⋆

Table 3.1: A classification of timed streams according to [RR11].

In this dissertation, we will use time-slice streams, timed event streams and hybrid
streams to model the flows of energy matter and data. Here, note that timed event
streams are only well-defined iff infinite streams contain infinitely many ticks. This
condition implies that, between two time ticks, there may appear only finitely many
entities.

38

3.1 Timed Streams

3.1.1 A Complete Partial Order of Timed Streams

A distinguishing feature of the Focus theory is the compositionality of functional
properties. For the methodology, we are proposing in Chapter 4 the compositionality of
refinement is particularly important. In the context of CPS engineering it is crucial
that these properties are compositional in the sense that refining a component of a
functional specification yields a refinement of the composed function. This supports
the “divide and conquer” principle which in the engineering process leads to the
decomposition of complex tasks to cope with the complexity. To support this principle
efficiently, it is inevitable that each of the resulting sub-tasks must be developed
individually. Development means enriching functional specifications with newly
available or adapted information, refining a sub-function must yield a refinement of the
overall function. To prove that the composition of two or more CPFs yields again a
CPF even in the case of feedback composition and also that refining a component of a
decomposed CPF yields a refinement of the overall CPF, we need to set up the
semantic domain of our models such that these properties are met.

To this effect, we utilize Scott’s domain theory [SG90, Win93, SRS99]. For this,
Appendix C provides the mathematical foundation. Defining a relation on timed
streams that forms a CPO enables us to transfer the notions of monotonicity,
continuity, least upper bounds, and least fix points to CPFs. Thereby, we can apply the
results about fix points by Knaster-Tarski [Tar55] and Kleene [Kle52] to CPFs which
implies the well-formedness of composition and the compositionality of refinement.

To do so, we will transfer the prefix-relation of discrete channel histories, e.g., defined
in [Rum96] to our setting where we consider both discrete and dense streams.

This requires a notion of time shift, as the time domains of a discrete and a dense
stream are not “aligned” because the natural numbers in the time domains of discrete
streams refer to the number of time slices that can happen at any point in the
real-time (R+). This notion is already introduced in [Bro12].

Definition 3.1 (Time Shift [Bro12]). Let s : TDs → Uω be a timed stream, and let
u ∈ R+ be a specific point in time. The time shift of s by u is denoted sTMu, its
interval and time domain are given by

interval(s) = [t, t′[⇒ interval(sTMu) = [t+ u, t′ + u[

TDsTMu = {t+ u | t ∈ TDs}.

Now, let t ∈ TDs (this implies that t+ u ∈ TDsTMu), then

(sTMu)(t+ u) = s(t).

The idea of the prefix relation for discrete streams used, e.g., in [Rum96] is that a
stream is a prefix of another stream if there exists a third stream that when

39

Chapter 3 A Theory of Cyber-Physical Functions

concatenated with the first, yields the second stream. The notion of concatenation is
introduced in [Bro12] for the general notion of timed streams that we use here.

Definition 3.2 (Concatenation [Bro12]). Let s : TDs → Uω with interval(s) = [t, t′[and
s′ : TDs′ → Uω be timed streams. We assume that t′ < ∞ because otherwise ŝs′ = s.
Then,

interval(s′TM t′) = [t′′′, t′′[⇒ interval(ŝs′) = [t, t′′[

TDŝs′ = TDs ∪ TDs′TM t′ .

The concatenation is defined as follows: Let t∗ ∈ TDŝs′, then
t∗ ∈ TDs ⇒ ŝs′(t∗) = s(t∗)

t∗ ∈ TDs′TM t′ ⇒ ŝs′(t∗) = (s′TM t′)(t∗).

The above Definition 3.2 provides the basis to translate the prefix-relation from
discrete Focus, found e.g., in [Rum96] to our setting:

Definition 3.3 (Order of Timed Streams). Let s : TDs → Uω and u : TDu → Uω be
timed streams. Then, s ⊑ u iff there exists a timed stream v : TDv → Uω such that
ŝv = u.

The above order is a slight adjustment from the traditional order on discrete
streams [Bro97, BDD+93, Rum96] for our setting which allows a timed stream to be
discrete or dense. The set of timed streams TS together with the relation defined in
the Definition 3.3 defines indeed a CPO (see Appendix C for the respective definitions).

Proof. We have to show that ⊏ is reflexive, antisymmetric and transitive.
Reflexive: Let ⟨⟩ : ∅ → Uω. Then, ŝ⟨⟩ = s which implies that s ⊑ s.
Antisymmetric: Let s and u be timed streams, respectively, such that s ⊑ u and
u ⊑ s. We know that because s ⊑ u there exists a timed stream v such that ŝv = u
and because u ⊑ s there exists another timed stream v′ such that ûv′ = s. Now
assume that interval(s) = [t, t′[and interval(u) = [t′′, t′′′[. Then,

TDu = TDŝv (3.3)

= TDs ∪ TDvTM t′ = TDu (3.4)

= TDu ∪ TDv′TM t′′ ∪ TDvTM t′ (3.5)

Therefore, TDv′TM t′′ ⊆ TDu and TDvTM t′ ⊆ TDu. By Definition 3.2 it follows that

(ŝv)(t) = s(t) = u(t).

for all t ∈ TDŝv.

40

3.2 Cyber-Physical Streams

Transitive: Let s, u, v be timed streams such that s ⊑ u and u ⊑ v. We know that
there exists timed streams v′, v′′ such that ŝv′ = u and ûv′′ = v. Therefore,
(ŝv′)̂v′′ = v, which implies ŝ(v̂v′′) = v. Thus, the stream s is also a prefix of the
stream v.
The order is complete considering that the empty stream ⟨⟩ with
TD⟨⟩ = interval(⟨⟩) = ∅ is the least element with respect to ⊑.
Further, there exists a least upper bound for each chain in the set of timed streams
because the interval of each timed stream is open on its right end.

The order relation ⊑ from Definition 3.3 can be extended to channel histories by
pointwise application: Let C be a set of channels. Let x, y ∈ C⃗ be two channel histories.
Then, it holds that x ⊑ y iff for all c ∈ C it holds that x(c) ⊑ y(c). This makes the
domain of channel histories together with the extended prefix-order also a CPO.

3.2 Cyber-Physical Streams

Timed streams are the mathematical foundation that we use to model the exchange of
entities of energy, matter, and data. This section introduces the notions of streams of
energy, matter, and data and defines their distinguishing properties formally.

3.2.1 Energy streams

An energy stream represents the exchange of energy among a CPS or one of its
components and its environment. Literature about mathematical models of streaming
energy such as [FR76] in principle already uses timed streams to model the flow of
energy: A stream of energy describes the amount of energy that is transferred within a
fixed interval of time [FR76]. Therefore, the unit of a stream of energy is energy per
time, which is Watt and the respective physical quantity is power [FR76]. The amount
is determined by observing the change in the intensive and the extensive physical
quantity that define the form in which the energy is exchanged (cf. Section 2.2.2).
Abrupt changes in the values of these physical quantities are, in the real world, not
possible. Observing these physical quantities over time, therefore, yields a smooth
curve. Signals or data that carry information about measurements of these values may
have jumps or even be discrete. A stream of energy is modeled by a dense stream
(cf. Section 3.1, Table 3.1) whose image (cf. Definition 1.1) is an energy type. To
accurately represent the exchange of energy, a stream of energy is smooth
(cf. Definition 1.3) everywhere because it takes (possibly very little) time for a physical
quantity to change its value.

Definition 3.4 (Energy Stream). An energy stream is a total function R+ → E (E
denotes the set of all energy types as declared in Section 2.2.2) that is smooth
everywhere, i.e., an energy stream is a hybrid stream that is smooth everywhere.

41

Chapter 3 A Theory of Cyber-Physical Functions

The smoothness of this kind of stream is well-defined because every physical quantity is
a metric space as is detailed in Appendix D. Energy types do not contain a special
message that denotes the absence of any messages, because when a system does not
receive or transmit energy, it simply receives or transmits zero Watts, i.e., one of the
two physical quantities that define the energy type then carry a value that is zero.
That is, we model the absence of energy received or transmitted on a channel c ∈ C
with type(c) = P ×Q, during a period of time [t, t′[such that for all channel histories
x ∈ C⃗ it holds that the measured value of one of the characterizing quantities is zero
during [t, t′[, i.e., (x(c)P ↓ [t, t′[) · (x(c)Q ↓ [t, t′[) = 0.
Let the streams sP : R+ → P , and sQ : R+ → Q denote the restriction of the image of
s to P , and Q, respectively. For the power transmitted by a timed energy stream
s ∈ [R+ → E] it then holds that

pow(s) = sP · sQ ∈ [R+ → Power]

where sP · sQ : R+ → R(W), t 7→ sP (t) · sQ(t) denotes the timed stream that carries the
power messages.
In case either P , or Q is a vectorial quantity, while the other is scalar, the
multiplication · becomes the vector space multiplication and in case P and Q are
vectorial quantities, the multiplication-operator · denotes the scalar product in Rn

(cf. Appendix B).

3.2.2 Item Streams

Streams of matter represent the exchange of matter within a system and are modeled
by timed streams whose image is a material type. Streams of matter include periods of
time, where the material is absent or present. From a modeling perspective, the
characteristics that determine this flow depend on whether the matter appears solid
and is exchanged as piecewise items – imagine, for example screws that a conveyor belt
transports to a machine tool which uses them to connect parts – or fluid that flows
continuously.
Therein, a flow of items is conceptually very similar to a flow of data messages, i.e.,
discrete. A material is absent at time t ∈ R+ in a material stream iff mass(s(t)) = 0kg
or vol(s(t)) = 0m3. Fluid material behaves significantly different than solid, piecewise
material that needs to be regarded in functional specifications. As a material can
appear both as fluid or item, the modeler specifies the kind of stream in the CPF
specification. The CPCD notation only offers a stereotype «material».
Items flow discretely. In that, item streams are very similar to the data streams
handled by software systems. That is, there are points in real time, where an item is
present, and periods in real time, where the item is absent. Discrete streams
(cf. Table 3.1), therefore, represent item streams accurately. Here, we utilize time slice
streams, which are isomorphic to time-synchronous streams [RR11] to represent the

42

3.2 Cyber-Physical Streams

exchange of items. For models of systems that process only items and/or data, for
example, the discrete Focus theory that was established to support the engineering of
software systems is sufficient.

Definition 3.5 (Item Stream). An item stream is a total function N → Mat∗ (Mat
denotes the set of all materials as declared in Section 2.2.3), i.e., an item stream is a
time slice stream.

Here, the pseudo entity {ξ} ∈ U represents the absence of items at a certain time in the
stream. Note, that the set of time-synchronous streams [N → U] is isomorphic to the
set of time-synchronous streams [RR11], i.e., both are valid to use for item streams.
When specifying streams of matter, deciding which kind of stream is appropriate may
not always be obvious. Sand, for example, consists of many small rocks. The kind of
matter stream, however, is set by the modeler in a functional specification. In the type
definition, the stereotype «material» is sufficient.

3.2.3 Fluid Streams

Fluids flow continuously, meaning that the amount of fluid changes smoothly. These
streams are, therefore, modeled by hybrid streams of the form s : TDs → Mat such
that the hybrid streams vol(s) : TDs → Volume and mass(s) : TDs → Mass,
resoectively are smooth everywhere. The smootheness implies that these streams are
infinitely often differentiable (Definition 1.3), and, thus, enable to derive the mass or
volume flow as dmass(s)/dt : TDs → R(kg s−1) or d vol(s)/dt : TDs → R(m3 s−1),
respectively. Similar to a stream of energy, a stream of fluid matter thereby represents
the amount of matter that passes through (an interface of a function) per unit of time.
Note, that the or is non-exclusive and that smoothness is well-defined for these streams
because every physical quantity is a metric space (see Appendix D). The attributes
that define the characteristics of fluid matter streams may not change smoothly.
Whenever the fluid ceases to be present at that channel, the mass or vol functions
change to 0.

Definition 3.6 (Fluid Stream). A fluid stream is a hybrid stream s : R+ → M , where
M ∈ Mat is a material such that at least one of the two streams

vol(s) : R+ → Volume or (3.6)

mass(s) : R+ → Mass (3.7)

(3.8)

is smooth everywhere.

Note that the two streams vol and mass provide information about a material stream
and can be considered as signals that are introduced in the next section.

43

Chapter 3 A Theory of Cyber-Physical Functions

To model the exchange of materials between the functions of a CPS, it is sufficient to
differentiate between solid, piecewise materials and fluids because the flow of gasses is
conceptually equivalent to the flow of fluids which is also how it is modeled on
literature from this domain [FR76].

3.2.4 Data Streams

A data stream represents the exchange of information among CPSs or CPS
components. Similar to matter, the exchange of information depends on how it is
represented within the system.

Software systems communicate by exchanging discrete data messages. Therefore, we
represent data streams by discrete time slice streams.

Definition 3.7 (Data Stream). A data stream is a total function N → U⋆, i.e., a data
stream is a time slice stream.

Note, that the definition of a data stream works also in case of the absence of messages,
because the universe of entities U includes an entity ξ which denotes the empty entity.
The Focus theory has been initiated and designed to formalize the characteristics of
these systems in mathematical terms which provides a semantic domain for models of
software systems. The theory provides ways to distinguish among many different kinds
of discrete streams. However, we assume that Definition 3.7 is expressive enough for
modeling the processing of discrete data messages by CPSs, as the set of time slice
streams [N → U⋆] is isomorphic to the set of time-synchronous streams
[N → U] [RR11], i.e., both are valid to use for data streams. Technically, data streams
also include the untimed event streams Uω because the set of time-synchronous streams
[N → U] and the set of untimed event streams are also isomorphic [RR11]. Also, timed
event streams of infinite messages U∞ ∪ {

√
} that use the

√
to separate time slices are

technically included because this subset is isomorphic to the subset of infinite timed
event streams [RR11]. Both represent the exchange of messages in a discrete way, but
their interpretation differs [RR11]. In analogy to the stream kinds that represent the
exchange of energy and matter, data streams represent the exchange of data messages.

3.2.5 Signals

In the cyber-physical context, data is not always discrete. Signals represent continuous
data processed, e.g., by controllers or sensors. In a signal, this the relevant information
is represented by physical quantities, whose values convey information, and provide a
technical implementation for exchanging data [BG21]. Here, we consider signals to be
piecewise continuous functions that represent the measurement of the value of the
physical quantity that carries the desired information. Technically, signal streams are
often implemented through streams of energy.

44

3.3 Timed Stream Processing Functions and Behavior

Definition 3.8 (Signal Stream). A signal is a total function R+ → U that is piecewise
smooth, i.e., a signal is a hybrid stream that is piecewise smooth.

3.2.6 Event Streams

Events represent discrete information that trigger system behavior. For example, an
event may be a spike in the value of a physical quantity upon which the system
initiates an action, or that causes a change in the aggregate phase of a material. An
event stream is a sequence of event messages, where each message marks the
occurrence of the event.

Definition 3.9 (Event Stream). An event stream is a finite or infinite sequence of
messages, i.e., an event-stream is an element of the set Uω ∪ {

√
}.

Event streams abstract from timing information [RR11], i.e., an event stream does not
convey any information on the time of occurrence of an event within a time slice. It
solely conveys information on the order of the occurrence of the events within a time
slice. Timed event streams include the time-tick

√
which denotes the beginning or end

of a time slice. The length of the time slice, however, is left open [RR11].

The timed streams considered in this dissertation hold a kind that defines the
properties of the flow of entities represented by the stream. From now on, we denote
the set of available stream kinds by K = {energy, fluid, item, data, signal, event} and
define a mapping kind : TS → K that assigns each timed stream a kind.

A timed stream that does not fall into the categories of energy, fluid, item, data, signal,
or event is not considered a valid representation of a stream of entities in this
dissertation.

3.3 Timed Stream Processing Functions and Behavior

In functional development, a specification of the desired function of a CPS is the target
of all development activities. CPFs are modeled as components with an interface
together with a specification of the behavior of that function. The behavior describes
mathematically how the underlying system shall transform the streams incoming
through the input channels to the outgoing streams of the output channels. This
section provides a formal definition of the term CPF together with a set of properties
that these functions must fulfill to provide an accurate functional specification for a
CPS. In the sequel, this section provides different techniques to specify the behavior of
a CPF.

45

Chapter 3 A Theory of Cyber-Physical Functions

3.3.1 Channels and Histories

A channel is an identifier for an interaction link that is identified by a variable, i.e., the
channel’s name. Channels define the interface of a CPF. Via a channel, a system or
system component receives or transmits entities. Here, channels are typed, i.e., there is
a type assignment that defines the type of entities that enter or leave the system via
the interaction link together with the type of the stream which defines the temporal
behavior of the flow of these entities. Let S be a set of types. A type assignment for a
set C of channels is a mapping type : C → S ×K, where K ⊆= {event,
time-synchronous, timed event, time slice, hybrid, signal set, super dense}
(cf. Table 3.1) is the set that defines a set of stream kinds. A Channel history
represents the interaction history of a channel.

Definition 3.10 (Channel History [Bro12]). A channel history is a mapping
x : C → TS|[0,∞[such that

• x(c) ∈
[
TDx(c) → type(c)1

]
is a timed stream for all channels c ∈ C [SRS99] and

• kind(x(c)) ∈ type(x(c))2 .

where type(x(c))i denotes the i-th element in the tuple type(x(c)) (i ∈ {1, 2}) A set of
channels is called typed iff there is a type assignment defined for the set of channels.

Similar to a channel history, a channel snapshot is a mapping x̂ : C → TS|[t,t′[for
times t, t′ ∈ R+ such that t < t′. By Ĉ we denote the set of all channel snapshots of the
channels in C [Bro12].
Let C,C ′ be two distinct sets of channels. As in [SRS99], we define the addition of two
channel histories x ∈ C⃗, y ∈ C⃗ ′ that coincide on C ∩ C ′, i.e., x|C′ = y|C , as
(x+ y)(c) = x(c) if c ∈ C, and (x+ y)(c) = y(c) if c ∈ C ′.

3.3.2 Behavior

Let I,O be sets of channels, respectively. A tuple I = (I,O) forms an interface, where
the first entry represents the set of input channels and the second entry the set of
output channels. The behavior of such a function is then specified by a set of valid
functions that map the histories of the input channels to the histories of the output
channels. A TSPF on the interface I is a function f : I⃗ → O⃗ that is continuous in the
sense of Definition C.5 with respect to the prefix order on timed streams (Definition 3.3
). These functions provide for each input history exactly one output history [SRS99].
For CPSs, it is not realistic that components produce an output before receiving the
respective input. Causality is the property of TSPFs that models this.

Definition 3.11 (Causality [Bro12]). A TSPF f : I⃗ → O⃗ is causal iff the output until
time t is determined entirely by the input until time t, i.e., x ↓ t = y ↓ t implies that
f(x) ↓ t = f(y) ↓ t, for all x, y ∈ I⃗, and all t ∈ R+.

46

3.3 Timed Stream Processing Functions and Behavior

































Sequential Composition Parallel Composition Feedback Composition

Figure 3.1: Different kinds of composition [SRS99].

Strong causality requires components to take some time to process an input. The
function of a CPS processes discrete and dense streams at the same time.
Mathematically, a system receives infinitely many inputs on a dense channel (i.e., a
channel of a dense kind) between two inputs received on a discrete channel. Therefore,
we could say that the discrete channels “slow down” the transformations of the dense
channels. Strong causality is the mathematical property that formalizes this.

Definition 3.12 (Strong Causality). A TSPF f : I⃗ → O⃗ is strongly causal iff it is
delayed, i.e., iff there exists a delay δ > 0 such that the output until time t+ δ is
completely determined by the input until time t for all x, y ∈ I⃗, all times t ∈ R+, i.e.,
x ↓ t = y ↓ t implies that f(x) ↓ (t+ δ) = f(y) ↓ (t+ δ) [Bro12].

We denote the set of strongly causal TSPFs with delay δ by I⃗
δ→ O⃗. For two delays

0 < δ2 ≤ δ1, it holds that [I⃗
δ1→ O⃗] ⊆ [I⃗

δ2→ O⃗]. As in the traditional Focus on discrete
streams, it follows that strongly causal TSPFs are continuous in the sense
of Definition C.5, and causality is the property that reflects continuity in our setting.
Sets of strongly causal TSPFs specify the behavior of a CPF, i.e., they define a valid
set of transformations of input to output streams.

Definition 3.13 (Behavior). A behavior on an interface (I,O) is a set of TSPFs
B ⊆ [I⃗ → O⃗].

A behavior B ⊆ [I⃗ → O⃗] on an interface (I,O) is called deterministic, iff #B = 1.

3.3.3 Composition

Composition plays an, if not the most important role in the Focus theory. To cope
with the increasing complexity of CPSs we need to decompose the system into
subsystems and be able to develop these subsystems independently [FR07]. Following
the divide and conquer principle, pretty much all engineering domains have established

47

Chapter 3 A Theory of Cyber-Physical Functions

a notion of decomposing the system under development and following this
decomposition when distributing the development tasks. In the physical world
decomposing and reassembling a CPS in this way works because a system composed of
subsystems is, again, a system. Also, we can observe CPSs in the real world that feed
back their outputs as inputs (provided the outputs are of a matching type and kind).
These systems are also CPSs. In our approach, we model CPSs in terms of the
function, i.e., the CPF, it defines. The theory we are proposing models these functions
as an interface together with a set of TSPFs over channel histories of the interface
which defines the function’s behavior. To obtain a proper definition of composition, we
need to prove that the composition of CPFs is again a CPF, and since we define a CPF
as a set of TSPFs over discrete and hybrid streams, we need to show that feedback
composition is well-defined for these functions.
In general, there are three forms of composition: (1) sequential composition, (2)
parallel composition, and (3) feedback composition. Figure 3.1 illustrates these forms
of composition, which are formally defined, e.g., in [BDD+93] or [Rum96]:

Definition 3.14 (Sequential Composition of TSPFs). Let f : I⃗f → O⃗, and g : O⃗ → O⃗g be
TSPFs. Then, the sequential composition of f and g is defined as

(f ◦ g) : I⃗f → O⃗g : x 7→ g(f(x))

The sequential composition of two (strongly) causal TSPFs is again (strongly) causal:
Let f, g be the two TSPFs from Definition 3.14 and assume they are strongly causal.
Because f is strongly causal, there exists δf > 0 such that x ↓ t = y ↓ t implies that
f(x) ↓ t+ δf = f(y) ↓ t+ δf for all t ∈ R+. Since g is also strongly causal, there exists
also δg > 0 such that this implies g(f(x)) ↓ t+ δf + δg = g(f(y)) ↓ t+ δf + δg for all
t ∈ R+.
The sequential composition of two behaviors is defined as the set of TSPFs that results
from the element-wise application of the ◦-operator: Let F : I⃗F → O⃗ and G : I⃗ → O⃗G

be two behaviors. Then,

F ◦G = {f ◦ g | f ∈ F, g ∈ G} ⊆ I⃗F → O⃗G

is a behavior. Because ◦ on TSPFs preserves strong causality, and since all elements of
F and G are strongly causal, also F ◦G is strongly causal.

Definition 3.15 (Parallel Composition of TSPFs). Let f : I⃗f → O⃗f , and g : I⃗g → O⃗g be
TSPFs such that the output channels are disjoint, i.e., Of ∩Og = ∅. In this case, the
interfaces (If , Of) and (Ig, Og) are compatible for parallel composition. Further, let

xf ∈ I⃗f and xg ∈ I⃗g be two input channel histories. Then, the parallel composition of f
and g is defined as

(f ||g) : ⃗If ∪ Ig → ⃗Of ∪OG : x 7→

{
f(x), x ∈ I⃗f

g(x), x ∈ I⃗g

48

3.3 Timed Stream Processing Functions and Behavior

Parallel composition preserves strong causality if both components are strongly causal,
which can be proven in a similar manner as the preservation of strong causality by
sequential composition. Similar to sequential composition, parallel composition is
extended to behaviors by the element-wise application of the composition operator: Let
F : I⃗F → O⃗F and G : I⃗G → O⃗G be again two behaviors with interfaces that are
compatible for parallel composition. Then the parallel composition of F and G is
defined as the behavior

F ||G = {f ||g | f ∈ F, g ∈ G}.

It follows from the compositionality of strong causality that also, F ||G is strongly
causal.

Definition 3.16 (Feedback Composition [Rum96]). Let f : I⃗ → O⃗ be a TSPF that is
strongly causal, and let B ⊆ I ∩O ̸= ∅. Then, feedback composition on the channels in

B, denoted µBf : (
−−−→
I \B) → (

−−−→
O \B) is the smallest function with respect to the order ⊑

on timed streams [Rum96] such that for all i ∈ (
−−−→
I \B) there exists a channel history

s ∈ B⃗ with

(µBf)(i) + s = f(i+ s).

Feedback composition preserves strong causality because (i+ s) ↓ t = (i′ + s′) ↓ t

implies that f(i+ s) ↓ t+ δ = f(i′ + s′) ↓ t+ δ for all i, i′ ∈
−−−→
I \B and s, s′ ∈ B⃗.

In equivalence to sequential and parallel composition, feedback composition is extended
to behaviors by element-wise application of the definition: Let F : I⃗F → O⃗F be a
behavior such that there exists B ⊆ I ∩O ̸= ∅. Then, the feedback composition µBF is
defined as the smallest element (with respect to the order ⊑ on timed streams) of the
feedback compositions of the elements in F , i.e.,

µBF = ⊔{µBf | f ∈ F}.

Feedback composition, again, yields a behavior because feedback composition preserves
strong causality.

While sequential and parallel composition do not require the involved TSPFs to be
strongly causal, feedback composition is only well-defined for strongly causal TSPFs.
Because strong causality implies that the TSPF is continuous with respect
to Definition C.5, the fix point theorem of Knaster-Tarski [Tar55] implies the existence
of the least fix point µBf .

3.3.4 Refinement

Starting the development activities from greenfield or brownfield [DGM+21], the
information about the system under development that is available in the development
process will never be complete. Therefore, descriptions of the CPF under development

49

Chapter 3 A Theory of Cyber-Physical Functions

can also never be complete. As the set of requirements on the system evolves
throughout the entire life-cycle of the system, as errors or failures are detected, it may
not become complete at all [Rum16]. Thus, describing a CPF’s behavior by a
deterministic and fully specified relation that allows only one possible implementation
is hard if not impossible. Further, in some cases, specifying the CPF’s behavior as
non-deterministic is even more accurate than a deterministic specification considering
delays, or energetic fluctuations during system operation, the geometric degrees of
freedom, or desired variability of the system. Thus, describing a CPF must allow
explicating a lack of information, and non-determinism. A description of a CPF may
include underspecifications which allows for a range of possible implementations. The
theory above allows to specify the behavior of a CPF as a set of TSPFs which
represents this underspecification: The set defines a solution space for the
implementation of the behavior. Further, using sets enables one to regard
non-determinism by including different kinds of behavior on the same input history.
Capturing the system as an underspecified CPF facilitates inventing new engineering
solutions to existing challenges and paves the way for innovation. In this dissertation,
we consider an open-world assumption [DKMR19, NRSS22] regarding
underspecification: Interpretations of the models shall consider whatever is not
modeled to not be restricted. Section 4.2 defines a functional model-driven
methodology for engineering CPSs that builds on the principle of iterative refinement.
Compositionality and including controlled underspecification in the specifications are
prerequisites for this approach. The methodology formalizes the idea that the
development activities aim at lifting the underspecification in the models where
information is missing. A new version of a model refines another, iff it contains less
underspecification than the previous version. Throughout the development, the models
that represent the current development state of the system are iteratively refined by
adding the information that is obtained during the development to the models.
Therein, refinement is a formal relation among two specifications that represents
moving on to the next development step. In this dissertation we consider the
development to proceed through iterative refinement, i.e., each new version of a model
contains more information than the previous version [DKMR19]. Further, we consider
the two different types of refinement, i.e., property refinement and interaction
refinement, described in [Bro12].
The idea is that everything that was proven for a system that conforms to the previous
model should hold for a consecutive version.

Definition 3.17 (Property Refinement [Bro12]). Let F ⊆ [I⃗ → O⃗) be a behavior. The
behavior F ′ ⊆ [I⃗ → O⃗] is called a property refinement of F iff F ′ ⊆ F .

Property refinement describes the notion of including new information in the
specification of a CPF’s behavior e.g., when new information is available in the
development process [DKMR19].

50

3.3 Timed Stream Processing Functions and Behavior

F1

F2

AI AORI RO

abstract, includes

less information

abstract, includes

more information

Figure 3.2: Illustration of interaction refinement, found similarly in [Bro12].

Property refinement is compositional [Bro12], meaning that given a refining behavior
F ′ of a behavior F (i.e., F ′ ⊆ F) and another behavior G, then it holds that
F ′ ◦G ⊆ F ◦G, F ′||G ⊆ F ||G, and also µBF

′ ⊆ F . This follows naturally from the
definition of the composition operators on behaviors as the element-wise application of
the composition on TSPFs.

Interaction refinement corresponds to the notion of including new information in the
interface of a functional specification. It enables consistently (1) changing the names
and the number of the input and the output channels of a component, and (2) changing
the types of the channels in a component’s interface [Bro12]. Let C,C ′ be two sets of
channels. Interaction refinement is described by a pair of two functions A ∈ [C⃗ ′ → C⃗]
and R ∈ [C⃗ → C⃗ ′]. The function A specifies the abstraction, i.e., defines a relation
between the channels of the new, more concrete component, while the function R
defines a relation between the channels of the abstract component to the concrete
component. To accurately represent this, we require that (R ◦A)(x) = x for all
concrete channel histories x ∈ C⃗ ′. We will refer to the tuple (A,R) as a refinement pair.

Definition 3.18 (Interaction Refinement [Bro12]). Let F1 ∈ [I⃗1 → O⃗1] and
F2 ∈ [I⃗2 → O⃗2] be two behaviors. We call F2 an interaction refinement of F1 iff there
exist two refinement pairs (AI , RI) and (AO, RO), where AI ∈ [I⃗2 → I⃗1],
RI ∈ [I⃗1 → I⃗2], AO ∈ [O⃗2 → O⃗1], and RO ∈ [O⃗1 → O⃗2] such that AO ◦ F2 ⊆ F1 ◦AI ,
i.e., the sequential composition AO ◦ F2 is a property refinement of F1 ◦AI .

Because property refinement is compositional, also interaction refinement is
compositional. That is, assuming that F1 is a component either in a sequential,
parallel or feedback composition, replacing F1 by F2 yields an interaction refinement
of the composition which follows directly from the fact that property refinement is
compositional.

51

Chapter 3 A Theory of Cyber-Physical Functions

name n (list of parameters P)
CPF

in list of typed input channels I = [i1, i2, . . . , in | n ∈ N<∞]
out list of typed output channels O = [o1, o2, . . . , om | m ∈ N<∞]

Behavior specification B : I⃗ × O⃗ → B

Table 3.2: Specification scheme for CPFs based on [Bro10].

3.4 Specifying Cyber-Physical Functions

A specification formalizes functional system requirements and thereby provides an
underspecified model of the desired system. During the development process, such
specifications are iteratively refined to, finally, obtain a specification of how the system
implements the desired functionality. This section elaborates on how to specify the
behavior and interface of a CPF. Similar to [BS01], we utilize interface assertions,
HIOSs, and architectural specifications to obtain a functional model of a CPS.
An abstract syntax for a functional specification defines a CPF as a tuple comprising
an interface and a behavior.

Definition 3.19 (Cyber-Physical Function). A CPF is a tuple F = [I,O,B], where

• (I,O) is an interface,

• B ∈ [I⃗ → O⃗] is a behavior.

For a concrete syntax we use the specification scheme is depicted in Table 3.2 which is
adapted from [Bro10]. Here, we also allow parameters to enable flexible definitions of
functional components. Such a scheme denotes a CPF specification that is not further
decomposed, which is called an elementary specification in [BS01]. We use MontiArc’s
C&C-like notation introduced in Section 1.3.4 to specify a CPF as the composition of
other CPFs. This is elaborated in Section 3.4.3. The CPF-tag in the upper right
corner allows uniquely identifying the specification as a CPF specification. In both the
tabular notation and the MontiArc notation, the channels must have a type and a kind
indicated by the stereotype and the stereotype must fit the kind of the channel’s type.
This defines the type assignment for the input and output channels of the modeled
function.

3.4.1 Specification by Interface Assertions

Interface assertions are formulae in predicate logic over the identifiers of the input and
output channels [Bro12]. They provide one technique to specify the behavior of a CPF
as a set of TSPFs: Being a logical formula, the interface assertion defines a predicate

52

3.4 Specifying Cyber-Physical Functions

p : I⃗ × O⃗ → B. The predicate holds for a pair of input and output histories iff the pair
fulfills the interface assertion. Thus, the predicate defines a behavior as the set of
TSPFs that fulfill the predicate via F = {f ∈ [I⃗ → O⃗] | ∀i ∈ I⃗ : p(i, f(i))}.
In this formalism, the behavioral specification of the tabular scheme in Table 3.2 is
given by a formula in predicate logic over the set of channel names and possible internal
variables. The formula defines a predicate on TSPFs. Those TSPFs that fulfill the
predicate are in the semantics of the specification. The behavior of a CPF is, therefore,
the set of TSPFs for which the predicate defined by the interface assertion holds.
The semantics of a CPF specification in the scheme of Table 3.2, denoted JnK is the set
of behaviors that fulfill the predicate defined by the interface assertion, i.e.,

Jn(P)K def
= {f ∈ [I⃗ → O⃗] | ∀x ∈ I⃗ : B(x, f(x))}

Interface assertions are a specification technique that is suited to specifying
transformations of only dense streams, only discrete streams, or of hybrid
transformations.

Specifying transformations of dense streams in interface assertions In mechanical
engineering, it is common practice to specify the transformation of energy by the power
balance stating that the outgoing power must not be greater than the incoming power
which derives from the law of energy conservation. Example 3.1 and Example 3.2 give
examples for the specification of two CPFs that transform energy and matter by an
interface assertion.

Example 3.1 (Electric Drive). An electric drive converts electrical energy to rotational
energy. Table 3.3 provides the specifications of the corresponding channel types and of
the CPF defined by an electric drive which could be part of the functional specification
of the corresponding mechanical system using the mechanical design methodology
introduced in [Kol98] The specification uses the power balance: Abstracting from
energetic losses, the outgoing power must be equal to the incoming power. Section 5.3
discusses the formulation of interface assertions, modeling energetic losses, and delay.

Example 3.2 (Connect Fluid with Energy). Centrifugal pumps employ, e.g., a
paddlewheel [HJZ+21] which rotates to bring fluid material into motion. That is, to
apply motion energy to the fluid, which, in the case of the paddle wheel solution is
provided as rotational energy. Table 3.4 specifies the material type water and a CPF
that causes fluid water to flow. Again, we utilize the power balance to specify how the
function applies the fluid with energy and abstract from potential energetic losses: The
power carried by the outgoing fluid must be equal to the power received by the function
carried by the input fluid and rotational energy. The variable ε again enables to specify
a threshold for allowed energetic losses. The specified CPF generates an output stream
of a fluid material kind that carries energy such that the power of that stream of energy

53

Chapter 3 A Theory of Cyber-Physical Functions

«energy»
ElectricalEnergy

Current current
Voltage voltage

CPCD

«energy»
RotationalEnergy

Torque3 torque
AngularVelocity3 angularVelocity

ElectricDrive(R+δ)
CPF

in «energy» ElectricalEnergy e
out «energy» RotationalEnergy r

∀t ∈ R+ :
pow(e)(t) = pow(r)(t+ δ)

Table 3.3: Specification of the CPF defined by an electric drive.

carried by the fluid is obtained by adding the power of the incoming stream of motion
energy to the stream of energy carried by the incoming fluid. The ε allows energetic
losses (see Section 5.3 for a discussion on energetic losses in CPF specifications).

Specifying hybrid transformations of dense and discrete streams Energy and fluid
matter are represented by dense hybrid streams, i.e., by the set [R → U]. A
characteristic of a CPS, however, is its hybrid nature because these systems process
energy, matter, and data, i.e., dense and discrete streams at the same time. CPFs that
process, e.g., energy and data, are hybrid components because they process energy and
data streams which are represented by dense and discrete streams at the same time.
The upcoming Section 3.4.2 details how to specify such CPFs using HIOSs. Interface
assertions, however, can also be used to specify true hybrid CPFs. The example of a
power amplifier which is based on an example from [Bro12], given in our notation
in Example 3.3 illustrates this.

Example 3.3 (Power Amplifier [Bro12]). The example of an amplifier is a specialized
version of the example in [Bro12]. A power amplifier increases the power of an
incoming energy stream by the last value provided on a data input channel. Because the
kind of the input channel is data, the streams that represent histories of this channel
are discrete. The specification in+Table 3.5 specifies this functionality. The parameter
δ defines a time granularity. The interface assertion states that the power generated on
the output port p2 in the interval [tδ, (t+ 1)δ[is determined by the power received on
the input port p1 during the time interval [(t− 1)δ, tδ[multiplied by the last actual
value received on the data input port x. The specification is taken from [Bro12].

54

3.4 Specifying Cyber-Physical Functions

«energy»
MotionEnergy

Velocity velocity
Force force

CPCD

«material»
Water

MotionEnergy e

ApplyWaterWithRotationalEnergy(R+δ)
CPF

in «energy» RotationalEnergy m, «fluid» Water w1
out «fluid» Water w2

∀t ∈ R+ :
pow(w2.e)(t+ δ) = pow(w1.e)(t) + pow(m)(t)

Table 3.4: Specification of a CPF that causes a fluid coolant to flow.

PowerAmplifier(R+δ)
CPF

in «energy» Power p1, «data» R+ x
out «energy» Power p2

∀t ∈ R+ :
p2(t+ δ) = p1(t) · lt(x, t)
where
T (x, t) = {n ∈ TDx | n ≤ t− δ} ̸= ∅ ⇒ lt(x, t) = x(max(T (x, t)))
T (x, t) = ∅ ⇒ lt(x, t) = 0

Table 3.5: Specification of a CPF that causes a fluid coolant to flow.

55

Chapter 3 A Theory of Cyber-Physical Functions

Add
CPF

in «data» Z d1, «data» Z d2
out «data» Z d

∀t ∈ N :
d(t) = d1(t− 1) + d2(t− 1)

Table 3.6: Specification of a CPF that adds up two integers.

Specifying transformations of discrete timed streams Discrete timed streams, so
far, are mainly considered in the Focus theory. The theory has been developed with
discrete timed streams in mind as it emerged in the domain of software engineering to
support the MDE of software and software intensive systems. These systems interact
by exchanging discrete data messages, where the exchange of continuous entities as
energy or fluid matter does not play a role. Literature on Focus provides various
examples of such specifications, therefore, we provide a simple example of a component
that adds two numbers.

Example 3.4 (Add). Consider the addition of two integer numbers. A CPF that
performs such a transformation takes two integer data streams as input and produces
one integer data stream as output. The behavior is such that at any point in discrete
time, the output is the sum of the last two messages received on the input streams.
Table 3.6 provides a CPF specification for a component that adds two integers. Note
that data streams are discrete and therefore, the time domain of the streams in the
specification is the set of natural numbers N.

3.4.2 Specification by Hybrid Automata

Hybrid I/O Automata (HIOS) provide a common modeling tool to specify the behavior
of hybrid systems that process discrete and dense streams at the same
time [Bro12, Alu15, Pto14]. HIOSs define computations, i.e., infinite runs of
transitions, by defining a stream of states and an output history for each input channel
history [Bro12]. In this sense, a HIOS provides much more detail on how the system
shall perform a transformation while abstracting from details of the technical
implementation. This specification technique is particularly suited to specify the CPFs
defined by sensors and actuators that sense or enact upon the occurrence of an event in
a stream.

Hybrid I/O State Machines (HIOS) Automata are a powerful mathematical tool to
describe behavior in a state-based manner. HIOSs accurately describe the behavior of

56

3.4 Specifying Cyber-Physical Functions

hybrid systems, i.e., those systems that process discrete, and dense streams at the
same time [Bro12, Alu15, Pto14]. Various definitions of this kind of state machine
exist, we utilize a version that defines them as a generalization of Mealy machines
proposed in [Bro12]: A HIOS is a tuple (Σ,Λ,∆, I, O), where

• Σ is a (possibly infinite) set of states,

• Λ ⊆ Σ is a set of initial states,

• ∆ : (Σ× Î) → ℘(Σ× Ô) is a state transition function,

• I and O are sets of input and output channels, respectively.

Such a machine produces for every pair (σ, α) ∈ Σ× Î a pair (σ′, β) ∈ ∆(σ, α)
containing the successor state σ ∈ Σ and the output channel snapshot β ∈ Ô that is
produced by the state transition prescribed by ∆ [Bro12].

A computation of a HIOS is a triple of three infinite streams (x, σ, y) ∈ Îω × Σω × Ôω,
where x = x1x2 . . . ∈ Îω, y = y1y2 . . . ∈ Ôω, and σ = σ0σ1 . . . ∈ Σω such that
(σi+1, yi+1) ∈ ∆(σi, xi+1) for all i ∈ N0.

We use the he following discretization that associates a discrete stream of channel
snapshots with each channel history adapted from [Bro12] to define the semantics of a
HIOS CPF specification based on computations: Consider a HIOS (Σ,Λ,∆, I, O). Let
t0, t1, . . . ∈ Rω

+ be a sequence of times, and let x ∈ I⃗ be an input channel history. Then,

we can associate with x a unique discrete event stream x̂ ∈ Îω of channel snapshots
(see Section 3.3.1) via

x̂i+1 = x|[ti,ti+1[

for i ∈ N0. A given HIOS generates for every sequence of input channel snapshots a
sequence of states σi ∈ Σω and a sequence of output snapshots ŷ ∈ Ôω by choosing
σi+1 such that

(σi+1, ŷi+1) ∈ ∆(σi, x̂i+1).

Then, there is a channel history y ∈ O⃗ that is uniquely associated to ŷ via

y|[ti,ti+1[= ŷi+1.

The channel history y ∈ O⃗ is obtained by concatenating the snapshots ŷi+1 for all
i ∈ N0. This defines streams of channel snapshots x̂ = x̂0, x̂1, . . . Î

ω and
ŷ = ŷ0, ŷ1, . . . ∈ Ôω and a stream of states σ = σ1, σ2, . . . ∈ Σω. The tuple (x̂, σ, ŷ) is
then a computation of the HIOS. The semantics of the HIOS specification in Table 3.7
is the set of all such computations:

J(Σ,Λ,∆, I, O)K def
= {(x, σ, y) ∈ Îω × Σω × Ôω | (σi+1, yi+1) = ∆(σi, xi+1)∀i ∈ N0}.

57

Chapter 3 A Theory of Cyber-Physical Functions

There are different ways to define the time series that enables this discretization. The
approach proposed in [Bro12] does so by imposing the following restriction on the
HIOS:

A HIOS is called time-based iff there exists a mapping time : Σ → R+ such that for all
σ, σ′ ∈ Σ, α ∈ Î, and β ∈ Ô such that (σ′, β) ∈ ∆(σ, α) it holds that
time(σ) < time(σ′). A HIOS is a δ-step timed state machine iff it is time-based and for
all (σ′, β) ∈ ∆(σ, α) with time(σ) = jδ and interval(α) = [jδ, (j + 1)δ[it holds that
time(σ′) = time(σ) + δ and interval(β) = [jδ, (j + 1)δ[for all j ∈ N. In [Bro12] the
discretization above is defined for δ-step timed state machines for which ti = iδ, i ∈ N0

provides a convenient way to define computations of HIOS.

The HIOSs definition given in [Cam14] is much more complex and enables to define the
sampling dynamically. It is possible but out of the scope of this dissertation to adapt
these HIOSs and integrate them into CPF specifications.

HIOS Specifications of CPFs To utilize HIOSs for specifying the behavior of a CPF
as a set of TSPFs, we embed a graphical notation for hybrid automata similar to those
introduced in [ACH+95, Cam14] into the tabular scheme to specify functional behavior
in this way. Table 3.7 shows an example of such a specification for a thermostat that
includes all elements of the notation. Example 3.5 provides details on the example and
on the relation to the HIOS definition introduced above.

The semantics of a CPF specification that uses HIOSs is then the set of all TSPFs that
assign to each input history the output history obtained from the computation of the
HIOS. The semantics of a CPF whose behavior is specified by a HIOS, is then the set
of TSPFs that assign to each input channel history x⃗ ∈ I⃗ the output channel history
y⃗ ∈ O⃗ such that the associated discrete streams of channel snapshots and states
(x, σ, y) is a computation of the HIOS. That is, given a fixed series of times
t0, t1, . . . ∈ Rω

+ that uniquely determines x̂ and ŷ for all x ∈ I⃗ and y ∈ O⃗,

Jn(P)K = {f ∈ [I⃗ → O⃗] | ∀x ∈ I⃗ ∃y ∈ O⃗ ∃σ ∈ Σω : (x̂, σ, ŷ) ∈ J(Σ,Λ,∆, I, O)K ∧ (3.9)

f(x) = y}.
(3.10)

These ideas were introduced in [Bro12].

Example 3.5 (Thermostat). The model in Table 3.7 specifies the CPF defined by a
thermostat similar to the example presented in [ACH+95]. The parameters of the
specification are all temperatures which is a physical quantity. Here,
Temperature

def
= R+(K) models the physical quantity temperature whose SI-unit is the

Kelvin.

Once the room temperature drops below a minimal value min ∈ Temp, the heater is
turned on and provides the temperature tmp. Once the room temperature reaches a

58

3.4 Specifying Cyber-Physical Functions

CPF

Thermostat(R+(K) minT,R+(K) maxT,R+(K) tp0,R+(K) roomConst,
R+(K) heatProvided)

in «data» R(K) room
out «energy» R(K) tmp

tmp0(0) = maxT
tmp0(t) = tp0 exp

− roomConst ·t ∀t ∈ R+

tmp1(0) = minT
tmp1(t) = tp0 exp

− roomConst ·t+heatProvided(1− exp− roomConst t)∀t ∈ R+

Table 3.7: Specification of the CPF defined by a thermostat with a HIOS which was
similarly published in [ACH+95].

59

Chapter 3 A Theory of Cyber-Physical Functions

feel-well level of max ∈ Temperature, the heater is turned off, and the output
temperature of the heater decreases. The model has a data input that carries
information about which temperature is measured in the room and an energy output
that describes how the (physical) room temperature shall change. The minimal and
maximal temperatures min, and max, as well as the initial room temperature T0, the
provided heating power heatProvided, and the room constant roomConst are
parameters of the specification. The set of input channels and the set of output
channels both contain one element, i.e., I = {room}, and O = {tmp}, where
type(room) = R+(K), kind(room) = data, and type(tmp) = R+(K),
kind(tmp) = energy, respectively. The set of states consists of elements of the form
Σ = {off, on}. The physical room temperature changes according to the specifications
within the states as specified by tmp0 and tmp1. The set of initial states contains the
element (off), and the state transition function is given as

∆(d, room) =

{
(off, tmp0 |[t,δ(t,room)[) d = on, lt(room, t) ≥ maxT

(on, tmp1 |[t,δ(t,room)[) d = off, lt(room, t) ≤ minT
,

where

• δ(t, x) = min{t′ > t| x(t′) ∈ {minT,maxT}} represents the next time that the
measured room temperature received on the input port reaches the value minT or
maxT respectively, and

• lt(x, t) = x(max{t′ ∈ R+ | t′ ≤ t, x(t′) ∈ R(K) \ {ξ}}) is the last value received on
the channel x before time t.

Example 3.6 (Electrical Switch). An electrical switch enables switching electrical
devices on and off. It defines a subsystem that interrupts or connects a stream of
electrical energy. In this example, we consider a mechanical switch that takes as input
a signal indicating that a force acts on a mechanical button and a stream of electrical
energy. If the switch is turned on, it provides a stream of electrical energy with the
same power as comes in on the input channel, or provides a stream of electrical energy
with 0W. In this specification, the interface is defined as the set of input channels
I = {f, in}, and output channels O = {out}. The function is parametrized with the
minimal force needed to press the switch fmin. The set of states Σ contains the discrete
states on, and off and the continuous states out0, and out1 describing the evolution of
the output energy out. Therein, the set of initial states comprises only the element
(off, out0) The state transition function, ∆ is defined via

∆(d, f)


(off, out0 |[t,δ(t,f)[) d ∈ {on}, ||f(t)||3 ≥ ||fmin||3
(on, out1 |[t,δ(t,f)[) d ∈ {off}, ||f(t)||3 ≥ ||fmin||3
(on, out1 |[t,δ(t,f)[) d ∈ {on}, ||f(t)||3 < ||fmin||3
(off, out0 |[t,δ(t,f)[) d ∈ {off}, ||f(t)||3 < ||fmin||3

60

3.4 Specifying Cyber-Physical Functions

Switch(Force3 fmin)
CPF

in «signal» R3(N) f, «energy» ElectricalEnergy in
out «energy» ElectricalEnergy out

f t  ≥ f 

f t  ≥ f 

Off

pow out t =	

pow out (t)

On

pow out t =	

pow(out)(t)

f t  < f 

f t  < f 

pow(out0)(t) = 0W ∀t ∈ R+

pow(out1)(t) = pow(in)(t) ∀t ∈ R+

Table 3.8: HIOS specification of the CPF defined by an electrical switch.

where δ(t, f) = min{t′ > t| ||f(t)||3 ≥ ||fmin||3} represents the next time after t, when
the absolute value of the incoming force f exceeds the minimal force ||fmin||3 needed to
activate the switch.

3.4.3 Architectural Specification

Architectural specifications define the functional behavior through the functional
composition of multiple CPFs. In [Bro10], this specification technique is called the
compositional specification. That is, functional composition in the mathematical sense
(cf. Section 1.3.1). The specification, again, defines the functional behavior as a set of
TSPFs, i.e., those that result from the composition of the composed functions. Based
on [BDD+93], Section 3.3.3 has introduced sequential, parallel, and feedback
composition for hybrid TSPFs, i.e., TSPFs that operate on channel histories with both
discrete and dense image domains. For compositional specifications, we utilize a
C&C [Kus21] notation, that is very similar to MontiArc [HRR12a] (cf. Section 1.3.4).
The compositional specification declares the stream kind of connectors in addition to
their types allows referencing physical quantity types by the number domain and the
SI-unit, and holds the CPF tag. Figure 3.3 provides the compositional specification of
a pump which is a slight adaptation of the example provided in [Kol85]. The
specification composes the CPFs defined in Table 3.8, Table 3.3, and Table 3.4. In this
case, the specification represents a parallel composition of these three functions. In the
notation, the interfaces are represented by named ports and connected by typed

61

Chapter 3 A Theory of Cyber-Physical Functions

«energy»

ElectricalEnergy
Switch	S f ElectricDrive	D(, 1)

ApplyCoolantWith

RotationalEnergy	P(2)

f

out e

m

r

1 2

«fluid»

Coolant

force

c_still c_flow

HydraulicPump(ℝ	δ, Force	f)

«energy»

RotationalEnergy

«signal»

ℝ(N)

CPF

«fluid»

Coolant

«energy»

ElectricalEnergy

e in

Figure 3.3: Architectural specification of the CPF defined by a pump similar to [Kol85].

connectors which is the notation of MontiArc.

Rotational energy is the form of energy that is characterized by torque (Nm) and
angular velocity (rad s−1). Turning the pumping system off corresponds to requesting
the pump to operate at a power of zero Watt, while turning the pumping system on
corresponds to its operation at a power that is greater than zero Watt. This power
demand is proportional to the conveying capacity [GBG18]. In contrast
to [Kol85, Kol98], we specify the function with only one input signal telling the power
the pumping system shall operate at. Figure 3.3 shows the formalization of the
pumping system provided in [Kol85, Kol98] using the definitions from Example 3.1, 3.2,
and Example 3.6. Instead of symbols or a substantive and verb to describe the
functional behavior which is common in mechanical design theory (cf. Chapter 5), we
utilize logic to specify the behavior of these subfunctions [Bro10]. The switch
subfunction takes a signal stream as input that represents the force applied to a button
by the user. Here, the force is taken as a signal, as the force carries the information of
whether or not the user would like to turn the system on or off. If the switch is turned
on, it provides the electrical energy a delay of δ > 0 it has received as input. The drive
function converts the electrical energy to motion energy. The specification uses the law
of energy conservation and abstracts from losses. That is, at all points in time t, the
power exchanged through motion energy until time t is less than or equal to the power
received as electrical energy until time t. Power is determined by the product of the
two physical quantities that describe the respective form of energy. The pump function

62

3.4 Specifying Cyber-Physical Functions

«event»

ButtonPress
ButtonPressSensor	E f ButtonSwitch	BtnSwtch

f b

in

force

ElectricalButtonSwitch(Force	f)

«energy»

ElectricalEnergy

«signal»

ℝ(N)

CPF

supply

ebtn out

«energy»

ElectricalEnergy

Figure 3.4: Decomposed specification of the electrical switch.

applies the motion energy to the fluid, by converting it to compression energy.
However, the compression is carried by the fluid, therefore the incoming and outgoing
streams are fluid streams. The specification uses the law of energy conservation for the
drive function. However, the function can also be realized in another domain, and we,
therefore consider the more abstract, and general specification of this function, here.

Example 3.7 (Electrical Switch with Button Press). For switching on or off electrical
devices often have a mechanical button. Pressing the button turns the system on or off
depending on whether it has been off or on, respectively. To specify this CPF, we
decompose the specification in Table 3.8 as shown in Figure 3.4. To this effect,
Table 3.9 defines a CPF that provides electrical energy once it receives a button press
event. The data type ButtonPress has been defined previously in Table 2.5.
Further, Table 3.10 specifies the CPF of a physical button. It can be interpreted as the
CPF defined by a sensor that measures the amount of force that a user applies to the
physical interface of the function which was already outlined in Section 3.2.6. The
function takes a force as input. Once this force exceeds a minimal force fmin, the
function sends a ButtonPress.PRESS event on the event output port b.

63

Chapter 3 A Theory of Cyber-Physical Functions

ButtonSwitch
CPF

in «event» ButtonPress b, «energy» ElectricalEnergy in
out «energy» ElectricalEnergy out

b == ButtonPress. PRESS

Off

pow(out)(t) 	= 	0W

On

pow(out)(t) 	

= pow(in)(t)

b == ButtonPress. PRESS

b == ButtonPress.NOTPRESS
b == ButtonPress.NOTPRESS

Table 3.9: HIOS specification of the CPF defined by a switch that reacts to a button
press event.

ButtonPressSensor(Force3 fmin)
CPF

in «signal» R3(N) f
out «event» ButtonPress b

Off On

f t  ≥ f  /

b = ButtonPress. PRESS

f t  ≥ f  /

b = ButtonPress. PRESS

f t  < f  /

f t  < f  /

Table 3.10: The ButtonPressEvent specifies the occurrence of a ButtonPress in a stream
of force. It enhances the definition of the event type ButtonPressEvent by
specifying when the events occur in the stream of force.

64

Chapter 4

A Methodology for Functional
Model-Driven Engineering of CPSs

Engineering innovative systems has become a complex task due to many
reasons [FR07]. One of them are interdisciplinary development teams and the shift
toward functions being the innovation drivers continue to increase this complexity
significantly. As [Rum96] emphasizes, traditional engineering disciplines apply norms,
standards, and guidelines known throughout the entire domain to systematize,
structure and support the engineering process at all phases. An example of such a
standardized process is the product development process described in [GBP+21a] for
mechanical engineering. Due to the interdisciplinarity of systems engineering,
methodologies in this field must regard the peculiarities of all of the domains. What
systems engineering methodologies mostly have in common is that they utilize models
to describe the system under development focusing on various aspects of the system.
This dissertation is concerned with introducing an abstraction layer between the
requirements that are mostly functional and descriptions of the system’s
implementation. To answer the research question RQ4 “What are the constituents of
an MDE methodology that targets the development of system functions?”, this chapter
defines the functional development paradigm by the five principles. So far, we have
defined these principles for the domain of CPSs. Based on that, we define a formal
model-driven methodology that follows the functional development paradigm.

4.1 The Functional Development Paradigm

In traditional software engineering, a programming paradigm facilitates developers to
create code in high quality, by giving aid and instructions for creating solutions to
complex problems [Lei21]. The paradigm defines the focus of the development activities
and proves guidelines on how to evolve the elements of focus to finally obtain a solution
to the problem. Similarly, an engineering paradigm puts one or more aspects of the
object to be engineered into focus to guide, structure, and link development activities.
A software engineering paradigm is characterized by the (formal) definition of the set of
aspects that should guide the development. Examples are object orientation or MDE.

65

Chapter 4 A Methodology for Functional Model-Driven Engineering of
CPSs

The model-driven paradigm is a paradigm in which development decisions are made
based on the information stored in models that is characterized by the three aspects
(1) model, (2) modeling language, and (3) methodology. A model is a purposeful
representation of an original system that is reduced or abstracted from its size, detail,
and/or functionality [Sta73]. The purpose determines what the model is used for in the
development process. In MDE, models reflect the state of the system under
development at any point in time during the development process. They serve multiple
purposes, in particular, not only documentation purposes, but enable to automate
specific tasks in the development process. Establishing the model-driven paradigm
requires the definition of a modeling language in which models are created by the
developers. Therein, a modeling language consists of the definition of a set of
well-formed models, a semantic domain which is defined based on a sound
mathematical theory, and a semantic mapping that assigns each well-formed model a
set of meanings from the semantic domain [Kau21, HR04].

The methodology defines a (formal) framework that structures the way and time models
are created during the development process. In terms of [Rum96] a formal methodology
consists of 1. a set of model kinds, 2. a formal semantics for each kind of model, 3. a set
of development steps that transform the models that are also formally grounded, and
4. a set of guidelines of when and with which aim to apply each transformation.

This chapter characterizes the functional development paradigm by four aspects that
structure the model-driven development of systems, define of a semantic domain for a
functional modeling language that is detailed in Chapter 6 and set up a methodology
that enables functional model-driven engineering.

4.1.1 The Five Principles of Functional Development

Nowadays, innovations in modern systems arise from an increasing number of functions
and features that are implemented by interacting software, mechanical, and electrical
components or subsystems. Engineering such innovative systems while maintaining
accuracy and efficiency throughout the entire development process requires to
overcome the conceptual gap between requirements and implementations in a way that
enables the efficient collaboration of experts from heterogeneous domains. The
application of agile principles is necessary to support large-scale engineering of CPSs
which requires automating tasks such as change management, testing or dimensioning
which is the process of finding optimal values for geometric properties. The efficiency
is, among others, driven by reuse and iterative refinement which decrease the amount
of accidental complexities and improve the documentation of information through
standardization and automation. Decomposing the system along the innovation driver
enhances the reuse of known and validated solutions, while it minimizes the need for
communication among teams because the interdependencies among the components are
clarified in a model. In the engineering of distributed software or embedded systems,

66

4.2 Formal Methodology for Engineering CPSs

functions are already the target of well-established development methodologies.
Surprisingly, mechanical design theory has also recognized that making a (mechanical)
system’s function the target of the development has many advantages, e.g., by
structuring the creative process of finding geometric designs such that physical effects
come into action in a way that a dedicated purpose is met [BG21, Kol98].

The functional development paradigm developed in this dissertation thesis, therefore,
promotes five principles: (1) streams of energy, matter, and data are the inputs and
outputs of a CPS, (2) a CPS transforms these streams and, thereby, defines a function
which has become the main innovation driver and is, thus, considered the target of the
development, (3) controlled underspecification enables to, among others, include
information as soon as it is available and to identify the lack of information
(automatically). Further, it allows to include uncertainty and to restrict the solution
space such that its exploration becomes manageable. (4) The task of developing a CPS
must be decomposed into smaller tasks to develop subsystems to cope with the
complexity, thus the composition of two or more CPFs yields a CPF, and (5) refinement
allows to narrow the solution space iteratively and include newly obtained information
in the models directly. As refinement respects composition, this approach contributes
to coping with the complexity of CPSs as it enables to engineer sub-tasks individually.

These aspects have been formally defined in the previous Chapters 2 and 3. The
following section will define a formal methodology based on the theory that follows the
principles of the functional development paradigm.

4.2 Formal Methodology for Engineering CPSs

The preliminary Section 1.3.2 introduces the foundations of formal methodologies.
This section uses these foundations to define a formal methodology for the functional
engineering of CPSs. It includes two kinds of models, i.e., functional specifications of
CPFs and type definitions by CPCDs. Functional specifications define the interface
and behavior [Bro12] of a CPF. The types of channels in the interface are defined by a
CPCD. The respective modeling languages were introduced in Chapter 2 and 3,
respectively. The semantic composition of CPFs has been introduced in Section 3.3.3.
Their syntactic composition is introduced in Section 3.4.3. A way of composing CPCDs
semantically sound is introduced in [LRSS23].

Development steps are transformations of the set of models which means, either models
are added to this set, or models in the set are transformed in some way. At any time,
the set of all models describes the current development state of the system. To prevent
ambiguities, this set must remain consistent in the sense of Definition 1.5 and free of
redundancies. Therefore, it is necessary to perform (automated) checks for
redundancies and inconsistent models after each transformation. Also, our
methodology applies the idea of the SMARDT methodology [DKMR19] that once a

67

Chapter 4 A Methodology for Functional Model-Driven Engineering of
CPSs

TestCase

CPF

Requirement

CPCD

TestCase

Requirement /

New information

CPF CPCD

refinement /

refactoring

derive

derive &

integrate
TestCase

transfer

… …

Requirement /

New information

consistent &

non-redundant

consistent &

non-redundant

refinement /

refactoring

Figure 4.1: Illustration of a development step in the functional MDE methodology for
CPSs.

test case is created it must hold throughout the rest of the development. Figure 4.1
illustrates the idea of the methodology: Based, e.g., on requirements, engineers create a
functional model of the system. In this process, modelers interpret e.g., textual
requirements, and derive a (set of) CPF specification(s) together with the necessary
types in a CPCD. A functional model of the system in its current state of development
is given by the CPF and the CPCD. The CPFs and CPCD are enhanced with a set of
test cases that allow validating whether the models represent a system that
corresponds to the requirements. In each development step, the existing set of test
cases is transferred as they are and run to validate correctness with respect to the
former set of requirements [DKMR19]. This set is complemented by new test cases to
validate correctness with respect to the new or adapted models. Checks for redundancy
and consistency are performed after each transformation of these models. A
transformation is accepted iff the set of models is free of inconsistencies and
redundancies and iff the transformation yields a refinement or a refactoring of the
original models. Performing a transformation corresponds to a development step and
produces a new version of the original model. Each development step aims to either
refactor, i.e., change the model’s syntax without changing its semantics
(cf. Definition 1.8), or refine, i.e., changing the model’s syntax such that the semantics
of the new version is a subset of the former (cf. Definition 1.7), the specification. A
formal methodology provides a set of development steps together with guidelines on

68

4.2 Formal Methodology for Engineering CPSs

when to apply them [Rum96] (cf. Definition 1.9). Transformations of CPCDs and
guidelines on when to apply them are provided in [Rum96].

4.2.1 Transformations of the Interface of a Functional Specifications

In our methodology, functional specifications are given by CPFs which were introduced
in Chapter 3. Transformations of these models can be performed by changing the
interface or by changing the behavior specification. Both kinds of transformations can
be performed within a single development step. However, for checking refinement, it
makes sense to analyze the transformations with respect to refinement separately.
Similar to [SRS99], we consider transformations of the interface to prepare certain
transformations of the behavior that require new input or output channels.

Concerning the interface, the modeler can modify a CPF by

• renaming a channel,

• adding a channel,

• removing a channel,

• changing the type of a channel,

• changing the kind of a channel,

• adding a parameter,

• removing a parameter.

Naturally, the specification of the function’s behavior is only syntactically well-defined
iff it uses the variables that define the function’s interface or a parameter. Therefore,
removing channels or parameters that are used in the behavioral specification of the
CPF does not yield a syntactically sound model.

In the following, let F = [I,O,B] and F ′ = [I ′, O′, B′] be two CPFs.

Renaming channels or changing the type or kind of a channel formally corresponds
to defining two functions RI ∈ [I⃗ → I⃗ ′] that renames input channels and
RO ∈ [O⃗ → O⃗′] that renames output channels. The transformation yields a refinement,
iff there exists AI ∈ [I⃗ ′ → I⃗], RI ∈ [I⃗ → I⃗ ′] and AO ∈ [O⃗′ → O⃗], such that (AI , RI) and
(AO, RO) are refinement pairs making F an interaction refinement of F ′ in the sense
of Definition 3.18.

69

Chapter 4 A Methodology for Functional Model-Driven Engineering of
CPSs

Adding input channels or parameters or removing output channels or parameters
that are not (yet) used in the behavior specification of the CPF can be seen as a
preparation for changing the interface of a CPF. This becomes apparent with the
interface adaption from [SRS99], that formalizes adding new input channels and
removing output channels that are not used: Let F = [I,O,B] be a CPF, let J be an
extension of the input channels, i.e., I ⊆ J , and let P be a subset of the output
channels, i.e., P ⊆ O. Then F ′ = [J, P,B ↕PJ], where

B ↕PJ = {g ∈ {J⃗ → P⃗} | ∃f ∈ F : ∀x ∈ J⃗ : g(x) = f(x|I)|P }

As we consider the behavioral specifications to remain unchanged, we obtain
refinement pairs by defining respective embedding and restriction functions: Let AI

and RO be the restrictions of J⃗ to I⃗ and of O⃗ to P⃗ , respectively, and let AO and RI be
respective embeddings, i.e., AO : P → O, x 7→ x and RI : I → J, x 7→ x. Then, (AI , RI)
and (AO, RO) are refinement pairs such that also AO ◦ F ′ ⊆ F ◦AI holds. Thus, F ′ is
an interaction refinement of F .

4.2.2 Transformations of the Behavior

Besides an interface, a CPF consists of a behavior which is a set of TSPFs that can be
specified by interface assertions, by HIOSs, or by the composition of multiple CPFs.
Development steps may include transformations of the behavioral specification of a
CPF. Behavioral specifications are most likely necessary if the interface of a
specification has been changed or if new information, e.g., about yet underspecified
transition becomes available in the development process.

Interface assertions are formulae in predicate logic [BM97] that specify the set of
TSPFs that includes all valid transformations of the input streams to the output
streams performed by a CPS. To precipitate a development step, the modeler may
transform the interface assertion of a CPF by adding or removing statements from the
interface assertion. Whether or not one yields a refactoring or refinement, i.e., a
development step depends on whether or not the added or removed statement implies
the existing interface assertion. To understand this, note that the implication of the
interface assertions corresponds to the set inclusion of the behaviors: Let F = [I,O,B]
and B be the behavior defined by the interface assertion p : I⃗ × O⃗ → B. Then p(i, f(i))
holds for every channel history i ∈ I⃗ and for every TSPF f ∈ B. Now, let
q : I⃗ × O⃗ → B be another predicate and let B′ = {f ∈ [I⃗ → O⃗] | ∀i ∈ I⃗ : q(i, f(i))}.
Assume that p ⇒ q, then it follows directly that B′ ⊆ B because p(i, (f(i))) implies
that q(i, f(i)) holds for all i ∈ I⃗ and allf ∈ I⃗ → O⃗. The interface assertion q is a
refactoring of p iff also q ⇒ p holds.
To give an example of a behavioral refinement imposed by adding a statement, let p, q
be the interface assertions from above and assume that B is the behavior defined p.

70

4.2 Formal Methodology for Engineering CPSs

Assume, the modeler adapts the interface assertion such that B′ is defined by p ∧ q.
The transformation yields a refinement iff p ∧ q ⇒ p but ¬(q ⇒ p ∧ q). In this case,
because (p ∧ q)(i, f ′(i)) holds for all channel histories i ∈ I⃗ and all TSPFs f ′ ∈ B′, also
p(i, f(i)) holds due to the implication and therefore f ′ ∈ B. If the implication would
also hold vice versa., i.e., p ∧ q ⇒ q, adding q in conjunction would yield a refactoring
because then also f ∈ B would imply f ∈ B′.

HIOSs specify functional behavior in a state-based manner. The semantics of this
kind of specification is defined via the computations of these automata. Development
steps can be performed by changing the elements of the HIOS by the following
transformations:

• adding a state,

• removing a state,

• renaming a state,

• refining a state definition,

• adding a transition,

• removing a transition,

• refining a transition,

• extending the set of initial states,

• reducing the set of initial states.

The contribution in [Rum96] provides a calculus that enables one to decide whether
such transformations imply a refinement of the original automaton for spelling
automata. This calculus is not directly applicable to HIOSs. Since defining such a
calculus is out of the scope of this work, we say that these transformations yield a
refinement, iff the transformation of the HIOS yields a refinement of the original
automaton. As we have introduced a trace semantics for HIOSs that defines the
semantics of a HIOS as the set of computations defined by a HIOS, the transformed
HIOS refines the original HIOS iff the transformed set of computations is a subset of
the original set of computations.

71

Chapter 4 A Methodology for Functional Model-Driven Engineering of
CPSs

Decomposing a functional specification enables to follow the divide and conquer
principle. For the syntax of a CPF, decomposition enables to keep the interface
assertions or the HIOS specifying the function’s behavior compact. An example of a
decomposition is given in Example 3.7. Because the theory that provides the semantic
domains for CPFs is compositional, decomposition enables to refine the individual
components to obtain a refinement of the composed specification. A decomposition
aims at refactoring or refining the existing functional specification to transform a
complex specification following the divide and conquer principle. After a
decomposition step, the development tasks can be distributed, e.g., to different teams
for further development.

In general, there exist three ways to decompose a function defined by the different
kinds of composition: parallel, sequential, or with feedback (cf. Section 3.3.3). Whether
the decomposition yields a refinement or refactoring depends on whether the interface
assertion that specifies the behavior of the original function holds also for the
composed behaviors, or if the set of TSPFs derived from the computations of a HIOS
includes the set of TSPFs that result from the composition.

When to decompose is often a subjective decision. The contribution in [KRW20]
proposes to initiate an (automated) decomposition based on an influence relation
among the channels of the interface. Therein, an input channel influences an output
channel iff changes in an input history cause a change in the output history at the
output channel. The contribution is defined for time-synchronous port automata that
transform discrete streams. Mechanical design methodology which is further detailed
in Chapter 5 proposes to decompose a function until it is entirely described by the
composition of a finite set of elementary functions. The latter are a set of standardized
functions that mechanical design theory considers to be complete in the sense that all
functions of mechanical systems can be described by. The semantics of composition are
defined in Section 3.3.3 and Section 3.4.3 provides the basics on how to model
decomposed CPFs.

4.3 Related Work

There exists a range of literature on (MDE) methodologies for CPSs. Some of these
approaches [BBD+21, Vog15, DGH+18, HNZ+23, SJZK23] describe a system as a (set
of) functions that process energy, matter, and/or data, that decompose the system into
smaller parts to overcome complexity and that include underspecification to be able to
consider multiple implementations and narrowing the solution space iteratively to find
an optimal solution. What these methodologies have in common is that they separate
the development into layers that represent activities at different stages of development.
Systematizing and generalizing these activities in a process model is certainly
important, however when it comes to categorizing models into these layers the hustle

72

4.3 Related Work

begins. The practice has shown that a general definition of these layers that predefines
the kinds of models or their contents of information that lead to discussions of when to
create a specific model or on which layer a certain model belongs. These discussions
hinder the progress of the development. Therefore, the methodology presented here is
formal and defines the kinds of documents for defining and evolving a functional view
of the system. Our methodology simply predefines the refinement/refactoring relation
between two versions of the system’s functional model to reflect the integration of new
information or improvements of the model’s syntax. Practical applications of this
methodology can define layers to categorize the models and systematize their creation
throughout the development specific to the project, company, or system. To prevent
discussions of when to place which model at which layer, it makes sense to equip each
layer with one or more predicates that allow placing the models unambiguously and
possibly automatically.

In contrast to SMARDT [DGH+18], SPES [BBD+21], montego [SJZK23] and other
methodologies such as [HNZ+23], we do not predefine layers of development. The
“layers” in Figure 4.1 represent iterations of the development and we solely require the
models of later iterations to be refinements or refactorings of previous iterations. When
applying mechanical design theory and respective methodologies, such as proposed
in [Kol98, BG21] it may be reasonable to differentiate among functions and solutions
because it is possible to define when a function becomes a solution unambiguously.
In Chapter 5 we will define a solution to be a function whose behavior is defined by
logical formulae that represent physical laws from a predefined set (e.g., a design
catalog such as [KK98]). This way, a function becomes a solution as soon as a modeler
chooses a physical effect described by a (set of) physical laws from a library to describe
the behavior of a function. However, in other domains of CPS engineering, it may not
be so clear when such layers can be distinguished.

Software Platform Embedded Systems (SPES) Conceptually, the methodology that
we have outlined has many similarities with the SPES Methodology [BBD+21] as it is
also based on the formal theory of Focus and defines a system from a functional
perspective as a set of TSPFs. This methodology takes a functional point of view to
structure the development and also follows the principles of decomposition and
underspecification to manage the complexity of the engineering process. The semantics
applied for the models in the model-driven approach fostered by SPES is based on the
traditional discrete Focus [BS01] meaning that the components in the models of the
system interact by exchanging discrete data messages. SPES has been developed for
software or software intensive systems which are accurately discribed by TSPFs that
process only discrete streams. To separate the concerns of all the stakeholders involved
in the engineering of these systems and also for managing the artifacts that document
the status of the development, SPES defines the four viewpoints: Requirements,

73

Chapter 4 A Methodology for Functional Model-Driven Engineering of
CPSs

functional viewpoint, the logical viewpoint, and the technical viewpoint [GJRR22b].
The requirements viewpoint constitutes models of system requirements and supports
the requirements engineering activities. The methodology also offers mechanisms to
capture requirements in a structured and traceable manner. The functional viewpoint
describes the system’s functions as a hierarchical network while the logical viewpoint
describes the system as a composition of logical components. As in our methodology,
the idea of SPES is that these functional models are derived from the requirements.
The technical viewpoint combines models of software and hardware
components. [GJRR22b] The functional viewpoint describes the functions at a very
high level of abstraction that can be derived directly from the requirements [BBD+21].
Therein, the logical viewpoint describes a logical realization of the functions described
in the functional viewpoint [BBD+21]. In some circumstances, the differentiation
between these two levels may be clear, however, in others [GJRR22b] it remains
ambiguous. Therefore, our methodology forgoes to define general levels of abstraction.
The SysML-profile proposed in [GJRR22b] provides graphical DSLs for each of these
viewpoints.

Specification Method for Requirements, Design, and Test (SMARDT) Concerning
the integration of test cases and the creation of models of the system under
development, the idea of our methodology is very close to that of SMARDT [DGH+18].
SMARDT divides the development into four layers, where the models of each layer are
enhanced by a (set of) test cases. The four layers defined by SMARDT are: Layer one
includes requirements and use cases for the different functionalities modeled using the
respective SysML elements. Layer two contains abstract functional specifications in
the form of SysML activity diagrams, state charts, sequence diagrams, and IBDs
Layer three adds implementation-specific aspects, such as e.g., timing, to the
functional description. Layer four comprises the implementation artifacts in the form
of code, hardware specifications, etc.. Similar to our approach, the idea is that models
on the lower levels refine the models on the higher levels, which reflects that they
contain more information about the system under development. Then, the test cases
defined on every layer must be passed for all models of the same and all lower levels.
As in our approach, test cases from the higher level remain relevant for each lower
level. This way, SMARDT aims to assure consistency and correctness throughout the
entire development process.

The Montego Method emerged from the domain of mechanical engineering [SJZK23]
and assimilates the approach presented in [DRW+20] and [HNZ+23]. The development
is subdivided into requirements, functions, solutions and product and prescribes the
usage of SysML for modeling the objectives of each layer. The Montego method
employs the ideas from Koller’s design methodology which allows us to differentiate

74

4.3 Related Work

between functions and solutions unambiguously, because solutions are considered as
functions whose behavior is described by physical laws from a predefined set. The
contribution in [SJZK23], however, does not provide a semantics, i.e., meaning of the
models. As prevalent in mechanical design methodology, the functional models
including solutions mostly serve documentation purposes. The approach uses model
execution to trigger external simulation models that fill external CAD models. The
execution uses the functional relations in the model as trace links, i.e., it interprets the
functional flows as interrelation among these models. In terms of [Vog15], the method
follows the dimension of modeling to structure the development artifacts and does not
yet use the dimension of formalization to add precision to the meaning of the models
and their elements.

Formal Model-Based Requirements Engineering The methodology presented
in [Vog15] formalizes requirements using the discrete Focus theory, i.e., streams are
considered as functions N → U , to integrate formal specifications in the requirements
engineering process. The approach considers a function to be “an intent to use a
system in a specific usage context or for a certain purpose” [Vog15]. The focus
of [Vog15] is to introduce modeling and formalization in the requirements engineering
phase of the development of software (intensive) systems.

Multi-Paradigm Modelling In the field of multi-paradigm modeling, a paradigm “acts
as a pattern for describing a whole class of artifacts sharing similar characteristics or
designates a framework that encapsulates theories inside a scientific
domain” [ABH+21]. The framework proposed in [ABH+21] offers mechanisms to
formally define a paradigm as a set of properties and to check automatically whether a
candidate satisfies the properties. Here, we have defined the functional development
paradigm informally as a set of three principles, i.e., function, composition, and
underspecification. A functional MDE methodology follows these principles, whenever
the target of the development are CPFs. That is, models of functions (in the
mathematical sense of Definition 1.1) are the primary source of information during the
development process. These models exhibit underspecification which is lifted iteratively
by refinement throughout the development process, i.e., a new version of a model must
be a refinement of its previous version (cf. Figure 4.1). A model is underspecified,
whenever its semantics contains more than just one element. In the functional MDE
approach that is proposed in this dissertation, we consider specifications of CPFs to
describe a set of TSPFs over discrete and hybrid streams (cf. Section 3.3).
Throughout the development, this set is narrowed, e.g., by adding constraints to a
behavioral specification. The principle of composition implies that models of functions
are hierarchically decomposed, i.e., a function can be described by the functional
composition (in the mathematical sense, cf. Section 1.3.1) of other functions. This

75

Chapter 4 A Methodology for Functional Model-Driven Engineering of
CPSs

decomposition enables structuring the development along the functional decomposition
to overcome the complexity of engineering CPSs.
The framework from [ABH+21] enables to check whether a candidate satisfies the
properties that define a paradigm. For the paradigm proposed here, that would imply
defining formal checks on whether the candidate defines functions as a set of TSPFs
over discrete and hybrid time domains defines a refinement relation among such
functions such that a function refines another iff the set of TSPFs of the former are a
subset of the TSPFs defined by the latter function, and defines mechanisms to describe
a function as a composition of other functions. Formally defining these, is certainly
interesting but out of the scope of this dissertation.
In the context of MDE, multi-paradigm modeling provides solutions to deal with the
different formalisms of models, i.e., models created using heterogeneous tools and
languages by experts from heterogeneous domains [SW21, VLM02]. In contrast to our
approach, multi-paradigm modeling focuses on the smooth integration of heterogeneous
models in the engineering environment following the principle that everything should
be modeled explicitly at the most appropriate level of abstraction with the most
appropriate modeling language [ABH+21, SW21]. The paradigm suggested here, could
be seen as one paradigm for one set of models employed in an MDE environment for
CPSs.

76

Chapter 5

Formalizing Design Catalogs as Libraries of
Physical Functions

A major challenge in CPS engineering is the collaboration of experts from different
backgrounds in the fields of software, mechanical and electrical
engineering [Rod91, DRW+20]. The development artifacts from each domain are
heterogeneous and most often highly detailed, such that experts from different
backgrounds or domains cannot understand them. This issue has triggered research on
MDE of CPSs in all three domains and brought forward modeling techniques, and
theories [BS01, Alu15, Pto14], as well as methodologies [Kol85, Rod91, Rot01, BG21].
What prevalent MDE approaches have not yet achieved, is the integration of the
domain of mechanical engineering [HNZ+23]. A question pursued in the making of this
dissertation is, therefore, the research question RQ2.1 “Can this theory formalize the
concepts from mechanical design theory defined in [Kol98, KK98, BG21]?” which is
addressed in this chapter. Mechanical engineering is “the study of physical machines
that may involve force and movement. It is an engineering branch that combines
engineering physics and mathematics principles with materials science, to design,
analyze, manufacture, and maintain mechanical systems.“ [ME2]. Although approaches
such as [BS01, Pto14, Alu15] specify the system as networks of interacting CPFs, they
abstract from the aspects, mechanical engineering is concerned with, e.g., varying
physical effects and the system’s geometry to realize a system’s functionality. These
approaches assume the physical principles and basic geometric setups of the physical
implementations to be present and do not consider their variation to optimize an
implementation in this regard.

The functional development paradigm proposed in Section 4.1 promotes to align the
development along the functions defined by a system that can be derived from
requirements which have become the innovation driver for CPSs. Mechanical design
theory is a branch of mechanical engineering that promotes using functional
descriptions that abstract from physical processes and geometry as the starting point
of a systematic search for physical implementations. This chapter aims to align these
similar approaches to describing a system by taking advantage of the similarities in the
interpretation of a system as a network of interacting functions, and their notation

77

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

from the domains of software [BS01] and mechanical engineering [BG21]. To show that
the modeling technique established in Chapter 2 and Chapter 3 enables expressing
functional structures from mechanical design methodology in a model with formal
semantics, we derive interface assertions for a subset of the functions listed in Koller’s
design catalog [KK98]. The catalog provides a collection of known elementary
functions. According to [Kol98], these functions are to mechanical engineers what basic
arithmetic operators like +,−, ·, / or the Boolean and set operators like ∧,∨,∪,∩, etc..
are to software engineers. The Koller catalog then provides lists of physical effects that
realize the transformations defined by the elementary functions that can be used to
combine a physical solution to implement the elementary function. The following
sections summarize the main ideas of mechanical design theory, that a system can be
described as a network of interacting functions as well as the existence of elementary
functions and how solutions can be composed from physical effects to realize these
functions together with a quantitative description of geometry. In Section 5.2 we
provide descriptions of elementary functions from [KK98] in the scheme of Table 3.2
which use interface assertions to formalize the behavioral descriptions of these
functions. Koller suggests decomposing system functions hierarchically until the lowest
level contains solely elementary functions. Providing specifications of these elementary
functions enables the application of the methodology outlined in Section 4.2 for
projects that apply the design methodology defined by Koller in [Kol98]. Chapter 6
provides a SysML profile as a modeling language for mechanical engineering experts in
which we have digitalized a part of the Koller catalog [KK98].

5.1 Mechanical Design Methodology

“Engineering Design is the process that ensures the technical feasibility of a product
concept and the required “functions” of the product. In engineering design, engineers
select the process, specify the materials, and determine shapes to satisfy technical
requirements and to meet performance specifications.” [Swa00]

To systematize this process and to reduce complexity, mechanical design methodologies
like [PBFG07, Rot02, Rod91], or [Kol98] promote describing the system through a
functional structure. This is a hierarchical structure of interacting functions that
utilizes descriptions of physical effects to link these functions to geometric
components [BG21, VDI97]. Therein, a conceptual solution is composed of the
solutions of these sub-functions.With the rising number of functional requirements and
the trend of functionalities and features becoming the innovation driver of CPSs,
research in this field has gained momentum with the aim of narrowing the problem
implementation gap (cf. Section 1.1.1) [ZJK+22, ZJS+21, ZRJ+22, JKB+22].

A part of the research in this field deals with documenting elements, such as functions,
physical effects, or geometries, that occur repeatedly during the development process in

78

5.1 Mechanical Design Methodology

Eel ErotConvert

Energy

Figure 5.1: Graphical notation of a function that converts electrical to rotational energy
as in [Kol98, BG21].

so-called design catalogs [KK98, Rot94, VDI82] to make knowledge about these
elements reusable and to enable their systematic variation. In practice, however,
mechanical engineers rarely explicate or even model functional structures or even use
design catalogs during development [DRW+20]. Most often, engineers keep the link
between functions and the geometric components implicit, i.e., in their minds. Further,
the functional structures remain informal, i.e., there is no mathematical theory that
gives these models an unambiguous unique meaning. Consecutively, the knowledge of
such design catalogs, e.g., [KK98, Rot01], is not provided in an unambiguous format,
and experts may not be able to use the knowledge efficiently (cf. Section 5.1.3).

5.1.1 Functional Structures

In mechanical design theory, a functional structure describes the function of a system
as a network of smaller functions. The task of a design engineer is, to conceptualize a
physical product that is manufacturable and fulfills the defined function [Ruc17].
Mechanical engineers have to do so implicitly by enforcing physical phenomena to
occur which is only possible by manipulating the shape, i.e., form, geometry, material
and state of the physical system [Ruc17]. Therefore, mechanical engineers understand
a functional specification as a design task, i.e., the task of finding a physical product
defined in terms of geometry, material, and physical properties that implements the
function. Here, the term function refers to the general and desired relation between the
input and output of a system to fulfill a task [BG21]. In this dissertation, we will refer
to the functions considered in mechanical engineering as physical functions. In the
following, we use the terms “function” and “design task” interchangeably.

The idea of a physical function is strikingly similar to the notion of systems and
functions formalized in the theory of TSPFs [BS01, Bro12]: A mechanical system or a
part of it is delimited by a boundary, through which physical quantities can enter and
leave the system as functional flows [BG21]. The function of the delimited system
processes the incoming functional flows to the outgoing flows. Functional flows are
distinguished as flows of energy, matter, and data [PBFG07, UE03]. Figure 1.2
from [Kol85] illustrates this notion and underlines the similarities to the notion of a
system formalized by the theory of TSPFs [BS01, Bro12]. Due to these similarities, we
can safely consider functions targeted by mechanical engineering as CPFs in the sense

79

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

of Definition 3.19. The function of a mechanical system breaks down into several
sub-functions that interact by exchanging functional flows [BG21] which implements
the principle of composition (cf.Section 3.3.3) from the functional development
paradigm. The functional synthesis which is the first step in the design process [Kol98]
is concerned with decomposing the overall function into sub-functions. These impose
an easier-to-solve design task. The result of the functional synthesis is a functional
structure that is visualized as a compositional functional specification in the sense
of Section 3.4.3. However, in these descriptions, the functional behavior is not
expressed by the formalism presented in Section 3.4 but informally through images or
textual notation. In [KK98, Kol98, BG21], what we would call the behavior of these
functions,i.e., a description of what the function does, is described by the scheme

⟨verb⟩ ⟨substantive⟩ (5.1)

where the substantive specifies the physical quantity that is transformed and the verb
specifies in what way the quantity is transformed, i.e., it specifies the activity of the
system under development whose function is specified. The latter is also referred to as
the operation of the function in [Kol85]. The main function of the coolant pump in the
automotive cooling system (cf. Section 1.3.3) is to “apply a fluid with mechanical
energy”. In this example, the operation is “apply”‘ and the physical quantities are
“fluid” and “mechanical energy”. The function imposes the incoming mechanical energy
(Pmech in Figure 1.3) upon the incoming cooling medium, such that the cooling
medium leaving the system boundary has a higher pressure. Figure 5.1 shows a
graphical notation of a physical function used in [Kol98, BG21]. Typical graphical
notations [BG21, Rot02, Rod91, Kol98] assimilate C&C-notations with boxes
representing functions and arrows between these boxes representing the functional
flows. The type of flow is indicated solely by a more or less standardized name that is
attached to the arrow.

5.1.2 Design Catalogs, Elementary Functions and Principle Solutions

Mechanical design methodology has introduced design catalogs to further systematize
the product development by storing proven solutions for recurring design
tasks [BG21, GA09]. These design catalogs provide a “collection of known and
established solutions to design tasks or sub-functions” [BG21]. The definition,
structure, and kinds of design catalogs have even been standardized by the German
VDI in [VDI91]. At the end of the functional synthesis, the methodology in [Kol85]
proposes to consult such a design catalog and describe the sub-functions as
composition of the functions listed in the design catalog to enable reusing the stored
knowledge for finding suitable solutions. Design catalogs typically provide ideas for or
building blocks of conceptual solutions to recurring functions. Catalogs with different

80

5.1 Mechanical Design Methodology

targets exist, e.g., for machine elements [Rot94], or mechanic connections [Rot96]. The
Koller catalog [KK98], which lists 350 physical effects that are mapped to the
elementary functions they are suited to fulfill, is a popular contribution in this field.

Elementary Functions Research in the field of mechanical design theory has
commonly come to the conclusion that there exists a finite set of basic
operations [KK98] a system can perform to transform energy, matter, and
data [BG21, Rot00, Rod91, Kol98]. In [KK98, Kol98], a basic operation is an “activity
in the course of a physical process that cannot be further subdivided into different
activities” [Kol98]. According to [Kol98], these operators assimilate the arithmetic and
Boolean operators from which electrical circuits and at their lowest technical level
software systems are built. An elementary function is then defined as a function
described by a basic operation together with the physical quantities the function shall
transform in the scheme of Equation 5.1 [KK98, Kol85]. For elementary functions
Koller introduces a set of symbols that denote these basic operations in the graphical
notation. Figure 5.2 shows the symbol for the basic operation “convert” which is a
diagonal line from the lower left bottom to the upper right bottom of the box that
represents the function.

The methodology proposed in [Kol98] is based on the assumption that there exists only
a finite set of elementary functions and that all mechanical systems can be defined as a
composition of such elementary functions. The leaves of a functional structure are
functions that are not further decomposed but the types (informally described by
names) most likely describe a type of energy or material but not a single physical
quantity. Even though such functions are not listed in the design catalog [KK98], they
are conceived as elementary functions by the methodology. To utilize the knowledge
from a design catalog, the engineer has to find an elementary function that is listed,
e.g., in Koller’s design catalog [KK98] that lists a set of physical effects.

To this effect, we propose the following definitions:

Definition 5.1 (Elementary Function). An elementary function is a CPF that is not
composed of other functions and there exists a finite set of physical effects to realize the
function.

Typically, there is more than one physical effect with which a single elementary
function can be realized.

In both, the graphical and the textual notations sketched in Figure 5.1 or Figure 5.2
and Equation 5.1 proposed in [Kol98, KK98], channels are not explicitly typed. The
kind of arrow indicates the kind of stream, i.e., energy, matter, or data, and the
quantity is derived implicitly by the name of the channel. elementary functions
in [KK98] solely process physical quantities (which are primitive types) and not energy
or matter which are composite types. To find appropriate elementary functions to

81

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

decompose a leaf-function in a functional structure requires the engineer to apply
implicit knowledge of the physical quantities that define a type of energy or material.
This challenges the application of design catalogs in practice which is further detailed
and illustrated by an example in Section 5.1.3.

Principle Solutions In [Kol85], a principle solution defines a physical principle
together with a geometric structure to realize a function [Kol98]. Therein, a physical
principle to realize an elementary function is determined by a physical effect and an
effect carrier. The former describes a physical phenomenon that realizes the
transformation specified by the elementary function while the latter specifies the
material or space to realize the elementary function [Kol85]. A physical effect describes
a physical implementation of the behavior of an elementary function.

Definition 5.2 (Physical Effect [Kol85]). A physical effect is a physical phenomenon,
physical occurrence, or process of a physical event and provides a causal relation
between the inputs and outputs of a function.

In mechanical engineering, physical effects can be quantified through physical
laws [BG21, Kol85, Rot00]. physical effects are quantified by physical laws, which can
be seen as standardized equations or, in our terminology, standardized interface
assertions for the behavior of solutions.

Definition 5.3 (Physical Law [Rot00]). A physical law is a quantitative relation between
physical quantities that involves material constants under certain circumstances.

The material constants in the quantitative relation of a physical law reference
properties of the geometric interface of the component. This is where the methodology
closes the problem-implementation gap (cf.Section 1.1.1): The geometric interface is
composed of so called active surfaces. The physical effect acts between these surfaces
to implement the desired functionality. From a geometric point of view, the
cyber-physical streams of which the CPSs interface is composed, enter the function
through these surfaces.

For the conversion of electrical to mechanical energy in the automotive cooling system
(see Section 1.3.3), for example, the effect catalog lists, e.g., the Biot-Savart effect
(cf. paragraph 7.2.3). A principle solution defines how a physical effect, given a
qualitative geometry with certain material properties [BG21] implements an
elementary function. In our modeling methodology, we understand the elementary
function as a component that encapsulates the implementations describes by one to
many principle solutions. Therein, a principle solution refines the functional behavior
by adjusting its specification such that it represents one of finitely many physical
effects and also offers an basic geometric implementation. There exist various ways to
describe geometry mathematically, e.g., through quadrics [Fis13] or B-splines [DR08].

82

5.1 Mechanical Design Methodology

As the specification of the geometric view of a CPF is out of scope of this dissertation,
we will not provide a formal technique for modeling the geometric parts of a solution.
The SysML-profile SysML4FMArch introduced in Chapter 6 that provides a modeling
language for physical functions and, in particular, for elementary functions, provides
modeling elements to define the geometric parts of a solution as a class whose
attributes are typed with physical quantities. The attributes of these parts represent
the geometric characteristics of the modeled geometry, e.g., the radius, height, and
volume of a cylinder. By associating the names of these attributes to those variables in
the physical laws of the physical effect that represent geometric properties, the modeler
explicates the relation between the physical effect and the geometry. Chapter 6
provides further details on this. Approaches such as [IJZK23, HJZ+21, ZJS+21] link
these modeling elements to CAD models, which most likely have formal semantics
based on B-Splines implemented in the corresponding tools.

Definition 5.4 (Principle Solution). A principle solution is a CPF that refines an
elementary function by defining the functional behavior as a physical effect at the
interface of the function and offers a basic physical implementation.

Implementing the principle of composition (cf. Section 3.3.3, solutions to composed
functions are composed from the solutions of the sub-functions (physical limitations
apply, but [BG21] proposes techniques to identify the compatible solutions). The
principle solution of the physical function “apply fluid with mechanical energy” in the
running example (see Section 1.3.3) could, for example, specify that the selected effect
should be implemented with the principle geometry of a rotating paddlewheel mounted
within the cylinder through which the fluid flows. Section 6.2.3 provides further details
on this matter.

5.1.3 Challenges of the Functional Synthesis

In the design process considered in [Kol85], design catalogs list physical effects to
elementary functions that transform streams of physical quantities, energy, or matter.
The result of the functional synthesis is a functional structure, i.e., an architectural
specification, of the system’s function whose leaves are not further decomposed. The
types of channels of these leaf functions are energy and material types (because the
process considers only physical functions). These are composite types, i.e., the classes
that represent them have attributes. Koller’s design catalog [KK98], however, lists only
functions that process the primitive physical quantities. For applying the Koller
catalog [KK98] in the design methodology of [Kol98], the design engineer has to
implicitly derive from the informal name of the type of channel which physical
quantities the function shall transform [Kol85] to identify useful elementary functions.
This process is manual and relies on the knowledge of the engineer, e.g., which physical
quantities are energy components of the energy type used in the elementary function’s

83

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

Eel Erot

„convert electrical energy to rotational energy“

convert

Eel Etrans Erot

FU

vU

FI

vI

MF

ωF

Mv

ωv

U Voltage

I Electric current

Elementary functions in the Koller catalog:

implicit

M Torque

ω Angular velocity

F Force

v Velocity

Figure 5.2: elementary functions define transformations of the general quantities energy,
and material, while [Kol85, KK98] offer physical effects only to elementary
functions that transform (single) physical quantities.

interface. This is similar in other methodologies such as [Rot01], i.e., approaches that
aim to systematize the design process still heavily rely on the engineer’s knowledge and
do not aim to provide automatic support for finding concepts for solutions.

Figure 5.2 illustrates this process on the example of the function “convert electrical to
rotational energy”. A design engineer knows that electrical energy is bound to
quantities like voltage and current, and that rotational energy is bound to torque and
angular velocity. The Koller catalog [KK98], however, provides only elementary
functions that transform either voltage or current into either force or velocity,
respectively. Figure 5.2 shows these functions at the bottom. To obtain physical effects
that realize the conversion of electrical to rotational energy, the engineer (mentally)
decomposes the original function implicitly into the structure at the top right
of Figure 5.2. To do so, the engineer uses his/her knowledge about which quantities the
exchange of electrical, translational, and rotational energy are bound to and then
chooses a physical effect provided for the quantity transforming functions in [KK98].
To do so in the engineering of complex CPSs, engineers need experience, and the
process is time-consuming and its results most often hardly comprehensible for other
stakeholders. Modeling the functional flows through typed channels as proposed
in Chapter 3 will mend this challenge: The classes that specify types of energy and
material hold attributes that describe the physical quantities a CPF can transform. It
is, then, clear from the model which quantities are involved in the transformation.

84

5.1 Mechanical Design Methodology

1..*

Concept_CD

Entity

Elementary

Function

Functional

Structure

Physical

Function

Operation

*

inputs

*

outputs

Energy Matter Data

*

Physical Quantity

Functional

Interface
Channel

type*

*

**
* *

characteristics

*

1

1interface

transformation

Figure 5.3: Conceptual model that captures the concepts presented in this section. The
model uses UML CD notation [Rum16].

5.1.4 Summary: A Conceptual Model of Physical Functions

This section summarizes the concepts from mechanical design methodology in a
conceptual model. In Figure 5.3, a physical function is described by an operation and a
functional interface that comprises two sets of channels, i.e., the inputs and outputs of
the function. The interface represents the physical and logical entry or exit point of a
stream of energy, matter or data. Both, the concept of physical function and entity are
abstract concepts. The term elementary function is used ambiguously in [Kol98, KK98]:
On the one hand, elementary functions should describe only transformations of
physical quantities, but on the other hand the leaf functions of a functional structure
whose types are energy or material types are also considered elementary functions. The
concept of a physical function is abstract to reflect this. Functions can be designated as
abstract which leaves the declaration of a function at the structure’s leaves as
elementary to the modeler. Concrete instantiations of the entity concept are energy,
matter, and data. The physical entities, i.e., energy, and matter, are typically described
by their characteristics which are expressed in terms of Physical Quantities
(cf. Section 2.2.1). These represent the different kinds of streams that physical
functions process and the physical quantities that describe the inputs and outputs of
elementary functions. Koller’s design methodology [KK98] refers to the operation that

85

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

Concept_CD

Principle Solution

Elementary

Function

Physical Effect

1**activeSurfaces

Geometry Matter

effectCarrier interfaceBehavior

Figure 5.4: Conceptual model that captures the concept of solutions in mechanical en-
gineering. The shaded concepts have been introduced in Figure 5.3.

describes the transformation performed by an elementary function as a basic operation
and assumes that the set of all basic operations is finite. A functional structure is an
architecture of physical functions. In the conceptual model this is represented by the
composite pattern [GHJV95]: physical function are the components, the leaves are
elementary functions, and the composite elements are functional structures.

Figure 5.4 captures the idea of a solution from mechanical engineering: elementary
functions describe a set of physical effects that are suitable to realize the elementary
function. The design catalog [KK98], for example, provides a list of standardized
elementary functions together with a set of possible effects for each of these functions.
A principle solution describes a physical principle to realize a function that compriese
a set of active surfaces [Kol85, BG21, IJZK23], i.e., a quantitative description of the
geometric interface, an Interface Behavior which is described by a (set of) physical
effects that refines the operation that has described the behavior of the elementary
function, and the the effect carrier that defines the material or space to realize the
effect [Kol85] on the active Surfaces.

In this dissertation, we describe physical functions as CPFs in the specification schemes
introduced in Chapter 3. The operation is described by the name and parameters of
the functional specification. Functional structures are specified using compositional
specifications (cf. Section 3.4.3) while elementary functions are specified using interface
assertions or HIOSs. The input and output quantities of a physical function are
specified by the typed channels of the interface of a CPF. The kinds of channel types
presented in Chapter 2 are instantiations of Quantity (Figure 5.3). The differentiation
among kinds of types is more fine-grained than that of the quantities considered
in Figure 5.3, because the formal nature of CPFs requires to declare the kinds of
streams at each channel.

86

5.1 Mechanical Design Methodology

Example: The Functional Structure of a Pumping System Modeled as a CPF We
use the example of a pumping system provided in [Kol85, Kol98] to illustrate how we
specify physical functions using the modeling technique presented in the Chapters 2
and 3.
The example further illustrates the design process and how it can be enhanced by
using a formal modeling technique, e.g., to overcome the challenge of missing physical
quantities outlined in Section 5.1.3.
The example in [Kol98] considers the task of designing a system that transports fluid
from one place to another. Additional constraints impose that the driving energy is
electrical energy, as a reaction to a signal the system shall turn on or off and the
conveying capacity of the pumping system shall be smoothly controllable with respect
to the conveying capacity.
The description of the example in [Kol85] reveals that an engineer would infer from
these requirements that the pump needs to connect the incoming fluid to motion
energy. The input to the function is, therefore, electrical energy, which is specified by
the quantities voltage and current [FR76], and a fluid which carries an attribute telling
the motion energy. Motion energy is specified by the quantities velocity and
momentum [FR76]. Further, we specify an input event that tells whether the system
has been turned on or off. The controllability signal will require a signal telling the
desired conveying capacity. Table 5.1 shows the respective specifications of these types
which have been introduced similarly in Table 2.1.

«energy»
ElectricalEnergy

Current current
Voltage voltage

«energy»
MotionEnergy

Velocity velocity
Momentum momentum

«event»
ButtonPress

ON
OFF

CPCD

«fluid»
Fluid

MotionEnergy eMot

Table 5.1: Specification of the types needed for the compositional pump specification
in Figure 5.5.

To specify the behavior of the pump, the overall function of the system, is decomposed
into elementary functions. The engineer will infer that in order to get a fluid to move it
needs to be connected with motion energy. An elementary function that describes this
activity in [KK98] is “connect matter and energy”. At an early stage of the
development, it may not be clear which kind of energy is needed for the “connection”,
there is the elementary function “transform energy” which transforms the electrical
energy that was required to be the driving energy. To indicate this missing piece of
information, the type of the channel between the corresponding functions in Figure 5.5
is only the physical quantity Power with SI-unit W (Watt). Since the system is

87

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

«energy»

ElectricalEnergy

Pump(ℝ)

«event»

ButtonPress

«signal»

Capacity

«energy»

ElectricalEnergy

CPF

bP

in

c

Switch	Sf

e2
e1

DecreaseElectrical

Energy()	Des

e1

e2

«energy»

ElectricalEnergy

TransformEnergy	TrE

in

ConnectMatterAndEnergy	Cmae

f1 f2

e

out

fluid1 fluid2

«fluid»

Fluid

«fluid»

Fluid

«energy»

Power

Figure 5.5: Structure of elementary functions of the pump formalized from [Kol85].

supposed to be controlled with respect to the conveying capacity and turned on or off,
the compositional structure exhibits the elementary function “decrease energy”
from [KK98] and the function “switch”. In the conception of mechanical design theory,
the switch function is a combination of the elementary functions conducting and
isolating energy from [KK98], depending on the input signal, or in this case, the input
event. Since there are no further details on how to combine these two functions, we
utilize a HIOS-specification to specify the switch that turns on or off the electrical
stream of energy in Table 5.2. Alternatively, the compositional specification of the
switch given in Example 3.7 can also be used to define the switch.

We model the decrease of electrical energy by the CPF specified in Table 5.3 that
generates a decreased power at the output port. To specify the elementary function we
need to define how the function decreases the power in relation to the incoming
Capacity signal. Here, we chose to specify that the power is decreased proportionally
to the value of the signal telling the capacity. As capacity is not compatible with
power, the variable p(t) models a conversion factor. Note, that this is already a design
decision.

The function TransformEnergy in Figure 5.5 transforms electrical energy. As it is not
clear at this point in the development which form is needed, the output of this function
is simply Power. Using an interface assertion and abstracting from all energetic losses,
the function is defined in Table 5.4.

Table 5.5 specifies the function ConnectMatterandEnergy by an interface assertion.

88

5.1 Mechanical Design Methodology

Switch
CPF

in «event» ButtonPress b, ElectricalEnergy e1
out «energy» ElectricalEnergy e2

Energy e(t) =
∫ t
0 pow e1(t′)dt′ −

∫ t
0 pow e2(t′)dt′

Energy loss(t) < e(t)

b(t), x = s(t)

Off

pow e2 t = 	0W

  ⁄ = pow(1)()

On

pow e2 t = x ⋅ 

  ⁄ = pow 1  − pow(e2)(t)

¬b(t)

b
¬b

 0 = S

Table 5.2: HIOS specification of the CPF defined by an electrical switch.

DecreaseElectricalEnergy(R+ δ)
CPF

in «energy» ElectricalEnergy e1, «signal» Capacity s,
out «energy» ElectricalEnergy e2

∀t ∈ R+ :
∃p(t) ∈ R+(WLh−1) :
pow(e2)(t+ δ) = pow(e1)(t)− p(t) · s(t) · t

Table 5.3: Interface assertion specification of the elementary function that decreases elec-
trical voltage.

TransformEnergy(R+δ)
CPF

in «energy» ElectricalEnergy in
out «energy» Power out

∀t ∈ R+:
out(t+ δ) = pow(in(t))

Table 5.4: Interface assertion specification of the energy transformation.

89

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

The specification abstracts from energetic losses and specifies that the power that
drives the fluid is the sum of the power of the incoming fluid and the incoming power.

ConnectMatterAndEnergy(R+ δ)
CPF

in «fluid» Fluid f1, «energy» Power e,
out «fluid» Fluid f2

∀t ∈ R+:
pow(f2. eMot)(t+ δ) = pow(f1. eMot)(t) + pow(e)(t)

Table 5.5: Interface assertion specification of the energy transformation.

To be considered elementary functions that are also listed in [KK98], the channel types
will have to be changed to reference only physical quantities. We illustrate this
development step on the example of DecreaseElectricalEnergy which is replaced by the
function DecreaseVoltage specified in Table 5.3. From the specification of the type

DecreaseVoltage(R+ δ, R(V hL−1) v)
CPF

in «energy» ElectricalEnergy e1, «signal» Capacity s,
out «energy» ElectricalEnergy e2

∀t ∈ R+ :
e2(t+ δ). voltage = e1(t). voltage−v · s(t) · t∧
e2(t+ δ). current = e1(t). current

Table 5.6: Interface assertion specification of the elementary function that decreases elec-
trical voltage.

ElectricalEnergy in Table 5.1 we infer that the energy components of electrical energy
are current and voltage. The Koller catalog [KK98] lists effects to increase either
current or voltage. At this point, we make the design decision that we will realize the
function by decreasing the voltage and keeping the current constant. To this effect, we
create the CPF specification DecreaseVoltage in Table 5.6 that adds two statements to
the interface assertion of the component DecreaseElectricalEnergy. The second
statement specifies that the voltage of the outgoing stream of electrical energy shall
decrease proportionally to the capacity signal on the input port s. The third statement
specifies that the outgoing current is equal to the incoming current. For this, the
function yields a parameter v that represents a conversion factor from capacity to
voltage.

We check whether the component DecreaseVoltage in Table 5.6 refines the component

90

5.2 Formalizing the Koller Design Catalog

DecreaseElectricalEnergy in Table 5.3. To this effect, we show that the interface
assertion of DecreaseVoltage implies the interface assertion of DecreaseElectricalEnergy,
i.e., we show that for all t ∈ R+ it holds that

e2(t+ δ). voltage = e1(t). voltage−v · s(t) · t∧ (5.2)

e2(t+ δ). current = e1(t). current ⇒ (5.3)

∃p(t) ∈ R(WhL−1) : pow(e2)(t+ δ) = pow(e1)(t)− p(t) · s(t) · t (5.4)

where

• e1, e2 ∈ [R+ → ElectricalEnergy],

• s ∈ [R+ → Capacity],

• v ∈ R(V hL−1).

The definition of the property function pow defined in Section 2.2.2 yields for all
e ∈ ElectricalEnergy and all times t ∈ R+ that

pow(e)(t) = e. voltage(t) · e. current(t). (5.5)

With that, we get that

pow(e2)(t+ δ) = e2(t+ δ). voltage ·e1(t+ δ). voltage (5.6)

= (e1(t). voltage−v · s(t) · t) · e1(t). current (5.7)

= pow(e1)(t)− v · e1(t). current ·s(t) · t (5.8)
def
= pow(e1)(t)− p(t) · s(t) · t. (5.9)

5.2 Formalizing the Koller Design Catalog

The Koller design catalog [KK98] is a design catalog (cf. Section 5.1.2) that lists
physical effects to realize elementary functions. Because physical effects are quantified
by physical laws which are expressed as mathematical formulae, they provide a formal
relation between the input and the output of a CPF and therefore define a behavior.
As physical effects most often reference variables that represent geometric
characteristics, e.g., length, mass, or the number of windings of an electric coil, they do
not abstract entirely from the geometric view encapsulated by a CPF. Therefore,
enhancing the behavioral specification of a CPF by a physical effect yields a
specification that is a step closer to an implementation. Because the set of physical
effects is finite, it is possible to distinguish specifications as functions or solutions. A
functional specification becomes a solution once it uses physical effects from the finite
set to specify the behavior. Applying the design methodology proposed in [Kol98], the

91

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

set of physical effects is listed in the design catalog [KK98]. In this dissertation, we
focus on the functional specifications of the physical functions that are targeted by the
development of mechanical engineering and how to link functional specifications to
physical effects or models of solutions. In this section, we use the modeling technique
introduced in the Chapters 2 and 3 to formalize the elementary functions listed in the
Koller catalog [KK98].
The Koller catalog [KK98] uses a scheme that categorizes elementary functions
according to the kinds of types of the channels in their interface.

Definition 5.5 (Interface Category of CPFs). The behavior of an elementary function

1. is an energy operation, iff its interface includes only channels typed with an
energy type,

2. is a material operation, iff its interface includes only channels typed with a
material type,

3. is an operation between energy and material iff its interface includes both
channels typed with an energy-type and channels typed with a material type.

The Koller catalog [KK98] relies on further dividing these categories by the basic
operations of the elementary functions, i.e., the specification of the transformation to
be performed through a physical process by the system [Kol98]. As detailed
in Section 5.1.2, these operations are standardized through symbols that represent
verbs which describe these activities verbally.
The following sections will formalize this informal representation by specification
schemes and examples that translate the symbol into a possible interface assertion.
The interface assertions that we propose are only one possible solution to translating
the symbols proposed in [KK98] to mathematical formulae. To this effect, we enhance
the specification scheme given in Table 3.2 which uses placeholders for the types of the
input and output channels by generic types that serve as placeholders for concrete
types and are added in a list within angled brackets after the name of the CPF.
Table 5.7 illustrates the notation of such schemes. The generic types enable to
generalize the idea of operations from [KK98] and make one interface assertion
available for different types of the input and output channels. In Koller’s
methodology [KK98], providing the concrete types of energy that shall be transformed
by a standardized operation makes up an elementary function definition. Since the
translation of verbally defined elementary operations and functions is most likely
subjective, each scheme defines only a possible interface assertion into which the
symbol can be translated. All interface assertions provided are given in a timed
manner and use delay to assure causality even if these functions are utilized in
feedback composition settings (cf. Section 3.1.1). Section 5.3 provides a discussion on
specification styles that regard or disregard energetic losses or delays.

92

5.2 Formalizing the Koller Design Catalog

name n ⟨list of generic types⟩ (list of parameters P)
CPF

in list of typed input channels I
out list of typed output channels O

interface assertion p

Table 5.7: Specification scheme for CPFs with interface assertions based on [Bro10].

5.2.1 Energy Operations

The energy operations listed in [KK98] are

1. Convert: Change one form of energy into another,

2. Increase/decrease: Increase or Decrease the scalar value of an energy component,

3. Change direction: Change the direction of a vectorial energy component,

4. Conduct: “Pave the way” to transfer a stream of energy from one place to
another,

5. Isolate: Prevent energy from acting in a specific space,

6. Collect/split: Bring two or more streams of energy together quantitatively, and

7. Separate/blend: Sort / bring together streams of energy of differentiating
properties (e.g.,, frequency, wavelength) properties.

Energy Conversion Converting energy refers to any activity of a system that converts
one form of energy or one energy component into another [KK98]. Similar to [FR76],
we use the power balance which is derived from the law of energy conservation to
specify the conversion of one form of energy into another. For the conversion of energy,
we provide two specification schemes: Let E1 ∈ E and E2 ∈ E be two energy types. A
function converts energy of type E1 to energy of type E2 iff it has an input port e1 with
type(e1) = E1 and an output port e2 with type(e2) = E2 such that the power at the
outgoing energy channel e2 after a time delay δ is equal to the power that was given as
input to the function via the channel e1. Table 5.8 provides a scheme that uses the
power balance to provide a standardized interface assertion that formalizes this idea.

Another way to specify elementary functions that convert one form of energy to
another is to utilize a state variable that represents the energy content of the specified
system at all times. A corresponding scheme is provided in Table 5.9. Integrating the
power that is put into the system until time t and subtracting the power that leaves

93

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

ConvertEnergy⟨E1, E2 ∈ E⟩(R+ δ)
CPF

in «energy» E1 e1
out «energy» E2 e2

∀t ∈ R+ :
pow(e2)(t+ δ) = pow(e1)(t)

Table 5.8: Specification scheme for elementary functions that convert the energy of one
form into another that utilizes the power balance and abstracts from energetic
losses.

the system until time t+ δ via the output port yields this value. To specify the
conversion, the scheme states that the value of the state variable must never be smaller
than 0W which is reasonable because there is no such thing as a negative energy
content. The delay allows the function to store energy for a time period of δ which is a
parameter of the function.

ConvertEnergyStateBased⟨E1,E2 ∈ E⟩(R+δ)
CPF

in «energy» E1 e1
out «energy» E2 e2

s ∈ Energy
∀t ∈ R+ :

s(t) =
∫ t
0 pow(e1)(t

′)−
∫ t+δ
0 pow(e2)(t′)dt′

s(t) ≥ 0W

Table 5.9: Scheme for the specification of elementary functions that convert energy using
an internal variable that represents the function’s energetic state.

An example of an elementary function in the category of energy converters is the
electric drive that is specified in Table 3.3. The component ElectricDrive transforms
ElectricalEnergy into RotationalEnergy and uses the specification scheme
from Table 5.8. The interface assertion of the CPF uses the power balance: The power
generated at the output channel r by transmitting rotational energy at time t+ δ,
where δ > 0 is a time delay must be equal to the power at the input channel at time t.

Increasing/Decreasing Energy Increasing or decreasing energy refers to activities of
a technical system that increase or decrease the value of an energy component
(cf. Section 2.2.2). Here, we abstract from this information. Section 5.3 details how,

94

5.2 Formalizing the Koller Design Catalog

e.g., energetic losses can be included in a specification. Examples are systems that
increase or decrease torque, rotational velocity, or electrical transformers [Kol85].
Saying that a function increases or decreases a stream of energy is not exactly
meaningful in a physical sense, since energy is a conserved quantity and can therefore
neither be created nor destroyed [FR76]. There are, again multiple possibilities to
define interface assertions to specify such functions. From a functional perspective, it is
often not (yet) relevant which energy component is increased or decreased, what is
relevant is that the function generates more or less power. In this case, the
specification scheme in Table 5.10 provides a suitable formalization.

IncreasePower⟨E ∈ E⟩(R+δ)

in «energy» E e1
out «energy» E e2

∀t ∈ R+ :
pow(e2)(t+ δ) > pow(e1)(t)

DecreasePower⟨E ∈ E⟩(R+δ)
CPF

in «energy» E e1
out «energy» E e2

∀t ∈ R+ :
pow(e2)(t+ δ) < pow(e1)(t)

Table 5.10: Schemes for the specification of elementary functions that increase or de-
crease the power transmitted by a stream of energy.

Another scheme to specify the increasing or decreasing power of a system can be
derived from the PowerAmplifier defined in Example 3.3. In this specification, an
additional input signal provides the value by which the power shall increase in the time
interval [t, t+ δ]. The scheme in Table 5.11 generalizes the CPF specification
from Example 3.3. The interface assertion specifies that the slope of the outgoing
power on the time interval [t, t+ δ[is the last value received in the time interval
[t− δ, t[. If the function has not received a value in this time interval the outgoing
power is equal to the incoming power.
CPFs that increase or decrease a physical quantity can be specified similarly.
Table 5.12 provides a specification scheme for elementary functions that increase or
decrease the value of a physical quantity. The example presented in Section 5.1.4
illustrates how these specifications can be used to refine a function at the leaves of a
functional structure. Let Qp ∈ Dn[SI] be a physical quantity and p ∈ {1, 2, 3} indicate
the dimensionality of the quantity. Example 5.1 provides an example for the
specification of an elementary function that decreases torque that uses the specification
scheme from Table 5.12.

Example 5.1 (Decreasing Torque). A gearbox is a very common part of mechanical
systems that contain an engine. Most often, the quantities of the energy components of
the form of energy generated by the engine need to be increased or decreased to assure
proper functioning of the other system components. Consider, for example, a wind

95

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

IncreaseDecreasePowerControlled⟨E ∈ E⟩(R+δ)
CPF

in «energy» E p1, «data» R x
out «energy» E p2

∀t ∈ R+ :
p2(t+ δ) = p1(t) · lt(x, t)
where
T (x, t) = {n ∈ TDx | n ≤ t− δ} ̸= ∅ ⇒ lt(x, t) = x(max(T (x, t)))
T (x, t) = ∅ ⇒ lt(x, t) = 0

Table 5.11: Specification scheme for elementary functions that increase or decrease power
determined by a control input.

IncreaseQuantity⟨Qp ∈ Dn[SI]⟩(R+δ)
CPF

in «energy» Qp e1
out «energy» Qp e2

∀t ∈ R+ :
||q2(t+ δ)||p > ||q1(t)||p

DecreaseQuantity⟨Qp ∈ Dn[SI]⟩(R+δ)

in «energy» Qp q1
out «energy» Qp q2

∀t ∈ R+ :
||q2(t+ δ)||p < ||q1(t)||p

Table 5.12: Schemes for the specification of elementary functions that increase or de-
crease the value of a physical quantity.

turbine as defined in [MNN+22]. The rotor transforms wind energy into rotational
energy whose energy components are torque and velocity. In these systems, the torque
generated by the rotor is very high, while the angular velocity is low. The generator,
which is a component of the wind turbine that converts the rotational energy to
electrical energy, however, needs high angular velocity and lower torque. The gearbox is
the part between the rotor and the generator that decreases the torque and increases the
angular velocity. The component should be designed such that it keeps the power
constant, i.e., it should minimize energetic losses. Of course, losses occur in this
process but we abstract from these losses here. The functions
DecreaseQuantity⟨Torque⟩ and IncreaseQuantity⟨AngularVelocity⟩ are elementary

96

5.2 Formalizing the Koller Design Catalog

functions that define suitable CPFs.
The specification in Table 5.13 defines a CPF that takes a rotational energy as input
and generates a rotational energy as output. The interface assertion states that the
torque at the output channel q2 is reduced while remaining the power constant compared
to the incoming power on channel q1. The interface assertion of this specification is
taken from DecreaseQuantity⟨Torque⟩.

CPCD

«energy»
RotationalEnergy

Torque τ
AngularVelocity ω

Gearbox(R+ δ)
CPF

in «energy» RotationalEnergy r1
out «energy» RotationalEnergy r2

∀t ∈ R+ :
pow(r1)(t) = pow(r2)(t+ δ)
||r1(t). τ ||3 ≥ ||r2(t+ δ). τ ||3

Table 5.13: Specification of an elementary function that decreases the torque in a rota-
tional energy.

Changing the Direction of a Stream of Energy Besides a unit and a value, vectorial
physical quantities, such as force or momentum, have another attribute to indicate
direction. An operation that physical systems perform, is changing the direction of
vectorial physical quantities. For example, another function defined by a gearbox
reverts the rotational direction of a gear, and thereby the direction of the angular
momentum and the rotational velocity with which the gears rotate. Mathematically,
changing the direction of a vector x ∈ Cn (n > 1) corresponds to a linear
transformation f(x) = A · x, for a matrix A ∈ Cn×n. In Euclidean space which is an
accurate model of our physical world [Esc20], changing the direction of a vector
corresponds to a rotation. To specify this, we use the special orthogonal group
SO(n) = {A ∈ GL(n,R) | det(A) ∈ {1,−1}} as a primitive type, where GL(n,R) is
the general linear group that contains all invertible matrices with entries in R
(see Appendix B for the definitions) [Fis13]. The special orthogonal group SO(n)
contains all matrices that rotate a vector around an axis. Similar to the elementary
functions that increase or decrease energy, we can define schemes that specify the
change of the direction of vectorial physical quantities and elementary functions that
use analog interface assertions to specify the change of an energy component.

Example 5.2 (Changing the Direction of Torque). Torque and rotational velocity are
vectorial physical quantities that define rotational energy [FR76]. In physical systems, a
common task is not only to increase or decrease torque, or rotational velocity but also
to change their direction. In a setting where the input is typed by the physical quantity,

97

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

ChangeDirectionofQuantity⟨Qp ∈ Dn[SI], p ∈ N⟩(R+δ, SO(p)A)
CPF

in «energy» Qp e1
out «energy» Qp e2

∀t ∈ R+ :
e2(t+ δ) = A · e1(t)

Table 5.14: Schemes for the specification of an elementary function that changes the
direction of a physical quantity.

the functions ChangeDirection⟨Torquen, n⟩(R+δ, SO(p)A) for n ∈ {1, 2, 3} obtained
from the scheme in Table 5.14 provide a CPF specification of this elementary function.
For example, inverting the direction along the X-axis can be specified as

ChangeDirection⟨Torque3, 3⟩(R+(W) ε,R+ δ, SO(3) A) for A =

0 −1 0
1 0 0
0 0 1

 A

cogwheel transmission, for example, inverts the direction of the torque [KK98].

Table 5.15 specifies a CPF that changes the direction of the energy component torque of
rotational energy. The specification uses the same interface assertion from the scheme
in Table 5.14.

CPCD

«energy»
RotationalEnergy

R3(Nm) τ
R3(rad s−1)ω

ChangeTorqueDirection(R+ δ, SO(3) A))
CPF

in «energy» RotationalEnergy r
out «energy» RotationalEnergy r′

∀t ∈ R+ :
pow(r)(t) = pow(r′)(t+ δ)
r′(t+ δ).τ = A · r(t).τ

Table 5.15: Specification of a CPF that changes the direction of torque.

Energy Conducting Conducting energy is another elementary operation defined
in [KK98] and refers to bringing a stream of energy from one place to another.

This type of operation refers much more to enabling a system to conduct energy, and
not directing a stream of energy along a specified path [Kol85]. Pipes or cables are
(parts of) systems that enable, e.g., water, or electric energy to flow, while at the same
time directing these streams along a defined path.

The specification scheme in Table 5.16 formalizes this notion. In the scheme, the start

98

5.2 Formalizing the Koller Design Catalog

and end position are parameters of the CPF. The interface assertion requires the power
that is generated at the output port to be equal (abstracting from losses) to the
incoming power which formalizes the notion that the function enables a system to
conduct energy.

ConductEnergy⟨E ∈ E⟩(R+δ, Position start,Position end)
CPF

in «energy» E e1
out «energy» E e2

∀t ∈ R+ :
pow(e1)(t) = pow(e2)(t+ δ)
pos(e2(t)) = start∧ pos(e2(t+ δ)) = end

Table 5.16: Scheme for the specification of an elementary function that conducts energy.

A specification of the function Conducting electrical energy, for example, which is a
CPF defined by a cable, is ConductEnergyConductEnergy⟨ElectricalEnergy⟩(R+δ,
Position start,Position end).

Energy Isolating Isolating energy means a CPF that prevents energy convection from
one place to another [Kol98]. In [KK98] the isolation of energy has no output ports but
only one energy input port. The corresponding interface assertion in Table 5.17
prohibits the position of the incoming energy to be in a list of positions that are a
parameter of the function. For mechanical engineers, storing energy is equivalent to

IsolateEnergy⟨E ∈ E⟩(R+δ, List < Position > P)
CPF

in «energy» E e
out ∅
∀t ∈ R+ :
pos(e)(t) ̸∈ P

Table 5.17: Scheme for the specification of an elementary function that conducts energy.

isolating energy [Kol98]. That is because preventing energy from convecting from one
place to another requires the system to absorb energy that “tries” to convect in the
“wrong direction”. A spring, for example, stores energy through its elastic
deformation [Kol98]: The spring stores the displacement energy applied to it by the
force that causes its extension to increase. The spring stores this energy as long as the
extending force prevails. Once this force decreases, the spring releases the energy,

99

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

again, in the form of displacement energy, by decreasing the extension. In this
dissertation, we specify the storage of energy a little differently: In practice, systems
that store energy are requested to release the stored energy at some point. The
interface assertion in the scheme in Table 5.18 therefore holds an internal variable
telling the energy content of the system that is required to be greater than zero Joule
at all times. The energy content is determined by the amount of energy (integral over
time of the power) received via the input port minus the amount of energy that leaves
the system via the output port. The Boolean event input tells whether or not the
system shall release the stored energy.

StoreEnergy⟨E ∈ E⟩(R+ δ)
CPF

in «energy» E e, «event» Boolean b
out «energy» E e′

s ∈ Energy, ∀t ∈ R+ :

0 ≤ s(t) =
∫ t
0 pow(e)(t

′)dt′ −
∫ t
0 pow(e

′)(t′)dt′

lt(b, t) ⇒ 0 <
∫ t
0 pow(e

′)(t′ + δ)dt′ ≤ s(t)
¬lt(b, t) ⇒ 0 = pow(e′)(t+ δ)
where
lt(c, t∗) = c(max{0 ≤ t ≤ t∗ | c(t) ̸= ξ})

Table 5.18: Specification scheme for elementary functions that store energy.

Table 5.19, Table 5.20, and Table 5.21 provide possible HIOS specifications of an energy
source. The specified functions have two states or modes, i.e., on and off. In the off
state there is no power generated on the energy output port e2. In the state on a
power is generated on the output port e2 that decreases exponentially. The modeler
can adapt the specified functional behavior by the parameters s0 and k of the CPFs. In
case the stream of power generated on the output port should have a different shape,
the HIOS needs to be defined with a different formula for pow(e2) in the on state. The
specifications in Table 5.19 and Table 5.20 are quite similar with the exception that the
power generated on the output port of the latter does not decrease. The function
provides a constant power stream. The specification Table 5.21 also exhibits a charging
feature. The CPF has an additional input port and the initial amount of energy s0 is
adapted during the operation: The variable s represents a state variable telling the
amount of energy that is currently within the system. In the off state, the system can
be charged, the amount of energy increases with the power that is put into the system.
In the on state, the amount of energy is determined by the difference of the incoming
and the outgoing power. When the function switches from the state off to the state
on, the value of the state s is adapted to the current amount of energy.

100

5.2 Formalizing the Koller Design Catalog

The function defined by a simple tubular battery, for example, can be specified by the
component

Battery
def
= EnergySource⟨ElectricalEnergy⟩(R+δ,Energyw).

Identifying the storage of energy with energy isolation which has no output ports
in [KK98] may not suffice in practice: Systems store energy in order to provide it at a
different time and/or a different place. This requires energy-storing functions to specify
an output port. The electrical switch defined in Example 3.6 or the button switch
specification in Example 3.7 are also possible specifications of energy sources.

EnergySource⟨E ∈ E⟩(Energy S0,R k)
CPF

in «event» B b
out «energy» E e2

x ∈ [R+ → Power]

b t , x = s(t)

Off

pow e2 t = 	0W

¬b(t)

¬b

 0 = S

On

pow e2 t = x ⋅ 

b

Table 5.19: HIOS specification of an energy source. The power generated at the output
port if the source is in the state off is zero watts, while it decreases ex-
ponentially in the state on. The parameters S0 and k enable modelers to
adjust the exponential decrease.

Energy Splitting and Collecting Another elementary operation that can be
standardized similar to energy conversion is splitting or collecting streams of energy
quantitatively [Kol98, KK98]. That is, functions in this category split a stream of
energy, or collect streams of energy such that the sum of the power, i.e., energy per
unit of time, that leaves the system via all output ports is equal to the power the
system has received via its input port. Differentials, balance beams, or semipermeable
mirrors are examples of mechanical devices that split energy [Kol98]. Automotive
systems, often require a (mechanical) function to drive two wheels of one axle at
different speeds but with the same propelling force, i.e., the same torque. This

101

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

ConstantEnergySource⟨E ∈ E⟩(Power p,R k)
CPF

in «event» B b
out «energy» E e2

x ∈ [R+ → Power]

b(t)

Off

pow e2 t = 	0W

¬b(t)

¬b

On

pow e2 t = 

b

Table 5.20: HIOS specification of a constant energy source. The power generated at the
output port if the source is in the state on is constant. The amount of power
is a parameter of the function.

ChargeableEnergySource⟨E ∈ E⟩(Energy S0,R k)
CPF

in «event» B b, «energy» E e1
out «energy» E e2

b(t), x = s(t)

Off

pow e2 t = 	0W

  ⁄ = pow(1)()

On

pow e2 t = x ⋅ 

  ⁄ = pow 1  − pow(e2)(t)

¬b(t)

b
¬b

 0 = S

Table 5.21: HIOS specification of a CPF that stores energy and can be charged via an
input energy port.

function is an elementary function in the category of energy splitters and defined by
the CPF SplitEnergy⟩RotationalEnergy⟨(R+δ) obtained from the scheme

102

5.2 Formalizing the Koller Design Catalog

in Table 5.22. An alternative specification could provide details, e.g., on the desired
ratio between the input and output rotational velocity by adding another input signal.

SplitEnergy⟨E ∈ E⟩(R+δ)
CPF

in «energy» E e1
out «energy» E e2, «energy» E e3

∀t ∈ R+ :
pow(e2)(t+ δ) + pow(e3)(t+ δ) = pow(e1)(t)

CollectEnergy⟨E ∈ E⟩(R+δ)

in «energy» E e1, «energy» E e2
out «energy» E e3

∀t ∈ R+ :
pow(e3)(t+ δ) = pow(e1)(t) + pow(e2)(t)

Table 5.22: Schemes for the specification of elementary functions that split or collect
energy.

Energy separating and blending elementary functions blend two or more streams of
possibly different types of energy into one, or separate a stream of energy into two or
more streams of possibly different types of energy qualitatively [Kol98]. The qualitative
argument by which the streams of energy are distinguished or blended concerns the
value of one attribute of the energetic type. As these elementary functions operate on
the attributes of the classes defining the respective energy types, we cannot derive a
general scheme. Examples include functions that produce periodic energy streams with
specific frequencies [Kol98].

5.2.2 Material Operations

In science and technology materials, i.e., the different forms in which matter appears,
distinguish by the values of the material constants or their geometric shape. Material
constants describe the properties of the material depending on the environment (cf. ??).

Recall, that material constants are physical quantities (cf. Chapter 2). In Chapter 2,
these properties of materials are modeled as attributes of material classes.

Mechanical systems often perform transformations of material that can be described in
terms of transformations of these attributes. Material operations describe the
categories in which [Kol98] distinguishes the elementary functions that transform
material in this way.

103

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

The material operations listed in Koller’s design catalog [KK98] are

1. Convert: Add or remove a property to or from a stream of material,

2. Increase/decrease: Increase or Decrease the scalar value of a material property
(i.e., a physical quantity that describes a property of the material),

3. Mate: Establish cohesion forces between two incoming materials such that they
do not diverge,

4. Disconnect: Resolve cohesion forces in a material,

5. Separate / blend: Sort or blend mixtures of substances by qualitative properties,

6. Collect / split: Bring together / set apart a material according to quantitative
properties (e.g.,, mass, volume), and

7. Conduct / isolate: Enable / prevent a stream of material to get from one place to
another.

In contrast to the energy operations, using interface assertions or HIOSs to define
material operations requires to reference the attributes of the classes that define a type
of material. For materials, the set of attributes is not standardized as it is the case for
energy types (these contain two attributes for each energy component which is
explained in Section 2.2.2). Therefore, we cannot easily provide specification schemes
for these operations. To illustrate how material operations can be formalized through
interface assertions, we provide examples for elementary functions that transform
material accordingly.

Converting Material According to [Kol98], converting material describes the category
of elementary functions that add or remove a property or feature to or from a material.
Examples are changing the aggregate phase of a material, or magnetizing a material.
Physically, however, these conversions require to increase or decrease one or more
properties that describe the material. For example, a system that changes the
aggregate phase of water from fluid to solid would decrease the temperature of the
water or decrease its density. Phases describe the different manifestations of a material,
and the phase of a material depends on environmental conditions defined by specific
physical quantities such as pressure, volume, or temperature [Sti18]. So far, it was not
possible to describe these conditions through laws, and there only exist empirical
observations for different materials [Sti89]. Consider, for example, the boiling point of
water which cannot be calculated from the existing physical laws but has been
determined through observations obtained in physical experiments [Sti89].
Thermodynamics uses, e.g., material-specific p-v-T diagrams (pressure, volume,

104

5.2 Formalizing the Koller Design Catalog

temperature diagram), to determine the phase of a material [Sti89]. This holds
similarly for magnetizing a material [Sti89].

So, technical implementations of a material converting function will define functions
that increase or decrease the values of the physical quantities that describe the
conditions of the environment. Therefore, we do not consider the conversion of
material as a stand-alone category of elementary functions, but as a subcategory of
increasing or decreasing material.

Example 5.3 (Converting fluid water to steam). Example 5.4 presents the specification
of an elementary function that increases the temperature of fluid water. We can refine
this function by adding a statement requesting the temperature after the time delay δ to
be at 373.2 K which is 100◦C, i.e., the boiling temperature of water.

CPCD

«material»
Water

Temperature temp

ConvertWaterToSteam(R+δ
∗)

CPF

in «fluid» Water w1
out «fluid» Water w2

∀t ∈ R+, δ > 0
w1(t). temp ≤ w2(t+ δ). temp
w2(t+ δ∗). temp = 373.2 K

Table 5.23: Specification of the elementary function that increases the density of fluid
water.

Increasing or decreasing the scalar of a physical quantity that describes a property
of a material is one of the elementary operations, physical systems perform. Material
types model a type of matter through attributes such as, e.g., density. elementary
functions in this category increase or decrease the value of these properties.

Increasing, or decreasing the density, or the electrical conductivity of a material are
examples mentioned in [Kol98].

Example 5.4 (Increasing the temperature of Water). Kettles increase the temperature of
fluid water. In this context, we consider a material type to represent water that has an
temperature attribute temp measured in the SI-unit Kelvin (K). The function increases
the value of that attribute.

105

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

Table 5.24 specifies an elementary function that increases the temperature of fluid
water, by stating that after a delay δ at time t+ δ the water temperature at the output
port is greater than it was at the time t.

CPCD

«material»
Water

Temperature temp

IncreaseTemperatureOfFluidWater(R+δ)
CPF

in «fluid» Water w1
out «fluid» Water w2

∀t ∈ R+

w1(t). temp ≤ w2(t+ δ). temp

Table 5.24: Specification of the elementary function that increases the density of fluid
water.

Mate or disconnect (ger: fügen, lösen) include elementary functions that establish or
resolve cohesional forces among two materials that prevents them from being separated
if deseparating forces act on the mated material [Kol98]. Conjunctions of all kinds,
e.g., bolted, snapped, or welded, are examples of machine elements that realize the
function that mates two materials [Kol98]. Physically, mating two pieces of material
means establishing forces between them, such that they do not diverge excessively if a
force that aims to separate the two materials is applied [Kol98].

Disconnecting of equal or different materials means resolving the cohesional forces that
keep them together [Kol98]. Examples of systems that realize such functionalities are
saws, sisels, knives, etc. [Kol98].

Example 5.5 (Wood Saw). A wood saw separates a piece of wood into two. To specify
this functionality, the interface assertion in the CPF states that the sum of the volumes
of the outgoing two pieces of wood must be equal to the incoming volume. in Table 5.25

Separate or blend: Separating material means dissolving or sorting a mixture of
substances into its constituting substances, while blending material corresponds to
creating mixtures of substance [KK98]. Examples of systems performing the former
are, e.g., strainers or garbage sorting facilities, examples of material blending systems
are blenders, or agitators [KK98].

106

5.2 Formalizing the Koller Design Catalog

CPCD

«material»
Wood

WoodSaw
CPF

in «item»Woodw
out «item» Wood w1, «item» Wood w2

∀t ∈ N :
vol(w(t)) ̸= 0kg ⇒ vol(w1)(t+ 1) + vol(w2)(t+ 1) = vol(w)(t)
vol(w(t)) = 0kg ⇒ vol(w1)(t+ 1) = 0kg ∧ vol(w2)(t+ 1) = 0kg

Table 5.25: Specification of an elementary function that disconnects a piece of wood into
two pieces.

Example 5.6 (Strainer). Strainers sort bulk material, such as grains, by grain size.
Therein, the grain size is a diameter, i.e., grain size is described by the physical
quantity length whose SI-unit is meter (m). The example is based on [BG21].
Table 5.26 specifies the CPF of a strainer that separates bulk material into two streams
of material of which one has grains of a size smaller than a fixed mesh size and the
other holds grains of a size greater than or equal to the fixed mesh size.

CPCD

«material»
Grain

Length grainSize

Strainer(R(m) meshSize)
CPF

in «item» Grain g
out «item» Grain g1, «item» Grain g2

∀t ∈ N
g. grainSize(t) < meshSize ⇒ g1(t+ 1) = g(t)
g. grainSize(t) ≥ meshSize ⇒ g2(t+ 1) = g(t)

Table 5.26: Specification of the CPF defined by a strainer [BG21].

107

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

Collect or split: Physical systems that bring together or split stream of material
according to quantitative properties (e.g., mass, or volume) belong to the category of
systems that define a CPF that collects or splits material [KK98]. Collecting refers to
increasing an amount of substance quantitatively, while splitting refers to decreasing
the amount of substance in each of the outgoing streams [KK98]. Material collecting
systems, e.g., pour together two (different) kinds of material, while material splitting
systems, e.g., weigh out amounts of material [KK98].

Example 5.7 (Splitting or Collecting Water). In pipe systems, splitting or collecting
streams of fluid materials, such as water, is a very common task. A very high-level
specification of the CPF is given in Table 5.27. In principle, the interface assertion
uses mass conservation to state that the incoming fluid stream of water is split into two
streams equally. The formula states that the amount of water that leaves the system
which is determined by the sum of the amounts of water that leave the system on each
output port over time is equal to the amount of water that was put into the system.

SplitWater(R+ δ)
CPF

in «fluid» Water w
out «fluid» Water w1, «fluid» Water w2

∀t ∈ R+ :∫ t
0 vol(w)(t

′)dt′ =
∫ t+δ
0 vol(w1(t′))dt′ +

∫ t+δ
0 vol(w2(t′))dt′

Table 5.27: Specification of a CPF that splits water quantitatively.

Conduct or isolate: Functions that conduct or isolate material bring, or prevent
matter to get from one place to another. The interface assertions to specify these
elementary functions look very similar to the respective energy transforming
elementary functions. To this effect, we provide a scheme that uses the stereotype
«material» on the input and output channels. What is power for energy
transformations, is volume or mass for material. We adapt the interface assertions for
the corresponding energy operations by replacing all references of the power property
pow by references to the volume or mass property, i.e., vol or mass, respectively
(Section 2.3). Using the scheme, the modeler will have to refine th stereotype
«material» to be either «fluid» or «item».
A water pipe, for example, transports water from one place to another without loosing
water along the way. The component Pipe

def
= ConductMaterial⟨Water⟩(R+ δ,

Position start, Position end) defined in Table 5.29 specifies the function defined by a
pipe as an elementary function. The interface assertion specifies the position of the
outgoing fluid to be the end-position and the position of the incoming fluid to be the

108

5.2 Formalizing the Koller Design Catalog

ConductMaterial⟨M ∈ Mat⟩(R+ δ, Position start,Position end)
CPF

in «material» M m1
out «material» M m2

∀t ∈ R+ :
vol(m1)(t) = vol(e2)(t+ δ)
pos(e2(t)) = start∧ pos(e2(t+ δ)) = end

Table 5.28: Scheme for the specification of an elementary function that conducts material
adapted from the energy scheme Table 5.16.

start position which are both parameters of the CPF. Abstracting from losses, the
interface assertion requires the volume of the outgoing fluid after a time delay δ as
equal to the incoming volume. For isolating material, we adapt the respective energy

Pipe(R+ δ, Position start,Position end)
CPF

in «fluid» Water m1
out «fluid» Water m2

∀t ∈ R+ :
vol(m1)(t) = vol(e2)(t+ δ)
pos(e2(t)) = start∧ pos(e2(t+ δ)) = end

Table 5.29: Scheme for the specification of an elementary function that conducts energy.

schemes provided in Table 5.17, Table 5.18, and Table 5.19 can be adapted for this
purpose and are given in Table 5.30, Table 5.31, Table 5.32.

IsolateMaterial⟨M ∈ Mat⟩(R+δ,List⟨Position3⟩P)
CPF

in «material» M m1
out ∅
∀t ∈ R+ :
pos3(m)(t) ̸∈ P

Table 5.30: Specification scheme for elementary functions that isolate material.

109

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

StoreMaterial⟨M ∈ Mat⟩(R+ δ)

in «material» M m1, «event» Boolean b
out «material» M m2

s ∈ Energy, ∀t ∈ R+ :

0 ≤ s(t) =
∫ t
0 pow(m1)(t′)dt′ −

∫ t
0 pow(m2)(t′)dt′

lt(b, t) ⇒ 0 <
∫ t
0 pow(e

′)(t′ + δ)dt′ ≤ s(t)
¬lt(b, t) ⇒ 0 = pow(e′)(t+ δ)|
where
lt(c, t∗) = c(max{0 ≤ t ≤ t∗ | c(t) ̸= ξ})

Table 5.31: Specification schemes for elementary functions that store material.

MaterialSource⟨M ∈ Mat⟩(R+ δ,Volume v)

in «event» Boolean b
out «material» M m

s ∈ Energy
∀t ∈ R+ :

T
def
= {t′ | vol(m)(t′) ̸= 0m3}∫

t∈T vol(m)(t′)dt′ = v

¬lt(b, t) ⇒ vol(m)(t) = 0m3

where
lt(c, t∗) = c(max{0 ≤ t ≤ t∗ | c(t) ̸= ξ})

Table 5.32: Specification schemes for elementary functions that represent a source of
material.

5.2.3 Operations between Energy and Material

Physical systems often also describe functions that process both energy, and material.
Their task is, e.g., to set a physical part into motion or to cool down a physical part
which corresponds to dissipating heat from the part. The former belongs to the
category of functions that connect material and energy, while the latter belongs to the
category of functions that separate material and energy.

The operations between energy and material listed in [KK98] are

1. Connect: Apply energy to a stream of material, e.g., lift material or bring
material into motion, and

110

5.3 Discussion

2. Separate a stream of an energy-afflicted material into a stream of energy, and a
stream of material that is not (or less) energy-afflicted

Connect: A CPF that is an operation between energy and material that connects
energy and material iff it changes the values of the energetic components of the
material [KK98]. A material type comprises energetic attributes, i.e., attributes with
an energy type and attributes that are typed by physical quantities that describe the
physical properties of the material. An example of an elementary function in this
category is provided in Example 3.2 in Section 3.4.1 which specifies the the elementary
function, e.g., of the paddle wheel of a centrifugal pump. The paddle wheel is placed
within a fluid, e.g., water, and rotates which causes a pressure difference within the
fluid that causes it to start moving. The function defined by the paddle wheel has two
input ports and one output port: An energy input channel of type RotationalEnergy, a
fluid input channel of type Fluid and a fluid output channel of type Fluid. The
interface assertion uses the power balance to specify the transfer of energy.

Separate a stream of an energy-afflicted material into energy and material. Examples
of this operation are cooling, lowering, breaking, or damping [Kol98]. This category of
functions is defined very similarly to the operations that connect energy and material.

Example 5.8 (Radiator). The main function of a radiator is to enable a material to
release heat. In a cooling system, for example, radiators are responsible for releasing
the heat from the coolant. The specification in Table 5.33 expresses that at any time t
and for a delay δ which is a parameter of the CPF, the power of the coolant at the
output channel c2 plus the power at the output channel h at time t+ δ is equal to the
power at the input channel at time t up to an error of ε > 0. Since the power on the
output channel, h is specified as greater than 0 W, the specification defines the transfer
of heat from the incoming coolant.

5.3 Discussion

The previous sections have summarized the mechanical design process
from [Kol98, BG21], and formalized the Koller design catalog [KK98]. The
formalization mainly concerned translating the verbal definitions of elementary
operations into interface assertions or HIOSs that can be used to specify the behavior
of a CPF. Further, we have provided specification schemes or examples of elementary
functions for most categories, which are translations of the informal definitions in the
form of a substantive and a verb prescribed in [BG21, Kol98]. For the specifications of
elementary functions, we have employed timed specifications that are underspecified,
e.g., because they abstract from energetic losses. The following subsections discuss how

111

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

«energy»
Heat

Temperature temperature
EntropyStream entropystream

CPCD

«material»
Coolant

Heat e

Radiator(R+ δ)
CPF

in «fluid» Coolant c1
out «fluid» Coolant c2, «energy» Heat h

∀t ∈ R+ :
pow(c2.e)(t+ δ) + pow(h)(t+ δ) = pow(c1.e)(t)
pow(h)(t+ δ) > 0 W

Table 5.33: Heat is a form of energy that is bound to the physical quantities temperature
and entropy [FR76].

energetic losses, and delays can be made explicit or omitted in the specifications on the
example of the CPF defined by an electric drive presented in Table 3.3.

5.3.1 Energetic Losses

The specification schemes and examples in Section 5.2.1 abstract from energetic losses.
For example, the scheme in Table 5.8 that formalizes converting energy, states that the
incoming power has to be equal to the outgoing power in the interface assertion. In the
real world, there exist no such ideal systems that can use all the energy they receive as
input. This section discusses how to include energetic losses in the interface assertions.
These techniques can be applied equally to specify materialistic losses by using the vol
or mass property instead of the pow property.

(Under-)specifying the Amount of lost Energy The interface assertions in the
specification schemes and examples provided in Section 5.2.1 require the incoming
power to be equal to the outgoing power. Consider, for example, the CPF defined by
an electric drive specified in Table 3.3: The specification contains the statement

pow(e)(t) = pow(r)(t+ δ), (5.10)

where e is an input port of the energy type ElectricalEnergy, and r is an output port of
the energy type RotationalEnergy. The statement manifests the power balance stating
that the power that leaves the system in the form of rotational energy via the output

112

5.3 Discussion

port r must equal to the power that has come into the system in the form of electrical
energy via the input port e. That is, the electric drive may not store energy, but
convert it directly to rotational energy. To regard potential losses in the specification,
the modeler can use underspecification or make the losses explicit. An implicit way of
allowing energetic losses while underspecifying not only the kind but also the amount
of losses is by replacing the statement in Equation 5.10 by the following:

pow(e)(t) ≤ pow(r)(t+ δ), (5.11)

Equation 5.11 specifies the CPF to conserve energy by stating that the outgoing power
must be smaller than or equal to the incoming power. The specification is
underspecified in the sense that it leaves open, what happens with the rest of the
energy. Because energy is a conserved quantity, this energy must go somewhere, and in
technical implementations of such a specification, the energetic loss will become
apparent. This way, the specification leaves a margin, i.e., ε ∈ R+(W) defining an
“allowed” amount of energetic loss explicitly. Another implicit way to regard energetic
losses in a specification is to specify a threshold that defines an amount of “allowed”
loss. By replacing the statement in Equation 5.10 with

0 ≤ pow(e)(t)− pow(r)(t) ≤ ε, (5.12)

for ε ∈ Power, the modeler states that an amount of ε of energy may be lost during the
transformation. The ε could be defined as a parameter of the CPF or as an internal
variable.

Specifying the Type of lost Energy Electric drives or batteries that store electrical
energy (cf. Table 5.18), for example, heat up during operation. That is, not all of the
incoming electrical energy is converted to rotational energy, some is converted to heat,
which is one form in which energy is lost during the conversion. In the engineering of
electric vehicles, thermal management is of crucial importance as the vehicle’s range
depends heavily on its efficiency, and therefore, the energetic losses will need to be
considered at some point. One way of making the loss explicit is by modeling the losses
by adding energetic output ports of respective types to the interface of a CPF.
Table 5.34 shows this for the electric drive. Therein, heat is a form of energy that is
bound to the two quantities temperature and entropy [FR76]. Here, the specification
has an extra output port of type Heat that represents a channel via which a system
that implements the specified functionality may lose energy in the form of heat. The
specification is still underspecified due to the ≥ in the specification: The amount of
energy that is lost as heat must not be the entire loss of the conversion.

Not Specifying Energetic Losses The CPFs specified in this section are ideal in the
sense that they abstract from losses. In the interface assertion, the equality

113

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

CPCD

«energy»
Heat

Temperature t
EntropyStream e

ElectricDriveWithLoss(Power ε,R+ δ)
CPF

in «energy» ElectricalEnergy e
out «energy» RotationalEnergy r, «energy» Heat heat

∀t ∈ R+ :
pow(e)(t)− pow(r)(t+ δ) < ε
pow(e)(t) ≥ pow(r)(t) + pow(heat)(t)

Table 5.34: Specification of the CPF defined by an electric drive that regards energetic
losses in the form of heat. Heat is an energy type represented by the two
quantities, temperature and entropy stream [FR76].

in Equation 5.10 explicates this abstraction. Table 5.35 shows the CPF of an ideal
electric drive, i.e., the lossless conversion of electrical to rotational energy which was
given previously in Table 3.3. In the real world, any conversion of energy is subject to
energetic losses, therefore, this specification is not realizable.

ElectricDriveWithoutLosses(R+ δ)
CPF

in «energy» ElectricalEnergy e
out «energy» RotationalEnergy r

∀t ∈ R+ :
pow(e)(t) = pow(r)(t+ δ)

Table 5.35: Specification of the CPF defined by an electric drive without accepting losses.

Making the Efficiency Explicit In mechanical engineering, efficiency is a
characteristic variable for systems that convert energy. The efficiency is the
instantaneous ratio between the incoming power and the outgoing power. Table 5.36
shows a specification that includes the efficiency as a parameter of the CPF. The
specification allows implementations to be wrong up to an error of ε.

Another way to specify the conversion of electrical to rotational energy while making
the efficiency explicit but leaving a tolerance is to specify a range of the efficiency
through functional parameters that define a minimal and a maximal efficiency, as
in Table 5.37. The specification references the instantaneous efficiency and states that
it must be within the range at all times [GBG18].

In both specifications in Table 5.36, and 5.37, it is possible to explicate the lost energy
by refining the specifications to include respective output ports as in Table 5.34.

114

5.3 Discussion

ElectricDriveWithEfficiency(R+ n,Power ε,R+ δ,)
CPF

in «energy» ElectricalEnergy e
out «energy» RotationalEnergy r

∀t ∈ R+ :
pow(e)(t)− n · pow(r)(t+ δ) < ε

Table 5.36: Specification of the CPF defined by an electric drive that makes the efficiency
n explicit, while leaving an error tolerance of ε.

ElectricDriveWithEfficiencyRange(R+ δ,R+ nmin,R+ nmax)
CPF

in «energy» ElectricalEnergy e
out «energy» RotationalEnergy r

∀t ∈ R+ :
pow(e)(t) ≥ nmin · pow(r)(t+ δ)
pow(e)(t) ≤ nmax · pow(r)(t+ δ)

Table 5.37: Specification of the CPF defined by an electric drive that considers energetic
losses through an allowed range of efficiencies.

5.3.2 Delay

A specification is delayed with delay δ > 0, iff for all TSPFs in its semantics, the input
until time t ∈ R+ entirely determines the output until time t+ δ (cf. Section 3.3). The
property of being delayed becomes important when specifications are composed by
feedback composition which is not well-defined for non-delayed CPFs. The
specifications above are all delayed. In the specifications in Table 5.35 to 5.37 the delay
expresses that the system that defines the specified CPF takes some time, i.e., δ, to
perform the conversion of electrical to rotational energy. The specification
in Table 5.35 states that the incoming power at time t must be equal to the outgoing
power at time t+ δ. The energetic balance, i.e., the difference between incoming and
outgoing streams of energy, for an electric drive stated in [FR76] states this balance
without delay which the specification in Table 5.38.

Similarly, stating the specifications in Table 5.34, 5.36, or 5.37 by omitting the δ
parameter yields an undelayed specification. However, when composing the undelayed
specifications, feedback composition is not possible, because it is not well-defined for
these specifications.

115

Chapter 5 Formalizing Design Catalogs as Libraries of Physical
Functions

ElectricDriveWithoutLossesInstantaneous
CPF

in «energy» ElectricalEnergy e
out «energy» RotationalEnergy r

∀t ∈ R+ :
pow(e)(t) = pow(r)(t)

Table 5.38: Specification of the CPF defined by an electric drive without losses and
stating the energetic balance instantaneously as in [FR76].

5.3.3 Related Work

Ongoing research has produced theories, and modeling languages for engineering
software and electronic functions of CPS, e.g., [Alu15, Pto14, BS01], as well as for
designing [SFA17, Gro00], engineering [BBL+16], and operating [BSP+16] CPSs in
various domains. Most of these approaches consider modeling only through the lens of
software engineering, i.e., for discrete and functional systems. Where
continuity [Bro12, Alu15, Pto14] or geometry are supported, the theories and
languages do not support established processes or modeling concepts from other (i.e.,
the “physical”) domains, such as mechanical engineering. In the Focus theory [BS01],
systems are composed of components that realize stream processing functions. As
functions communicate via their interface only, they can be (de)composed and refined
systematically, where refinement considers both, structure and the behavior of
components [Bro18]. Architectures and the notions of subsystems and interfaces are
rigorously formalized using Focus into a logical calculus for the composition of
systems [Bro18]. To the best of our knowledge, none of these approaches have been
used to create models with formal semantics that make the knowledge from design
catalogs available for functional approaches to systems engineering.
In mechanical engineering, a variety of design catalogs to aid the design process
regarding various aspects [FLD04] exist in the literature,
e.g., [BG21, Rot11, Rod91, Rot94, Rot96]. Approaches that digitize such catalogs,
e.g., [MEE+11, FLD04], focus on making the (extended) information from the existing
design catalogs accessible by providing digital textual descriptions complemented with
mathematical expressions or sketches. The provided models, however, do not have a
formal semantics. Lacking a representation in a formal modeling language that also
enables integrating the information within a functional architecture of a mechanical
system hinders applying these approaches in a model-driven development process.

116

Chapter 6

A Language Engineering Perspective on
Physical Functions

CPS engineering is a broad field that involves experts and companies from very
different backgrounds and very different experience levels. Commonly, we mention the
domains of software, mechanical, and electrical engineering. The field is even broader
and also involves creative designers, accountants, jurists, etc.. In this dissertation, we
focus on integrating the technical domains of software, mechanical, and electrical
engineering. As each of these branches has, so far, established methodologies,
processes, and tools to engineer their respective parts of the system, introducing
functional MDE techniques will require the provision of tailored modeling languages for
each domain, company, or branch. This section addresses the research question RQ5
“What are the constituents of a useful modeling language for specifying CPSs from a
functional point of view? And what does such a modeling language look like?”. To this
effect, we have proposed a meta-model that captures concepts from mechanical design
theory and implemented this meta-model in the form of the SysML-profile
SysML4FMArch which was originally published in [DRW+20] This previous version of
the meta-model emerged during a collaborative project with experts from software
engineering and mechanical engineering. This section derives a new version of this
meta-model from the concepts presented in Section 5.1 that abstracts from design
theoretic and language implementation details. With this, it aims to allow for
extensions that regard also the software and electrical domains in the future. The
purpose of the meta-model is, therefore, to capture the concepts illustrated
in Figure 5.3 and Figure 5.4 from a language engineering point of view using the words
of the theory introduced in Chapter 3. This view shall enable language engineers to
implement modeling languages whose semantics can be defined based on the Focus
theory of TSPFs over discrete and dense time domains detailed in Chapter 3.
Section 6.2 details how the SysML profile SysML4FMArch implements also, this new
version of the meta-model so that the formal interpretation becomes explicit.

117

Chapter 6 A Language Engineering Perspective on Physical Functions

6.1 A Meta-Model for Functional Modeling Languages To
Digitalize the Mechanical Design Process

In this dissertation, we consider formalizing the knowledge of design catalogs and
systematizing the design process using the MDE techniques presented in Chapters 2
and 3 to provide the basis for an agile and holistic approach to systems engineering. In
practice, this requires a modeling language that enables to model channel types,
functions, and physical effects. To add value to the mechanical engineering part of CPS
engineering, these languages must also enable linking geometric and materialistic
information to these models and thereby provide a model of a conceptual solution to a
function because a solution to a physical function should also provide an idea of its
geometry and the effect carrier [DRW+20, HJZ+21, ZJS+21]. Models in this language
together with powerful tooling that exploits their formality can be (re)used to, e.g.,
evaluate different solutions for products at early development stages enabled by
automatic functional dimensioning and testing. This section derives a
meta-model [Rum17] from the concepts presented in Chapter 5 that defines modeling
languages whose semantic domain can be defined based on the theory presented
in Chapter 2 and Chapter 3. The meta-model is similar to the one originally published
in [DRW+20] but interprets the concepts from concepts from Chapter 5 in the
terminology of Chapter 2 and Chapter 3. Because the terminology is formally defined
based on the theory of TSPFs over discrete and continuous-time domains
(cf. Section 3.3), modeling languages that implement the meta-model obtain a formal
semantics. This meta-model provides the conceptual basis for defining modeling
languages that enable mechanical engineers to explicate functional structures and
solutions composed of models of geometry and physical effects, as formal models that
are systematically related and integrate with specifications of software functions in
CPS engineering. The following section conceives a meta-model to capture the
concepts from Figure 5.3 using object-oriented constructs for types and the notion of
functions that are specified through an interface and a behavior.

6.1.1 Functional Interfaces

The Type Kind captures the kinds of functional flows from Section 5.1.4. In the
meta-model in Figure 6.1 the construct represents the idea of a kind of type that
prescribes the kinds of streams in which elements of the type can be exchanged
(cf. Section 3.2). The concrete kinds of streams considered in our modeling theory are
Signal, Data, Event, Energy, Fluid and Item (cf. Section 3.2). Here, we allow to
underspecify the concrete type of a material flow by introducing the kind Material Flow
as a super-construct of the Fluid and Item kinds. The meta-model does not distinguish
between kinds of types and kinds of streams because it allows the creation of modeling
languages for functions in which the type of stream is not declared on the channels of

118

6.1 A Meta-Model for Functional Modeling Languages To Digitalize the
Mechanical Design Process

Signal Material

Variable

Type Kind

MM Channel Types

*

Constraint

args

dependency

EnergyEventData

ItemFluid

Method

attributes

*

1

methods

*

*
type

Type

kind

Primitive Type

Physical Quantity

*

* constrains

1*

Figure 6.1: Meta-model that describes how the cyber-physical types introduced in Chap-
ter 2 are modeled.

functional descriptions. Traditional design methodologies consider only energy, signal,
and material flows [BG21, KK98], which does not suffice when interpreting functions as
TSPFs (cf. Section 3.2). Types specify the type of the messages that a function
receives or transmits via its interface in terms of attributes, methods and constraints
among the attributes of a type. The meta-model in Figure 6.1 offers the construct
Variables and Methods which represent the respective object-oriented concepts
introduced in Section 2.1. The Constraint construct allows to formulate constraints
among the attributes of a Type. These constraints represent dependencies among the
attributes that represent characteristics of messages of that type. Consider, for
example, a cyber-physical type that represents fluid water and assume that in the
engineering context, a relevant quantity of fluid water is temperature. Since the type is
supposed to represent fluid water, in a simplified setting that abstracts from physical
details such as the anomaly of water [RS16], this temperature may not deceed 0◦C,
because at lower temperatures the water is not fluid but solid. Modeling languages for
the engineering of mechanical functions need to offer constructs for specifying such
constraints. A possible implementation could be in the form of OCL constraints which
are also an established modeling language for constraints among the attributes of
classes that represent data types [Rum16]. Primitive Types are types that are the

119

Chapter 6 A Language Engineering Perspective on Physical Functions

1..*

Variable
Functional

Interface

Elementary

Function

Composite

Function
Function

Physical Effect

* realizations

*

Behavior

Specification1

1

Solution

*

Geometry

activeSurfaces *

Material

effectCarrier*

inputs

*

outputs

*
MM Functions

Figure 6.2: Meta-model that captures the concepts of functions and solutions from Fig-
ure 5.3 and Figure 5.4.

building blocks of all other types. We consider the set of primitive types to contain the
number domains, Booleans and Physical Quantities as defined in Section 2.2.1.

6.1.2 Functional Architectures

The principle of decomposition (cf. Section 3.3.3) is neither new to software
engineering [FR07, Bro07] nor to mechanical engineering [Kol85, BG21]. Both domains
describe a transformation of the inputs to a function to the outputs of a function as a
network of interacting sub-functions that exchange energy, matter, and data. Our
meta-model describes a set of language constructs to model the functional concepts
presented in Figure 5.3 in terms of the Focus modeling technique presented
in Chapter 3.

Therein, a Function exhibits a Functional Interface and a Behavior. The interface
comprises two lists of Variables containing the names of the input and output channels
(cf. Definition 3.19). Because each Variable has a Type (cf. Figure 6.1), the channels
are typed. Being in either the input or the output set of channels, each channel obtains
a unique direction. C&C languages like Simulink [MAT16], Modelica [Mod22],
AutoFOCUS3 [AVT+15a], or MontiArc [Hab16] implement this: Functions can be
represented by the components (in the graphical notations of each of these languages,
components are represented by boxes) and their interfaces by the typed connectors.

120

6.1 A Meta-Model for Functional Modeling Languages To Digitalize the
Mechanical Design Process

The Behavior describes how the inputs are transformed to the outputs. There exist
different concrete specification styles that a modeling language could offer. So far, our
modeling technique offers three specification styles: Interface assertions, HIOSs, and
compositional specifications (cf. Section 3.4). The meta-model utilizes the composite
pattern [GHJV95] to capture hierarchically decomposed functions as Composite
Functions. It is important to explicate this specification style in the meta-model as
decomposition is one of the principles of the functional development paradigm
(cf. Section 4.1). By this principle, a specification of (a solution to) a function is
defined by the composition of the specifications of (solutions to) its sub-functions. In
the development process, this principle allows us to break a complex engineering task
down into smaller engineering tasks of manageable complexity. Therefore, composite
functional specifications must be composed of other functional specifications. Other
specification styles are defined, e.g., in [BS01]. These represent the decomposed
functional structures from mechanical design methodology [BG21], as well as the
functional architectures from software engineering. The focus of the meta-model is the
specification of modeling languages for mechanical engineers. Therefore, the leaves of a
composite specification are called Elementary Functions and they point to a set of
Physical Effects. In general, there exists more than one physical effect to realize an
elementary function and one physical effect may be a possible realization of many
elementary functions. Physical Effects capture physical phenomena as mathematical
formulae over the variables that describe the input and output channels of the function
the effect realizes. Consider, for example, a function that increases force. The lever
effect is an effect that [KK98] indicates a possible realization for this function. The
effect describes that when putting force on the longer end of a lever arm, a larger force
occurs at the other. The law describes this relation by a mathematical formula.
Principle solutions describe how such phenomena implement a physical function by
relating the variables in the physical effect, the description of the active surfaces, and
the effect carrier. Design catalogs, such as [KK98] provide a list of standardized
elementary functions together with a set of physical effects, possible geometries or
effect carriers that provide possible implementations of these functions. Modeling
languages as specified by the meta-model allow to digitalize the knowledge from design
catalogs in a formal manner that enables automation, e.g., of a search engine for
(optimal) solutions, in the future. Note, that this set may be empty, so Elementary
Functions may also represent atomic functions, e.g., of software systems. For the
latter, the traditional MontiArc 1 is an approved modeling language that allows to
define the behavior of a software function as the composition of other software
functions, or through a program that can be specified by an automaton or in the form
of simplified Java code.

Solutions must meet the functional specification, and therefore implement physical

1https://github.com/MontiCore/montiarc

121

Chapter 6 A Language Engineering Perspective on Physical Functions

functions consistently. A Solution is a Function that contains one or more physical
effects, a set of activeSurfaces and the effectCarrier [DRW+20, IJZK23]. Speaking in
terms of Section 3.3.4, a solution refines a function in the sense of Definition 1.7. The
relation should be a true refinement, i.e., the solution should contain more information
than the functional specification. By including information on the physical effect,
active surface, and effect carrier, the solution thereby complements the specification of
the function which narrows the set of TSPFs in the semantics of a solution. Because
Focus is the theory in which the models of the modeling languages specified by the
meta-model are implemented, the refinement relation is compositional. That is, a
solution to a composite function is obtained by providing solutions to the
sub-functions. This supports the principle of decomposition in the development process
as it enables the distribution of functions to development teams across the company or
project because the refinement steps within each team will then yield a refinement of
the decomposed function.

Current literature on design theory prescribes the list of active surfaces to comprise
exactly two elements based on the idea that an effect acts between two surfaces or
spaces [IJZK23]. To enable underspecifying geometric information, enhancing a
solution model or supporting other settings that require to deviate from this norm, the
meta-model is less restrictive in the number of active surfaces. The SysML profile
presented in Section 6.2, which implements the meta-model, simply considers geometry
to be a type with geometric attributes, i.e., variables whose type is a physical quantity
like length, area, height, etc. The effectCarrier is a Material -type and, therefore,
defined in terms of attributes which describe the characteristics of the material and
methods if necessary.

6.1.3 Discussion

The meta-model and its SysML-encoding that were published in a previous version
in [DRW+20]. The work emerged during an interdisciplinary project comprising
researchers from software and mechanical engineering as well as practitioners from the
automotive industry. So far, the meta-model has captured and extended the notion of
functional architectures prevalent in mechanical design theory [BG21, KK98]. The
meta-model now captures the concepts from mechanical design theory illustrated
in Figure 5.3 using the terminology introduced in Chapter 2 and Chapter 3. Modeling
languages that implement the meta-model obtain a formal semantics because the
elements of the meta-model are defined using the words of the Focus theory
introduced in Chapter 2 and Chapter 3. We have evaluated this approach by
implementing the meta-model as the SysML-profile SysML4FMArch. The modeling
elements described by the meta-model provide the language constituents that modeling
languages for the mechanical engineering domain need to offer. The meta-model was
conceived by and in collaboration with software engineering experts who are

122

6.2 Modeling Physical Functions and Solutions in SysML

experienced in developing architectural DSLs for software engineering. Also, the theory
that defines the semantics of the elements in the meta-model extends the discrete
Focus theory. Therefore, the formal interpretations of models created with modeling
languages that implement the meta-model integrate with models created with
modeling languages whose semantics is built on discrete Focus.

6.2 Modeling Physical Functions and Solutions in SysML

This section details how the SysML-profile SysML4FMArch, which was published
originally in [DRW+20] implements the meta-model presented in Section 6.1 by
mapping the elements and associations of the meta-model to a SysML-profile. We
complement the definition with additional well-formedness rules that integrate the
definitions from Chapter 2 and Chapter 3 in SysML4FMArch which cannot be
expressed in the graphical syntax of SysML profile diagrams. The language originally
emerged during a collaborative project with experts from software engineering and
mechanical engineering as an implementation of the previous version of the meta-model
which was also published in [DRW+20]. Here, we enhance the definition of
SysML4FMArch to also include interface assertions which enable specifying the
behavior of a physical function as a quantitative relation between the inputs and the
outputs. Further, we outline how the modeling language can support functional
dimensioning and testing and briefly describe the implementation of SysML4FMArch
as a SysML-profile in MagicDraw2 with the SysML-plugin3.

SysML4FMArch specifies stereotypes for SysML-elements and relations between them
to encode the meta-model presented in Section 6.1. As an extension to [DRW+20], we
include interface assertions to specify the behavior of physical functions in
SysML4FMArch models. Section 1.3.5 summarizes the SysML elements that are
reused, extended or implemented by SysML4FMArch.

6.2.1 Functional Interface

Figure 6.3 illustrates the elements of SysML4FMArch that implement the elements
from the meta-model in Figure 6.1 that defines language constructs for modeling
cyber-physical types. Functions interact by exchanging energy, matter or
data [Kol98, BG21]. In Chapter 2 we have defined these as kinds of types because
there exist different types of energy, matter and data. The kind of type belongs to a
type and dictates the kind of stream (cf. Table 3.1) that models the exchange of
messages of that type. In SysML4FMArch, Types from the meta-model in Figure 6.1
are modeled by stereotyped SysML Blocks. The choice is obvious because SysML

2https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
3https://www.3ds.com/products-services/catia/products/no-magic/addons/sysml-plugin/

123

Chapter 6 A Language Engineering Perspective on Physical Functions

«profile»

Types

«stereotype»

SysML::Blocks::Block

«stereotype»

Signal

«stereotype»

Energy

«stereotype»

MaterialFlow

«stereotype»

SysML::Blocks::ValueType

«stereotype»

PrimitiveType

«stereotype»

Item

«stereotype»

Fluid

«stereotype»

Material 0..1

material

Type Energy Signal

Fluid ItemMaterial PrimitiveType

«Enumeration»

Dynamicity

cont

discrete

fix

1kind

«stereotype»

Event

«stereotype»

Data

«stereotype»

UML4SysML::

Enumeration

Event Data

«stereotype»

ChannelType

Figure 6.3: SysML4FMArch’s encoding of the Functions meta-model similar
to [DRW+20]. The gray elements are from the SysML standard [Man19]
and the shaded boxes denote elements from the concept model depicted
in Figure 6.1. Dashed arrows indicate the implementation of the concept at
the arrow’s end.

124

6.2 Modeling Physical Functions and Solutions in SysML

BDD [Package] InterfaceBlocks

power : HydraulicPower

{p = press * q}

p :Power

press : Pressure

q : VolumeFlow

par [MaterialFlow] Fluid

p : Power

volFlow : VolumeFlow

press : Pressure
«equal»

«equal»

«equal»

BDD [Package] ChannelType

«valueType»

unit : Pascal

properties

kind : cont

«PrimitiveType»

Pressure
press

1

«ValueType»

Real

«InterfaceBlock»

Fluid_out

values

out fluid : Fluid

«InterfaceBlock»

Fluid_in

flow properties

in fluid : Fluid

«InterfaceBlock»

MechEnergy_in

flow properties

in q : MechEnergy

values

p : Power

volFlow : VolumeFlow

material : CoolingMedium

constraints

power : HydraulicPower

«MaterialFlow»

Fluid

Figure 6.4: Specification of a «MaterialFlow» Fluid in SysML4FMArch [DRW+20].

Blocks are derived from UML classes which implement the notions presented
in Section 2.1 on which also the idea of a cyber-physical type is based. Among others,
Types provide definitions of the types for the channels of a CPF’s interface. The
attributes of a Type are modeled by SysML ValueProperties [Man19] of a
«ChannelType». For Methods, SysML offers the construct of Operations which are
very similar to methods of classes in UML class diagrams [Man19]. In
SysML4FMArch, the stereotype of a Block represents the TypeKind from Figure 6.1.
The SysML standard already defines a library of ValueTypes that provides the numeric
domains considered as primitive types (cf. Chapter 2) [Man19]. Also, the package
offers a mechanism to equip ValueTypes with units. Every ValueType with the
«PrimitiveType» stereotype for which a unit is defined, models a physical quantity. To
enable channels to be typed with solely a primitive type, SysML4FMArch specifies the
stereotype «PrimitiveType» which is implemented as a SysML ValueType and holds a
kind property telling the topology in which to interpret the streams of a channel typed
with a «PrimitiveType». Therein, «cont» represents hybrid dense streams, «discrete»
represents time slice streams, and «fix» represents parameters of the system that do
not change their value during runtime. The latter are used, e.g., in the definition of
geometries that represent active surfaces of a solution. «Signal», «Energy», «Data»
and «Material», and the specific material TypeKinds «Item» and «Fluid» are the
stereotypes to represent the corresponding kinds of types. «Event» represents the
Event kind of type as an enumeration. The definitions of each kind of type restrict the

125

Chapter 6 A Language Engineering Perspective on Physical Functions

types of the attributes of the corresponding classes. For each of these types, we derive
the following well-formedness rules from the corresponding definitions in Section 3.2.
Definition 2.4 defines an energy type as a class with two attributes whose type is a
physical quantity.

Well-Formedness Rule 1 (Well-Formedness of Energy Types). A Block that holds the
stereotype «Energy» must have at least two ValueProperties whose type is a physical
quantity, i.e., a «PrimitiveType» with a defined unit. The product of the units of these
physical quantities must be W as specified in Definition 2.4.

Definition 2.5 defines a material as a class whose attributes are only typed by energy
types or physical quantities

Well-Formedness Rule 2 (Well-Formedness of Material). A Block that holds the
stereotype «MaterialFlow», «Item» or «Fluid» must not have ValueProperties whose
type is not a physical quantity or a Block with the stereotype «Energy». One of the
ValueProperties must reveal information on volume or mass.

Definition 2.6 defines a data type to be a class with attributes whose types are
primitive types.

Well-Formedness Rule 3 (Well-Formedness of Data Types). A Block that holds the
stereotype «Data» may only have ValueProperties whose type is a Block with the
stereotype «PrimitiveType» and must not have ValueProperties whose type is a Block
with the stereotype «Energy» or «Material».

Section 3.2.5 defines a signal as a hybrid stream. As in SysML it is not possible to
indicate a channel or port type with a different stereotype than its type, the stereotype
«Signal» is offered in SysML4FMArch.

Well-Formedness Rule 4 (Well-Formedness of Signal Types). A Block that holds the
stereotype «Signal» may only have ValuePropoerties whose type is a physical quantity.
Such Blocks must not have ValueProperties whose type is a Block with stereotype
«Energy», «Material» or «Data».

Constraints between these attributes are modeled by ConstraintBlocks that include the
BindingConnectors between attributes and ConstraintParameters [Man19]. By adding
a ConstraintProperty of the corresponding ConstraintBlock-Type to the
«ChannelType»-Block, these constraints are associated with the type.
We show an example from [DRW+20] to illustrate these constructs from
SysML4FMArch. The examples in Figure 6.4 show a BDD and a parametric diagram
that include these elements and show their relationships: The «MaterialFlow»-block
has four attributes and models a fluid. The attribute press is of the real number type
Pressure and specifies the unit Pascal as well as the «Dynamicity» cont.

126

6.2 Modeling Physical Functions and Solutions in SysML

ValueProperties typed by Pressure, therefore, change their value continuously during
system runtime. The attribute material specifies the material of the represented
fluid as a collection of typed attributes defined by the type CoolingMedium. The
latter is provided in the complete model of the automotive cooling pump in Section 7.2.
The ValueProperty volFlow of type VolumeFlow specifies the instantaneous volume
flow and allows to derive information on the volume of the fluid to meet the
prerequisite defined in Well-Formedness Rule 2. The ConstraintBlock
HydraulicPower, contained in the parametric diagram at the bottom left models the
physical relationship between the attributes of the Fluid channel type.
SysML4FMArch uses the predefined SysML ProxyPorts to model the inputs and
outputs of a function. The types of ProxyPorts are determined by SysML
InterfaceBlocks which hold FlowProperties to specify the entities that “flow” through
the port [Man19]. SysML4FMArch models are only well-formed if the InterfaceBlocks
that type ProxyPorts have FlowProperties of unambiguous direction, i.e., the usage of
direction inout is not allowed and specifying FlowProperties of multiple directions in
one InterfaceBlock yields an invalid model.

Well-Formedness Rule 5 (Unambiguous Port Directions). The direction of the
FlowProperties of an InterfaceBlock that is used to type a ProxyPort of a «Function»
must be unambiguous. The direction inout is invalid.

The diagram on the right of Figure 6.3 shows examples for InterfaceBlocks that type
ProxyPorts in our running example. Using the specification of ProxyPorts by the
SysML standard [Man19] it is possible to negate the direction of a port, thus,
specifying one InterfaceBlock for each direction (in and out) is not obligatory. In our
example, we do so because the notation for negated ProxyPorts which simply puts a ∼
in front of the port name does not explicate the direction. Note that Fluid and
RotMechEnergy represent the actual physical entities and not flows of information
about these entities. Section 7.2.1 introduces SysML4FMArch-models of all the
channel types used in the case study and throughout this paper in more detail.

6.2.2 Functions

Figure 6.5 shows how SysML4FMArch encodes the notions of Composite Function,
Function, and Elementary Function from the meta-model that defines language
constructs for specifying functions in Figure 6.2. In SysML4FMArch, the stereotype
«Architecture» encodes the Composite Function element from the meta-model,
Functions and Elementary Functions encode the corresponding elements from the
meta-model (see Figure 6.5). SysML4FMArch provides the «Function»-stereotype that
encodes the abstract element Function from the meta-model. This enables to model a
function without needing to know whether or not the function will be decomposed later
on which also addresses the challenge of the application of mechanical design

127

Chapter 6 A Language Engineering Perspective on Physical Functions

«profile»

Functions

«stereotype»

SysML::Blocks::Block

«stereotype»

Architecture

«stereotype»

ElementaryFunction

«stereotype»

ElementaryGeometry

+isAbstract : Boolean = true

«stereotype»

ElementaryEffect

+isAbstract : Boolean = true

11

«stereotype»

Function

1..*

Function

Composite

Function
Elementary Function

geometryeffect

Figure 6.5: SysML4FMArch constructs for modeling functions as in [DRW+20]. The
shaded boxes denote the elements defined by the meta-model in Figure 6.2
and the dotted arrows denote the implementation of the SysML4FMArch
constructs of these elements.

IBD [ElementaryFunction] TransformElEnToMechEn

«ProxyPort»

p_el : ElectricalEn_in

p : ElectricalEnergy

{direction : in}

i : Current

«equal»

interfaceAssertion : IA_TEEME

{ ∀ ∈ ℝ:	

  ⋅   ≤   ⋅ ()}

 : Torqueu : Voltage
«equal»

«equal»«equal»

p : RotMechEnergy

{direction : out}

torque : Torque

w : RotVelocity

«ProxyPort»

p_mech: RotMechEn_out

 : Voltage

 : Current  : RotVelocity

Figure 6.6: Example of a model for an elementary function in SysML4FMArch that
represents the transformation of electrical energy to rotational mechanical
energy from [DRW+20].

128

6.2 Modeling Physical Functions and Solutions in SysML

methodology outlined in Section 5.1.3. To illustrate this, consider the example
«Architecture» shown in Figure 1.5. The IBD models the internal structure of the
«Architecture» GenerateVolumeFlow which is the overall function of the system
considered in our running example described in Section 1.3.3. It comprises two
PartProperties of «ElementaryFunction»-type, i.e., moveFluid and elToMech and a
«Function» setVRot.
In SysML4FMArch, interface assertions [Bro18] are modeled by the
ConstraintProperties of «Functions» [Man19]. For these, the standard [Man19] allows
“using either formal statements in some language, or informal statements using text.”
Here, we use logical formulae. The IBD in Figure 6.6 is a SysML4FMArch-model of
the function TEE2ME including an interface assertion. The assertion specifies
functional behaviors such that the incoming electrical power, i.e., the product of
voltage and current, is greater or equal to the outgoing mechanical power, i.e., the
product of torque and rotational velocity [GB07]. SysML-ModelLibraries [Man19]
enable to store the «ElementaryFunction»-blocks that specify elements from catalogs
such as [KK98]. Utilizing a specialization of an «ElementaryFunction» allows refining
the functions from [KK98] for specific systems while preserving consistency to the
definitions in the library.

Elementary Effects and Elementary Geometries: To realize a physical function in
an architecture, an engineer selects a physical effect listed in a design
catalog [BG21, KK98] and derives a set of active surfaces that is sketched by the
mathematical description of the effect [JKB+21]. The interconnection of the physical
effect and the principle geometry refines the behavior description of a physical function
by translating it to a mathematical description of a physical process, i.e., the effect,
together with a quantitative geometry on which the effect acts, i.e., the set of active
surfaces. To establish a systematic relationship between physical functions and their
principle solutions, SysML4FMArch defines the abstract «Elementary Effect» and
«Elementary Geometry». These elements serve as placeholders for the
«PrincipleEffect» and «PrincipleGeometry» (cf. Figure 6.7) which represent
implementations of their elementary counterparts that can be selected when creating a
«PrincipleSolution» that specializes the «ElementaryFunction» (see Section 6.2.3). The
example on the left of Figure 1.5 illustrates this: The «PrincipleSolution»
HydrodynamicPump specializes ApplyFluidWithMechEn which redefines the
elementary effect and elementary geometry to their implementations Hydrodynamics
and WheelCyl, respectively.

6.2.3 Solutions

Principle solutions describe technical principles to realize a physical function as a
physical effect acting on active surfaces [JKB+21]. To specify a principle solution for a

129

Chapter 6 A Language Engineering Perspective on Physical Functions

«profile»

Solutions

«stereotype»

Functions::

Architecture

«stereotype»

Solution

«stereotype»

PrincipleSolution

«stereotype»

PrincipleGeometry

«stereotype»

PrincipleEffect

«stereotype»

Functions::Function

«stereotype»

Functions::Elementary

Effect

«stereotype»

Functions::Elementary

Geometry

«stereotype»

SysML::ConstraintBlocks::

ConstraintBlock

«stereotype»

EffectElement

«stereotype»

GeometricElement

«stereotype»

SysML::Blocks::

Block

«stereotype»

ChannelTypes::

Material

0..1effectCarrier

activeSurface * * physicalLaw

*

joint

0..1 effectgeometry 0..1

*

*

Solution

Physical EffectGeometry

Effect Carrier

*

Figure 6.7: SysML4FMArch encoding of solutions (cf. Figure 6.2).

130

6.2 Modeling Physical Functions and Solutions in SysML

physical function in an architecture, the engineer chooses implementations of the
elementary geometry and elementary effect owned by the physical function. Therein,
the physical effect together with the geometry, provide a mathematical causal relation
between the inputs and the outputs that complement the interface assertion and
thereby define a refinement of the physical function’s behavior. Figure 6.7 shows the
encoding of the solutional elements from the meta-model in Figure 6.2 in
SysML4FMArch [DRW+20].

Effect Elements and Geometric Elements: The meta-model describes a Solution to
comprise a Geometry which represents the active surfaces on which a physical effect
acts. SysML4FMArch enables composing such a geometry from reusable elements. To
this effect, Blocks with the stereotype «GeometricElement», with typed
ValueProperties, define a single active surface as a type. The ValueProperties of these
elements are typed by ValueTypes with the stereotype «PrimitiveType». As mentioned
in Section 6.2.1, these hold a property called dynamicity which indicates whether and
how the property changes its value during system runtime. Similar to the physical
relationships among the attributes of energy or material types, constraints between the
ValueProperties of Blocks with the stereotype «Geometric Element» are modeled,
either as BindingConnectors in case of equalities or as regular ConstraintBlocks in case
of more complex mathematical relationships. Each geometric element has a
PartProperty that is typed by a Block with stereotype «Material». These
PartProperties model the effect carrier, i.e., the material or space to realize an
elementary function. ConstraintBlocks with the stereotype «Effect Element» represent
physical laws or relationships between the ValueProperties of Blocks with the
stereotype «PrincipleEffect». In principle, these effect elements represent mathematical
constraints on the variables of the channels in a function’s interface. They can be
considered as a statement of an interface assertion that is derived from a physical law.
Effect elements are also reusable definitions of these physical laws. Principle effects can
be created by combining the physical laws from a library such that a physical process
is described accurately. Techniques, e.g., proposed in [JKPB12], enable to link an
«EffectElement» to a simulation model and respective tools enable to trigger their
execution. In SysML4FMArch, the inputs and outputs of the simulation are
represented by the ConstraintProperties of Blocks with the stereotype
«EffectElements». The characteristics of geometric elements are modeled by
ValueProperties of Blocks with the stereotype «GeometricElements».

Principle Geometry and Principle Effect: Principle geometries comprise the active
surfaces between which physical effects come into action. To this effect, our profile
defines the stereotypes «PrincipleGeometry» and «GeometricElement». The active
surfaces are represented by PartProperties of Blocks with the stereotype

131

Chapter 6 A Language Engineering Perspective on Physical Functions

«EffectElement»

centriforce : CentrifugalForce

{p,Q = pressField(w, nW, oDW, iDW,rho wW, cW, oDC)}

Q : VolumeFlowRate

wheelWidth : Length q : VolumeFlowRate

w : RotVelocity wW : Length

par [PrincipleEffect] Hydrodynamics

w : RotationalVelocity

«equal» «equal»

oCylWidth:

Length
oDC : Length «equal»

«equal»

nW : LengthnW : Integer
«equal»

oDW : LengthoWDia: Length
«equal»

iDW : LengthiWDia : Length
«equal»

p : Pressure
dp :

Pressure

«equal»

«equal»
outerCylDia

: Length
cW : Length

rho : Density
«equal» rho : Density

Figure 6.8: Principle effect representing the cause for turbulences in flowing fluids, mod-
eled in SysML4FMArch.

«PrincipleGeometry» whose type is a Block with the stereotype «GeometricElement».
Since a physical effect is often described by multiple physical laws (think of a system of
(differential) equations), «PrincipleEffect»-elements comprise ConstraintProperties
typed by a ConstraintBlock with stereotype «EffectElement». BindingConnectors
connect the ValueProperties of a «PrincipleEffect»-Block to the ConstraintParameters
of the contained «EffectElements» and, thereby represent equality of the numeric
values of the ValueProperties at the connector’s ends. To illustrate this, consider the
principle effect modeled in Figure 6.8. The physical law

p ·Q = M · ω (6.1)

causes turbulence, i.e., a rotational velocity, within a flowing fluid [Pum10]. Here, p is
the fluid’s pressure, Q is the volume flow rate, ω is the rotational velocity, and M is a
torque. Thus, the «PrincipleEffect» Hydrodynamics has ValueProperties that are
typed with respective «PrimitiveTypes» that which all specify the «Dynamicity» cont
(e.g., Figure 6.3 shows the definition of Pressure). The torque’s absolute value
depends on the geometric setup through which the fluid is flowing. In the context of
the running example (cf. Section 1.3.3), we assume that the fluid flows through a
tubular pipe with a length of oCylWidth and a diameter of oCylDia. In the pipe,
the fluid passes a paddlewheel with nW paddles, an outer diameter of oWDia, an inner
diameter of iWDia, and a width of wWidth. These ValueProperties of
Hydrodynamics represent geometric variables of fix kind, as these attributes are

132

6.2 Modeling Physical Functions and Solutions in SysML

assumed to not change their value at system runtime. The «EffectElement»
CentrifugalForce links to an external simulation model that calculates a difference
p between pressures of the incoming and the outgoing fluid, and a volume flow rate q
according to Equation Equation 6.1. BindingConnectors between the
ConstraintParameters of the ConstraintProperty hydro model the physical
relationships between the attributes of the principle effect as stated by the physical law
modeled by the «EffectElement» HydrodynamicEffect.

Solutions and Principle Solutions: A principle solution inherits the functional
interface, the elementary geometry, and the elementary effect as well as the interface
assertion from the physical function it realizes. To implement this, we utilize SysML’s
generalization relation and require that principle solutions must specialize an
elementary function. Redefining the elementary effect and elementary geometry of the
elementary function to concrete implementations, i.e., principle effect and principle
geometry yields a solution to the respective elementary function [KK98]. The principle
effect defines a behavior in terms of physical laws that are expressed as equations over
the names of the functions ports and geometric variables. The geometric variables are
declared as such in the principle geometry. To indicate that a variable of the physical
effect is a geometric variable, the modeler creates a BindingConnector between the
corresponding ValueProperty of the «PrincipleEffect» and the «PrincipleGeometry»
This interaction of the principle effect and the principle geometry refines the behavior
of the elementary function. Principle solutions are solutions to elementary functions.
SysML4FMArch distinguishes between principle solutions and solutions because
combining the (principle) solutions to sub-functions often requires to specify joints
between the active surfaces of the sub-(principle) solutions and enhance the physical
effect by equations to describe the connection. SysML4FMArch offers respective
stereotypes for principle solutions that refine the stereotype «Function». A
«PrincipleSolution» implements an «ElementaryFunction» and possibly redefines the
inherited «ElementaryGeometry» and «ElementaryEffect» to a «PrincipleGeometry»
and a «PrincipleEffect», respectively. This step may be delayed during the
development process, which the multiplicity indicates. SysML4FMArch uses
BindingConnectors to specify the constraints between attributes of principle geometries
and principle effects as well as the function’s interface. BindingConnectors between the
«EffectElement»-ConstraintProperties and the «GeometricElement»-PartProperties of
a «PrincipleSolution» link the ValueProperties of the geometry to the
ConstraintParameters of the effect. Thereby, the modeler defines which of the variables
used in the physical laws of the physical effect are geometric properties of the solution.
Blocks with stereotype «Solution» represent a solution to a composite function. The
stereotype therefore refines the stereotype «Architecture». Joints are PartProperties of
a Block with stereotype «Solution» that represent physical connections among the

133

Chapter 6 A Language Engineering Perspective on Physical Functions

interfaceAssertion : IA_AFWME

{ ∀ ∈ ℝ:	
  ⋅   ≥   −   ⋅   ∧
  = ()}

«equal»

«ProxyPort»

fluid_in : Fluid_in

fluid : Fluid

{direction : in}

«equal»
 : Pressure

«ProxyPort»

fluid_out : Fluid_out

fluid : Fluid

{direction : out}

prs : Pressure

′ : VolumeFlow vF : VolumeFlow

′ : Pressure

«equal»

vF : VolumeFlow
 : VolumeFlow

 : Torque

q : MechEnergy

{direction : out}

torque : Torque

w : RotVelocity
 : RotVelocity

«equal»

«equal»

«PrincipleEffect»

effect : HydrodynamicForce

outerCylDia: Length

wheelWidth : Length

numWingsWheel : Count

innerWheelDia : Length

outerWheelDia: Length

dp : Pressure

q :

VolumeFlow

outerCylWidth: Length

w : RotVelocity
«PrincipleGeometry»

geometry: WheelCyl

«GeometricElement»

cyl : Cylinder

diameter : Length

width : Length

«GeometricElement»

wheel: PaddleWheel

innerDia : Length

width : Length

numWings : Count

outerDia : Length

«EffectElement»

pressure: PressureDifference

{∀ ∈ ℝ:   = _() + ()}

p : Pressure
p_in : Pressure

dp : Pressure

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«ProxyPort»

p_mech: RotMechEn_in

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

rho : Density

material :

CoolingMedium

rho : Density

«equal»

IBD [PrincipleSolution] HydrodynamicPump

press : Pressure

Figure 6.9: Principle solution of ApplyFluidWithMechEn which relies on hydrody-
namics acting on a paddle wheel within a cylinder. The model represents a
hydrodynamic pump.

134

6.3 Implementation of SysML4FMArch in MagicDraw

active surfaces of (principle) solutions to the functional components of a function. The
constraints between the ValueProperties of a Block with stereotype «Solution» and the
contained «PrincipleSolution» components are modeled equivalently.
Figure 6.9 shows an IBD of HydrodynamicPump, which specializes the
ApplyFluid- WithMechEn (cf. Figure 1.5). Hydrodynamics specializes
EE_AFWME, the «ElementaryEffect»of ApplyFuidlWithMechEn (cf. Figure 1.5).
Refining a physical function to a principle solution corresponds to creating the
principle solution as a specialization of the «ElementaryFunction». An external
simulation linked to the «EffectElement» modeling Equation 6.1 assumes the fluid to
flow through a tubular pipe comprising a paddlewheel. The «PrincipleGeometry»
WheelCyl specializes the «ElementaryGeometry» of ApplyFluidWithMechEn and
has PartProperties of type PaddleWheel and Cylinder. These represent a pair of
active surfaces which enforce the represented effect, and assign the attributes of the
effect to distinguishable geometric shapes. The pressure of the outgoing fluid is given
by the sum of the pressure of the incoming fluid and the pressure difference which
results from the hydrodynamic effect acting on the fluid, which is modeled by the
«EffectElement» PressureDifference. The interface assertion uses the power
balance to specify this.

6.3 Implementation of SysML4FMArch in MagicDraw

For the evaluation of the modeling approach for physical functions, we have
implemented the SysML-profile SysML4FMArch in the modeling tool MagicDraw4. As
part of our evaluation, we have modeled the automotive electrical coolant pump that
was introduced as a running example in Section 1.3.3. How we modeled the system in
SysML4FMArch will be detailed in Section 7.2.This section details the implementation
of SysML4FMArch as defined in Section 6.2 as a MagicDraw profile.

6.3.1 Implementing Graphical DSLs in MagicDraw

MagicDraw is a modelling tool that implements the UML 2 standard [Man17]. Besides
UML, the tool offers comprehensive extensions [GJRR22b] such as the SysML plugin5

that implements the SysML standard and the CAMEO simulation toolkit6 which,
among others, provides model execution mechanisms and enables to interlink
simulation or CAD models to the model elements in MagicDraw. These functionalities
can be used for automating testing and dimensioning activities in the mechanical
design process which is conceptualized in Section 7.2. Recently, MagicDraw’s profiling
mechanisms that allow defining custom graphical modeling languages have come into

4https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
5https://www.3ds.com/products-services/catia/products/no-magic/addons/sysml-plugin/
6https://www.3ds.com/products-services/catia/products/no-magic/cameo-simulation-toolkit/

135

Chapter 6 A Language Engineering Perspective on Physical Functions

the focus of MLE [GJRR22b, GKR+21]. In these approaches, the languages that can
be defined as profiles of the UML meta-model implemented by MagicDraw are
conceived as DSLs in the sense of [Fow10]. The approach aims to bring the three
pillars of MDE, into the domain of systems engineering closer together, these are the
modeling languages, the methodology, and the tools [GJRR22b]. For the
implementation of SysML4FMArch as a DSL in MagicDraw [GJRR22b], we have
roughly followed the engineering process for developing industrial DSLs proposed
in [GKR+21]. The process is divided into three levels [GJRR22b]: (1) the concept
level, which includes (i) defining reusable language components that define the syntax
of the modeling language [HR04], (ii) outlining a methodology to use the modeling
elements such that the user’s modeling goals are met, as well as (iii) defining standards
and usability heuristics to achieve a good user experience. (2) The tool-specific
implementation level: At this level the language engineers identify and realize the
reusable DSL building blocks as MagicDraw profiles. Figure 6.10 illustrates how we
have applied the conceptual model of the engineering process proposed in [GKR+21]
for the engineering of SysML4FMArch.

DSL Building Block

Language

Components

Modeling Method

User Experience

Design

1

consists of

Concept Level

ChannelTypes Functions SolutionsTool-specific

Implementation

Level

SysML4FMArch

Usage Level Models

Figure 6.10: Conceptual model of the engineering process introduced in [GKR+21] as
applied for the engineering of SysML4FMArch.

136

6.3 Implementation of SysML4FMArch in MagicDraw

6.3.2 SysML4FMArch Language Components as a MagicDraw Profile

For the implementation of SysML4FMArch, we have identified three reusable DSL
building blocks:

Channel Types implement the profile presented in Figure 6.3 which represents
the concepts of cyber-physical types introduced in Chapter 2

Functions implement the profile presented in Figure 6.5 that represents the
concepts of CPFs presented in Chapter 3, and

Solutions that implement the profile presented in Figure 6.7 that puts the
concepts from Figure 5.4 into a modeling language.

Together, the three building blocks form the implementation of SysML4FMArch
defined in Section 6.2 as a MagicDraw language profile. Finally, level (3) is the
dedicated usage level at which experts use the modeling language to model the system
in MagicDraw.
For systematic distribution, MagicDraw offers mechanisms to create plugins that are
installed within the application by the user. The SysML4FMArch implementation was
distributed in the form of such a plugin that included the profile definition, an
(incomplete) model library that digitalizes, among others, the information from the
Koller catalog [KK98], and a set of Java extensions that implements warnings for
certain disallowed modeling constructs that could not be out-ruled in the profile.
MagicDraw profiles consist not only of stereotypes that implement UML 2 [Man17]
meta-classes but also of customization elements. The latter allow for defining rules or
context conditions for stereotypes. MagicDraw does not allow stereotypes to
implement SysML elements but only to define stereotypes that inherit from SysML
stereotypes or UML meta-classes.

Structuring Stereotypes For each language, we have defined stereotypes and
respective customization elements to define the modeling elements along the profile
outlined in Section 6.2 and additional elements to structure SysML4FMArch models
and their elements systematically. Each stereotype definition is enhanced by a
customization element of the same name that defines additional properties for the
stereotype: The abbreviation defines the name of the element when it is created by the
user [GJRR22b]. This name appears in the drop-down menu or in the selection
department. The category defines a category in the drop-down menu that appears
when the user right-clicks on an element with the respective stereotype in the
containment tree in which the respective element is listed. This enables defining
categories for elements of the language profile. The disallowedRelationship-list allows
to prohibit relationships to respective model elements. The hiddenOwnedTypes-list
defines stereotypes that shall be hidden from the user in the drop-down menu. To

137

Chapter 6 A Language Engineering Perspective on Physical Functions

Figure 6.11: Stereotypes that provide the overall structure for models in
SysML4FMArch.

138

6.3 Implementation of SysML4FMArch in MagicDraw

Figure 6.12: Stereotypes for structuring SysML4FMArch type definitions in MagicDraw.

139

Chapter 6 A Language Engineering Perspective on Physical Functions

prevent users from using the standard SysML elements instead of those elements that
belong to SysML4FMArch we used this list to hide the standard SysML elements
which would yield incorrect models. The possibleOwners-list defines the stereotypes of
the elements that may contain the definition of the elements the customization targets.
For SysML4FMArch, we have used this list, e.g., to define the elements that may be
contained in a ChannelTypeModel (cf. Figure 6.12). In MagicDraw, everything is
owned by an instance of the meta-class Model which is, therefore, also in the
possibleOwners-list. The suggestedOwnedTypes-list allows to customize the drop-down
menu which appears with a right-click on an element with the respective stereotype in
the containment tree.

Figure 6.11 shows the structural stereotypes that structure SysML4FMArch models
and Figure 6.12 provides the modeling constructs for structuring type definitions in
dedicated packages. All of these stereotypes implement the package stereotype which is
a UML 2 [Man17] meta-class. A Model is the overall structural element for a system
specification. ModelLibraries enable storing functional system models for reuse. All
elements that are part of a functional system model in the SysML4FMArch
implementation in MagicDraw will be contained in a Model or ModelLibrary. As part
of our project, we have implemented parts of the Koller catalog [KK98] in
SysML4FMArch, whose elements are structured in a ModelLibrary. The automotive
cooling system which is our running example (cf. Section 1.3.3) is created as a Model
that uses elements from the ModelLibrary that digitalizes parts of the Koller catalog.
Figure 6.12 shows the implementation of the respective stereotypes and customizations
in the SysML4FMArch implementation.

ChannelTypeModel ’s enable users to dedicate a set of type definitions for a specific
purpose, e.g., in a project or subdivision. Channel type definitions are structured in
ChannelTypeModels which contain ChannelTypePackages. A ChannelTypeLibrary
stores reusable definitions of cyber-physical types.

Stereotypes for Modeling Cyber-Physical Types Figure 6.13 shows the implemented
stereotypes for defining cyber-physical types together with their respective
customizations. The set of stereotypes follows the specification of SysML4FMArch
presented in Figure 6.3. If one of the well-formedness rules Well-Formedness Rule 3,
Well-Formedness Rule 1, Well-Formedness Rule 4, and Well-Formedness Rule 2 is hurt,
the plugin produces a warning for the modeler which is implemented in the plugin
using MagicDraw’s Java API. The implementation of the language components of the
function and solution building blocks are documented in Appendix E. To integrate the
well-formedness rule Well-Formedness Rule 5, we have created SysML4FMArch-specific
port types and hide SysML’s standard ProxyPorts from the dropdown menu.
Figure E.8 shows the implementation in MagicDraw that prevents ambiguous port
directions.

140

6.3 Implementation of SysML4FMArch in MagicDraw

Figure 6.13: Stereotypes for modeling defining cyber-physical types in the
SysML4FMArch MagicDraw-profile.

6.3.3 The Modeling Method of SysML4FMArch in MagicDraw

A motivation to digitalize the Koller catalog and support Koller’s design methodology
through systematic modeling techniques with tool support is to systematize the search
for known solutions to recurring functions. The MagicDraw implementation of
SysML4FMArch utilizes SysML’s generalizations and redefinition mechanisms to fulfill
this modeling goal.

Figure 6.14 illustrates the modeling methodology for principle solutions on the example
of the elementary function AFWME and a model of the HydrodynamicPump which is
one possible principle solution. In SysML4FMArch, elementary functions hold two
PartProperties whose types are elementary effect and elementary geometry. These are
Blocks with respective stereotypes that are abstract. These serve as placeholders for
the effect and geometry. Principle effects and principle geometries specialize the
elementary effect and elementary geometry to indicate that they are suitable parts to
create a principle solution for the elementary function. Using this modeling
methodology enables a systematic and very easy selection process for (principle)
solutions for (elementary) functions in MagicDraw, which Figure 6.15 illustrates. When
redefining the MagicDraw-Attributes of a (principle) solution that are inherited from
the (elementary) function, the user can choose from a list of the suitable alternatives
that are lodged in the project or an imported modeling library. The modeler, thus,

141

Chapter 6 A Language Engineering Perspective on Physical Functions

E
le

m
e
n
ta

ry
 F

u
n
ct

io
n

P
ri

n
ci

p
le

S
o
lu

ti
o
n

Figure 6.14: BDD that illustrates the modeling methodology for principle solutions on
the example of the elementary function that converts electrical energy to
rotational energy.

Figure 6.15: The redefinition mechanism implemented in MagicDraw enables the user to
select from the list of lodged (principle) solutions to (elementary) functions.

142

6.3 Implementation of SysML4FMArch in MagicDraw

Figure 6.16: IBD of the «PrincipleSolution» that describes the electric engine. The ex-
ample illustrates how to interlink the principle effect and the principle ge-
ometry in a principle solution.

does not have to infer from the model which effects or geometries are suitable once
solutions for the function s/he is working on are lodged. If no solution is lodged, or the
lodged solutions are ruled out, e.g., due to requirements, the model user can create new
solutions by creating other principle solutions that also inherit from the elementary
function.

Once the modeler has chosen a principle effect and a principle geometry, s/he creates
an IBD and links the respective parameters using BindingConnectors. The
BindingConnectors mean the equality of the values of the ValueProperties at all times
and, thereby, represent the dependency of the physical phenomenon described by the
principle effect and the geometric appearance of the system quantified by the principle
geometry. Figure 6.16 shows the IBD of the «PrincipleSolution» that describes an
electric engine.

The methodology works analogue for solutions, i.e., the model user creates a solution
that specializes an architecture and redefines the PartProperties that represent the
sub-functions of the functional structure. In the redefinition process, s/he can choose

143

Chapter 6 A Language Engineering Perspective on Physical Functions

F
u
n
c
t
io
n
s

S
o
lu
t
io
n
s

Figure 6.17: BDD that illustrates the modeling methodology for solutions on the running
example from Section 1.3.3. So far, the component setVRot does not yet
have a solution.

144

6.3 Implementation of SysML4FMArch in MagicDraw

Figure 6.18: Example of the drop-down menu for creating elements of a ChannelType-
Model as specified by the customization shown in Figure 6.12.

known solutions for each sub-function from a drop-down menu that lists only
appropriate solutions. Figure 6.17 illustrates how solutions are modeled in MagicDraw.

6.3.4 User Experience Features of SysML4FMArch in MagicDraw

The implementation of SysML4FMArch as a MagicDraw profile offers certain features
to improve the user experience. Mainly these features focus on structuring the
available modeling elements to make it as intuitive as possible for the model user to use
the elements correctly. The customizations for the stereotypes of SysML4FMArch
include properties to customize the user experience. For SysML4FMArch, we used the
properties category, suggestedOwnedTypes, and hiddenOwnedTypes. These properties
customize the drop-down menu for creating elements to an element in the containment
tree. The drop-down menu appears upon a right mouse click on the element in the
containment tree, and selecting “Create Element” Figure 6.18 shows the customized
drop-down menu for ChannelTypeModels. The category allows structuring the
modeling elements displayed in the drop-down menu. The suggestedOwnedTypes-list
enables to define those modeling elements that shall appear in the drop-down menu,
while the hiddenOwnedTypes-list enables hiding elements from MagicDraws standard

145

Chapter 6 A Language Engineering Perspective on Physical Functions

Figure 6.19: Example of the principle geometries offered for creating principle solutions
to the elementary function “conduct force” in the model library provided
with the MagicDraw SysML4FMArch plugin.

SysML profile from the user to prevent their usage.

6.4 A Digital SysML4FMArch Design Catalog in MagicDraw

Along with the conceptual basis and the implementation of SysML4FMArch presented
in this chapter, we have digitalized parts of the Koller design catalog [KK98] in
MagicDraw with SysML4FMArch. The digital design catalog is set up as a
ModelLibrary (cf. Figure 6.11) that includes a ChannelTypeLibrary, a FunctionLibrary,
a SolutionLibrary, and a MaterialLibrary (see Appendix E for the definition of these
SysML4FMArch elements in MagicDraw). The model library is included in the plugin.
Figure 6.14 shows an example of the elementary function “connect fluid with rotational
energy” that illustrates the general structure and relations of the elements contained in
the library. So far, the library includes 41 elementary functions that are modeled using
the methodology presented in Section 6.3.3. Further, the library contains four complete
principle solutions for the elementary functions convert electrical to mechanical energy,
apply rotational energy to a fluid, conduct rotational energy, and increase or decrease
temperature. Principle solutions consist of a principle effect and a principle geometry,
which consist of effect elements and geometric elements, respectively. The
implementation of SysML4FMArch in MagicDraw has introduced this structure to

146

6.4 A Digital SysML4FMArch Design Catalog in MagicDraw

Figure 6.20: Example of the principle effects offered for creating principle solutions to
the elementary function “conduct force” in the model library provided with
the MagicDraw SysML4FMArch plugin.

enable storing physical effects and active surfaces as reusable building blocks of
principle effects and principle geometries for each elementary function. In general, one
principle geometry or principle effect can represent the geometry or effect of more than
one principle solution which is why we have implemented SysML4FMArch such that
these elements can also be stored as reusable building blocks for principle solutions.
The library, so far, comprises nine principle geometries and six principle effects. For
example, Figure 6.19 and Figure 6.20 show the principle geometries and principle
effects offered in the library for building principle solutions to the elementary function
“conduct force” represented by the SysML4FMArch element Kraft_leiten.
Concerning the building blocks of principle effects and principle geometries, the library
offers 32 effect elements and 25 geometric elements. Concerning types, the library
comprises three data types (the project dealt mainly with mechanical systems that do
not process much data, therefore, there are only three data types), 12 energy types,

147

Chapter 6 A Language Engineering Perspective on Physical Functions

seven material types, and 44 physical quantities.

6.5 Discussion and Related Work

Discussion. SysML is a general-purpose modeling language that is defined as a UML
profile. Creating SysML models is intuitive for those who are familiar with
object-orientation, which is mostly not the case for experts whose background is not
related to software engineering or computer science. Therefore, it is very valid to ask
the question of whether SysML is appropriate for modeling the functions considered in
the engineering of mechanical systems and further, suited as a (basis for) a modeling
language that unifies the domain and enables interdisciplinary collaboration. We
encoded the meta-model presented in Section 6.1 as a SysML profile because SysML is
fairly known in the automotive domain [DGH+19, KMS+18] and since there exist
modeling tools with integrated model-processing. This also enabled to utilize the
commercial tool MagicDraw for the implementation which comes with an
implementation of SysML and extensive tooling to create custom graphical DSLs. The
design of SysML4FMArch and its implementation in MagicDraw that uses the
redefinition mechanism to select elements from the library that digitalizes the Koller
catalog has simplified the process of creating models of principle solutions significantly.
However, creating principle solutions and the respective elements it is composed of is
very effortful. Further, there exist extensions and plugins that provide, e.g., model
execution engines. These have been used to automate dimensioning and testing using
SysML4FMArch models in the design process [HJZ+21, HHB+22, ZRJ+22]. On the
downside, the graphical notation of SysML that is also intended by MagicDraw may
hinder the manageability of larger models with many attributes. Recently, the OMG
announced and published a prototype of SysML v2 which comes with significant
changes, among them, a textual variant of the language which may facilitate
overcoming this issue. Further, OCL provides a formal and well-known modeling
language for interface assertions and can be integrated with SysML [Man19] in tools
such as MagicDraw7. This facilitates reusing existing tools that implement formal
analyses based on the Focus semantics. While the work presented in this dissertation
emerged, SysML v2 was not yet available, therefore SysML4FMArch is a profile of
SysML 1.6.

Related Work. The formal theory of Focus was put into an MDE methodology
named SPES [BBD+21]. Research conducted around this approach has also produced
a SysML profile [GJRR22b] that implements concepts very similar to those presented
here. Even more interesting, the SPES research group researches software language
engineering for application in systems engineering with a focus on graphical

7https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/

148

https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/

6.5 Discussion and Related Work

languages [GJRR22a, GKR+21, FRR09]. As mentioned earlier, SPES is conceptually
similar to the methodology and modeling techniques presented in this dissertation. For
our purposes, we could unfortunately not reuse the SPES-profile as it was not available
at the time and also, the sources are not available. Further, SPES does not specifically
address the needs imposed by integrating mechanical design theory which is one of the
main contributions of this work. For example, SPES does not provide mechanisms to
describe or even consider geometry. SPES is based on the discrete Focus theory [BS01]
but may integrate with our hybrid semantics which is also based on Focus. Another
tool that implements the discrete Focus semantics is AutoFOCUS3 [AVT+15b] which
is, however, tailored for distributed, embedded software systems. The theory
introduced in [Alu15] is tailored for designing and verifying control systems. The
UPPAAL-tool [BLL+96] provides a means to employ this technique in practice. With a
strong focus on control engineering, the technique considers system components to be
functional, and also regards geometric or materialistic properties of the system and its
components. However, these appear only in the form of variables in the specification of
the functional component. The geometric product architecture is not linked or
regarded in the system specification and dimensioning is not possible. Similarly,
in [Pto14] provides expressive means to specify a system in terms of its functions. In
particular, the technique enables the utilization of multiple specification paradigms in
one specification. Engineers can specify (functional) components using a specification
paradigm that fits the component best. However, the technique does not offer to
integrate geometric parts of the system that is later found in the physical product.

Modeling languages based on UML or SysML have emerged in the mechanical
engineering domain, e.g., MechatronicUML [BGT04], SysML4Modelica [BvLK15], or
SysML4- Mechatronics [KV13], in the field of production systems
engineering [FHK+15], and in the context of Industry 4.0 [WBCW20], e.g.,
UML4IoT [TC16]. Neither of these languages enables relating (elementary) functions
and (principle) solutions of mechanical systems. The FAS-method [WLRW15, LW14],
extended for mechanical engineering by FAS4M [MKG+15] promotes modeling
functional architectures for system design and both define respective SysML profiles.
As introduced in [MAK15, Moe15] these techniques use trace links to underly SysML
elements with informal sketches of geometric components. The focus of these
contributions lies on the connection between requirements and functions. In contrast to
our approach, principle solutions, here, are described by informal sketches that neither
distinguish between principle geometry and principle effect nor enable automatic
processing. This prevents utilizing the information from design catalogs such as,
e.g., [KK98], and to compose the physical product architecture of geometric elements
related to physical effects by a principle solution. This holds similarly for the
techniques proposed in [WS09, GDP+10, EGZ12, ZAMM12]. In particular, the
approaches in [GDP+10, EGZ12] do not consider the functional structures
of [KK98, BG21] and do not systematically establish consistency between function and

149

Chapter 6 A Language Engineering Perspective on Physical Functions

principle geometry in a model-driven approach. Currently, precise modeling languages
to support development processes based on mechanical design
methodology [KK98, Kol14] do not exist. Explicit modeling techniques for a
model-driven and functional approach to mechanical engineering do not support
principles prevalent in software engineering such as abstraction, automation,
composition, refinement, and separation of concerns.

150

Chapter 7

Evaluation

7.1 A Functional Model of an Audio Entertainment System

To evaluate whether the presented modeling technique is suitable to provide a
functional and domain-independent model of a CPS which is part of the overall
research question of this dissertation (cf. Section 1.2), Such systems are interesting in
our context since modern implementations include cloud streaming services in which
the music data is stored digitally and transmitted to the speaker wirelessly. HiFi audio
systems, on the other hand, use the means of mechanics to play music.

7.1.1 Audio Entertainment Systems

In principle, audio entertainment systems transform music data into sound waves.
Sound waves are oscillations of pressure that travel through space. Thereby, they
transport energy in the form of compression [FR76], and the value of the pressure
carries information. Sound waves are therefore analog signals. Since energy is a
conserved quantity, the energy that is transported in the form of compression by the
sound wave must be given as input to the system at some point. Typically, audio
entertainment systems take energy in the form of electricity as input, which also comes
in handy when transforming audio data into respective sound waves. The data is either
stored in digital formats such as e.g., mp3 or CDs, or analog, e.g., on vinyl records or
cassettes. It depends on the point of view whether or not to count storing the music as
a part of the system. Here, we will exclude storing the data from the system of interest.

Audio Data To understand what audio data encodes, it is helpful to understand how
sound is recorded, because playing music reverts this process. We, therefore, summarize
the principles presented in [Wei12]. To record sound, a microphone is placed in the
space through which the sound waves travel to capture the sound waves to be recorded.
Since the sound waves carry compression energy, the changes in pressure cause a
membrane within the microphone to start moving. The membrane is made from a
material that conducts electricity and placed within a magnetic field. The movement of
the membrane is translated to an electrical voltage by the law of conduction (if an

151

Chapter 7 Evaluation

electrical conductor moves within a magnetic field, the Lorentz force induces a current
in the conductor) which thereby encodes the changes in pressure caused by the sound
wave. Depending on the type of microphone, the membrane is placed in a magnetic
field, or such that the membrane forms a terminal of a capacitor. In both cases, the
value of the electric voltage at the membrane changes proportionally with the pressure
of the sound wave. Audio data encodes these changes in the electric voltage over the
time of the recording. Loudspeakers revert this process. Typically they utilize changes
in the electric voltage to cause a change of current in an electrical coil that is placed
movable inside of a magnetic field. By the law of induction [HMS16], this results in a
Lorentz force on the charge in the coil, which becomes apparent as a movement of the
coil. The moving coil is coupled to a membrane which will start moving along the coil
and thereby change the volume of the environment. These changes in volume indicate
an exchange of energy between the membrane and the environment in the form of
compression energy whose intensive quantity is the pressure [FR76]. If the pressure
swings with audible frequencies, it carries sound information. Because the physical
processes in a loudspeaker employ the same physical laws as the physical processes that
allow the recording only in reverse order, the resulting pressure is again proportional to
the voltage, and the resulting sound, therefore, echoes the recorded sound information.
Table 7.1 shows a CPCD that models compression energy and sound signals as
cyber-physical types. The definitions of the two energy types follow [FR76] and we
consider sound information to be carried by pressure. This interpretation abstracts
from the form in which the voltage information is provided which could be in the form
of a record or a digital format such as mp3. As discussed multiple times throughout
this dissertation, the exchange of energy in the form of electrical energy is bound to the
quantities current and voltage which is reflected by the respective attributes of the class
ElectricalEnergy in Table 7.1. Compression energy is a form of energy that is
bound to the quantities pressure and volume flow rate [FR76], where Pressure

def
= R(Pa)

and VolumeFlowRate
def
= R(m3 s−1). Sound is continuous information that is conveyed

by changes in pressure. The class Sound represents this signal-type in Table 7.1.

«energy»
ElectricalEnergy

Voltage v
Current i

«energy»
Compression

Pressure p
VolumeFlowRate dV

CPCD

«data»
Sound

Compression c

Table 7.1: CPCD of the types used for modeling the audio entertainment system.

152

7.1 A Functional Model of an Audio Entertainment System

Audio Systems A system that plays music, takes audio data as input, and creates a
sound wave, such that the pressure at each point in time is proportional to the value of
the voltage encoded in the audio data. Therefore, Table 7.2 specifies the CPF to take a
voltage signal as input and to produce a sound signal with a pressure that is
proportional to the value of the voltage, once a Boolean button press event initiates
turning the music playing on or off. The proportionality factor is represented by the
parameter n in the specification. Further, the system that realizes the specified CPF
can be switched on and off via a button press.

PlayAudioData(R+ δ))
CPF

in «signal» R(V) voltage, «event» B buttonPress
out «signal» Sound sound

∀t ∈ R+ : ∃n(t) ∈ Cm-3 :
lt(buttonPress, t) ⇒ sound(t+ δ).c.p = n(t) · voltage(t)
¬lt(buttonPress, t) ⇒ sound(t+ δ).c.p = 0Pa
where
lt(c, t∗) = c(max{0 ≤ t ≤ t∗ | c(t) ̸= ξ})

Table 7.2: Specification of the overall function of the audio system

Following mechanical design theory [BG21], we have to decompose the overall CPF
in Table 7.2 into smaller sub-functions. A possible result is displayed in Figure 7.1 In
the formal methodology proposed in Section 4.2, this decomposition should yield a
refinement or refactoring. The decomposition already requires making certain design
decisions. Here we decompose the function into three components: (1) a function that
supplies electrical energy upon a button press, (2) a function that amplifies the signal
that represents the audio data, and (3) a function that transforms the incoming
electrical energy to a sound wave such that the pressure of the sound wave is
proportional to the incoming voltage. The functionality of providing energy upon a
button press has been discussed in the context of modeling energy sources as
elementary functions specified in Koller’s design catalog [KK98] in Section 5.2.1. Here,
we reuse the elementary function defined in Table 5.18 for electrical energy with slight
adaptations: The function produces a fixed power upon a button press and, therefore,
does not have an energy-input port typed of type ElectricalEnergy. The function is
specified in Table 7.3. The respective paragraph in Section 5.2.1 provides possibilities
for alternative specifications.

Voltage provided by the energy source needs to be adjusted to get as close to the
incoming voltage information provided via the signal coming into the function on the
input port voltage. A CPF that increases or decreases an incoming voltage until it

153

Chapter 7 Evaluation

PlayAudioData_decomposed(ℝ, ℝ  	p,ℝ  ⁄ 	volumeChargeDensity)

«signal»

Compression

«event»



voltage

sound

«energy»

ElectricalEnergy

amplifier:

AdjustVoltageToSignal()

voltage

e′

e

speaker:

TransformElectricalEnergyToSound(,	

volumeChargeDensity)

sound

e′

supplyElectricalEnergy:

StoreEnergy	(, p)

e

buttonPress buttonPress

«energy»

ElectricalEnergy

«signal»

ℝ(V)

CPF

Figure 7.1: Compositional black box specification of the CPF PlayAudioData.

154

7.1 A Functional Model of an Audio Entertainment System

StoreEnergy(R δ, W p)
CPF

in «event» buttonPress
out «energy» ElectricalEnergy e

∀t ∈ R+ :
lt(buttonPress, t) ⇒ pow(e)(t+ δ) = p
¬lt(buttonPress, t) ⇒ pow(e)(t+ δ) = 0W
where
lt(c, t∗) = c(max{0 ≤ t ≤ t∗ | c(t) ̸= ξ})

Table 7.3: Specification of energy storage that provides a fixed amount of power upon a
button press.

reaches a value specified by an incoming signal models an electrical control system.
The outgoing voltage is gradually increased/decreased to reach the specified value after
some time delay δ. The CPF AdjustVoltageToSignal in Table 7.4 models this
with a linear course (the value of the voltage of the outgoing electrical energy at time
t+ δ is determined by the difference quotient between the voltage signal incoming on
the port v at time t, and the voltage of the incoming electrical energy on port e at time
t). Of course, it is possible to specify other courses of the voltage to reach the value of
the signal. The system then converts the electrical energy that is bound to the

AdjustVoltageToSignal(R δ)
CPF

in «signal» R(V) voltage, «energy» ElectricalEnergy e
out «energy» ElectricalEnergy e′

∀t ∈ R+ :
e′(t+ δ).v = voltage(t) · e(t).v

Table 7.4: Specification of the CPF that adjusts an incoming voltage to a value specified
by an incoming signal or data message.

adjusted voltage to compression energy which is the audio signal that the listener’s ear
will receive. Table 7.5 specifies the transformation of the incoming electrical energy to
compression energy carrying the audio information such that the pressure of the sound
wave is proportional to the incoming voltage. The proportionality factor is the so
called volume charge density which is a parameter of the function. Here, it becomes
apparent that the specified system reverts the recording process by specifying the
relation between the voltage and the pressure.

155

Chapter 7 Evaluation

TransformVoltageToSound(R(Cm−3) volumeChargeDensity,R δ)
CPF

in «energy» ElectricalEnergy e′

out «signal» Sound sound

pow(sound)(t) ≤ pow(e′)(t)
sound(t+ δ).c.p = volumeChargeDensity ·e′(t).v

Table 7.5: This CPF is an energy transformer that transforms electrical energy to com-
pression energy. The pressure which is a component of the compression energy
encodes the audio information in the format understood by the human ear.

Check Refinement Following the functional MDE methodology proposed
in Section 4.2, the decomposed specification in Figure 7.1 should yield a refinement or
refactoring of the specification in Table 7.2. To verify that PlayAudioData decomposed
is a refinement of PlayAudioData, we need to show the following:

Let δ > 0, p ∈ R(W), vCD ∈ R(Cm−3) be parameters of the decomposed function
PlayAudioData decomposed(δ, p, vCD). Further, let f ∈ JPlayAudioData decomposedK
be a TSPF in the behavior of that CPF. We need to show that there exists δ′ > 0 such
that f ∈ JPlayAudioData(δ′)K. That is, for all times t ∈ R+ and all input channel

histories x ∈
−−−−−−−−−−−−−−−−→
{buttonPress, voltage} def

= I⃗ there exists an output channel history

y ∈
−−−−−→
{sound} such that f(x) = y and the predicate in the specification of

PlayAudioData in Table 7.2 holds.

To this effect, let x ∈ I⃗ and t ∈ R. The first case is that lt(x(buttonPress), t). Then, by
the definition of StoreEnergy(δ), we have that

pow(e(t+ δ)) = p ⇔ e(t+ δ).v · e(t+ δ).i = p (7.1)

By the definition of AdjustVoltageToSignal(δ) it holds that

e′(t+ 2δ) = x(voltage)(t) · e(t+ δ).v (7.2)

Further, by the definition of TransformVoltageToSound we have that

sound(t+ 3δ).c.p = vCD · e′(t+ 2δ).v (7.3)

Plugging in Equation 7.2 and Equation 7.3 and setting δ′ = 3δ, we get that

sound(t+ 3δ).c.p =
vCD · e(t+ δ).i

p
· x(voltage)(t) (7.4)

156

7.1 A Functional Model of an Audio Entertainment System

Setting n(t) = vCD · e(t+δ).i
p · 1 V in the definition of PlayAudioData in Table 7.2, we

get that sound(t+ δ′).c.p = n(t) · x(voltage)(t). Assuming that lt(x(buttonPress), t)
for t ∈ R, we get that e(t+ δ) = 0 which implies by a very similar chain of equations
that sound(t+ δ′).c.p = 0Pa. It follows that there exists y ∈ O⃗ such that f(x) = y and
the predicate from Table 7.2 holds. Therefore, f ∈ JPlayAudioData(δ′)K.

7.1.2 Discussion

The specification of the audio system in Table 7.2 abstracts from the technical details
of an implementation of an audio system and specifies the CPF to PlayAudioData
from a customer’s point of view. The decomposed version in Figure 7.1 considers
certain technical details, e.g., that the electrical energy provided by a source needs to
be adjusted to the signal encoded in the audio data before it can be converted to
sound. Or, that the electrical switch requires a force to switch on or off the supply of
electrical energy. However, this decomposed specification is still very high-level and
abstracts, e.g., from the format in which the audio data is provided. The format
dictates whether the input is a discrete or a dense stream which has implications on
the interface assertions of the other functions. By this example, we show that it is
possible to abstract from the domain that provides an implementation because analog
data formats such as vinyl records would require mechanical implementations of the
sound-generating functions, whereas digital formats require software implementations
of these functions. Independent of the implementation domain, however, the CPF
defined by an audio entertainment system remains the same. Starting from our model,
a development process would continue to make design decisions, e.g., about which data
format the system takes as input which will have implications on the definition and
decompositions of the other functions.

Considering the functional point of view which abstracts from technical
implementations, one may argue that modeling the audio system from a functional
point of view must consider audio data as the information about which value the
pressure had at each point in time during the recording. This is a question of how the
interface of the CPF is defined. Audio data often encodes a voltage which is due to the
process in which it is obtained. Here, we do not abstract from the existing standards of
audio data, and consider the CPF to be implemented by an audio entertainment
system, to decode the voltage information stored in the audio data. It is, of course,
possible to abstract from the fact that audio data encodes a voltage that is
proportional to the sound it records. Such a specification would leave open how the
sound information is encoded in an incoming signal. However, as audio data always
encodes a voltage in practice [Wei12], we consider the given specification more realistic
for the evaluation of our approach.

Another way to model the information is to model the voltage input as a data type.
The stream at the corresponding channel of Figure 7.1 would then be declared as

157

Chapter 7 Evaluation

«data». This would change the definition of AdjustVoltageToSound as it would process
a discrete stream instead of a dense hybrid stream.

7.2 Modeling an Automotive Electric Coolant Pump in
SysML4FMArch

This section details the application of SysML4FMArch in an interdisciplinary
industrial project where it was used to model the cooling system for an automotive
combustion engine drive train (cf. Section 1.3.3). To address the research question RQ4
“How can these functional specifications facilitate dimensioning and testing to support
agile development of CPSs?” We have conceived concepts and modeling techniques
that enable describing dimensioning and testing procedures in a SysML model. There
exist tools such as the CAMEO Systems modeler1 which is a derivative of MagicDraw
for systems engineering that comes with functionalities to link elements in these models
with simulations or CAD models and automatically execute these models as specified
by the SysML model. Section 7.3.1 and Section 7.3.3 provide the conceptual basis for
functional dimensioning and testing in SysML. This section presents and completes the
SysML4FMArch models of the electric coolant pump from [DRW+20], a subsystem of
the cooling system together with models for the (automatic) dimensioning and testing
of the principle solutions.

7.2.1 Channel Types

The models in Figure 7.2 and Figure 7.3 define all channel types used in the models of
the electric coolant pump: The energy types ElectricalEnergy, and
RotMechEnergy, the material flow Fluid and the signal ControlSignal. The first
two represent two types of energy. To model the difference we utilized the essential
idea of Bond Graphs [GB07]: A flow of energy results from the simultaneous
intervention of two independent physical quantities often referred to as (generalized)
flow and (generalized) effort [MC12]. The power, i.e., the amount of energy transferred
per time, is given by the product of these two physical quantities. Depending on the
type of energy, these physical quantities vary. The channel types modeled in Figure 7.2
illustrate this: The attributes of the flow properties of electrical energy, for example,
are of type current which is the flow variable of the electrical energy domain, and of
type voltage which is the effort variable of this energetic domain. To this effect, the
channel types representing electrical and rotational mechanical energy each hold three
attributes: ElectricalEnergy represents electrical energy in terms of a current
(flow) and a voltage (effort). The value of electrical power is given as the product of
the values of these two quantities, which is modeled by the constraint property power

1https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/

158

7.2 Modeling an Automotive Electric Coolant Pump in SysML4FMArch

par [Energy] ElectricalEnergy

p : Power

u : Voltage

«equal»
i : Current

power : RotPower

{power = torque * rotVelocity}

power : Power

par [Energy] RotMechEnergy

p : Power

w : RotVelocity

«equal»

«equal»
tau: Torque

«equal»

torque : Torque

rotVelocity : RotVelocity

power : ElectricalPower

{power = current * voltage}

power : Power

«equal»

«equal»

current : Current

voltage : Voltage

BDD [Package] InterfaceBlocks

«InterfaceBlock»

Fluid_out

flow properties

out fluid : Fluid

«InterfaceBlock»

Fluid_in

flow properties

in fluid : Fluid

«InterfaceBlock»

RotMechEn_in

flow properties

in q : RotMechEnergy

«InterfaceBlock»

RotMechEn_out

flow properties

out q : RotMechEnergy

«InterfaceBlock»

ElectricalEn_in

flow properties

in p : ElectricalEnergy

«InterfaceBlock»

ElectricalEn_out

flow properties

out p : ElectricalEnergy

«InterfaceBlock»

ControlSignal_in

flow properties

in s : ControlSignal

«InterfaceBlock»

ControlSignal_out

flow properties

out s : ControlSignal

BDD [Package] ChannelTypes

values

p : Power

press : Pressure

volFlow : VolumeFlow

material : CoolingMedium

constraints

power : HydraulicPower

«MaterialFlow»

Fluid

values

p : Power

tau : Torque

w : RotVelocity

constraints

power : RotPower

«Energy»

RotMechEnergy

values

p : PowerSignal

«Energy»

ControlSignal

values

p : Power

i : Current

u : Voltage

constraints

power : ElectricalPower

«Energy»

ElectricalEnergy

values

rho : Density

«Material»

CoolingMedium

Figure 7.2: Channel types used in Figure 1.5 for modeling the automotive coolant pump
in SysML4FMArch [DRW+20]. Top: Interface Blocks for typing the Prox-
yPorts of functional interfaces. Middle and bottom: BDD containing the
type definitions for the flow properties of the interface blocks together with
their internal structure: Power calculates as the product of two other at-
tributes [GB07].

159

Chapter 7 Evaluation

BDD [Package] PrimitiveTypes

«valueType»

unit : Pascal

properties

kind : cont

«PrimitiveType»

Pressure

«ValueType»

Real

«valueType»

unit : rad/s

properties

kind : cont

«PrimitiveType»

RotVelocity

«valueType»

unit : V

properties

kind : cont

«PrimitiveType»

Voltage

«valueType»

unit : V

properties

kind : cont

«PrimitiveType»

Current

«valueType»

unit : W

properties

kind : disc

«PrimitiveType»

PowerSignal

«valueType»

unit : W

properties

kind : disc

«PrimitiveType»

VolumeFlow

«valueType»

unit : Nm

properties

kind : cont

«PrimitiveType»

Torque

«valueType»

unit : Vs/Am

properties

kind : fix

«PrimitiveType»

Permeability

«valueType»

unit : m

properties

kind : fix

«PrimitiveType»

Length

«ValueType»

Integer properties

kind : fix

«PrimitiveType»

Count

«valueType»

unit : kg/m^3

properties

kind : fix

«PrimitiveType»

Density

Figure 7.3: Value types used for typing the attributes of the channel types used in the
automotive coolant pump specification [DRW+20].

of type ElectricalPower which relates the effort and flow attributes
correspondingly. Similarly, RotMechEn represents rotational mechanical energy in
terms of rotational velocity (flow) and torque (effort). Again, the constraint property
power of type RotPower relates these attributes and the p-attribute of type Power
to represent their mathematical relationship.

According to [Tay08], a physical quantity is the product of a number and a unit.
SysML offers an integration of this notion with ValueTypes [Man19] based on the SI.
Most of the attributes in the electrical coolant pump have real numbered values and
therefore their «Attribute»-types specialize the value type Real. The SI-unit of Power
is Watt (W). The attributes of Fluid are of types VolumeFlow measured in m3 s−1

and Pressure measured in Pascal (Pa). Both represent quantities whose values
change continuously. The attributes of ElectricalEnergy are of types Current
specified in Ampere (A) and Voltage specified in Volt (V). RotMechEnergy holds
attributes of type Torque in Newton metre (Nm) and RotVelocity in radiant per
second (rad s−1). All of these types specify physical quantities whose values change
continuously over time, and therefore their kind is specified as cont. The type
PowerSignal, on the other hand, is an attribute of the «Signal» ControlSignal,
which models the exchange of information through a channel. In this case, the
information tells by which factor the power currently generated by the pump has to be
adjusted. Attributes of this type, thus, change their values discretely. The types
Length holds the SI-unit meter (m), and Density with the SI-unit kilogram per
metres cubed (kgm−3) and types attributes whose values are fixed during runtime,

160

7.2 Modeling an Automotive Electric Coolant Pump in SysML4FMArch

such as e.g., dimensions or the density of a material. Similarly, Count specializes the
Integer value type and also types attributes whose values are fixed during runtime.

7.2.2 Architecture of the Electric Coolant Pump

The coolant pump’s main functionality is to keep the cooling medium flowing which is
necessary for convection to occur, which causes the cooling medium to absorb heat
from the engine’s cylinders. The IBD of the «Architecture» GenerateVolumeFlow
in Figure 1.5 shows the functional architecture that specifies this functionality as a
composition of three functions. The architecture has three ProxyPorts that model the
incoming flows, i.e., cm_in which represents an incoming cooling medium, an electrical
energy pEl, and a signal flowControl, as well as cm_out which represents the
outgoing flow of the cooling medium. Figure 6.3 shows the InterfaceBlocks for typing
the ProxyPorts representing the functional flows of fluid. As its type indicates, the flow
flowControl represents an incoming signal flow (changing its value discretely at
runtime) telling how much the pump’s power needs to be adjusted, in order to drive
the flowing fluid to generate enough hydraulic power to absorb enough heat from the
engine. The latter is modeled as «Function», i.e., so far it is unknown or irrelevant
whether the function that adjusts an incoming flow of electrical energy and outputs the
adjusted flow of electrical energy on pEl_out, is further decomposed and is simply
used as a black-box component. The interface assertion specifies the behavior of this
function in a way that is similar to an example from [Bro12]: The function outputs
rotational power, given by the product of the outgoing torque and rotational velocity,
as a multiple of the incoming rotational power. The factor by which the power is
increased is the last value received on the «Signal»-port. The power increase takes
some time which the formula captures by the delay δ. In case no message is received on
the port from time t− δ to t, the function regulates the electrical power to be zero.

Section 5.1.1 describes how to model the «ElementaryFunction»
TransformElEnToMechEn which transforms the incoming electrical energy at p_el
into mechanical energy at p_mech_out including its interface assertion
(cf. Figure 6.5). The specification defines functional behaviors that transform the
incoming electrical power to mechanical power but allows losses which, as part of a
refinement, could become part of the interface.

The function ApplyFluidWithMechEn impinges this mechanical energy p_mech
upon the incoming fluid cm_in and resulting in the outgoing flow fluid_out. The
parametric diagram at the bottom of Figure 7.4 shows the interface assertion and the
relationships in the internal structure of the physical function: The formula specifies
the functional behavior in terms of power balance and utilizes the idea from bond
graphs explained above [GB07]. In this case, hydraulic power is calculated as the
product of pressure difference at the input and the output interface and the volume
flow rate of the flowing fluid. To regard the law of mass conservation, the volume flow

161

Chapter 7 Evaluation

par [ElementaryFunction] ApplyFluidWithMechEn

«ProxyPort»

fluid_in : Fluid_in

p : Fluid

{direction : in}

vF : VolumeFlow

«equal»

interfaceAssertion : IA_AFWME

{ ∀ ∈ ℝ:	
  ⋅   ≥   −   ⋅   ∧
  = ()}

 : Torque

press : Pressure

«equal»

«equal»

«equal»

p : MechEnergy

{direction : int}

torque : Torque

w : RotVelocity

«ProxyPort»

p_mech: RotMechEn_in

 : Pressure

′ : VolumeFlow

 : RotVelocity

«ProxyPort»

fluid_out : Fluid_out

p : Fluid

{direction : out}

vF : VolumeFlow

«equal»

prs : Pressure

«equal»

′ : Pressure
 : VolumeFlow

par [Function] SetRotationalVelocity

«ProxyPort»

control :

ControlSignal_in

s : ControlSignal

{direction : in}

«equal»

interfaceAssertion : IA_SRV

{ ∀ ∈ ℝ: ∃ ∈ ℝ:	
  +  ⋅   +  =  ,  ⋅   ⋅   ∧
 ∈ 0,  ⇒   +  ⋅   +  = 0	
where ∀ ∈ ℝ and  ⊂ ℝdiscrete

 ∈   ≤  − } = ∅ ⇒
(, ) = (max	{ ∈ | ≤  − }) ∧
{ ∈   ≤  −  = ∅ ⇒  ,  = 0	}			

		

  = ()}

 : Voltage

p : PowerSignal s : PowerSignal

′ : Current

 : Current

«ProxyPort»

p_el : ElectricalEn_out

p : ElecrticalEnergy

{direction : out}

i : Current

«equal»

u : Voltage

«equal»

′ : Voltage
«ProxyPort»

p_el : ElectricalEn_in

p : ElectricalEnergy

{direction : in}

i : Current

u : Voltage

«equal»

«equal»

Figure 7.4: IBD of ApplyFluidWithMechEn and SetRotationalVelocity with
interface assertions.

162

7.2 Modeling an Automotive Electric Coolant Pump in SysML4FMArch

BDD [Package] TEEME

«ElementaryEffect»

EE_TEEME

«ElementaryGeometry»

EG_TEEME

1

elGeometry

elEffect
«ElementaryFunction»

TransformElEnToMechEn

properties

«proxy» p_el : ElectricalEn_in

«proxy» p_mech : RottMechEn_in

constraints

interfaceAssertion : IA_TEEME

«PrincipleEffect»

BiotSavart

values

numPoles : Integer

rotorDia : Length

rotorWidth : Length

rotorPerm : Permeability

statorPerm : Permeability

numWindingsStator : Integer

statorDiameter : Length

statorWidth : Length

constraints

biotSavart : BiotSavartLaw

magneticField : Magnetism

leverArm : LeverEffect

«PrincipleGeometry»

RotorStator

parts

rotor: Rotor

stator : Stator

geometry

{redefines elGeometry}

effect {redefines elEffect}

1

1

1

«PrincipleSolution»

SynchronousDrive

constraints

^interfaceAssertion: IA_TEEME

Figure 7.5: Model of a possible principle solution to realize the elementary function
TransformElEnToMechEn. The BDD shows the structural relations of
the TransformElEnToMechEn and SynchronousDriving and their re-
spective parts.

rate remains constant. The resulting hydraulic power is less than or equal to the
incoming rotational mechanical power which is given by the product of torque and
rotational velocity to allow specifying energetic losses in principle solutions to this
function. The inequality enables including energetic losses in this specification through
a refinement step [Bro18].

7.2.3 Solution-Models

The «Architecture» GenerateVolumeFlow comprises two «ElementaryFunctions»
for which [KK98] lists physical effects suitable to realize these functionalities. The
solution of the architecture considered here is an electric coolant pump. Therein, an
electric motor drives a paddlewheel which is placed within a cylinder through which
the cooling medium flows. The paddlewheel is part of the principle geometry in the
principle solution to ApplyFluidWithMechEn which accelerates the fluid through
hydrodynamics. Figure 6.8 shows the model of this principle solution in
SysML4FMArch which was explained previously in Section 6.2.3. This section presents
a model of a hydrodynamic pump as a solution to the overall function
GenerateVolumeFlow.

163

Chapter 7 Evaluation

IBD [PrincipleSolution] SynchronousDrive

«PrincipleEffect»

effect : BiotSavart

«PrincipleGeometry»

geometry: RotorStator

«GeometricElement»

rotor: Rotor

diameter : Length

width : Length

numPoles : Integer

«GeometricElement»

stator: Stator

diameter : Length

width : Length

numWinding : Integer

mu_r : Permeability

«Material»

material: ElectricalSteel

numPoles: Integer

rotorDia : Length

rotorWidth : Length

rotorPerm : Permeability

numWindingsStator : Count

statorDia : Length

statorWidth : Length

i : Current torque : Torque

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«ProxyPort»

p_el : ElectricalEn_in

p : ElectricalEnergy

{direction : in}

i : Current

«equal»

interfaceAssertion : IA_TEEME

{ ∀ ∈ ℝ:	

  ⋅   ≥   ⋅ ()}

 : Torque

u : Voltage
«equal»

«equal»«equal»

q : MechEnergy

{direction : out}

torque : Torque

w : RotVelocity

«ProxyPort»

p_mech: RotMechEn_out

 : Voltage

 : Current

 : RotVelocity

«equal»

«equal»

«equal»

Figure 7.6: IBD
of the principle solution SynchronousDrive.

Principle Solution to Transform Electrical To Mechanical Energy: Figure 7.5 to 7.7
shows models of a principle solution to TransformEl- EnToMechEn, which
transforms an incoming electrical energy to a rotational mechanical energy. The BDD
at the top left shows the structural relations of the SysML4FMArch elements: Therein,
TransformElEnToMechEn contains an abstract «ElementaryEffect» (EE_TEEME)

164

7.2 Modeling an Automotive Electric Coolant Pump in SysML4FMArch

«EffectElement»

biotSavart : BiotSavartLaw

{F = B * i * l * N}

i : Current

l : Length F : Force

«EffectElement»

magneticField : Magnetism

{B = field(nP, rotW, mu_r, rotDia, statDia)}

B : MagneticField

mu_r : Permeability

«EffectElement»

leverArm : LeverEffect

{m = F * r}

m : Torque

r : Length

F : Force

numPoles: Integer

rotorRad : Length

rotorWidth : Length

rotorPerm :

Permeability

numWindingsStator

: Integer

statorDia : Length

statorWidth : Length

i : Current

torque : Torque

par [PrincipleEffect] BiotSavartEffect

nP : Integer

rotW : Length

rotRadius : Length

B : MagneticField

N : Integer

statDia: Length

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

«equal»

Figure 7.7: Parametric diagram showing the internals of the principle effect used by
SynchronousDrive.

and an abstract «ElementaryGeometry» (EG_TEEME). The «PrincipleEffect»
BiotSavart specializes the elementary effect and is therefore suitable to implement
the function’s behavior. The effect models the following physical phenomenon: An
electromagnetic coil (stator) is positioned within a magnetic field B. The magnetic
field is created by a permanent magnet (rotor), which is placed at a distance r to a
rotation axis such that it may rotate around the stator. Once a voltage implies a
current i in the conductor, the Lorentz force starts acting on the rotor. Due to the
lever-effect, a mechanical torque M occurs around the rotation axis, causing the rotor
to rotate. The rotation reflects the existence of mechanical energy. The physical laws
are (1) B = µ0 · µr ·H, (2) M = F · r, and (3) F = B · i · l ·N , where µ0 is the
vacuum permeability, µr is the permeability of the rotor, and H is the magnetic field
strength induced by the rotor. Further, l is the length, and N is the number of
windings of the stator. If losses are not considered, electrical input power is equal to
mechanical output power (see, e.g., [HD19] for details). The parametric diagram
in Figure 7.7 shows a SysML4FMArch-model of the Biot-Savart-Effect [HD19] which is

165

Chapter 7 Evaluation

the interaction of the physical laws described by the Req. (1) to (3): The magnetic
field strength H depends on the number of poles numPoles and the diameter of the
rotor as well as the diameter of the conductor. By means similar to [JKPB12], the
«EffectElement» Magnetism links to a simulation model that calculates the magnetic
field B from the geometric attributes of the stator, i.e., the conductor and the rotor,
according to Req. (1). The «EffectElement» BiotSavartLaw models Req. (2): The
Lorentz-force F depends on the magnetic field B, the electric current i, the stator’s
statorWidth and the number of windings of the stator numWindingsStator. The
«EffectElement» leverEffect models Req. (3): The torque that acts around the
rotation axis depends on the Lorentz force acting on the rotor and length of the lever
arm, i.e., the diameter of the rotor rotorDia.

The principle solution SynchronousDrive modeled in Figure 7.5 (re)uses BiotSa-
vart: By specializing TransformElEnToMechEn (cf. Figure 1.5), the
«PrincipleSolution»Syn- chronousDriving inherits the interface of the
«ElementaryFunction» and the interface assertion. Further, SynchronousDrive
specifies the «PrincipleEffect» BiotSavart as its effect and the «PrincipleGeometry»
RotorStator representing a geometry comprising a rotor and a stator. The
geometric elements hold attributes with fix-dynamicity only (see Figure 7.2), meaning
they do not change their values at system runtime. The BindingConnectors between
the attributes of the modeled principle effect and of the geometric elements of the
represented principle geometry as well as the attributes of the represented channel
types model the equality of their numeric values. Similar to the principle solution
HydrodynamicPump in Figure 6.9, the IBD in Figure 7.6 shows how
SynchronousDrive refines the interface assertion of TransformElEnToMechEn.

Solution to Generate a Volume Flow The models of the principle solutions
introduced above can be used to model a solution to GenerateVolumeFlow whose
internal structure is modeled in Figure 1.5. A solution to GenerateVolumeFlow is a
«Solution»-block that specializes the «Architecture» GenerateVolumeFlow, which
the BDD at the top of Figure 7.8 shows. The solution inherits all the functional
subcomponents and the interface from the function. Since HydrodynamicPump and
SynchronousDriving specialize ApplyFluidWithMechEn and TransformElEn-
ToMechEn, respectively, they represent possible principle solutions for implementing
these elementary functions. The latter provide types for the PartProperties
moveFluid and elToMech of GenerateVolumeFlow, as shown in Figure 1.5. The
«Solution» ElectricalCoolantPump inherits the interface and the PartProperties
of Generate- VolumeFlow. By redefining the part properties to part properties of
types Transform- ElEnToMechEn to SynchronousDriving and
ApplyFluidWithMechEnergy to Hydro- dynamicPump, the solution integrates
these «PrincipleSolutions» and forms a model of the solution to the entire architecture.

166

7.2 Modeling an Automotive Electric Coolant Pump in SysML4FMArch

IBD [Solution] ElectricalCoolantPump

«PrincipleSolution»

motor : SymchronousDrive

cm_out: fluid_out

p_el: ElectricalEnergy_in

p_mech_out :

MechanicalEnergy_out

«Function»

setVRot : SetRotationalVelocity

p_mech :

MechanicalEnergy_in

fluid_out: Fluid_out

pEl : ElectricalEnergy_in

fluid_in: Fluid_in
cm_in : Fluid_in

pEl_out :

ElectricalEnergy_out

«PrincipleSolution»

pump : HydrodynamicPump

flowControl:

ControlSignal_in
control: ControlSignal_in

pEl_in : ElectricalEnergy_in

BDD [Package] GenerateVolumeFlowSolution

motor

{redefines elToMech}

«Architecture»

GenerateVolumeFlow

properties

«proxy» flowControl : ControlSignal_in

«proxy» p_el : ElectricalEn_in

«proxy» cm_in : Fluid_in

«proxy» cm_out : Fluid_out

parts

setVRot : SetRotationalVelocity

elToMech : TransformElEnToMechEn

moveFluid : ApplyFluidWithMechEn

«PrincipleSolution»

SynchronousDriving

constraints

^interfaceAssertion: IA_TEEME

effect : BiotSavartEffect

geometry : RotorStator

«PrincipleSolution»

HydrodynamicPump

constraints

^interfaceAssertion: IA_AFWME

effect : Hydrodynamics

geometry : WheelCyl

«Solution»

ElectricalCoolantPump

parts

setVRot : SetRotationalVelocity

pump

{redefines moveFluid}

1

1

Figure 7.8: A solution to the composed architecture GenerateVolumeFlow (re-)uses
principle solutions of its elementary functions.

The connectors between the ports are also inherited by the solution from the function.
In this case, the solution models an electric coolant pump that consists of an electric
engine and a paddle wheel. The function setVRot is implemented by a controller
which we have not specified here, because the project from which these models

167

Chapter 7 Evaluation

emerged was concerned with the engineering of the mechanical parts of this system.
However, the function is specified by an interface assertion, and not providing a
solution to this function emphasizes the principle of underspecification from the
functional development paradigm.

7.3 Dimensioning and Testing an Automotive Electrical
Coolant Pump

functional

requirements

ReqReqDim-UC +

Specify Functional
Architecture + Solutions

Create Dimensioning
Procedures

input / output trace linkactivityLegend:

ReqReqReq

Create Principle
Solution Tests

ReqReq

Test

Results
Validate Principle

Solution

ReqReqReq

Dimension
Solutions ReqReq

Dim

Results

geometric boundaries,

physical limitations,…

dimensioning use

case, collection of

(extreme) values of

system attributes

functional architecture

results are linked to

architecture

automatically

automatic, repeatable and virtual

execution

model of a (principle)

solution’s dimensioning

procedure

test case

specification for a

principle solution

norms, standards,

guidelines,

ReqReqReq

Figure 7.9: Integration of dimensioning and testing in our MDE approach. The models
are in SysML4FMArch and detailed in Section 7.2 and 7.3

Modeling a system in terms of its functions and principle solutions enables bridging the
gap between the physical product architecture and functional requirements [DRW+20].
In turn, this forms the basis for implementing automated support for developing
solutions and holistically assuring the quality of the final product. When it comes to
quality assurance and efficient solution development, dimensioning and testing are two
important activities. Both are high-effort tasks that require the collaboration of experts
from various fields of mechanical engineering. During these activities, simulations allow
the approximation of the system’s behavior and to make design decisions based on
their predictions. Because this dissertation deals with integrating mechanical design
into a functional model-driven approach to systems engineering, one research question
is RQ 4 “How can these functional specifications facilitate dimensioning and testing to
support the agile development of CPSs?”. This section addresses this question and
details a concept for dimensioning and testing (principle) solutions to support making
design decisions based on objective criteria at any stage during the development, in

168

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump

particular, early on when detailed models of the system’s geometry, behavior, or even
prototypes are unavailable. Figure 7.9 shows the conceptual activities, their inputs,
outputs, and how these are linked. The basis for dimensioning and testing is a
functional description of the system under development and the technical principles
used to implement its functions. Specifying the functional architecture formalizes the
functional requirements posed upon the system under development as Figure 7.9
shows. Therefore, engineers consult the functional architecture and link models
describing dimensioning procedures or test cases for principle solutions to respective
architectural elements. Integrating the results of the dimensioning and testing
activities contributes to the iterative refinement of the functional architecture.

We show how the functional architecture of the coolant pump can be enhanced with
models describing dimensioning and testing procedures that can be executed
automatically by tools such as MagicDraw with the respective extensions which is
outlined, e.g., in [HJZ+21, HHB+22, ZRJ+22]. Doing so enables validating principle
solutions and identifying misleading design decisions, i.e., unsuitable (principle)
solutions, early on, when exchanging them is still possible. Functions and therefore
(principle) solutions interact via their interface only. This makes the architecture
modular and varying (principle) solutions straightforward. This section illustrates how
to model dimensioning procedures and tests for principle solutions in SysML4FMArch
which is the technique applied for the approaches to automate these processes
in [HJZ+21, HHB+22, ZRJ+22].

7.3.1 Dimensioning

Dimensioning is a task in mechanical design [BG21, GBP+21b] that is time-consuming
and effortful. In general, the dimensioning process is concerned with finding optimal
values for geometric and materialistic attributes of the system but also includes
planning, controlling, and monitoring what leads to design decisions [BG21, GBP+21b].
So far, the process is mostly driven by the long-standing experience of involved experts
who apply norms, standards, and design guidelines which standardize procedures to
find optimal values for the geometric dimensions of the system under development.
Through the physical interaction of a system’s geometric components as well as that of
the system with its environment, the optimality of attribute valuations, i.e., values for
sets of attributes, depends not only on other attributes of the component or system but
also on those of other components or the environment. In particular, these
dependencies arise due to the physical behavior of components interacting with other
components or the environment [Isl04]. Finding optimal values requires algebraically
rearranging the equations describing the physical behavior of a function. Since these
equations are mostly differential, this can only be approximated. Mathematically
speaking, dimensioning corresponds to solving a (possibly very hard to solve)
optimization problem, including constraints that may even contradict each other.

169

Chapter 7 Evaluation

Therefore, norms, standards, and design guidelines specify procedures that prescribe
the dimensioning of the physical components, surfaces, and their material [uM04].
Experts implement these procedures in the form of simulation or calculation models.
Monitoring and re-executing the procedures, simulations, and calculations lead to
design decisions, and how these procedures evolve is therefore necessary.

Early development stages involve deciding upon the technical principles with which to
implement system functionalities. This corresponds to evaluating the (principle)
solutions within the functional architecture with respect to system requirements,
limitations, and boundaries. Doing so, however, often requires a concretized concept of
the product’s shape [BG21, GBP+21b], i.e., finding values for the attributes of the
geometric elements in the (principle) solution. Therefore, supporting design decisions
that regard choosing a principle solution based on objective criteria needs dimensioning
procedures. Since principle solutions describe technical principles, there exist norms,
standards, or guidelines that describe such procedures. For example, one part of a
coolant pump in the cooling system of an automotive is a paddlewheel which rotates
and thereby creates a pressure difference within the cooling medium. This pressure
difference causes the cooling medium to flow, i.e., a volume flow rate that is greater
than zero. The dimensions of the paddlewheel determine among others how fast the
cooling medium flows and therefore, the maximal volume flow rate of the cooling
medium. The latter determines how much heat can transfer from the engine into the
cooling medium. The paddlewheel has optimal dimensions, if, for an engine of a
specified performance, it pumps enough cooling medium such that the engine remains
at operating temperature regardless of the load the engine operates on. A possible
dimensioning procedure is given in [Wes16].

For the dimensioning of a composed solution, such procedures are executed in an order
which is currently implicit knowledge. The idea of Figure 7.9 is to complement
(principle) solutions within the functional architecture with models of these procedures
to make the knowledge about how to dimension (principle) solutions explicit and
reusable. As Figure 7.9 shows on the left-hand side, norms, standards, and guidelines
as well as system requirements, boundaries, and limitations together with the
functional architecture form the input for defining a dimensioning procedure. In this
activity, the engineer models prescribed dimensioning procedures for (principle)
solutions to (elementary) functions in the functional architecture. A range of modeling
techniques exists for this purpose, e.g., ADs known in UML and SysML or BPMN. In
these models, a task or activity corresponds to executing a simulation in a respective
domain tool, such as e.g., MATLAB2 or AmeSim3, that determines values of geometric
or materialistic attributes of a (principle) solution. Flows that connect tasks or
activities model the order and information exchange between these tasks, i.e., the

2https://www.mathworks.com/products/matlab.html
3https://www.plm.automation.siemens.com/global/en/prod ucts/simcenter/simcenter-amesim.html

170

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump

propagation of the results from a simulation or calculation to the next simulation.
Libraries that digitize design catalogs [KK98] in the future should include such models.

To ensure the proper functioning of the system at all times, values for geometric
attributes are typically determined such that the requirements are met for a set of
possibly extreme use cases, e.g., the system acting under maximal load. Such a use
case fixes the values of a set of system attributes to provide a set of input values for a
dimensioning procedure. The dimensioning procedure then determines values for the
geometric attributes by executing (multiple) simulations or calculations. In the
example of the paddlewheel, one such use case is a situation when the engine produces
a maximal amount of heat, e.g., when operating at maximal load. The maximal load
yields a value for the engine’s performance which is input to the dimensioning
procedure. Section 7.3 provides details on this procedure.

Figure 7.9 illustrates how this integrates in a functional MDE approach: The
“Dimension Solutions” activity takes a model of the dimensioning procedure and a
dimensioning use case as input and calls the simulations and calculations in the
specified order and propagates the results of each step along the information flow
defined in the model of the procedure. Workflow engines such as the one integrated in
CSM4 allow to link tasks or activities in the workflow model with simulation models
and enable to automate this activity entirely. Through respective trace links, the
results of the dimensioning procedure, i.e., the values for geometric attributes in the
functional architecture are then accessible from the functional architecture and
available for testing on which Section 7.3.3 provides further details.

The chosen dimensioning procedures are often specific to a principle solution and imply
further requirements on the system. Complementing models of (principle) solutions
with a description of their dimensioning procedures enables to include these restrictions
in a reusable way which enhances efficiency when deciding upon technical principles to
implement system functionalities. Executing such a procedure to obtain values for the
attributes of the principle solution’s geometry such that system restrictions or
requirements are met optimally forms the foundation for upcoming geometric design
activities. Automating the dimensioning of principle solutions, e.g., by using
appropriate tools to make their models executable, enables the identification of
misleading design decisions continuously and early on, when changes are still possible.

7.3.2 Dimensioning Procedures in SysML4FMArch

Validating a (principle) solution with respect to system requirements requires
executing a principle solution using simulation models. These models take values for
the geometric attributes of the principle geometry as input that need to be determined
by a dimensioning procedure. This reflects that validating a technical principle requires

4https://www.nomagic.com/products/cameo-systems-modeler

171

Chapter 7 Evaluation

a concept of the product’s shape [GBP+21b]. Dimensioning procedures include
executing multiple simulations or calculations to obtain approximate (intermediate)
values of physical quantities or other system attributes. These simulations or
calculations do not emulate the physical behavior of the solution but represent an
approximate rearrangement of the (differential) equations that describe this behavior.
Thus, engineers define the simulations or calculations themselves as well as the order in
which to execute them guided by norms, standards, or guidelines. The inputs and
results of each step need to be propagated between the different tools that execute the
simulation or calculation. The idea is, to complement models of principle solutions
with models of these procedures, to enhance efficiency and reuse. Here, we have used
SysML ADs because respective tools implement mechanisms to link activities with
simulation or calculation procedures created with appropriate tools. This section
outlines how we have modeled dimensioning procedures for (principle) solutions of the
automotive coolant pump as SysML ADs.

Modeling Dimensioning Procedures for Principle Solutions A dimensioning
procedure takes a set of attributes as input and outputs an instance of a principle
solution, such that the instances of geometric elements contained in the instance of the
principle solution have values calculated by the dimensioning procedure. The activities
of the ADs model either a simulation or calculation to obtain values for (intermediate)
attributes or writing them to an instance of the considered principle solution. The
activity’s parameters define the inputs and outputs of the simulation or calculation it
performs. The object flow in the AD represents the propagation of attribute values to
and from a simulation or calculation activity and the control flow models their
execution order as prescribed in a standard, norm, or guideline. Figure 7.10 shows the
dimensioning procedure for the paddlewheel described in [Wes16], which takes values of
the following attributes as input:

• a value of the volume flow rate (opt_vF) at which the cooling medium has to
flow to absorb enough heat,

• a value for the pressure difference (opt_dp), the pump has to generate for the
cooling medium to flow at this rate,

• the necessary rotational velocity (opt_w) of the paddle wheel to generate this
pressure difference, and

• the density (rho) of the cooling medium.

The parameters of the activity CalculatePaddleWheel which performs the
calculation described in [Wes16], represent these inputs. The input values for opt_vF,
opt_dp and opt_w define a dimensioning use case. The density of the cooling

172

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump

act [Activity] Dimensioning_PaddleWheel

opt_w : RotVelocity

rho : Density

opt_vF : VolumeFlow

opt_dp : Pressure

numWings :

Count

outerDia :

Length

widthCyl :

Length

innerDia :

Length

maxRPM : Freq

pump : HydrodynamicPump

geo : WheelCyl

wheel : PaddleWheel

cyl: Cylinder

sol :

HydrodynamicPump

widthPW :

Length

diaCyl :

Length

calc : CalculatePaddleWheel

write : WriteHydroPump

Figure 7.10: Activity Diagram modeling the dimensioning procedure for the principle
solution HydrodynamicPump to AFWME.

medium depends on the type of material that enters the pump. From these, the
procedure calculates the necessary dimensions of the paddle wheel, i.e., the necessary
number of wings (numWings), the paddle wheel’s outer and inner diameter
(outerDia, innerDia) and its width (widthPW) as well as the diameter of the
cylinder, the paddle wheel is mounted in (diaCyl) and its width (widthCyl). The
procedure also calculates the value of maxRPM which characterizes the performance of
an electric coolant pump with this paddle wheel which is needed for dimensioning the
electrical coolant pump described below and therefore an output parameter of this
activity. The activity WriteHydroPump assigns these values to the attributes of a
PaddleWheel- and a Cylinder-instance and sets them the geometric elements of the
WheelCyl-instance which is the instance of the geometry-attribute of the output

173

Chapter 7 Evaluation

dimPaddleWheel :

Dim_PaddleWheel

dimDrive :

Dim_SynchDrive

maxRPM :

Freq

write : WriteECP

drive :

SynchronousDrive

ecp :

ElectricalCoolantPump

rot : Rotor

stat : Stator

geo :

RotorStator

opt_w : RotVelocity

rho : Density

opt_vF : VolumeFlow

opt_dp : Pressure

geo : WheelCyl

wheel : PaddleWheel

cyl: Cylinder

sol :

HydrodynamicPump

sD

:SynchronousDriving

sol :

ElectricalCoolantPump

pump :

HydrodynamicPump

act [Activity] Dimensioning_GenerateVolumeFlow

Figure 7.11: Activity Diagram modeling the dimensioning procedure for the solution
GenerateVolumeFlow.

HydodynamicPump-instance. Figure 1.5 shows the definitions of these elements. The
instance of the principle solution HydrodynamicPump contains the results of the
dimensioning.

Modeling Dimensioning Procedures for Composed Solutions A dimensioning
procedure for composed solutions can reuse other dimensioning procedures. Figure 7.11
shows the dimensioning procedure for ElectricalCoolantPump (cf. Figure 7.8)
which reuses the dimensioning procedure for the paddle wheel described previously and
one for Syn- chronousDrive (cf. Figure 7.5). The procedure to do the latter takes
the maximal frequency at which the paddle wheel may turn as input and calculates
values to the geometric elements of the principle geometry of SynchronousDriving.
The activity WriteECP creates an instance of the composed solution
ElectricalCoolantPump that contains instances of principle solutions for the two
elementary functions with dimensioned principle geometries. The built-in execution
engine of CSM makes the ADs described above executable. CSM can integrate domain
tools, such as MATLAB, and activities can link to models created using these tools.
The execution engine triggers the execution of these models when linked to an activity
with the values of the activity’s parameters. Additionally, the execution engine

174

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump

provides the functionality to retrieve the results of the computations to propagate
them for further processing. In our case study, we utilized activities to write the
calculated values directly to CAD models of the principle geometries.

7.3.3 Testing Principle Solutions in SysML4FMArch

The functional architecture decomposes a complex system functionality down to
atomic physical functions. Engineers refine the latter to principle solutions such that
their composition yields a solution to the composed function. The functional
architecture is thereby modular in the sense that each function can be developed and
tested individually. This reflects the idea of a component in the C&C paradigm, which
encapsulates a functionality as a self-contained building block [Kus21]. Validating a
principle solution in this way regarding the context of a specific system, requires to find
values for the geometric attributes that are part of its principle geometry. The
dimensioning procedures sketched in the previous section serve this purpose. Here, we
outline a concept for testing principle solutions in a functional architecture that meets
the demands of [Rum17]. Figure 7.9 shows that the testing activity includes specifying
test cases, provided as models, for the principle solutions included in a functional
architecture. Given appropriate tools, these models can be executed automatically to
enhance agility and efficiency during the development process.

We consider a test to comprise a set of test data for the inputs, a (model of) an
implementation of the system and its environment as a functional specification. The
latter may be provided in the form of an oracle which is a component which decides,
given the input test data together with the output produced by the (model of) the
implementation, whether the specification is met or not. In our setting, the input data
and the expected results are histories [Bro18] of values for the input and output
channels of the respective principle solution under test. System requirements provide
these values. A (model of) an implementation is an executable instance of a principle
solution, in which the values for the principle geometry have been determined
previously by a dimensioning procedure. In the context of a system’s functional
architecture, simulations serve as a means to emulate a physical effect, i.e., a behavior
of a physical function. To validate a principle solution (cf. Figure 7.9), a test driver
hands the input values to the simulation model emulating the physical effect of a
principle solution under test executes the simulation, and retrieves the simulation
output. Comparing the outputs of the testee to the expected outputs specified in the
test case yields the test result. Existing tools enable engineers to specify simulations
for testing principle solutions. The automatic execution of these test cases is crucial for
agile MDE [Rum17]. The test results provide an objective basis to decide whether a
principle solution is applicable in the context of a specific system and therefore lead to
refinements of the functional architecture. The modularity of the functional
architecture allows for the exchange of principle solutions once they have been

175

Chapter 7 Evaluation

«Block»

Test_HydrodynamicPump

values

prs: Pressure

rotVel : RotationalVelocity

rho : Density

vF_expct : VolumeFlow

result : Boolean

constraints

check : Compare

parts

testee : HydrodynamicPump

«PrincipleSolution»

testee :

HydrodynamicPump

p : MechEnergy

{direction : out}

torque : Torque

w : RotVelocity

«ProxyPort»

p_mech: RotMechEn_in

«ProxyPort»

fluid_out : Fluid_out

p : Fluid

{direction : out}

vF : VolumeFlow

vF : VolumeFlow

press : Pressure

w : RotVelocity

torque : Torque

«equal»

«equal»

«ConstraintBlock»

check : Compare

{r = cpm(vF,vF_exp)}

r : Boolean
vF_expct :

VolumeFlow

vF : VolumeFlow

result : Boolean

vF_expct :

VolumeFlow

IBD [Block] Test_HydrodynamicPump

test1 :

Test_HydrodynamicPump

prs = “37000“

rotVel = “0.00606“

rho = “1000“

vF_expct = “0.007“

testee = “testee1“

Check = “cmp1“

testee1 :

HydrodynamicPump

geometry = “wC1“

effect = “hF1“

pW1 : PaddleWheel

numWings = “7“

outerDia = “0.115“

Innerdia = “70.057“

width = “0.0321“

cyl1 : Cylinder

width = “0.0321“

diameter = “0.115“

wC1 : WheelCyl

wheel = “pW1“

cyl = “cyl1“

«equal»

«equal»
«equal»

«ProxyPort»

fluid_in : Fluid_in

fluid : Fluid

{direction : in}

press : Pressure

vF : VolumeFlow

material :

CoolingMedium

rho : Densityrho : Density

«equal»

BDD [Package] Test

«equal»

«equal»

Figure 7.12: Test-specification for HydrodynamicPump (cf. Figure 6.9). A test case is
an instance of Test_HydrodynamicPump which CSM can execute auto-
matically.

176

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump

identified as unsuited by a test and all tests can be re-executed automatically for
another principle solution which allows their systematic variation.

7.3.4 Modeling Tests in SysML4FMArch

The functional architecture specifies the system as a network of functions that interact
by exchanging flows of energy, material, or data via their interfaces only. The
constituents of a principle solution hold attributes for which paragraph 7.3.2 has
outlined how to model and execute dimensioning procedures that find values for the
geometric attributes of principle solutions. The next step after executing a
dimensioning procedure as outlined in paragraph 7.3.2is to validate whether the
dimensioned principle solution instance describes a technical principle that is suited to
meet system requirements. This section details how we have applied this concept to
test principle solutions in the electric coolant pump modeled in SysML4FMArch.

A test is modeled as a block that specifies input data and expected outcomes through
ValueProperties with respective types for the attributes of the FlowProperties of the
interface blocks typing a port of the principle solution. The expected output does not
need to be specified for all ValueProperties of outgoing ports. A test case executes a
principle solution under test. To this effect, the test block holds a PartProperty typed
by the principle solution. The principle effect in this testee links to a simulation model
that emulates the physical behavior that the test driver, in our case provided by CSM,
can execute. A ConstraintProperty specifies comparing the output of the testee to the
values of the expected output ValueProperties. A test case is an instance of such a
block, whose ValueProperties hold numeric values. To illustrate this, consider the BDD
at the top of Figure 7.12. The block Test_HydrodynamicPump specifies test cases
for validating that the fluid leaving the principle solution HydrodynamicPump flows
at an appropriate volume flow rate. The attributes prs, rotVel, and rho specify the
input data for these test cases. The expected volume flow rate, i.e., the attribute
vF_expct specifies the expected outcome. The attribute result is a Boolean
representing the success or failure of a test case and will be set according to the
constraint property check. The testee, in this case, is an instance of the principle
solution HydrodynamicPump. The IBD at the bottom of Figure 7.12 shows the
internal structure of the tests. As detailed in Section 6.2.3, the effect element
CentrifugalForce which models the behavior of the principle solution
HydrodynamicPump links to an executable simulation model, here, created in
MATLAB. The constraint block Compare links to another MATLAB model that sets
the value of result to true iff the result, i.e., volume flow vF of the outgoing fluid is
greater than the expected value vF_expct. A concrete test case is given by the
instance test1: In the project, from which SysML4FMArch emerged, a pump wheel
turning with a rotational velocity of 0.00606m3 s−1 was required to accelerate an
incoming fluid of density 1000kgm−3 with pressure 37kPa to flow with a rotational

177

Chapter 7 Evaluation

velocity of at least 0.007 m3 s−1. The instance testee1 of
Test_HydrodynamicPump represents this test case. The attribute testee is
instantiated with the output of the dimensioning procedure modeled in Figure 7.11,
which CSM can execute. After execution, the value result of testee1 tells, if the
test succeeded or failed.

7.3.5 Discussion

The systematic relation between functions and solutions in the SysML4FMArch-models
enabled the utilization of a functional architecture model for virtual dimensioning and
testing, which, in practice, is mostly driven by experience. For software engineers, the
process of dimensioning is counter-intuitive because software systems simply do not
have geometric dimensions and compilers have long automated the process of building
a software system from code including many optimizations. Considering the broad
literature on testing in SE, functional testing is well-integrated and understood in this
domain. The presented modeling techniques and concepts for dimensioning and testing
aim to apply these ideas from SE to capture dimensioning and testing from a holistic
systems engineering point of view that enables systematic automation of these
processes. To evaluate the concept of dimensioning and testing of principle solutions
we have applied them for dimensioning the paddlewheel and evaluated whether the
obtained principle solution meets system requirements. The respective models have
been presented in this section. We have modeled the automotive cooling system in the
MagicDraw implementation of SysML4FMArch presented in Section 6.3 and enhanced
the set of models by the models of the dimensioning and testing procedures presented
in Section 7.3 The MagicDraw derivative Cameo Systems Modeler enabled the
execution of the latter automatically. In the project, automating the dimensioning and
testing procedures allowed for systematic variation of principle solutions and to make
design decisions based on objective criteria rather than experience and implicit
knowledge at early development stages.

Up to now, engineers translate requirements directly and heuristically into fully
designed components which is a prerequisite for
validation [PJHB19, ABJ19, GJW+18, BJKS16, WJD18]. Creating these models is
complex and time-consuming and therefore validating principle solutions is postponed
to later development stages, when changes are expensive. Recent approaches that aim
to formalize a notion of principle solutions, either do not integrate testing or
dimensioning or do not describe the principle solutions in a way that enables automatic
dimensioning. The approaches presented in Section 7.3 enabled us to validate a
technical principle described by a principle solution based on a geometry that solely
comprises active surfaces. These are less detailed than the elaborate geometric models
used for validation in practice, but allow evaluating principle solution as
implementations of elementary functions at early development stages. Automated

178

7.3 Dimensioning and Testing an Automotive Electrical Coolant Pump

validation procedures can support making design decisions based on objective criteria.
Further, the approach enables the execution of tests much more frequently as they are
automated which supports agile development. The described approaches for virtual
dimensioning and testing, therefore, make product development in mechanical
engineering much more efficient and enable the validation of requirements virtually and
early in the development process.

7.3.6 Related Work

Validation and Verification (V&V) Formal methods are on their way to becoming a
standard in the V&V of software-intensive (sub-)systems in CPSs. They employ
mathematical theories to obtain proof that the system fulfills a certain property and
thereby make extensive testing dispensible [KPRR20b]. The survey presented
in [WLBF09] analyzes the utilization of formal methods employed in industry for
rigorous verification and validation of systems. Formal system specification techniques
such as FOCUS [BS01, Bro10] as well as [Alu15] or [Pto14] provide the formal basis to
develop and implement such methods. Verification tools utilize theorem proving based
on such theories to obtain formal proofs that a specified system fulfills a certain
property [KPRR20b, KPRR20a, SHT12].

Model-Based Testing MBT [Rum17] is a technique that utilizes models describing
the behavior of a system under development to generate executable test
cases [DJK+99] and thereby strongly appeals to the model-driven paradigm. Since test
cases in MBT are executed automatically, agile development becomes possible. There
exist various techniques that extract test cases from system behavior models, where
most of them rely on a specific modeling language: The techniques proposed
in [WYY+04, KKBK07] utilize ADs to generate test cases based on extracting paths.
This enables assuring specific test coverages. Procedures that generate test cases from
UML or SysML SCs are presented in [SSK11, OA99, OLAA03]. The methods rely on a
transformation of SCs to extended finite state machines proposed in [KHBC99]
or [SSK11]. Similarly, the techniques proposed in [MAD11] and [SMM10] transform a
combination of ADs with Sequence Diagrams [Rum16] or SCs, respectively into a
formalism that allows extracting test cases based on formal rules. As such, these
methods employ a mathematically well-understood formalism to interpret the model to
generate test cases, which is also often employed by formal methods. Based on a
systematic survey [KMS+18], the methodology presented in [DGH+18, DGH+19]
formalizes functional system requirements in the form of UML/P [Rum16] SCs and
ADs to improve testing in the automotive domain by generating test cases from these
models automatically. All of these techniques stem from the SE domain and focus on
testing software or software- intensive systems and require a model of the system’s
behavior. In our setting, such techniques could be applied, while a solution

179

Chapter 7 Evaluation

architecture with linked simulation methods enables to execute the system. In our
approach, workflow models are employed to specify the execution logic of a
dimensioning process, i.e., the order in which to execute simulations or calculations to
obtain values for geometric system attributes.

Executable Workflow Models Process and workflow modeling is a very broad
research field in SE and particularly MDE. Standards specifying such modeling
languages are, e.g., BPMN [OMG13, vdAtHW03] or ADs which are part of the
UML [Man15] and the SysML [Man19]. When it comes to business process modeling,
BPMN and UML ADs often compete [RvdAtHW06, BO10], however, BPMN has
become the de-facto standard in this area [CT12]. A comparison of the two with
respect to business process modeling is given in [RvdAtHW06]. Graphical and textual
implementations of (variants) of both these languages exist, e.g., [UTF10] proposes a
BPMN language and [BR02] an extension of UML ADs for modeling workflows in
production systems engineering. Systems engineers most often use SysML ADs for
modeling system behavior [Man19] and research has proposed frameworks and
formalisms to interpret these models, e.g., [OAMD12, JDB09]. An overview of the
approaches and techniques for simulating SysML ADs is given in [NKT+15]. In our
case study, we have used CSM [Cas17] which includes an engine for simulating SysML
ADs. In contrast to the approaches that utilize SysML ADs for modeling system
behavior, we utilize them to model dimensioning workflows, which, in particular, allows
for formally capturing guidelines, norms, and standards on such procedures and
thereby enhance the reuse of principle solutions. As SysML4FMArch is based on
SysML, using SysML ADs, among others, to link dimensioning workflows to principle
solution models easily and also to reuse existing tooling that already came with a
built-in execution engine for these models.

180

Chapter 8

Conclusion and Future Work

Innovations of our modern systems are driven by functionalities and features. Software,
mechanical or electrical (sub-)systems alone cannot realize these functions adequately.
Therefore, CPSs have emerged as complex systems-of-systems that are capable to meet
the expectations of the various stakeholders through the interaction of these diverse
systems. With this trend, the complexity of engineering innovative modern systems has
increased significantly. Very often, in the systems engineering practice, experts from
software, mechanical, and electrical engineering work in separate teams. These teams
are often arranged following the geometric decomposition of the system under
development. The engineers receive a set of textual requirements, make up an idea of
the realization in their minds, possibly throughout many meetings and start to create
models of this conceived implementation using established tools such as CAD,
simulation models, code, circuit diagrams, etc.. This gives rise to a
problem-implementation gap between the textual requirements and the models of the
implementation: It is unclear how and which parts of the implementation realize which
of the functional requirements.

In this dissertation we have defined a functional development paradigm which puts
CPFs, which drive innovations of modern system, into focus. To make this paradigm
applicable, we have conceived a formal modeling technique based on the theory of
TSPFs over continuous time domains together with a methodology that allows
specifying the CPS’s functions. Unlike any other theory, TSPFs are compositional with
respect to refinement, i.e., refining one component in a network of TSPFs yields a
refined version of the composed function. Since development teams are distributed
across different sites, and since reuse of existing, known and tested solutions is of
crucial importance, each component can therefore be developed or used on its own by
connecting the interface. Further, the theory allows to apply underspecification in a
controlled manner to deal with lack of information, uncertainty, etc.. in the models.

We have showed that the modeling technique can be applied to formalize the informal
specifications from Koller’s design catalog [KK98], and presented an example from an
industrial project that involved experts from industry and academia that uses these
specifications. Thereby, we have showed that functional models of the system under
development created with our methodology are understood and narrow the gap

181

Chapter 8 Conclusion and Future Work

between requirements and models of the implementation for functions in the
mechanical engineering domain. Because we use a theory from software engineering,
the example shows that the models are understood equally in the domains of
mechanical and software engineering.
With the audio entertainment system example we have showed that the modeling
technique is suitable to create functional models that abstract from the implementation
domain. The audio entertainment system can be implemented mechanically, e.g., as a
phonograph, or digitally with on-demand streaming services. The CPF specification of
a CPS, therefore, provides an abstraction in between the requirements and models of
the system’s implementation.
Defining the systems engineering methodology is impossible because systems,
companies, projects, etc. are as diverse as the subsystems of the system itself.
Therefore, we abstain from predefining abstraction layers and modeling languages, but
provide a formal methodology in the sense of [Rum96]. Chapter 6 and the evaluation
provide concrete examples of modeling languages and applications to signpost the idea.
Methodologies that do define layers, such as, e.g., SMARDT [DRW+20], may utilize
the proposed methodology to define the relations among the models of each layer
formally to enable automated consistency checks among the layers.
The idea presented in this dissertation is still in its infancy. Thinking in terms of
functions instead of geometric components as an intermediate step between
requirements and the implementation requires extensive training of the experts.
Certainly, the presented perspectives on methodology and modeling languages need
further evaluation in practice. In the future, the contributions can be taken as a basis
to enhance the application of functional verification, e.g., as proposed
in [KPR+22, KMP+21, KPRR21] in the verification of functional requirements.
Deriving test cases automatically from specifications, e.g., combined with the methods
proposed in [DRW+20], is certainly an interesting point to enhance the efficiency of
testing in the context of validation.
The functional development paradigm together with the presented modeling technique
provide the initial basis to establish functional systems thinking in the systems
engineering community together with ways to utilize this way of thinking to overcome
the complexity of engineering CPSs.

182

Bibliography

[ABH+21] Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink,
Hans Vangheluwe, and Andreas Wortmann. Multi-paradigm modelling
for cyber–physical systems: a descriptive framework. Software and
Systems Modeling, 20(3), 2021. 4.3

[ABJ19] Faysal Andary, Joerg Berroth, and Georg Jacobs. An energy-based load
distribution approach for the application of gear mesh stiffness on
elastic bodies. Journal of Mechanical Design, 141(9), 2019. 7.3.5

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer Science, 138(1), 1995.
3.4.2, 3.5, 3.7, E.3

[Alu15] Rajeev Alur. Principles of cyber-physical systems. 2015. 1.1.2, 2.2.2,
3.4.2, 3.4.2, 5, 5.3.3, 6.5, 7.3.6

[Arf85] George Arfken. Mathematical Methods for Physicists. Academic Press,
1985. 2.2.1, 2.2.1

[AVT+15a] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and
Bernhard Schätz. Autofocus 3: Tooling concepts for seamless,
model-based development of embedded systems. In Joint proceedings of
ACES-MB 2015–Model-based Architecting of Cyber-physical and
Embedded Systems, 2015. 1.1.2, 6.1.2

[AVT+15b] Vincent Aravantinos, Sebastian Voss, Sabine Teufl, Florian Hölzl, and
Bernhard Schätz. AutoFOCUS 3: Tooling Concepts for Seamless,
Model-based Development of Embedded Systems. In
ACES-MB&WUCOR@MoDELS 2015, CEUR Workshop Proceedings,
pages 19–26. CEUR-WS.org, 2015. 6.5

[BBD+21] Birthe Böhm, Wolfgang Böhm, Marian Daun, Alexander Hayward,
Sieglinde Kranz, Nikolaus Regnat, Sebastian Schröck, Ingo Stierand,
Andreas Vogelsang, Jan Vollmar, Sebastian Voss, Thorsten Weyer, and
Andreas Wortmann. Engineering of Collaborative Embedded Systems.

183

Bibliography

In Model-Based Engineering of Collaborative Embedded Systems, pages
15–48. Springer, January 2021. 4.3, 4.3, 6.5

[BBL+16] Luca Berardinelli, Stefan Biffl, Arndt Lüder, Emanuel Mätzler, Tanja
Mayerhofer, Manuel Wimmer, and Sabine Wolny. Cross-disciplinary
engineering with automationml and sysml. at-Automatisierungstechnik,
64(4):253–269, 2016. 5.3.3

[BDD+93] Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
Gritzner, and Rainer Weber. The Design of Distributed Systems - an
Introduction to FOCUS, 1993. 3.1.1, 3.3.3, 3.4.3, C.1, C.1, C.2, C.3,
C.4, C.5, C.1

[BG21] Beate Bender and Kilian Gericke. Pahl/Beitz Konstruktionslehre.
Springer Vieweg, Berlin, Heidelberg, 2021. 1.1.2, 1.1.2, 1.3.5, 3.2.5,
4.1.1, 4.3, 5, 5.1, 5.1, 5.1.1, 5.1.1, 5.1.2, 5.1.2, 5.1.2, 5.1.2, 5.1.2, 5.1.4,
5.6, 5.26, 5.3, 5.3.3, 6.1.1, 6.1.2, 6.1.3, 6.2.1, 6.2.2, 6.5, 7.1.1, 7.3.1, E.3,
E.3, E.3

[BGK+09] Manfred Broy, Mario Gleirscher, Peter Kluge, Wolfgang Krenzer,
Stefano Merenda, and Doris Wild. Automotive architecture framework:
Towards a holistic and standardised system architecture description.
Technical report, Technische Universität München, 2009. 1.1.1

[BGT04] Sven Burmester, Holger Giese, and Matthias Tichy. Model-driven
development of reconfigurable mechatronic systems with mechatronic
uml. In Model Driven Architecture, pages 47–61. Springer, 2004. 6.5

[BJKS16] Joerg Berroth, Georg Jacobs, Tobias Kroll, and Ralf Schelenz.
Investigation on pitch system loads by means of an integral multi body
simulation approach. Journal of Physics: Conference Series, 753, 2016.
7.3.5

[BLL+96] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. UPPAAL — a tool suite for automatic verification of
real-time systems. In Rajeev Alur, Thomas A. Henzinger, and
Eduardo D. Sontag, editors, Hybrid Systems III. Springer Berlin
Heidelberg, 1996. 6.5

[BM97] John Bell and Machover Moshe. A Course in Mathematical Logic.
Elsevier Science and Technology, 1997. 1.3.1, 4.2.2

[BO10] Dominik Birkmeier and Sven Overhage. Is bpmn really first choice in
joint architecture development? an empirical study on the usability of

184

Bibliography

bpmn and uml activity diagrams for business users. In George T.
Heineman, Jan Kofron, and Frantisek Plasil, editors, Research into
Practice – Reality and Gaps, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. 7.3.6

[BR02] R. M. Bastos and D. D. A. Ruiz. Extending UML activity diagram for
workflow modeling in production systems. In Proceedings of the 35th
Annual Hawaii International Conference on System Sciences, 2002.
7.3.6

[Bro97] Manfred Broy. Compositional refinement of interactive systems.
Journal of the ACM, 44(6), 1997. 3.1.1

[Bro01] Manfred Broy. Refinement of time. Theoretical Computer Science,
253(1):3 – 26, 2001. 3.1, 3.1, E.3

[Bro07] Manfred Broy. Model-driven architecture-centric engineering of
(embedded) software intensive systems: modeling theories and
architectural milestones. Innovations Syst Softw Eng, 3, 2007. 6.1.2

[Bro10] Manfred Broy. A Logical Basis for Component-Oriented Software and
Systems Engineering. The Computer Journal, 53(10), 2010. 1.1.2, 1.1.2,
1.2, 1.3.1, 1.3.2, 1.5, 2.2.4, 3, 3.2, 3.4, 3.4.3, 5.7, 7.3.6, E.3

[Bro12] Manfred Broy. System Behaviour Models with Discrete and Dense
Time, pages 3–25. Springer Berlin Heidelberg, 2012. 1.1.2, 1.2, 1.3.1,
1.5, 2.7, 3, 3.1, 3.1.1, 3.1, 3.1.1, 3.2, 3.10, 3.3.1, 3.11, 3.12, 3.3.4, 3.17,
3.2, 3.3.4, 3.3.4, 3.18, 3.4.1, 3.4.1, 3.3, 3.4.2, 3.4.2, 3.4.2, 4.2, 5.1.1,
5.3.3, 7.2.2, C, E.3

[Bro13] Manfred Broy. Engineering cyber-physical systems: Challenges and
foundations. In Marc Aiguier, Yves Caseau, Daniel Krob, and Antoine
Rauzy, editors, Complex Systems Design & Management, pages 1–13.
Springer Berlin Heidelberg, 2013. 1.1.2

[Bro18] Manfred Broy. On Architecture Specification. In A Min Tjoa, Ladjel
Bellatreche, Stefan Biffl, Jan van Leeuwen, and Jǐŕı Wiedermann,
editors, SOFSEM 2018: Theory and Practice of Computer Science,
pages 19–39. Springer International Publishing, 2018. 5.3.3, 6.2.2, 7.2.2,
7.3.3

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of
Interactive Systems: Focus on Streams, Interfaces, and Refinement.
Springer-Verlag, 2001. 1.1.2, 1.3.4, 2.1, 2.2.4, 3.4, 3.4, 4.3, 5, 5.1.1,
5.3.3, 6.1.2, 6.5, 7.3.6

185

Bibliography

[BS08] John T. Boardman and Brian J. Sauser. Systems thinking: Coping
with 21st century problems. 2008. 1.1

[BSP+16] Patrick Bareiss, Daniel Schütz, Rafael Priego, Marga Marcos, and Birgit
Vogel-Heuser. A model-based failure recovery approach for automated
production systems combining sysml and industrial standards. In 2016
IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1–7. IEEE, 2016. 5.3.3

[BvLK15] Olaf Berndt, Uwe Freiherr von Lukas, and Arjan Kuijper. Functional
modelling and simulation of overall system ship-virtual methods for
engineering and commissioning in shipbuilding. In ECMS, pages
347–353, 2015. 6.5

[Cam14] F. Campagne. The MPS Language Workbench: Volume I. The MPS
Language Workbench. 2014. 3.4.2, 3.4.2

[Cas17] Olivier Casse. SysML in Action with Cameo Systems Modeler. Elsevier,
2017. 7.3.6

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. Engineering Modeling
Languages: Turning Domain Knowledge into Tools. Chapman &
Hall/CRC Innovations in Software Engineering and Software
Development Series, November 2016. 1.1.1

[CKY05] Chun-Hsien Chen, Li Pheng Khoo, and Wei Yan. Pdcs—a product
definition and customisation system for product concept development.
Expert Systems with Applications, 28(3), 2005. 1.1

[CT12] Michele Chinosi and Alberto Trombetta. BPMN: An introduction to
the standard. Comput. Stand. Interfaces, 34(1):124–134, 2012. 7.3.6

[DGH+18] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel,
Matthias Markthaler, Bernhard Rumpe, and Andreas Wortmann.
Model-Based Testing of Software-Based System Functions. In
Conference on Software Engineering and Advanced Applications
(SEAA’18), pages 146–153, August 2018. 4.3, 4.3, 7.3.6

[DGH+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel,
Evgeny Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira
Salman, Johannes Richenhagen, Bernhard Rumpe, Christoph Schulze,
Michael Wenckstern, and Andreas Wortmann. SMArDT modeling for
automotive software testing. Software: Practice and Experience,
49(2):301–328, February 2019. 1.1, 1.1.1, 1.1.2, 6.5, 7.3.6

186

Bibliography

[DGM+21] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard
Rumpe, and Simon Varga. A Methodology for Retrofitting Generative
Aspects in Existing Applications. Journal of Object Technology,
20:1–24, November 2021. 3.3.4

[DJK+99] Siddhartha R Dalal, Ashish Jain, Nachimuthu Karunanithi, JM Leaton,
Christopher M Lott, Gardner C Patton, and Bruce M Horowitz.
Model-based testing in practice. In Proceedings of the 21st international
conference on Software engineering, pages 285–294. ACM, 1999. 7.3.6

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe.
Semantic Evolution Analysis of Feature Models. In Thorsten Berger,
Philippe Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans,
Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo, Camille
Salinesi, Xhevahire Tërnava, Thomas Thüm, and Tewfik Ziadi, editors,
International Systems and Software Product Line Conference
(SPLC’19), pages 245–255. ACM, September 2019. 1.3.2, 3.3.4, 3.3.4,
4.2

[DR08] Wolfgang Dahmen and Arnold Reusken. Splinefunktionen. Springer
Berlin Heidelberg, 2008. 5.1.2

[DRW+20] Imke Drave, Bernhard Rumpe, Andreas Wortmann, Joerg Berroth,
Gregor Hoepfner, Georg Jacobs, Kathrin Spuetz, Thilo Zerwas,
Christian Guist, and Jens Kohl. Modeling Mechanical Functional
Architectures in SysML. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, pages 79–89. ACM, October 2020. 7, 1.1.1, 1.1.2, 1.3, 1.3.3,
1.3.5, 1.5, 1.4, 1.5, 4.3, 5, 5.1, 6, 6.1, 6.1.2, 6.1.3, 6.2, 6.3, 6.4, 6.2.1, 6.5,
6.6, 6.2.3, 7.2, 7.2, 7.3, 7.3, 8, E.3

[EE2] Electrical Engineering. https:
//en.wikipedia.org/wiki/Electrical_engineering.
Accessed: 2023-06-27. E.3

[EGZ12] Martin Eigner, Torsten Gilz, and Radoslav Zafirov. Proposal for
functional product description as part of a PLM solution in
interdisciplinary product development. In Proceedings of the DESIGN
2012, the 12th International Design Conference, 2012. 6.5

[Esc20] Jost-Hinrich Eschenburg. Was ist Geometrie?, pages 1–5. Springer
Fachmedien Wiesbaden, Wiesbaden, 2020. 1.1.1, 5.2.1

187

https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Electrical_engineering

Bibliography

[FHK+15] Stefan Feldmann, Sebastian JI Herzig, Konstantin Kernschmidt,
Thomas Wolfenstetter, Daniel Kammerl, Ahsan Qamar, Udo
Lindemann, Helmut Krcmar, Christiaan JJ Paredis, and Birgit
Vogel-Heuser. Towards effective management of inconsistencies in
model-based engineering of automated production systems.
IFAC-PapersOnLine, 48(3):916–923, 2015. 6.5

[Fis01] Gerd Fischer. Analytische Geometrie. Vieweg + Teubner Verlag
Wiesbaden, 2001. B

[Fis13] Gerd Fischer. Lehrbuch der Algebra. Springer Spektrum Wiesbaden,
2013. 5.1.2, 5.2.1, B.3, B.4

[FLD04] H.-J Franke, S Löffler, and M Deimel. Increasing the Efficiency of
Design Catalogues By Using Modern Data Processing Techniques. In
DS 32: Proceedings of DESIGN 2004, the 8th International Design
Conference, Dubrovnik, Croatia, 2004. 5.3.3

[Foe10] Otto Foerster. Analysis II. Vieweg+Teubner, 2010. B.5

[Foe16] Otto Foerster. Analysis I. Springer Spektrum, Wiesbaden, 2016. 1.3.1

[Fow10] Martin Fowler. Domain-Specific Languages. Pearson Education, 2010.
6.3.1

[FR76] Gottfried Falk and Wolfgang Ruppel. Energieformen. Springer Berlin
Heidelberg, 1976. 2.2.1, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.2.2, 2.1, 2.2.3,
2.3, 3.2.1, 3.2.3, 5.1.4, 5.2.1, 5.2.1, 5.2, 5.33, 5.3.1, 5.34, 5.3.2, 5.38,
7.1.1, 7.1.1, E.3

[FR83] Gottfried Falk and Wolfgang Ruppel. Mechanik, Relativität,
Gravitation - die Physik des Naturwissenschaftlers. Springer Berlin
Heidelberg, 1983. 2.2.1

[FR07] Robert France and Bernhard Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. Future of Software
Engineering (FOSE ’07), pages 37–54, May 2007. 1.1.1, 1.1.1, 3.3.3, 4,
6.1.2

[FRR09] Florian Fieber, Nikolaus Regnat, and Bernhard Rumpe. Assessing
usability of model driven development in industrial projects. In
T. Bailey, R. Vogel, and J. Mansell, editors, 4th European Workshop on
”From code centric to model centric software engineering: Practices,
Implications and ROI” (C2M), University of Twente, NL-Enschede,
June 24 2009. CTIT Workshop Proceedings, Enschede. 6.5

188

Bibliography

[GA09] Karl-Heinrich Grote and Erik K. Antonsson. Springer Handbook of
Mechanical Engineering. Springer, Berlin, 2009. 5.1.2

[GB07] P. J. Gawthrop and G. P. Bevan. Bond-graph modeling. IEEE Control
Systems Magazine, 27(2):24–45, 2007. 2.2.2, 2.2.2, 6.2.2, 7.2.1, 7.2,
7.2.2, E.3

[GBG18] Karl-Heinrich Grote, Beate Bender, and Dietmar Göhlich, editors.
Dubble: Taschenbuch für den Maschinenbau. Springer Vieweg Berlin,
Heidelberg, 2018. 3.4.3, 5.3.1

[GBP+21a] Kilian Gericke, Beate Bender, Gerhard Pahl, Wolfgang Beitz, Jörg
Feldhusen, and Karl-Heinrich Grote. Der Produktentwicklungsprozess,
pages 57–93. 2021. 4

[GBP+21b] Kilian Gericke, Beate Bender, Gerhard Pahl, Wolfgang Beitz, Jörg
Feldhusen, and Karl-Heinrich Grote. Funktionen und deren Strukturen.
Springer Berlin Heidelberg, 2021. 7.3.1, 7.3.2

[GDP+10] Jürgen Gausemeier, Rafal Dorociak, Sebastian Pook, Alexander Nyßen,
and Axel Terfloth. Computer-aided cross-domain modeling of
mechatronic systems. In Proceedings of the DESIGN 2010, the 11th
International Design Conference, 05 2010. 6.5

[GHJV95] Erich. Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns : elements of reusable object-oriented software.
Addison-Wesley, 1995. 5.1.4, 6.1.2

[GJRR22a] Rohit Gupta, Nico Jansen, Nikolaus Regnat, and Bernhard Rumpe.
Design Guidelines for Improving User Experience in Industrial
Domain-Specific Modelling Languages. In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. Association for Computing
Machinery, October 2022. 6.5

[GJRR22b] Rohit Gupta, Nico Jansen, Nikolaus Regnat, and Bernhard Rumpe.
Implementation of the SpesML Workbench in MagicDraw. In
Modellierung 2022 Satellite Events, pages 61–76. Gesellschaft für
Informatik, June 2022. 4.3, 6.3.1, 6.3.2, 6.5

[GJW+18] Reza Golafshan, Georg Jacobs, Matthias Wegerhoff, Pascal Drichel, and
Joerg Berroth. Investigation on the Effects of Structural Dynamics on
Rolling Bearing Fault Diagnosis by Means of Multibody Simulation.
International Journal of Rotating Machinery, 2018:1–18, 2018. 7.3.5

189

Bibliography

[GKR+21] Rohit Gupta, Sieglinde Kranz, Nikolaus Regnat, Bernhard Rumpe, and
Andreas Wortmann. Towards a Systematic Engineering of Industrial
Domain-Specific Languages. In 2021 IEEE/ACM 8th International
Workshop on Software Engineering Research and Industrial Practice
(SE&IP), pages 49–56. IEEE, May 2021. 6.3.1, 6.10, 6.5, E.3

[Gro00] IEEE Architecture Working Group. IEEE Std 1471-2000,
Recommended practice for architectural description of
software-intensive systems. Technical report, IEEE, 2000. 5.3.3

[GRSS11] H. Giese, B. Rumpe, B. Schätz, and J. Sztipanovits. Science and
engineering of cyber-physical systems (dagstuhl seminar 11441).
Dagstuhl Reports, 1(11), 2011. 1.1, 1.1.1

[GS96] Peter Gawthrop and Lorcan Smith. Metamodelling: For Bond Graphs
and Dynamic Systems. 1996. 2.2.2

[Gü10] Johann Friedrich Gülich. Centrifugal Pumps. Springer, Berlin,
Heidelberg, 2010. 1.3.3

[Hab16] Arne Haber. MontiArc - Architectural Modeling and Simulation of
Interactive Distributed Systems. Aachener Informatik-Berichte,
Software Engineering, Band 24. Shaker Verlag, September 2016. 1.4,
1.3.4, 6.1.2, E.3

[HD19] Austin Hughes and Bill Drury. Electric motors and drives:
fundamentals, types and applications. Newnes, 2019. 7.2.3

[HHB+22] Christian Habermehl, Gregor Hoepfner, Joerg Berroth, Stephan
Neumann, and Georg Jacobs. Optimization Workflows for Linking
Model-Based Systems Engineering (MBSE) and Multidisciplinary
Analysis and Optimization (MDAO). Applied Sciences, 12(11), 2022.
6.5, 7.3

[HJZ+21] Gregor Hoepfner, Georg Jacobs, Thilo Zerwas, Imke Drave, Joerg
Berroth, Christian Guist, Bernhard Rumpe, and Jens Kohl.
Model-Based Design Workflows for Cyber-Physical Systems Applied to
an Electric-Mechanical Coolant Pump. In Georg Jacobs and Sebastian
Stein, editors, IOP Conference Series: Materials Science and
Engineering, volume 1097:012004. IOP Publishing, Feburary 2021. 7,
1.4, 3.2, 5.1.2, 6.1, 6.5, 7.3

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. An Algebraic View on the Semantics of

190

Bibliography

Model Composition. In Conference on Model Driven Architecture -
Foundations and Applications (ECMDA-FA’07), LNCS 4530, pages
99–113. Springer, Germany, 2007. 1.3.2, 1.3.2

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore
Language Workbench and Library Handbook: Edition 2021. Aachener
Informatik-Berichte, Software Engineering, Band 48. Shaker Verlag,
May 2021. 1.3.4, D.2

[HMS16] Ekbert Hering, Rolf Martin, and Martin Stohrer. Physik für Ingenieure.
Sprinter Vieweg, Berlin, Heidelberg, 2016. 7.1.1

[HNZ+23] Gregor Hoepfner, Imke Nachmann, Thilo Zerwas, Joerg K. Berroth,
Jens Kohl, Christian Guist, Bernhard Rumpe, and Georg Jacobs.
Towards a Holistic and Functional Model-Based Design Method for
Mechatronic Cyber-Physical Systems. Journal of Computing and
Information Science in Engineering (JCISE), 23(5), 2023. 7, 1.4, 4.3,
4.3, 5

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of ”Semantics”? IEEE Computer, 37(10):64–72, October
2004. 1.1.1, 1.4, 4.1, 6.3.1

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards
Architectural Programming of Embedded Systems. In Tagungsband des
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung
eingebetteterSysteme VI, volume 2010-01 of Informatik-Bericht, pages
13 – 22. fortiss GmbH, Germany, 2010. 1.3.4

[HRR12a] A. Haber, J. O. Ringert, and B. Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems.
Technical Report AIB-2012-03, RWTH Aachen University, 2012. 3.4.3

[HRR12b] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc -
Architectural Modeling of Interactive Distributed and Cyber-Physical
Systems. Technical Report AIB-2012-03, RWTH Aachen University,
February 2012. 1.3.4

[IJZK23] Lukas Irnich, Georg Jacobs, Thilo Zerwas, and Christian Konrad.
Combining and evaluating function-oriented solutions in model-based
systems engineering. Forschung im Ingenieurwesen, 87, 2023. 5.1.2,
5.1.4, 6.1.2

191

Bibliography

[Isl04] M.N. Islam. Functional dimensioning and tolerancing software for
concurrent engineering applications. Computers in Industry,
54(2):169–190, 2004. 7.3.1

[JDB09] Y. Jarraya, M. Debbabi, and J. Bentahar. On the meaning of sysml
activity diagrams. In 2009 16th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, pages
95–105, 2009. 7.3.6

[JDL+17] Soheil Jafari, Julian F Dunne, Mostafa Langari, Zhiyin Yang,
Jean-Pierre Pirault, Chris A Long, and Jisjoe Thalackottore Jose. A
review of evaporative cooling system concepts for engine thermal
management in motor vehicles. Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering,
231(8):1126–1143, 2017. 1.3.3

[JKB+21] Georg Jacobs, Christian Konrad, Joerg Karl Berroth, Thilo Zerwas,
Gregor Höpfner, and Kathrin Spütz. Function-Oriented Model-Based
Product Development. 2021. 6.2.2, 6.2.3

[JKB+22] Georg Jacobs, Christian Konrad, Joerg Berroth, Thilo Zerwas, Gregor
Höpfner, and Kathrin Spütz. Function-Oriented Model-Based Product
Development. Springer International Publishing, 2022. 5.1

[JKPB12] Thomas Johnson, Aleksandr Kerzhner, Christiaan J.J. Paredis, and
Roger Burkhart. Integrating models and simulations of continuous
dynamics into SysML. Journal of Computing and Information Science
in Engineering, 12(1), 2012. 1.3.5, 6.2.3, 7.2.3

[Kau21] Oliver Kautz. Model Analyses Based on Semantic Differencing and
Automatic Model Repair. Aachener Informatik-Berichte, Software
Engineering, Band 46. Shaker Verlag, April 2021. 1.4, 4.1

[KHBC99] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha. Test cases
generation from uml state diagrams. IEE Proceedings - Software, page
187, 1999. 7.3.6

[KHSE15] Michael Krappel, Claire Heidecker, Simon Streng, and Alfred Elsäßer.
Electrical 48v coolant pump for highest thermal management
requirements. In Michael Bargende, Hans-Christian Reuss, and Jochen
Wiedemann, editors, 15. Internationales Stuttgarter Symposium, pages
1219–1234. Springer Fachmedien Wiesbaden, 2015. 1.3.3

192

Bibliography

[KK98] Rudolf Koller and Norbert Kastrup. Prinziplösungen zur Konstruktion
technischer Produkte. Springer, Berlin, Heidelberg, 1998. 1.2, 1.5, 2.2.1,
2.2.2, 2.3, 4.3, 5, 5.1, 5.1.1, 5.1.2, 5.1.2, 5.1.2, 5.1.3, 5.2, 5.1.4, 5.1.4,
5.1.4, 5.1.4, 5.1.4, 5.2, 5.2, 5.2.1, 5.2.1, 5.2, 5.2.1, 5.2.1, 5.2.1, 5.2.1,
5.2.2, 5.2.2, 5.2.2, 5.2.3, 5.2.3, 5.3, 6.1.1, 6.1.2, 6.1.3, 6.2.2, 6.2.2, 6.2.3,
6.3.2, 6.3.2, 6.4, 6.5, 7.1.1, 7.2.3, 7.3.1, 8, E.3

[KKBK07] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik, and Inyoung Ko.
Test cases generation from uml activity diagrams. In Eighth ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD
2007), pages 556–561. IEEE, 2007. 7.3.6

[Kle52] Introduction to Metamathematics. Van Nostrand, 1952. 3.1.1, C.1

[KM03] Hans-Joachim Kowalski and Gerhard O. Michler. Lineare Algebra. De
Gruyter, 2003. 2.2.1, B, B.1, B.2, B.6, B.7, B.8, B.9, B.10, B, B.12,
B.13, B.14, 1, B, B.15, B.16

[KMP+21] Hendrik Kausch, Judith Michael, Mathias Pfeiffer, Deni Raco,
Bernhard Rumpe, and Andreas Schweiger. Model-Based Development
and Logical AI for Secure and Safe Avionics Systems: A Verification
Framework for SysML Behavior Specifications. In Aerospace Europe
Conference 2021 (AEC 2021). Council of European Aerospace Societies
(CEAS), November 2021. 8

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo
Greifenberg, Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze,
Andreas Wortmann, Philipp Orth, and Johannes Richenhagen.
Improving Model-based Testing in Automotive Software Engineering.
In International Conference on Software Engineering: Software
Engineering in Practice (ICSE’18), pages 172–180. ACM, June 2018.
6.5, 7.3.6

[Kol85] Rudolf Koller. Konstruktionslehre für den Maschinenbau: Grundlagen
des methodischen Konstruierens. Springer,Berlin,Heidelberg, 1985.
1.1.2, 3.4.3, 3.3, 5, 5.1.1, 5.1.1, 5.1.2, 5.1.2, 5.1.2, 5.2, 5.1.2, 5.1.3, 5.2,
5.1.4, 5.1.4, 5.5, 5.2.1, 5.2.1, 6.1.2, E.3, E.3

[Kol98] Rudolf Koller. Konstruktionslehre für den Maschinenbau: Grundlagen
zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen.
Springer,Berlin,Heidelberg, 1998. 3.1, 3.4.3, 4.1.1, 4.3, 5, 5.1, 5.1, 5.1.1,
5.1.1, 5.1.2, 5.1.2, 5.1.2, 5.1.3, 5.1.4, 5.1.4, 5.2, 5.2, 5.2.1, 5.2.1, 5.2.1,
5.2.1, 5.2.2, 5.2.2, 5.2.2, 5.2.2, 5.2.3, 5.3, 6.2.1, E.3, E.3

193

Bibliography

[Kol14] Rudolf Koller. Konstruktionslehre für den Maschinenbau - Grundlagen
zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen.
Springer, Berlin, 4 edition, 2014. 6.5

[KPR+22] Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe, and
Andreas Schweiger. Correct and Sustainable Development Using
Model-based Engineering and Formal Methods. In 2022 IEEE/AIAA
41st Digital Avionics Systems Conference (DASC). IEEE, September
2022. 8

[KPRR20a] Hendrik Kausch, Mathias Pfeiffer, Deni Raco, and Bernhard Rumpe.
An Approach for Logic-based Knowledge Representation and
Automated Reasoning over Underspecification and Refinement in
Safety-Critical Cyber-Physical Systems. In Regina Hebig and Robert
Heinrich, editors, Combined Proceedings of the Workshops at Software
Engineering 2020, volume 2581. CEUR Workshop Proceedings,
February 2020. 7.3.6

[KPRR20b] Hendrik Kausch, Mathias Pfeiffer, Deni Raco, and Bernhard Rumpe.
MontiBelle - Toolbox for a Model-Based Development and Verification
of Distributed Critical Systems for Compliance with Functional Safety.
In AIAA Scitech 2020 Forum. American Institute of Aeronautics and
Astronautics, January 2020. 7.3.6

[KPRR21] Hendrik Kausch, Mathias Pfeiffer, Deni Raco, and Bernhard Rumpe.
Model-Based Design of Correct Safety-Critical Systems using Dataflow
Languages on the Example of SysML Architecture and Behavior
Diagrams. In Sebastian Götz, Lukas Linsbauer, Ina Schaefer, and
Andreas Wortmann, editors, Proceedings of the Software Engineering
2021 Satellite Events, volume 2814. CEUR, February 2021. 8

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated
semantics-preserving parallel decomposition of finite component and
connector architectures. Automated Software Engineering, 27:119–151,
April 2020. 4.2.2

[Kus21] Evgeny Kusmenko. Model-Driven Development Methodology and
Domain-Specific Languages for the Design of Artificial Intelligence in
Cyber-Physical Systems. Aachener Informatik-Berichte, Software
Engineering, Band 49. Shaker Verlag, November 2021. 1.3.4, 2.1.1,
2.2.1, 3.4.3, 7.3.3, D.2, D.2

[KV13] K. Kernschmidt and B. Vogel-Heuser. An interdisciplinary sysml based
modeling approach for analyzing change influences in production plants

194

Bibliography

to support the engineering. In 2013 IEEE International Conference on
Automation Science and Engineering (CASE), 2013. 6.5

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In 2008
11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC), 2008.
1.1

[Lei21] Jan Marco Leitmeister. Einführung in die Wirtschaftsinformatik.
Springer Gabler Berlin, Heidelberg, 2021. 4.1

[LRSS23] Achim Lindt, Bernhard Rumpe, Max Stachon, and Sebastian Stüber.
CDMerge: Semantically Sound Merging of Class Diagrams for Software
Component Integration. Journal of Object Technology, 22(2), 2023. 4.2

[LW14] Jesko G. Lamm and Tim Weilkiens. Method for Deriving Functional
Architectures from Use Cases. Systems Engineering, 17(2), 2014. 6.5

[MAD11] Monalisha Khandai, Arup Abhinna Acharya, and Durga Prasad
Mohapatra. Test case generation for concurrent system using uml
combinational diagram. International Journal of Computer Science and
Information Technologies, pages 1172–1181, 2011. 7.3.6

[MAK15] G. Moeser, A. Albers, and S. Kümpel. Usage of free sketches in MBSE
raising the applicability of Model-Based Systems Engineering for
mechanical engineers. In 2015 IEEE International Symposium on
Systems Engineering (ISSE), pages 50–55, 2015. 6.5

[Man15] Object Management Group. OMG Unified Modeling Language (OMG
UML) Version 2.5, 2015. 1.3.5, 7.3.6

[Man17] Object Management Group. OMG Unified Modeling Language (OMG
UML), 2017. 1.3.5, 6.3.1, 6.3.2, 6.3.2

[Man19] Object Management Group. OMG Systems Modeling Language (OMG
SysML) Version 1.6, 2019. 1.3, 1.3.5, 6.3, 6.2.1, 6.2.1, 6.2.1, 6.2.2, 6.5,
7.2.1, 7.3.6, E.3

[MAT16] MATLAB & SIMULINK. Mathworks Inc. Simulinc User’s Guide.
Technical Report 2016b, 2016. 6.1.2

[MC12] Behrooz Mashadi and David Crolla. Appendix: An Introduction to Bond
Graph Modelling, pages 511–528. John Wiley & Sons, Ltd, 2012. 7.2.1

195

Bibliography

[ME2] Mechanical Engineering. https:
//en.wikipedia.org/wiki/Mechanical_engineering.
Accessed: 2023-06-27. 5

[MEE+11] Johannes Mathias, Tobias Eifler, Roland Engelhardt, Hermann
Kloberdanz, Herbert Birkhofer, and Andrea Bohn. Selection of Physical
Effects Based on Disturbances and Robustness Rations in The Early
Phases of Robust Design. In International Conference on Engineering
Design, pages 11–15, 2011. 5.3.3

[MKG+15] Georg Moeser, Christoph Kramer, Martin Grundel, Michael Neubert,
Stephan Kümpel, Axel Scheithauer, Sven Kleiner, and Albert Albers.
Fortschrittsbericht zur modellbasierten Unterstützung der
Konstrukteurstätigkeit durch FAS4M, pages 69–78. Carl Hanser Verlag
GmbH & Co. KG, 2015. 6.5

[MNN+22] Judith Michael, Imke Nachmann, Lukas Netz, Bernhard Rumpe, and
Sebastian Stüber. Generating Digital Twin Cockpits for Parameter
Management in the Engineering of Wind Turbines. In Modellierung
2022, pages 33–48. Gesellschaft für Informatik, June 2022. 5.1

[Mod22] OpenModelica User’s Guide. online, 2022. 6.1.2

[Moe15] Georg Moeser. Example on ”usage of free sketches in mbse”. ”raising
the applicability of model-based systems engineering for mechanical
engineers”. Technical report, Karlsruher Institut für Technologie (KIT),
2015. 6.5

[Nar85] Louis Narens. Abstract Measurement Theory. MIT Press, 1985. D.2

[NKT+15] M. Nikolaidou, G. Kapos, A. Tsadimas, V. Dalakas, and
D. Anagnostopoulos. Simulating sysml models: Overview and
challenges. In 2015 10th System of Systems Engineering Conference
(SoSE), 2015. 7.3.6

[NRSS22] Imke Nachmann, Bernhard Rumpe, Max Stachon, and Sebastian
Stüber. Open-World Loose Semantics of Class Diagrams as Basis for
Semantic Differences. In Modellierung 2022, pages 111–127.
Gesellschaft für Informatik, June 2022. 2.1.1, 3.3.4

[OA99] Jeff Offutt and Aynur Abdurazik. Generating tests from uml
specifications. In UML 99 — The Unified Modeling Language: Beyond
the Standard Second International Conference Fort Collins, CO, USA,
October 28–30, 1999 Proceedings, pages 416–429. Springer Berlin
Heidelberg, 1999. 7.3.6

196

https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Mechanical_engineering

Bibliography

[OAMD12] Samir Ouchani, Otmane Ait Mohamed, and Mourad Debbabi. Efficient
probabilistic abstraction for sysml activity diagrams. In Software
Engineering and Formal Methods. Springer Berlin Heidelberg, 2012.
7.3.6

[OLAA03] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann.
Generating test data from state-based specifications. Software Testing,
Verification and Reliability, pages 25–53, 2003. 7.3.6

[OMG13] OMG. Business Process Model and Notation (BPMN), Version 2.0.2.
Specification, Object Management Group, 2013. 7.3.6

[PBFG07] Gerhard Pahl, Wolfgang Beitz, Jörg Feldhusen, and Karl-Heinrich
Grote. Engineering Design. Springer, London, 2007. 2.2.3, 5.1, 5.1.1

[PJHB19] Gerwin Pasch, Georg Jacobs, Gregor Höpfner, and Joerg Karl Berroth.
Multi-Domain Simulation for the Assessment of the NVH Behaviour of
a Tractor with Hydrostatic-Mechanical Power Split Transmission. In
77th International Conference on Agricultural Engineering /
VDI-Wissensforum ; Supporters: VDI Max-Eyth Society for
Agricultural Engineering, Land.Technik AgEng 2019 : Hannover, 2019.
7.3.5

[Pto14] Claudius Ptolemaeus. System Design, Modeling, and Simulation using
Ptolemy II, 2014. 1.1, 1.1.2, 3.4.2, 3.4.2, 5, 5.3.3, 6.5, 7.3.6

[Pum10] Sulzer Pumps. Centrifugal Pump Handbook. Elsevier, 2010. 6.2.3

[Rod91] Wolf G. Rodenacker. Methodisches Konstruieren: Grundlagen,
Methodik, praktische Beispiele. Springer,Berlin,Heidelberg, 1991. 5, 5.1,
5.1.1, 5.1.2, 5.3.3

[Rot94] Karlheinz Roth. Konstruieren mit Konstruktionskatalogen - Band I:
Konstruktionslehre. Springer, Berlin, 2 edition, 1994. 5.1, 5.1.2, 5.3.3

[Rot96] Karlheinz Roth. Konstruieren mit Konstruktionskatalogen - Band III:
Verbindungen und Verschlüsse - Lösungsfindung. Springer, Berlin, 2
edition, 1996. 5.1.2, 5.3.3

[Rot00] Karlheinz Roth. Konstruieren mit Konstruktionskatalogen: Band 1:
onstruktionslehre. Springer Berlin Heidelberg, 2000. 5.1.2, 5.1.2, 5.3,
E.3

[Rot01] Karlheinz Roth. Konstruieren mit Konstruktionskatalogen: Band 2:
Kataloge. Springer Berlin Heidelberg, 2001. 5, 5.1, 5.1.3

197

Bibliography

[Rot02] Karlheinz Roth. Design catalogues and their usage. Springer London,
2002. 5.1, 5.1.1

[Rot11] Karlheinz Roth. Selection of Physical Effects Based on Disturbances
and Robustness Rations in The Early Phases of Robust Design. In
International Conference on Engineering Design, 2011. 5.3.3

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on
Streams, Stream Processing Functions, and State-Based Stream
Processing. International Journal of Software and Informatics, 2011.
1.1.2, 1.3.4, 1.5, 3, 3.1, 3.1, 3.2.2, 3.2.2, 3.2.4, 3.2.6, E.3

[RRS23] Jan Oliver Ringert, Bernhard Rumpe, and Max Stachon. On
implementing open world semantic differencing for class diagrams.
Journal of Object Technology, 22(2), 2023. 2.1.1

[RS16] Stefan Roth and Achim Stahl. Temperatur. 2016. 6.1.1

[Ruc17] Anne Ruckpaul. Synthese-getriebene Analyse technischer Systeme in
der Produktentwicklung – Ein Beitrag zum Messen und Verstehen von
Analyseprozessen während der Konstruktion unter Einsatz von Eye
Tracking. PhD thesis, Karlsruher Institut für Technologie (KIT), 2017.
5.1.1

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. Herbert Utz Verlag Wissenschaft, München,
Deutschland, 1996. 1.1.2, 1.1, 1.4, 1.5, 1.6, 1.3.2, 1.3.2, 1.3.2, 1.9, 2.1,
3.1.1, 3.1.1, 3.1.1, 3.1.1, 3.3.3, 3.16, 4, 4.1, 4.2, 4.2.2, 8, C

[Rum13] Bernhard Rumpe. Towards Model and Language Composition. In
Benoit Combemale, Walter Cazzola, and Robert Bertrand France,
editors, Proceedings of the First Workshop on the Globalization of
Domain Specific Languages, pages 4–7. ACM, 2013. 1.3.2, 1.3.2

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016. 1.3.4, 3.3.4, 5.3, 6.1.1, 7.3.6, E.3

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation,
Testing, Refactoring. Springer International, May 2017. 6.1, 7.3.3, 7.3.6

[RvdAtHW06] Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and
Petia Wohed. On the suitability of uml 2.0 activity diagrams for
business process modelling. In Proceedings of the 3rd Asia-Pacific
Conference on Conceptual Modelling - Volume 53. Australian
Computer Society, Inc., 2006. 7.3.6

198

Bibliography

[RYF15] David A. Rubenstein, Wei Yin, and Mary D. Frame. Chapter 1 -
introduction. In David A. Rubenstein, Wei Yin, and Mary D. Frame,
editors, Biofluid Mechanics (Second Edition), pages 3–13. Academic
Press, second edition edition, 2015. D.2

[SB91] Simon Saunders and Harvey R. Brown. The Philosophy of Vacuum.
Oxford University Press, 1991. 2.2.3

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung
mit der UML/P. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012. 1.3.4

[SFA17] Chantal Steimer, Jan Fischer, and Jan C Aurich. Model-based design
process for the early phases of manufacturing system planning using
sysml. Procedia CIRP, 60:163–168, 2017. 5.3.3

[SG90] D Scott and C Gunter. Semantic Domains and Denotational
Semantics. Elsevier Science Publishers, 1990. 3.1.1, C

[Sha09] Mark F. Sharlow. Generalizing the algebra of physical quantities, 2009.
D.2

[SHT12] Maria Spichkova, Florian Hölzl, and David Trachtenherz. Verified
system development with the autofocus tool chain. Electronic
Proceedings in Theoretical Computer Science, 86, 07 2012. 7.3.6

[SJZK23] Kathrin Spütz, Georg Jacobs, Thilo Zerwas, and Christian Konrad.
Modeling language for the function-oriented development of
mechatronic systems with motego. Forschung im Ingenieurwesen,
87(1), Mar 2023. 4.3, 4.3

[SMM10] Santosh Kumar Swain, Durga Prasad Mohapatra, and Rajib Mall. Test
case generation based on state and activity models. The Journal of
Object Technology, 2010. 7.3.6

[SRS99] Thomas Stauner, Bernhard Rumpe, and Peter Scholz. Hybrid System
Model. Technical report, TUM, 1999. 1.1.2, 1.2, 1.3, 1.5, 3.1.1, 3.10,
3.3.1, 3.3.2, 3.1, 4.2.1, 4.2.1, C, C.1, E.3

[SSK11] Mahesh Shirole, Amit Suthar, and Rajeev Kumar. Generation of
Improved Test Cases from UML State Diagram Using Genetic
Algorithm. In Proceedings of the 4th India Software Engineering
Conference, pages 125–134. ACM, 2011. 7.3.6

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. 1973. 1.3.2, 4.1

199

Bibliography

[Sta10] Michael E. Starzak. The First Law of Thermodynamics. Springer New
York, 2010. 2.2.2

[Ste94] K. Stephan. Thermodynamics. In Dubbel Handbook of Mechanical
Engineering. Springer London, 1994. 1.3.3

[Sti89] Klaus Stierstadt. Physik der Materie. Wiley-VCH Verlag, 1989. 2.2.1,
2.2.2, 2.2.3, 5.2.2

[Sti18] Klaus Stierstadt. Thermodynamik für das Bachelorstudium. Springer
Spektrum Berlin, Heidelberg, 2018. 5.2.2

[SW21] Eugene Syriani and Manuel Wimmer. Guest editorial to the theme
section on multi-paradigm modeling for cyber-physical systems.
Software and Systems Modeling, 20(3), 2021. 4.3

[Swa00] P. M. Swamidass, editor. Engineering design. Springer, Boston, MA,
2000. 5.1

[Sze78] Peter Szekeres. he mathematical foundations of dimensional analysis
and the question of fundamental units. International Journal on
Theoretical Physics, 17, 1978. D.2

[Tar55] A Tarski. A lattice-theoretical fixpoint theorem and its application. In
Pacific Journal of Mathematics, number 5, 1955. 3.1.1, 3.3.3, C

[Tay08] Barry N. Taylor. The International System of Units (SI), 2008. 2.2.1,
2.2.1, 7.2.1, D.1, D.1

[TC16] Kleanthis Thramboulidis and Foivos Christoulakis. Uml4iot—a
uml-based approach to exploit iot in cyber-physical manufacturing
systems. Computers in Industry, 82:259–272, 2016. 6.5

[UE03] Karl Ulrich and Steven Eppinger. Product Design and Development.
McGraw-Hill, New York, 3 edition, 2003. 5.1.1

[uM04] VDI-Fachbereich Produktentwicklung und Mechatronik. Systematic
embodiment design of technical products. Standard, VDI-Gesellschaft
für Produkt- und Prozessgestaltung, Berlin:Beuth, 2004. 7.3.1

[UTF10] Andreea Urzica, Claudiu Tanase, and Adina Magda Florea. Bridging
the gap between business experts and software agents: BPMN to
AUML transformation. UPB Scientific Bulletin, Series C: Electrical
Engineering, 72, 2010. 7.3.6

200

Bibliography

[vdAtHW03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias
Weske. Business Process Management: A Survey. In Business Process
Management, 2003. 7.3.6

[VDI82] VDI. VDI 2222 Blatt 2 - Konstruktionsmethodik - Erstellung und
Anwendung von Konstruktionskatalogen. Beuth Verlag, Berlin, 1982.
5.1

[VDI91] Konstruktionskataloge; lösung von bewegungsaufgaben mit getrieben;
grundlagen. Standard, VDI-Gesellschaft für Produkt- und
Prozessgestaltung, 1991. 5.1.2

[VDI97] VDI. VDI 2222 Blatt 1 - Konstruktionsmethodik - Methodisches
Entwickeln von Lösungsprinzipien. Beuth Verlag, Berlin, 1997. 5.1

[VLM02] Hans Vangheluwe, Juan Lara, and Pieter Mosterman. An Introduction
to Multi-Paradigm Modelling and Simulation. In Proceedings of the
AIS’2002 Conference, 2002. 4.3

[Vog15] Andreas Vogelsang. Model-Based Requirements Engineering for
Multifunctional Systems. Technical report, Technical University of
Munich, Institute of Informatics, 2015. 4.3, 4.3, 4.3

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering, Band 9.
Shaker Verlag, 2011. 1.3.2

[WBCW20] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel
Wimmer. Modeling Languages in Industry 4.0: an Extended
Systematic Mapping Study. Software and Systems Modeling,
19(1):67–94, January 2020. 6.5

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer
Transformationssprachen. Aachener Informatik-Berichte, Software
Engineering, Band 12. Shaker Verlag, 2012. 7.1.1, 7.1.2

[Wes16] Wolfgang Wesche. Radiale Kreiselpumpen - Berechnung und
Konstruktion der hydrodynamischen Komponenten. Springer Vieweg,
2016. 7.3.1, 7.3.2

[Whi68a] Hassler Whitney. The mathematics of physical quantities: Part i:
Mathematical models for measurement. American Mathematical
Monthly, 75:115–138, 1968. D.2

201

Bibliography

[Whi68b] Hassler Whitney. The mathematics of physical quantities: Part ii:
Quantity structures and dimensional analysis. American Mathematical
Monthly, 75:227–256, 1968. D.2

[Win93] G Winskel. The Formal Semantics of Programming Languages. The
MIT Press, 1993. 3.1.1, C

[WJD18] Matthias Wegerhoff, Georg Jacobs, and Pascal Drichel. Noise, vibration
and harshness validation methodology for complex elastic multibody
simulation models: With application to an electrified drive train.
Journal of Vibration and Control, 25(2), 2018. 7.3.5

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John
Fitzgerald. Formal methods: Practice and experience. ACM Comput.
Surv., 41(4), 2009. 7.3.6

[WLRW15] Tim. Weilkiens, Jesko G. Lamm, Stephan Roth, and Markus Walker.
Model-based system architecture. John Wiley & Sons, 2015. 6.5

[Wor16] Andreas Wortmann. An Extensible Component & Connector
Architecture Description Infrastructure for Multi-Platform Modeling.
Aachener Informatik-Berichte, Software Engineering, Band 25. Shaker
Verlag, November 2016. 1.3.4

[WS09] Stefan Wölkl and Kristina Shea. A Computational Product Model for
Conceptual Design Using SysML. In Proceedings of the ASME 2009
International Design Engineering Technical Conferences and
Computers and Information Engineering Conference, 2009. 6.5

[WYY+04] Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li Xuandong,
and Zheng Guoliang. Generating test cases from uml activity diagram
based on gray-box method. In 11th Asia-Pacific Software Engineering
Conference, pages 284–291, 2004. 7.3.6

[ZAMM12] Christian Zingel, Albert Albers, Sven Matthiesen, and Michael Maletz.
Experiences and Advancements from One Year of Explorative
Application of an Integrated Model-Based Development Technique
Using C&C²-A in SysML. International Journal of Computer Science,
34-39, 2012. 6.5

[ZJK+22] Thilo Zerwas, Georg Jacobs, Julia Kowalski, Stephan Husung, Detlef
Gerhard, Bernhard Rumpe, Klaus Zeman, Seyedmohammad Vafaei,
Florian König, and Gregor Höpfner. Model signatures for the
integration of simulation models into system models. Systems, October
2022. 5.1

202

Bibliography

[ZJS+21] Thilo Zerwas, Georg Jacobs, Kathrin Spuetz, Gregor Hoepfner, Imke
Drave, Joerg Berroth, Christian Guist, Christian Konrad, Bernhard
Rumpe, and Jens Kohl. Mechanical Concept Development Using
Principle Solution Models. In Georg Jacobs and Sebastian Stein,
editors, IOP Conference Series: Materials Science and Engineering,
volume 1097:012001. IOP Publishing, Feburary 2021. 7, 1.4, 5.1, 5.1.2,
6.1

[ZRJ+22] Yizhe Zhang, Julian Roeder, Georg Jacobs, Joerg Berroth, and Gregor
Hoepfner. Virtual Testing Workflows Based on the Function-Oriented
System Architecture in SysML: A Case Study in Wind Turbine
Systems. Wind, 2(3), 2022. 5.1, 6.5, 7.3

203

Appendix A

Definitions of Physical Quantities

The following table lists the physical quantities used in this dissertation. The variable
n ∈ {1, 2, 3} indicates the dimensionality.

Physical Quantity Definition

AngularVelocityn Rn(rad s−1)
Capacity R(L h−1)
Current R(A)
Energy R(J)
Forcen Rn(N)
Length R(m)
Momentum R3(Nm)
Positionn An(R(m)) ∪ ξ
Power R(W)
Pressure R(Pa)
Speedn Rn(m s−1)
Temperature R(K)
EntropyStream R(J s−1K)
Torquen Rn(Nm)
Velocityn Rn(m s−1)
Voltage R(V)
Volume R(m3)
VolumeFlowRate R(m3 s−1)
VolumeFlowRate R(m3/(As))
Work R(Wh)

Table A.1: Physical Quantities used throughout this dissertations.

205

Appendix B

Terms and Definitions from Algebra

This thesis uses basic terms and definitions from linear algebra. Group theory provides
a mathematical tool for defining the physical types energy, and matter. Euclidean and
affine geometry are established mathematical tools for describing physical phenomena
that have to do with space. This section briefly summarizes the most important
definitions given in [KM03], which also provides deeper insights on these matters for
the interested reader.

Groups

Definition B.1 (Group [KM03]). A group is a set U together with an operation
· : U × U → U, (u, v) 7→ uv such that

1. (uv)w = u(vw) for all units u, v, w ∈ U ,

2. there exists an element 1U such that eu = u for all units u ∈ U ,

3. for all u ∈ U there exists u−1 ∈ U such that uu−1 = 1U .

The group is called an abelian group iff the operation is also commutative, i.e., uv = vu
for all u, v ∈ U .

Definition B.2 (Subgroup [KM03]). A subset U ⊆ G of a group G is a subgroup of G,
denoted U ≤ G iff U together with the multiplication on G forms a group itself.

Definition B.3 (Generating Set [Fis13]). Let G be a group, and U ⊆ G be a subset of G.
The group generated by U is defined as

⟨ U ⟩ def
= {u1u2 . . . un | n ≥ 1, ui ∈ U ∨ u−1

i ∈ U∀i ∈ {1, . . . , n}}.

The generated group is therefore the smallest group that contains the subset U .

Definition B.4 (Finitely Generated [Fis13]). A group G is finitely generated iff there
exists a subset S ⊂ G such that G = ⟨S⟩.

207

Appendix B Terms and Definitions from Algebra

Geometry

Definition B.5 (Metric [Foe10]). Let X be a set. A metric on X is a mapping

|| ||X : X ×X → R, (x, y) 7→ ||x, y||X ,

such that the following conditions hold:

• ||x, y||X = 0 iff x = y,

• for all x, y ∈ X it holds ||x, y||X = ||y, x||X (symmetry)

• for all x, y, z ∈ X it holds that ||x, z||X ≤ ||x, y||X + ||y, z||X (triangle inequality)

A metric space is a tuple (X, || ||X) where X is a set and || ||X is a metric on X.

Example B.1. The p-dimensional vector space over R is a metric space with the metric

||x, y||Rp = ||x− y||p.

Definition B.6 (Multilinear Form [KM03]). For n > 0, let V1, V2, . . . , Vn,W be vector
spaces over a field K. A mapping

ϕ : V1 × V2 × . . .× Vn → W

is a multilinear form iff

1. ϕ(v1, . . . , vi + v′i, vn) = ϕ(v1, . . . , vi, . . . , vn) + ϕ(v1, . . . v
′
i, . . . , vn), for all vj ∈ Vj,

j = 1, 2, . . . , n and vi, v
′
i ∈ Vi, i = 1, 2, . . . n, and

2. ϕ(vi, . . . , vik, . . . , vn) = ϕ(v1, . . . , vi, . . . , vn)k for all k ∈ K, vi ∈ Vi, i = 1, . . . , n.

A multilinear form with n = 2 is called a bilinear form.

Definition B.7 (Scalar Product [KM03]). Let V be a vector space over the field K. A
bilinear form β of V is called a scalar product of V , iff

1. β is symmetric: For all v, w ∈ V it holds that β(v, w) = β(w, v), and

2. β is positive definite: For all v ∈ V that are not the zero-vector, it holds that
β(v, v) ≥ 0.

Example B.2. Let K be a field, and ∗ : K → K be the multiplication of K. Further, let
v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Kn be vectors. The standard scalar product on
Kn, is defined as

v · w def
=

n∑
i=1

vi ∗ wi

208

Definition B.8 (Euclidean Vector Space [KM03]). A vector space V over the field of real
numbers R together with a scalar product over V is called a Euclidean vector space.

Definition B.9 (Affine Space [KM03]). An affine space over a field K is a set A of so
called points together with (in case A ̸= ∅) a K-vector space VA, and a mapping that
assigns each ordered pair (p, q) of points in A a vector p⃗, q ∈ VA such that

1. for all points p ∈ A and all vectors a ∈ VA there exists exactly one point q ∈ A
with a = p⃗q,

2. for all p, q, r ∈ A it holds that p⃗q + q⃗r = p⃗r.

The dimension of the affine space A is the dimension of the respective vectorspace VA.

Definition B.10 (Affine Subspace [KM03]). A subset U of an affine space A is called an
affine subspace of A iff either A = ∅ or the set VU = {p⃗q ∈ VA | p, q ∈ U} is a subspace
of the K vector space VA. We denote that U is an affine subspace of A by U ≤ A.

Lemma 1. The intersection D = ∩{U | U ∈ S} of a non-empty system S of affine
subspaces of the affine space A is itself an affine subspace of A. For D = ∅ it holds that
VD = ∩{VU | U ∈ S}.

See [KM03] for the proof of this lemma.

Definition B.11. Let M be a subset of an affine space A. The smallest affine subspace
of A that contains M is

⟨M⟩ =
⋂

{U | M ⊂ U ∧ U ≤ A}

This subspace is the space generated by M.

Definition B.12 (Affine Span [KM03]). Let S be a system of affine subspaces of the
affine space A. Then the affine span of S is defined as

∨{U | U ∈ S} def
= ⟨∪U | U ∈ S⟩.

Definition B.13 (Coordinate System [KM03]). Let A be an affine space. An
(n+ 1)-tuple (p0, . . . , pn) of points pi ∈ A is independent iff the vectors
⃗p0p1, . . . , ⃗p0pn ∈ VA are linearly independent. An ordered (n+ 1)-tuple of points

K = (p0, . . . , pn) from A is called a coordinate system, iff the n+ 1 points pi in K are
independent, and A = ∨{{p0}, . . . , {pn}}.

Lemma 2. If K = (p0, . . . , pn) is a coordinate system of the affine space A, then A is of
dimension n. A tuple of points p0, . . . , pn form a coordinate system of A iff
{ ⃗p0p1, . . . , ⃗p0pn} is a basis of VA

209

Appendix B Terms and Definitions from Algebra

Definition B.14 (Cartesian Coordinate System [KM03]). Let A be a real or complex
affine space. Then, A is called a euclidean or unitary affine space iff there is a scalar
product | · | defined on VA. A coordinate system K = (p0, . . . , pn) is called a Cartesian
coordinate system iff { ⃗p0p1, . . . , ⃗p0pn} is an orthonormal basis of VA. In this case, the
distance between two points p, q ∈ A is defined as

pq = ||p⃗q||3
def
=
√
p⃗q · p⃗q

and the cosine of the angle (p, q, r) with p as apex is defined as

cos(p, q, r) = cos(p⃗q, q⃗r) =
p⃗q · q⃗r
|p⃗q| · |q⃗r

Theorem 1 (Change of Coordinates [KM03]). Let A, and A′ be two affine spaces with
respective Cartesian coordinate systems k = (p0, p1, . . . , pn), and k′ = (p′0, p

′
1, . . . , p

′
r).

Then, B = {−−→p0p1,
−−→p0p2, . . . ,

−−→p0pn} is a basis of the vector space VA associated with A,

and B′ = {
−−→
p′0p

′
1,
−−→
p′0p

′
2, . . . ,

−−→
p′0p

′
n} is a basis of the vector space VA′ associated to VA′.

Further, let α : A → B be an affine mapping such that α̂ : VA → VB : v 7→ TB
B′ · v, where

TB
B′ denotes the transformation matrix form basis B to B′, i.e., for all v′ ∈ VB there

exists v ∈ VA′ such that v′ = TB
B′ · v. With t = (t1, . . . , tr) being the coordinate vector of

α(p0) in the coordinate system k′, it holds for all coordinate vectors
x = (x1, . . . , xn) ∈ A such that the image of x under α has the coordinate vector
x′ = (x′1, . . . x

′
r) that

x′ = t+ TB
B′ · x.

The proof of Theorem 1 is given in [KM03].

Definition B.15 (Affine Mapping [KM03]). Let A,B be affine spaces. A mapping
α : A → B is an affine mapping iff there exists a linear mapping α̂ : VA → B such that

α̂(p⃗q) =
−−−−−−→
α(p)α(q).

Lemma 3. Let α : A → B, β : B → C be affine mappings on the affine spaces A,B, and
C. Then:

1. α is injective/surjective iff α̂ is injective/surjective.

2. α is bijective iff it is injective and surjective. A bijective affine mapping is called
an affinity. In this case, an inverse mapping α−1 exists and is also an affine
mapping.

3. for an affine subspace U ≤ A it holds that α(U) is an affine subspace of B.

4. the composition α ◦ β is an affine mapping with α̂ ◦ β = α̂ ◦ β̂.

Definition B.16 (Congruence [KM03]). Let A be a euclidean affine space. A congruence
is an affinity α : A → A such that α preserves the distance between every two points
p, q ∈ A, i.e., α(p)α(q) = pq for all p, q ∈ A.

210

Example The n-dimensional vector space Kn over a field K can be seen as an affine
space itself, when seeing it as a set of points and, at the same time, as a vector
space [Fis01]. We denote this space by An(K) [Fis01]. The mapping that assigns each
tuple of points a unique vector is given by

Kn ×Kn → Kn, (p, q) 7→ p− q.

For CPSs, in particular, when considering the physical domain, the Euclidean vector
space Rn together with the standard scalar product and euclidean norm accurately
describes the physical space mathematically. Therefore, throughout this work, we
consider the euclidean affine space A3(R) when modeling aspects that concern
geometry or space. We denote the standard euclidean norm on R3 as

||·||3 : R3 → R3, v 7→
√
v · v,

where v · v denotes the standard scalar product on R3.

211

Appendix C

A Complete Partial Order on The Set of
Timed Streams

Chapter 3 introduces the semantic domain of CPFs as a version of the Focus theory
where TSPFs operate on both discrete and dense streams and behaviors of CPFs are
described by sets of functions. Essentially this theory synthesizes the ideas
from [SRS99] that introduces Focus on hybrid streams (cf. Section 3.1) and describes
behaviors as sets of TSPFs on these hybrid streams and of the ideas from [Bro12]
which introduces TSPFs that operate on both discrete and dense streams but describes
behaviors as set-based TSPFs.
In order to prove that composition is well-defined in this theory, we need a theoretical
basis. Here, the well-formedness of composition requires that the composition of a set
of behaviors

(1) is not empty, and

(2) yields a behavior again.

To do so, we utilize Scott’s domain theory [SG90, Win93, SRS99] and define a CPO on
the set of timed streams. Further, we show that this order can be extended to channel
histories which enables to understand the sets of input and output channels of a CPF,
respectively, as completely partially ordered sets. This CPO further enables to
introduce a notion of monotonicity for CPFs. Similar to the theory of Focus on
discrete streams, introduced in [Rum96], the Knaster-Tarski theorem [Tar55] provides
a means to show the existence of least fixed points for monotone CPFs. This appendix
introduces the mathematical basis.

C.1 Complete Partial Orders

The basics to apply Scott’s domain theory in our setting is defined, among others,
in [BDD+93].

Definition C.1 (Partial Order [BDD+93]). A partial order is a pair (D,⊑), where D is
a set, and ⊑⊂ D ×D is a relation that is

213

Appendix C A Complete Partial Order on The Set of Timed Streams

(1) reflexive, i.e., d ⊑ d holds for all d ∈ D,

(2) antisymmetric, i.e., if d1 ⊑ d2 and d2 ⊑ d1 hold, then d1 = d2 holds for all
d1, d2 ∈ D, and

(3) transitive, i.e., if d1 ⊑ d2 and d2 ⊑ d3 then it follows that d1 ⊑ d3 for all
d1, d2, d3 ∈ D.

In a partially ordered set (D,⊑), an upper bound is an element that is greater than all
other elements, i.e., u ∈ D is an upper bound, iff for all d ∈ D it holds that d ⊑ u. An
upper bound u is a least upper bound iff there exists no other upper bound that is
smaller, i.e., u ∈ D is called a least upper bound, iff for all upper bounds v ∈ D it
holds that u ⊑ v.

A chain is a subset of a completely partially ordered set such that if the order becomes
total when restricted to the subset [BDD+93].

Definition C.2 (Chain [BDD+93]). Let (D,⊑) be a partial order. A chain is a subset
S ⊆ D of D that is non-empty such that for every two elements d1, d2 ∈ S either
d1 ⊑ d2 or d2 ⊑ d1 holds.

Knaster-Tarski’s fixpoint theorem states the existence of fix points of monotone
functions on CPOs, i.e., a CPO such that the least upper bound of each chain and of
the set itself are included.

Definition C.3 (Complete Partial Order [BDD+93]). A partial order (D,⊑) is called a
complete partial order iff

(1) the set D has a least element, which is denoted ⊥, and

(2) for all chains S ⊆ D the least upper bound ⊔S exists in D.

Definition C.4 (Monotonicity [BDD+93]). Let (D,⊑) and (S,⊑) be CPOs. A function
f : D → S is called monotonic iff for all d, d′ ∈ D it holds that d ⊑ d′ implies that
f(d) ⊑ f(d′).

Section 1.3.1 provides Cauchy’s definition of continuity for functions on metric spaces.
The above, however, allows to provide another notion of continuity for functions on
CPOs.

Definition C.5 (Continuity [BDD+93]). Let (D,⊑) and (S,⊑) be CPOs and f : D → S
be a monotonic function. Then, f is called continuous iff for all chains D′ ⊆ D it holds
that the least upper bound of all images of the elements of D′ is equal to the image of
the least upper bound of D′, i.e., ⊔{f(d) | d ∈ D′} = f(⊔D′).

214

C.1 Complete Partial Orders

While monotonicity implies that feedback composition is well-defined, i.e., the
behavior that results from feedback composition is non-empty and also defines a
behavior in the sense of Definition 3.13, continuity implies that the behavior of a
function is fully described by its behavior for finite inputs [BDD+93].
A result from Kleene [Kle52] allows to approximate these fixpoints: The least fixpoint
of a function f : D → S, as in Definition C.5, denoted fix.f , can be approximated by a
finite chain of functions. That is fix.f = ⊔n∈Nf

n(⊥), where

f0(d) = ⊥∀d ∈ D

fn+1(d) = f(fn(d))∀d ∈ D

This chain models the computation process that takes place in feedback loops.
Another theory that guarantees the existence of fix points is by Banach which provides
results for fix points for functions on metric spaces. These results are often used to
prove well-formedness of feedback loops for TSPFs over hybrid streams, i.e., streams in
the form R+ → Uω, for example in [SRS99]. For our approach that considers behaviors
over interfaces that include discrete and dense channel histories at the same time. In
this setting, the discrete channels “slow down” the transformation performed by the
CPF, which is accurate because they are processed by discrete transformations (this
holds also for the processing of items). Therefore, Scott’s domain theory is accurate to
interpret the transformations of CPFs.

215

Appendix D

An Algebraic Interpretation of Units

This section establishes an algebraic notion of units and physical quantities which can
serve as a formal semantics for modeling languages of cyber-physical types.

D.1 Unit Systems

We consider a unit system as a finitely generated abelian group. The units in the
generating set represent the base units, while the others are the derived units in the
sense of [Tay08].

Definition D.1 (Unit System). A unit system is a set of unit names U together with an
operation · : U × U → U, (u, v) that forms a finitely generated abelian group. The units
in the generating set are called the base units of the unit system.

Appendix B introduces the concept of a group together with the relevant theorems and
notation. The commutativity of the operation is required to make the multiplication of
quantities with units compatible with the multiplication of numbers. Throughout the
rest of this dissertation, we use the SI-unit system U = SI, standardized in [Tay08].
The SI-unit system distinguishes between base units and derived units. Every derived
SI-unit can be expressed as the product of powers of the base units [Tay08] with
respect to this multiplication.

Because derived units can be expressed by the base units, there exists an equivalence
relation on the set of SI-units. The relation needs to be an equivalence relation to
reflect the notion that every SI-unit can be expressed as the product of powers of the
base units, and that there exist alternative notations of the same unit.

Lemma 4. Let u, v ∈ SI be SI-units. Then u and v are equivalent, denoted u ≡SI v iff
there exists a finite set of SI-units B = {b1, . . . , bk} ⊆ SI (k ∈ N) and i1, . . . , ik ∈ Z
such that

v = ubi11 bi22 . . . bikk .

The relation ≡SI defines an equivalence relation on SI.

217

Appendix D An Algebraic Interpretation of Units

Since this equivalence relation defines a partition on SI, we can use the base-unit
representation of every SI-unit as representative for each class, and assume
#unit(m) = 1 for all messages m ∈ U without loss of generality.

D.2 Physical Quantities

Based on that we define physical quantities as tuples of a number domain and a unit in
the unit system and provide definitions for the the multiplication and addition of such
physical quantities. Physical quantities are types that distinguish by their unit.

Definition D.2 (Physical Quantity). A physical quantity is a type P ⊆ Cn × SI ⊆ U for
n ∈ N such that for all messages p ∈ P it holds that unit(p) = unit(P) ∈ ℘(U) \ ∅. The
set of all physical quantities is denoted Dn[SI].

All messages of a physical quantity, therefore, have the same non-empty set of units.
Because of Lemma 4, every unit u ∈ SI, defines a physical quantity as the type
{pv | p ∈ Rn, v ≡SI u} ⊆ U . For every physical quantity P , the mapping
value : P → Rn, pu 7→ p returns the value of the messages in P .
Let P,Q ∈ Dn[SI] be physical quantities such that unit(P) = u, unit(Q) = v, and
p, q ∈ Rn for n ∈ {1, 2, 3} for all pu ∈ P and qv ∈ Q. The product of the messages
pu ∈ P and qv ∈ Q is defined as pu · qv = (p · q) (uv) ∈ Rn × {uv}, where uv ∈ ⟨SI⟩.
Now, let T ⊆ Cn be a numeric type, unit(T) = ∅, and d ∈ T be a message. Then the
product pu · d is defined as (p · d)u ∈ Pn yields the multiplication of the numeric value
of the message pu with the number d. The addition of two messages pu, qu ∈ Pn is
defined via pu+ qu = (p+ q)u ∈ Pn for all pu, qu ∈ Pn. Both operations can be
extended to more than two messages generically. These notions are implemented in a
reusable DSL in MontiCore as published in [Kus21].

Physical Quantities as Metric Spaces The mapping value allows to interpret each
physical quantity (equivalence class in the unit system) as a metric space (see
Definition B.5), because the general p-norm provides a metric space on P ∈ Dn[SI] via

|| ||3 : P → R

(
n∑

i=1

|xi|p
) 1

p

for all u ∈ P .

Discussion and Related Work on the Algebra of Physical Quantities Formalizing
the notion of a unit system is not new. There exist many mathematical approaches
that establish a mathematical interpretation of physical
units [Nar85, Sze78, Whi68a, Whi68b, Sha09]. We utilize the simple algebraic

218

D.2 Physical Quantities

formalization of a unit system as an abelian group, and only distinguish between units
and dimensions through Lemma 4. The term dimension refers to the actual physical
quantity that is a measurable phenomenon in the real world, while the term unit refers
to the measurements that can be applied to measure them [RYF15]. Other approaches
utilize or establish unit systems as algebraic structures that, e.g., also formalize the
addition of physical quantities which is only possible between quantities of the same
unit. Here, we have only defined the addition among physical quantities within the
same equivalence class defined by Lemma 4. The implementation of an SI-unit
modeling language provided in [Kus21] implements the multiplication and addition of
physical quantities through context conditions [HKR21].

219

Appendix E

The SysML4FMArch MagicDraw Profile

This appendix provides the profile diagrams that show the implementation of
SysML4FMArch in MagicDraw. The definitions of the stereotypes and the
customizations that restrict their usage

E.1 Types

Figure E.1: Stereotypes that define the modeling elements to define cyber-physical types
in SysML4FMArch.

221

Appendix E The SysML4FMArch MagicDraw Profile

Figure E.2: Customizations for the stereotypes for modeling types in Figure E.1.

222

E.2 Functions

E.2 Functions

Figure E.3: SysML4FMArch stereotypes and customizations for structuring functional
models in SysML4FMArch.

223

Appendix E The SysML4FMArch MagicDraw Profile

Figure E.4: Stereotypes that define the modeling elements to define CPFs in
SysML4FMArch.

224

E.2 Functions

Figure E.5: Customizations for the stereotypes Function, ElementaryFunction, and Ar-
chitecture in Figure E.4.

225

Appendix E The SysML4FMArch MagicDraw Profile

Figure E.6: Customizations for the stereotypes ElementaryEffect and ElementaryGeom-
etry in Figure E.4.

226

E.2 Functions

Figure E.7: Elementary effects and elementary geometries are abstract which is prede-
fined in the customization.

227

Appendix E The SysML4FMArch MagicDraw Profile

Figure E.8: To simplify modeling ports and their types, the MagicDraw implementation
of SysML4FMArch offers special ports. This way modelers do not have
to specify a channel type together with two InterfaceBlocks (cf. Figure 6.4).
Because channel types are also InterfaceBlocks, it is sufficient to solely define
the channel type. Distinguishing between InPort and OutPort allows to set
the flow direction of the flow properties of the channel types and additionally
prevents modelers from using ambiguous directions.

228

E.2 Functions

229

Appendix E The SysML4FMArch MagicDraw Profile

230

E.3 Solutions

E.3 Solutions

Figure E.9: SysML4FMArch stereotypes and customizations for structuring solution
models in SysML4FMArch.

231

Appendix E The SysML4FMArch MagicDraw Profile

Figure E.10: Stereotypes that define the modeling elements to define solutions in
SysML4FMArch.

232

E.3 Solutions

Figure E.11: Customizations for the stereotypes Solution, and PrincipleSolution in Fig-
ure E.10.

233

Appendix E The SysML4FMArch MagicDraw Profile

Figure E.12: Customizations for the stereotypes PrincipleEffect and EffectElement
in Figure E.10.

234

E.3 Solutions

Figure E.13: Customizations for the stereotypes PrincipleGeometry and GeometricEle-
ment in Figure E.10. 235

Glossary

active surface the active surface describes the area at which or through which a
physical phenomenon occurs [Kol85]. i, 86, 147

channel a channel is an identifier for a stream of messages [Bro01]. A channel always
has a cyber-physical type that defines the image domain of the streams. i, 46, 238

class a class defines a cyber-physical type, and therefore always has a kind of type.
Classes describe characteristics of the type through attributes and methods.
See Chapter 2 for a detailed introduction. i

cyber-physical type a type is a set of messages. The kind of type defines whether the
type describes energy, matter or data messages i, 21, 25, 123, 217, 237

data type data provides information about phenomena from the real world. A data
type represents a finite or infinite set of discrete data messages. The set of all
data types is denoted by D. See Section 2.2.4 for details. i, 34

design catalog a design catalog is a collection of known and established solutions to
design tasks or subfunctions [BG21] i, 91

design task cf. physical function. i, 79

effect carrier an effect carrier specifies the material or space to realize an elementary
function. [Kol85] i, 82, 86, 118, 131

Electrical Engineering electrical engineering is“concerned with the study, design and
application of equipment, devices and systems which use electricity, electronics
and electromagnetism“ [EE2] i

elementary function an elemenatry function is a function that is not further
decomposed [Kol98, BG21]. It specifies a (set of) physical effects that realize the
operation specified by the function. i, 81–100, 102–111, 153, 237, 243, 247–249

energy component The physical quantities that an exchange of energy in a specific
form is bound to, are the energy components of that form of energy i, 28, 96

237

Glossary

energy type when system components exchange energy, this energy appears in a
specfic form. This form is fully described by an intensive and an extensive
physical quantity. An energy-type therefore describes a form of energy. The set
of all energy types is denoteed by E : See Section 2.2.2 for details. i, 29

event an event is a predicate e : TS × R+ → B. The event e occurs in the timed
stream s ∈ TS iff e(s) holds. i, 34, 35, 238

event type an event type is a set of events. The set of all event types is denoted Ev. i,
35

functional view the functional view of a CPS describes the CPF that a CPS defines as
a hierarchical strucutre. i, 238

geometric view the geometric view of a CPS describes the area in space that a CPS
takes. i, 83, 238

interface an interface represents the signature of a CPF. Therefore, an interface
comprises a set of typed channels via which the component that defines the CPF
exchanges messages. Both, the functional view and the geometric view of a CPS
share this interface. i

kind of type cyber-physical types categorize into energy-types, material and data
types. The kind of a type indicates to which of these coategories a type belongs.
i, 36, 118, 123, 237

material material is a form of matter. In this dissertation, the term refers to the types
that define the physical entities that flow between two system components that
exchange matter. The set of all materials is denoted Mat. Section 2.2.3 provides
details on modeling material i, 33

mechanical engineering electrical engineering is“concerned with the study, design and
application of equipment, devices and systems which use electricity, electronics
and electromagnetism“ [EE2] i, 116, 149, 150, 179

message a message is exchanged between cyber-physical components and describes an
instantaneous interaction among these components. In this dissertation, messages
must not be discrete (data) objects but also represent the instantaneous exchange
of energy, matter, and signals. i, 29, 119, 237, 238

operation the operation is (the first) part in the textual description of a system’s
function considered in design methodology [Kol98, BG21]. It describes the

238

Glossary

activity of the system under development that defines the specified function. An
operation is a basic operation if it is not further divided into other
operations. [Kol98] i, 80, 81, 85, 92

physical effect a ohysical effect is a physical phenomenon, physical occurrence, or
process of a physical event and provides a causal relation between the inputs and
outputs of a function. [Kol85, Kol98] i, 82, 83, 86, 147

physical function the general and desired relation between the input and output of a
system to fulfill a task. [BG21] i, 79, 85, 86, 118, 123, 135, 237

physical law a physical law is a quantitative relation between physical quantities that
involves material constants under certain circumstances. [Rot00] i, 82

physical principle a physical principle defines the effect and effect carrier to realize a
function without defining their geometric shape. [Kol85] i, 82, 86

power data provides information about phenomena from the real world. A data type
represents a finite or infinite set of discrete data messages. The set of all data
types is denoted by D. See Section 2.2.4 for details. i

primitive type a primitive type is a cyber-physical type from which all other
cyber-physical types are constructed. i, 25

principle solution a principle solution defines a physical principle together with a
geometric structure. [Kol85] i, 82, 83

signature the signature is a part of the definition of a cyber-physical component and
describes the forms of interactions of the component with its environment. i, 238

Software Engineering software engineering means the application of a systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software i

239

Acronyms

AD Activity Diagram 170, 172, 174, 179, 180

ADL Architecture Description Language 13

AFWME Apply Fluid with Mechanical Energy 141, 173, 245

BDD Block Definition Diagram 15, 16, 126, 142, 144, 159, 163, 164, 166, 177, 243–245

BPMN Business Process Model and Notation 170, 180

C&C Component and Connector 14, 52, 61, 80, 120, 175

CAD Computer-Aided Design 75, 83, 135, 158, 181

CD Class Diagram 15, 18, 22, 23, 85, 243

CPCD Cyber-Physical Class Diagran 22, 23, 33, 42, 67–69, 152, 249

CPF Cyber-Physical Function 3–5, 8, 10, 13, 15, 18, 19, 25, 26, 35, 37, 39, 42, 45–50,
52–59, 61–64, 67–70, 72, 75, 77, 79, 81, 83, 84, 86, 88–95, 97–100, 102, 106–109,
111–116, 125, 137, 153–157, 181, 182, 213, 215, 224, 238, 243, 245–249

CPO Complete Partial Order 39–41, 213, 214

CPS Cyber-Physical System vii, xiii, 1, 3–7, 10, 11, 14, 18, 19, 21, 25, 26, 29, 32, 33,
35, 37–39, 41, 44–48, 50, 52, 54, 65–68, 70, 72, 73, 76–78, 82, 84, 116–118, 151,
158, 168, 179, 181, 182, 211, 238, 243

CSM Cameo Systems Modeler 171, 174, 177, 178, 180

DSL Domain-Specific Language 24, 25, 74, 123, 136, 137, 148, 218

HiFi High Fidelity 151

HIOS Hybrid I/O State Machine 52, 54, 56–59, 61, 64, 70–72, 86, 88, 89, 100–102, 104,
111, 121, 247, 248

IBD Internal Block Diagram 15–17, 74, 129, 135, 143, 161, 162, 164, 166, 177, 243–245

241

Acronyms

MBT Model-Based Testing 179

MDE Model-Driven Engineering 2–6, 9, 11, 14, 56, 65, 66, 68, 72, 75–77, 117, 118, 136,
148, 156, 168, 171, 175, 180, 243, 245

MLE Modeling Language Engineering 2, 136

OMG Object Management Group 148

SC Statechart 179

SE software engineering 178–180

SI International System of Units (Système International d’unités) 23–25, 27, 32, 33,
58, 61, 87, 105, 107, 160, 217–219

SMARDT Specification Method for Requirements, Design, and Test 67, 73, 74, 182

SPES Software Platform Embedded Systems 73, 74, 148, 149

SysML Systems Modeling Language xiii, 7, 15–17, 19, 74, 78, 83, 117, 122–127, 129,
133, 135, 137, 140, 141, 146, 148, 149, 158, 160, 170, 172, 179, 180, 243, 244

SysML4FMArch SysML for Functional Mechanical Architectures xv, 5, 7, 15, 17, 83,
117, 122–133, 135–141, 145–148, 158, 159, 161, 163–165, 167–169, 177, 178, 180,
221, 223, 224, 228, 231, 232, 244–246

TEE2ME Transform Electrical Energy to Mechanical Energy 129

TSPF Timed Stream-Processing Function 5, 6, 13, 14, 18, 37, 46–53, 58, 61, 70–73, 75,
76, 79, 115, 117–119, 122, 156, 181, 213, 215

UML Unified Modeling Language 9, 15, 85, 125, 135–137, 140, 148, 149, 170, 179, 180,
243

V&V Validation and Verification vii, 2, 4, 13

242

List of Figures

1.1 Modeling languages allow making models explicit and manageable. Se-
mantics define the meaning of syntax in mathematical terms which enables
the implementation of generators or interpreters for automatic analyses,
and syntheses. 3

1.2 Notion of a Cyber-Physical System introduced in mechanical design the-
ory [KK98]. 4

1.3 Diagrammatic illustration of an automotive combustion engine with a
cooling system [DRW+20]. 12

1.4 A MontiArc [Hab16] example that models the architecture of a hydraulic
pump. 14

1.5 Top: SysML BDD of the functional architecture of the running example.
Bottom: IBD of GenerateVolumeFlow. For details on stereotypes and
contents see chapter 6. [DRW+20] . 16

2.1 Place is the physical quantity that describes the position of an object in
the real world with respect to a coordinate system. 26

3.1 Different kinds of composition [SRS99]. 47

3.2 Illustration of interaction refinement, found similarly in [Bro12]. 51

3.3 Architectural specification of the CPF defined by a pump similar to [Kol85]. 62

3.4 Decomposed specification of the electrical switch. 63

4.1 Illustration of a development step in the functional MDE methodology for
CPSs. 68

5.1 Graphical notation of a function that converts electrical to rotational en-
ergy as in [Kol98, BG21]. 79

5.2 elementary functions define transformations of the general quantities en-
ergy, and material, while [Kol85, KK98] offer physical effects only to ele-
mentary functions that transform (single) physical quantities. 84

5.3 Conceptual model that captures the concepts presented in this section.
The model uses UML CD notation [Rum16]. 85

5.4 Conceptual model that captures the concept of solutions in mechanical
engineering. The shaded concepts have been introduced in Figure 5.3. . . 86

5.5 Structure of elementary functions of the pump formalized from [Kol85]. . 88

243

List of Figures

6.1 Meta-model that describes how the cyber-physical types introduced in chap-
ter 2 are modeled. 119

6.2 Meta-model that captures the concepts of functions and solutions from Fig-
ure 5.3 and Figure 5.4. 120

6.3 SysML4FMArch’s encoding of the Functions meta-model similar to [DRW+20].
The gray elements are from the SysML standard [Man19] and the shaded
boxes denote elements from the concept model depicted in Figure 6.1.
Dashed arrows indicate the implementation of the concept at the arrow’s
end. 124

6.4 Specification of a «MaterialFlow» Fluid in SysML4FMArch [DRW+20]. 125
6.5 SysML4FMArch constructs for modeling functions as in [DRW+20]. The

shaded boxes denote the elements defined by the meta-model in Figure 6.2
and the dotted arrows denote the implementation of the SysML4FMArch
constructs of these elements. 128

6.6 Example of a model for an elementary function in SysML4FMArch that
represents the transformation of electrical energy to rotational mechanical
energy from [DRW+20]. 128

6.7 SysML4FMArch encoding of solutions (cf. Figure 6.2). 130
6.8 Principle effect representing the cause for turbulences in flowing fluids,

modeled in SysML4FMArch. 132
6.9 Principle solution of ApplyFluidWithMechEn which relies on hydrody-

namics acting on a paddle wheel within a cylinder. The model represents
a hydrodynamic pump. 134

6.10 Conceptual model of the engineering process introduced in [GKR+21] as
applied for the engineering of SysML4FMArch. 136

6.11 Stereotypes that provide the overall structure for models in SysML4FMArch.138
6.12 Stereotypes for structuring SysML4FMArch type definitions in MagicDraw.139
6.13 Stereotypes for modeling defining cyber-physical types in the SysML4FMArch

MagicDraw-profile. 141
6.14 BDD that illustrates the modeling methodology for principle solutions on

the example of the elementary function that converts electrical energy to
rotational energy. 142

6.15 The redefinition mechanism implemented in MagicDraw enables the user
to select from the list of lodged (principle) solutions to (elementary) func-
tions. 142

6.16 IBD of the «PrincipleSolution» that describes the electric engine. The
example illustrates how to interlink the principle effect and the principle
geometry in a principle solution. 143

6.17 BDD that illustrates the modeling methodology for solutions on the run-
ning example from subsection 1.3.3. So far, the component setVRot does
not yet have a solution. 144

244

List of Figures

6.18 Example of the drop-down menu for creating elements of a ChannelType-
Model as specified by the customization shown in Figure 6.12. 145

6.19 Example of the principle geometries offered for creating principle solutions
to the elementary function “conduct force” in the model library provided
with the MagicDraw SysML4FMArch plugin. 146

6.20 Example of the principle effects offered for creating principle solutions
to the elementary function “conduct force” in the model library provided
with the MagicDraw SysML4FMArch plugin. 147

7.1 Compositional black box specification of the CPF PlayAudioData. . . . 154

7.2 Channel types used in Figure 1.5 for modeling the automotive coolant
pump in SysML4FMArch [DRW+20]. Top: Interface Blocks for typing the
ProxyPorts of functional interfaces. Middle and bottom: BDD containing
the type definitions for the flow properties of the interface blocks together
with their internal structure: Power calculates as the product of two other
attributes [GB07]. 159

7.3 Value types used for typing the attributes of the channel types used in
the automotive coolant pump specification [DRW+20]. 160

7.4 IBD of ApplyFluidWithMechEn and SetRotationalVelocity with
interface assertions. 162

7.5 Model of a possible principle solution to realize the elementary function
TransformElEnToMechEn. The BDD shows the structural relations of
the TransformElEnToMechEn and SynchronousDriving and their
respective parts. 163

7.6 IBD . 164

7.7 Parametric diagram showing the internals of the principle effect used by
SynchronousDrive. 165

7.8 A solution to the composed architecture GenerateVolumeFlow (re-
)uses principle solutions of its elementary functions. 167

7.9 Integration of dimensioning and testing in our MDE approach. The mod-
els are in SysML4FMArch and detailed in section 7.2 and 7.3 168

7.10 Activity Diagram modeling the dimensioning procedure for the principle
solution HydrodynamicPump to AFWME. 173

7.11 Activity Diagram modeling the dimensioning procedure for the solution
GenerateVolumeFlow. 174

7.12 Test-specification for HydrodynamicPump (cf. Figure 6.9). A test case
is an instance of Test_HydrodynamicPump which CSM can execute
automatically. 176

E.1 Stereotypes that define the modeling elements to define cyber-physical
types in SysML4FMArch. 221

245

List of Figures

E.2 Customizations for the stereotypes for modeling types in Figure E.1. . . . 222
E.3 SysML4FMArch stereotypes and customizations for structuring functional

models in SysML4FMArch. 223
E.4 Stereotypes that define the modeling elements to define CPFs in SysML4FMArch.224
E.5 Customizations for the stereotypes Function, ElementaryFunction, and

Architecture in Figure E.4. 225
E.6 Customizations for the stereotypes ElementaryEffect and ElementaryGe-

ometry in Figure E.4. 226
E.7 Elementary effects and elementary geometries are abstract which is pre-

defined in the customization. 227
E.8 To simplify modeling ports and their types, the MagicDraw implementa-

tion of SysML4FMArch offers special ports. This way modelers do not
have to specify a channel type together with two InterfaceBlocks (cf. Fig-
ure 6.4). Because channel types are also InterfaceBlocks, it is sufficient to
solely define the channel type. Distinguishing between InPort and Out-
Port allows to set the flow direction of the flow properties of the channel
types and additionally prevents modelers from using ambiguous directions. 228

E.9 SysML4FMArch stereotypes and customizations for structuring solution
models in SysML4FMArch. 231

E.10 Stereotypes that define the modeling elements to define solutions in SysML4FMArch.232
E.11 Customizations for the stereotypes Solution, and PrincipleSolution in Fig-

ure E.10. 233
E.12 Customizations for the stereotypes PrincipleEffect and EffectElement in Fig-

ure E.10. 234
E.13 Customizations for the stereotypes PrincipleGeometry and GeometricEle-

ment in Figure E.10. 235

246

List of Tables

2.1 Examples for the specification of cyber-physical types. The illustration
shows all modeling elements used for specifying cyber-physical types in
this dissertation. 22

2.2 Example for the specification of the energy type that represents rotational
energy. 30

2.3 Specification of the types that represent a coolant material and compres-
sion energy (see [FR76] for a definition of compression energy). 33

2.4 Specification a type that represents audio data. 34

2.5 Definition of an event type that represents a button press. 35

2.6 Classification of the different kinds of types. 36

3.1 A classification of timed streams according to [RR11]. 38

3.2 Specification scheme for CPFs based on [Bro10]. 52

3.3 Specification of the CPF defined by an electric drive. 54

3.4 Specification of a CPF that causes a fluid coolant to flow. 55

3.5 Specification of a CPF that causes a fluid coolant to flow. 55

3.6 Specification of a CPF that adds up two integers. 56

3.7 Specification of the CPF defined by a thermostat with a HIOS which was
similarly published in [ACH+95]. 59

3.8 HIOS specification of the CPF defined by an electrical switch. 61

3.9 HIOS specification of the CPF defined by a switch that reacts to a button
press event. 64

3.10 The ButtonPressEvent specifies the occurrence of a ButtonPress in a
stream of force. It enhances the definition of the event type ButtonPressEvent
by specifying when the events occur in the stream of force. 64

5.1 Specification of the types needed for the compositional pump specification
in Figure 5.5. 87

5.2 HIOS specification of the CPF defined by an electrical switch. 89

5.3 Interface assertion specification of the elementary function that decreases
electrical voltage. 89

5.4 Interface assertion specification of the energy transformation. 89

5.5 Interface assertion specification of the energy transformation. 90

247

List of Tables

5.6 Interface assertion specification of the elementary function that decreases
electrical voltage. 90

5.7 Specification scheme for CPFs with interface assertions based on [Bro10]. 93
5.8 Specification scheme for elementary functions that convert the energy of

one form into another that utilizes the power balance and abstracts from
energetic losses. 94

5.9 Scheme for the specification of elementary functions that convert energy
using an internal variable that represents the function’s energetic state. . 94

5.10 Schemes for the specification of elementary functions that increase or de-
crease the power transmitted by a stream of energy. 95

5.11 Specification scheme for elementary functions that increase or decrease
power determined by a control input. 96

5.12 Schemes for the specification of elementary functions that increase or de-
crease the value of a physical quantity. 96

5.13 Specification of an elementary function that decreases the torque in a
rotational energy. 97

5.14 Schemes for the specification of an elementary function that changes the
direction of a physical quantity. 98

5.15 Specification of a CPF that changes the direction of torque. 98
5.16 Scheme for the specification of an elementary function that conducts en-

ergy. 99
5.17 Scheme for the specification of an elementary function that conducts en-

ergy. 99
5.18 Specification scheme for elementary functions that store energy. 100
5.19 HIOS specification of an energy source. The power generated at the out-

put port if the source is in the state off is zero watts, while it decreases
exponentially in the state on. The parameters S0 and k enable modelers
to adjust the exponential decrease. 101

5.20 HIOS specification of a constant energy source. The power generated at
the output port if the source is in the state on is constant. The amount
of power is a parameter of the function. 102

5.21 HIOS specification of a CPF that stores energy and can be charged via
an input energy port. 102

5.22 Schemes for the specification of elementary functions that split or collect
energy. 103

5.23 Specification of the elementary function that increases the density of fluid
water. 105

5.24 Specification of the elementary function that increases the density of fluid
water. 106

5.25 Specification of an elementary function that disconnects a piece of wood
into two pieces. 107

248

List of Tables

5.26 Specification of the CPF defined by a strainer [BG21]. 107
5.27 Specification of a CPF that splits water quantitatively. 108
5.28 Scheme for the specification of an elementary function that conducts ma-

terial adapted from the energy scheme Table 5.16. 109
5.29 Scheme for the specification of an elementary function that conducts en-

ergy. 109
5.30 Specification scheme for elementary functions that isolate material. . . . 109
5.31 Specification schemes for elementary functions that store material. 110
5.32 Specification schemes for elementary functions that represent a source of

material. 110
5.33 Heat is a form of energy that is bound to the physical quantities temper-

ature and entropy [FR76]. 112
5.34 Specification of the CPF defined by an electric drive that regards energetic

losses in the form of heat. Heat is an energy type represented by the two
quantities, temperature and entropy stream [FR76]. 114

5.35 Specification of the CPF defined by an electric drive without accepting
losses. 114

5.36 Specification of the CPF defined by an electric drive that makes the effi-
ciency n explicit, while leaving an error tolerance of ε. 115

5.37 Specification of the CPF defined by an electric drive that considers ener-
getic losses through an allowed range of efficiencies. 115

5.38 Specification of the CPF defined by an electric drive without losses and
stating the energetic balance instantaneously as in [FR76]. 116

7.1 CPCD of the types used for modeling the audio entertainment system. . . 152
7.2 Specification of the overall function of the audio system 153
7.3 Specification of energy storage that provides a fixed amount of power upon

a button press. 155
7.4 Specification of the CPF that adjusts an incoming voltage to a value

specified by an incoming signal or data message. 155
7.5 This CPF is an energy transformer that transforms electrical energy to

compression energy. The pressure which is a component of the compres-
sion energy encodes the audio information in the format understood by
the human ear. 156

A.1 Physical Quantities used throughout this dissertations. 205

249

Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview on related work done at the SE Group, RWTH Aachen.
More details can be found on the website https://www.se-rwth.de/topics/ or in
[HMR+19]. The work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods for
innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in
various domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and
programming still allows to use an agile development process.”, [JWCR18] addresses the
question how digital and organizational techniques help to cope with physical distance of
developers and [RRSW17] addresses how to teach agile modeling. Modeling will increasingly be
used in development projects, if the benefits become evident early, e.g with executable UML
[Rum02] and tests [Rum03]. In [GKRS06], for example, we concentrate on the integration of
models and ordinary programming code. In [Rum12] and [Rum16], the UML/P, a variant of
the UML especially designed for programming, refactoring and evolution, is defined. The
language workbench MontiCore [GKR+06, GKR+08, HR17] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and
evolve models [LRSS10], a precise definition for model composition as well as model languages
[HKR+09] and refactoring in various modeling and programming languages [PR03]. In [FHR08]
we describe a set of general requirements for model quality. Finally, [KRV06] discusses the
additional roles and activities necessary in a DSL-based software development project. In
[CEG+14] we discuss how to improve the reliability of adaptivity through models at runtime,
which will allow developers to delay design decisions to runtime adaptation.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, size, and number of the artifacts developed and used during
a project together with their complex relationships is not trivial [BGRW17]. To keep track of
relevant structures, artifacts, and their relations in order to be able e.g. to evolve or adapt
models and their implementing code, the artifact model [GHR17] was introduced. [BGRW18]
explains its applicability in systems engineering based on MDSE projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts,
namely code files, models, requirements files, etc. exist and how these artifacts are related to
each other. The artifact model therefore covers the wide range of human activities during the
development down to fully automated, repeatable build scripts. The artifact model can be used
to optimize parallelization during the development and building, but also to identify deviations
of the real architecture and dependencies from the desired, idealistic architecture, for cost
estimations, for requirements and bug tracing, etc. Results can be measured using metrics or

251

Related Interesting Work from the SE Group, RWTH Aachen

visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19]. We
have developed a compositional technique to integrate neural networks into larger software
architectures [KRRvW17] as standardized machine learning components [KPRS19]. This
enables the compiler to support the systems engineer by automating the lifecycle of such
components including multiple learning approaches such as supervised learning, reinforcement
learning, or generative adversarial networks. According to [MRR11g] the semantic difference
between two models are the elements contained in the semantics of the one model that are not
elements in the semantics of the other model. A smart semantic differencing operator is an
automatic procedure for computing diff witnesses for two given models. Smart semantic
differencing operators have been defined for Activity Diagrams [MRR11a], Class Diagrams
[MRR11d], Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven
Component and Connector Architectures [BKRW17, BKRW19]. We also developed a modeling
language-independent method for determining syntactic changes that are responsible for the
existence of semantic differences [KR18].
We apply logic, knowledge representation and intelligent reasoning to software engineering to
perform correctness proofs, execute symbolic tests or find counterexamples using a theorem
prover. And we have applied it to challenges in intelligent flight control systems and assistance
systems for air or road traffic management [KRRS19, HRR12] and based it on the core ideas of
Broy’s Focus theory [RR11, BR07]. Intelligent testing strategies have been applied to
automotive software engineering [EJK+19, DGH+19, KMS+18], or more generally in systems
engineering [DGH+18]. These methods are realized for a variant of SysML Activity Diagrams
and Statecharts.
Machine Learning has been applied to the massive amount of observable data in energy
management for buildings [FLP+11a, KLPR12] and city quarters [GLPR15] to optimize the
operation efficiency and prevent unneeded CO2 emissions or reduce costs. This creates a
structural and behavioral system theoretical view on cyber-physical systems understandable as
essential parts of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible
generator for the UML/P based on the MontiCore language workbench
[KRV10, GKR+06, GKR+08, HR17]. In [KRV06], we discuss additional roles necessary in a
model-based software development project. [GKRS06, GHK+15a] discuss mechanisms to keep
generated and handwritten code separated. In [Wei12], we demonstrate how to systematically
derive a transformation language in concrete syntax. [HMSNRW16] presents how to generate
extensible and statically type-safe visitors. In [MSNRR16], we propose the use of symbols for
ensuring the validity of generated source code. [GMR+16] discusses product lines of
template-based code generators. We also developed an approach for engineering reusable
language components [HLMSN+15b, HLMSN+15a]. To understand the implications of

252

Related Interesting Work from the SE Group, RWTH Aachen

executability for UML, we discuss needs and advantages of executable modeling with UML in
agile projects in [Rum04], how to apply UML for testing in [Rum03], and the advantages and
perils of using modeling languages for programming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in
[KER99] many of our contributions build on the UML/P variant, which is described in the
books [Rum16, Rum17] respectively [Rum12, Rum13] and is implemented in [Sch12]. Semantic
variation points of the UML are discussed in [GR11]. We discuss formal semantics for UML
[BHP+98] and describe UML semantics using the “System Model” [BCGR09a], [BCGR09b],
[BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when
checking variants of class diagrams [MRR11c] and objects diagrams [MRR11e] or the
consistency of both kinds of diagrams [MRR11f]. We also apply these concepts to activity
diagrams [MRR11b] which allows us to check for semantic differences of activity diagrams
[MRR11a]. The basic semantics for ADs and their semantic variation points is given in
[GRR10]. We also discuss how to ensure and identify model quality [FHR08], how models,
views and the system under development correlate to each other [BGH+98], and how to use
modeling in agile development projects [Rum04], [Rum02]. The question how to adapt and
extend the UML is discussed in [PFR02] describing product line annotations for UML and
more general discussions and insights on how to use meta-modeling for defining and adapting
the UML are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but
need appropriate tooling. The MontiCore language workbench
[GKR+06, KRV10, Kra10, GKR+08, HR17] allows the specification of an integrated abstract
and concrete syntax format [KRV07b, HR17] for easy development. New languages and tools
can be defined in modular forms
[KRV08, GKR+07, Völ11, HLMSN+15b, HLMSN+15a, HRW18, BEK+18a, BEK+18b, BEK+19]
and can, thus, easily be reused. We discuss the roles in software development using domain
specific languages in [KRV14]. [Wei12] presents a tool that allows to create transformation
rules tailored to an underlying DSL. Variability in DSL definitions has been examined in
[GR11, GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In
[BJRW18], we discuss the translation from grammars to accurate metamodels. Successful
applications have been carried out in the Air Traffic Management [ZPK+11] and television
[DHH+20] domains. Based on the concepts described above, meta modeling, model analyses
and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08],
instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and
Eclipse-based tooling for DSLs [KRV07a] complete the collection.

253

Related Interesting Work from the SE Group, RWTH Aachen

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15] and the
concern-oriented language development approach [CKM+18]. As said, the MontiCore language
workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10, HR17, HRW18, BEK+19]. In [SRVK10] we discuss the possibilities
and the challenges using metamodels for language definition. Modular composition, however, is
a core concept to reuse language components like in MontiCore for the frontend [Völ11,
KRV08, HLMSN+15b, HLMSN+15a, HMSNRW16, HR17, BEK+18a, BEK+18b, BEK+19] and
the backend [RRRW15, MSNRR16, GMR+16, HR17, BEK+18b]. In [GHK+15b, GHK+15a],
we discuss the integration of handwritten and generated object-oriented code. [KRV14]
describes the roles in software development using domain specific languages. Language
derivation is to our believe a promising technique to develop new languages for a specific
purpose that rely on existing basic languages [HRW18]. How to automatically derive such a
transformation language using concrete syntax of the base language is described in
[HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta
languages [HHK+15a, HHK+13], where a delta language is derived from a base language to be
able to constructively describe differences between model variants usable to build feature sets.
The derivation of internal DSLs from grammars is discussd in [BDL+18] and a translation of
grammars to accurate metamodels in [BJRW18].

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between
software services. We use streams, statemachines and components [BR07] as well as expressive
forms of composition and refinement [PR99, RW18] for semantics. Furthermore, we built a
concrete tooling infrastructure called MontiArc [HRR12] for architecture design and extensions
for states [RRW13b]. In [RRW13a], we introduce a code generation framework for MontiArc.
MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and
evolution on deltas [HRRS12]. Other extensions are concerned with modeling cloud
architectures [NPR13] and with the robotics domain [AHRW17a, AHRW17b]. [GHK+07] and
[GHK+08a] close the gap between the requirements and the logical architecture and [GKPR08]
extends it to model variants. [MRR14b] provides a precise technique to verify consistency of
architectural views [Rin14, MRR13] against a complete architecture in order to increase
reusability. We discuss the synthesis problem for these views in [MRR14a]. Co-evolution of
architecture is discussed in [MMR10] and modeling techniques to describe dynamic
architectures are shown in [HRR98, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically
underpinned in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led

254

Related Interesting Work from the SE Group, RWTH Aachen

to the language workbench MontiCore [KRV10, HR17] that can even be used to develop
modeling tools in a compositional form [HR17, HLMSN+15b, HLMSN+15a, HMSNRW16,
MSNRR16, HRW18, BEK+18a, BEK+18b, BEK+19]. A set of DSL design guidelines
incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the
composition of context conditions respectively the underlying infrastructure of the symbol
table. Modular editor generation is discussed in [KRV07a]. [RRRW15] applies compositionality
to Robotics control. [CBCR15] (published in [CCF+15]) summarizes our approach to
composition and remaining challenges in form of a conceptual model of the “globalized” use of
DSLs. As a new form of decomposition of model information we have developed the concept of
tagging languages in [GLRR15]. It allows to describe additional information for model elements
in separated documents, facilitates reuse, and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by
using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version
especially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is
discussed. [BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in
[CGR08]. To better understand the effect of an evolved design, detection of semantic
differencing as opposed to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b]
encode a part of the semantics to handle semantic differences of activity diagrams and
[MRR11f, MRR11f] compare class and object diagrams with regard to their semantics. In
[BR07], a simplified mathematical model for distributed systems based on black-box behaviors
of components is defined. Meta-modeling semantics is discussed in [EFLR99]. [BGH+97]
discusses potential modeling languages for the description of an exemplary object interaction,
today called sequence diagram. [BGH+98] discusses the relationships between a system, a view
and a complete model in the context of the UML. [GR11] and [CGR09] discuss general
requirements for a framework to describe semantic and syntactic variations of a modeling
language. We apply these on class and object diagrams in [MRR11f] as well as activity
diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test case
generation, refactoring and evolution techniques. [LRSS10] discusses evolution and related
issues in greater detail. [RW18] discusses an elaborated theory for the modeling of
underspecification, hierarchical composition, and refinement that can be practically applied for
the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is
therefore essential to effectively deal with models. Many concrete model transformation
problems are discussed: evolution [LRSS10, MMR10, Rum04], refinement
[PR99, KPR97, PR94], decomposition [PR99, KRW20], synthesis [MRR14a], refactoring
[Rum12, PR03], translating models from one language into another [MRR11c, Rum12], and
systematic model transformation language development [Wei12]. [Rum04] describes how
comprehensible sets of such transformations support software development and maintenance

255

Related Interesting Work from the SE Group, RWTH Aachen

[LRSS10], technologies for evolving models within a language and across languages, and
mapping architecture descriptions to their implementation [MMR10]. Automaton refinement is
discussed in [PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99].
Refactorings of models are important for model driven engineering as discussed in
[PR01, PR03, Rum12]. Translation between languages, e.g., from class diagrams into Alloy
[MRR11c] allows for comparing class diagrams on a semantic level.

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one
manufacturer develops several products with many similarities but also many variations.
Variants are managed in a Software Product Line (SPL) that captures product commonalities
as well as differences. Feature diagrams describe variability in a top down fashion, e.g., in the
automotive domain [GHK+08a] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12]. Delta modeling is a bottom up technique starting with a small, but
complete base variant. Features are additive, but also can modify the core. A set of commonly
applicable deltas configures a system variant. We discuss the application of this technique to
Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for using them for
software product line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to
systematically derive delta languages. We also apply variability modeling languages in order to
describe syntactic and semantic variation points, e.g., in UML for frameworks [PFR02] and
generators [GMR+16]. Furthermore, we specified a systematic way to define variants of
modeling languages [CGR09], leverage features for compositional reuse [BEK+18b], and applied
it as a semantic language refinement on Statecharts in [GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control
physical entities. In [RW18], we discuss how an elaborated theory can be practically applied for
the development of CPS. Contributions for individual aspects range from requirements
[GRJA12], complete product lines [HRRW12], the improvement of engineering for distributed
automotive systems [HRR12], autonomous driving [BR12a, KKR19], and digital twin
development [BDH+20] to processes and tools to improve the development as well as the
product itself [BBR07]. In the aviation domain, a modeling language for uncertainty and safety
events was developed, which is of interest for the European airspace [ZPK+11]. A component
and connector architecture description language suitable for the specific challenges in robotics
is discussed in [RRW13b, RRW14]. In [RRW13a], we describe a code generation framework for
this language. Monitoring for smart and energy efficient buildings is developed as Energy
Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition on
contributing to systems engineering in automotive [GHK+08b], which culminated in a new
comprehensive model-driven development process for automotive software [KMS+18, DGH+19].

256

Related Interesting Work from the SE Group, RWTH Aachen

We leveraged SysML to enable the integrated flow from requirements to implementation to
integration. To facilitate modeling of products, resources, and processes in the context of
Industry 4.0, we also conceived a multi-level framework for machining based on these
concepts [BKL+18]. Research within the excellence cluster Internet of Production considers
fast decision making at production time with low latencies using contextual data traces of
production systems, also known as Digital Shadows (DS) [SHH+20]. We have investigated how
to derive Digital Twins (DTs) for injection molding [BDH+20], how to generate interfaces
between a cyber-physical system and its DT [KMR+20] and have proposed model-driven
architectures for DT cockpit engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using
statemachines for modeling systems. Our contributions to state based modeling can currently
be split into three parts: (1) understanding how to model object-oriented and distributed
software using statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2)
understanding the refinement [PR94, RK96, Rum96, RW18] and composition
[GR95, GKR96, RW18] of statemachines, and (3) applying statemachines for modeling systems.
In [Rum96, RW18] constructive transformation rules for refining automata behavior are given
and proven correct. This theory is applied to features in [KPR97]. Statemachines are
embedded in the composition and behavioral specification concepts of Focus [GKR96, BR07].
We apply these techniques, e.g., in MontiArcAutomaton [RRW13a, RRW14, RRW13a, RW18]
as well as in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behaviour (2) based on information from previously stored and real-time monitored
structural context and behaviour data (3) at the time the person needs or asks for
it [HMR+19]. To create them, we follow a model centered architecture approach [MMR+17]
which defines systems as a compound of various connected models. Used languages for their
definition include DSLs for behavior and structure such as the human cognitive modeling
language [MM13], goal modeling languages [MRV20] or UML/P based languages [MNRV19].
[MM15] describes a process how languages for assistive systems can be created.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered
privacy-driven systems in the IoT domain in combination with process mining
systems [MKM+19], differential privacy on event logs of handling and treatment of patients at
a hospital [MKB+19], the mark-up of online manuals for devices [SM18] and websites [SM20],
and solutions for privacy-aware environments for cloud services [ELR+17] and in IoT
manufacturing [MNRV19]. The user-centered view on the system design allows to track who
does what, when, why, where and how with personal data, makes information about it available
via information services and provides support using assistive services.

257

Related Interesting Work from the SE Group, RWTH Aachen

Modelling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by
an inherent heterogeneity of involved domains, relevant platforms, and challenges. The
engineering of robotics applications requires composition and interaction of diverse distributed
software modules. This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers broad propagation of robotics applications.
The MontiArcAutomaton language [RRW13a] extends the ADL MontiArc and integrates
various implemented behavior modeling languages using MontiCore
[RRW13b, RRW14, RRRW15, HR17] that perfectly fit robotic architectural modeling. The
LightRocks [THR+13] framework allows robotics experts and laymen to model robotic
assembly tasks. In [AHRW17a, AHRW17b], we define a modular architecture modeling method
for translating architecture models into modules compatible to different robotics middleware
platforms.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded
systems. As these feature-driven subsystems may be arbitrarily combined by the customer, a
huge amount of distinct variants needs to be managed, developed and tested. A consistent
requirements management that connects requirements with features in all phases of the
development for the automotive domain is described in [GRJA12]. The conceptual gap between
requirements and the logical architecture of a car is closed in [GHK+07, GHK+08a]. [HKM+13]
describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses means to
extract a well-defined Software Product Line from a set of copy and paste variants. [RSW+15]
describes an approach to use model checking techniques to identify behavioral differences of
Simulink models. In [KKR19], we introduce a framework for modeling the dynamic
reconfiguration of component and connector architectures and apply it to the domain of
cooperating vehicles. Quality assurance, especially of safety-related functions, is a highly
important task. In the Carolo project [BR12a, BR12b], we developed a rigorous test
infrastructure for intelligent, sensor-based functions through fully-automatic simulation
[BBR07]. This technique allows a dramatic speedup in development and evolution of
autonomous car functionality, and thus enables us to develop software in an agile way [BR12a].
[MMR10] gives an overview of the current state-of-the-art in development and evolution on a
more general level by considering any kind of critical system that relies on architectural
descriptions. As tooling infrastructure, the SSElab storage, versioning and management
services [HKR12] are essential for many projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2
emissions is an important challenge. Thus, energy management in buildings as well as in
neighbourhoods becomes equally important to efficiently use the generated energy. Within
several research projects, we developed methodologies and solutions for integrating
heterogeneous systems at different scales. During the design phase, the Energy Navigators
Active Functional Specification (AFS) [FPPR12, KPR12] is used for technical specification of

258

Related Interesting Work from the SE Group, RWTH Aachen

building services already. We adapted the well-known concept of statemachines to be able to
describe different states of a facility and to validate it against the monitored values [FLP+11b].
We show how our data model, the constraint rules, and the evaluation approach to compare
sensor data can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality, and new
application domains. It promises to enable new business models, to lower the barrier for
web-based innovations and to increase the efficiency and cost-effectiveness of web development
[KRR14]. Application classes like Cyber-Physical Systems and their privacy
[HHK+14, HHK+15b], Big Data, App, and Service Ecosystems bring attention to aspects like
responsiveness, privacy and open platforms. Regardless of the application domain, developers
of such systems are in need for robust methods and efficient, easy-to-use languages and tools
[KRS12]. We tackle these challenges by perusing a model-based, generative approach [NPR13].
The core of this approach are different modeling languages that describe different aspects of a
cloud-based system in a concise and technology-agnostic way. Software architecture and
infrastructure models describe the system and its physical distribution on a large scale. We
apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the Energy
Navigator [FPPR12, KPR12] but also for our tool demonstrators and our own development
platforms. New services, e.g., collecting data from temperature, cars etc. can now easily be
developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to different user groups as main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HR17], we
developed several generators for such data-centric information systems. MontiGem [AMN+20]
is a specific generator framework for data-centric business applications that uses standard
models from UML/P optionally extended by GUI description models as sources [GMN+20].
While the standard semantics of these modeling languages remains untouched, the generator
produces a lot of additional functionality around these models. The generator is designed
flexible, modular and incremental, handwritten and generated code pieces are well
integrated [GHK+15a], tagging of existing models is possible [GLRR15], e.g., for the definition
of roles and rights or for testing [DGH+18].

259

Related Interesting Work from the SE Group, RWTH Aachen

[AHRW17a] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Engineering Robotics Software Architectures with Exchangeable Model
Transformations. In International Conference on Robotic Computing (IRC’17),
pages 172–179. IEEE, April 2017. E.3, E.3

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Modeling Robotics Software Architectures with Modular Model Transformations.
Journal of Software Engineering for Robotics (JOSER), 8(1):3–16, 2017. E.3, E.3

[AMN+20] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga.
Enterprise Information Systems in Academia and Practice: Lessons learned from a
MBSE Project. In 40 Years EMISA: Digital Ecosystems of the Future:
Methodology, Techniques and Applications (EMISA’19), LNI P-304, pages 59–66.
Gesellschaft für Informatik e.V., May 2020. E.3

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving
Intelligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158–1174, 2007. E.3, E.3

[BCGR09a] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor, UML
2 Semantics and Applications, pages 43–61. John Wiley & Sons, November 2009.
E.3, E.3, E.3

[BCGR09b] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63–93. John Wiley & Sons, November 2009. E.3, E.3, E.3

[BCR07a] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU
Munich, Germany, February 2007. E.3, E.3

[BCR07b] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-I0711,
TU Munich, Germany, February 2007. E.3, E.3, E.3

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bernhard
Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wortmann.
Model-Driven Development of a Digital Twin for Injection Molding. In Schahram
Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik Pant, editors,
International Conference on Advanced Information Systems Engineering
(CAiSE’20), Lecture Notes in Computer Science 12127, pages 85–100. Springer
International Publishing, June 2020. E.3, E.3, E.3

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and
Andreas Wortmann. Deriving Fluent Internal Domain-specific Languages from
Grammars. In International Conference on Software Language Engineering
(SLE’18), pages 187–199. ACM, 2018. E.3, E.3

260

Related Interesting Work from the SE Group, RWTH Aachen

[BEK+18a] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Controlled and Extensible Variability of Concrete and Abstract
Syntax with Independent Language Features. In Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems
(VAMOS’18), pages 75–82. ACM, January 2018. E.3, E.3, E.3

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Modeling Language Variability with Reusable Language Components.
In International Conference on Systems and Software Product Line (SPLC’18).
ACM, September 2018. E.3, E.3, E.3, E.3

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Systematic Composition of Independent Language Features. Journal
of Systems and Software, 152:50–69, June 2019. E.3, E.3, E.3

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger,
Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and
Complete Object Interaction Descriptions. In Object-oriented Behavioral
Semantics Workshop (OOPSLA’97), Technical Report TUM-I9737, Germany,
1997. TU Munich. E.3

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin.
Systems, Views and Models of UML. In Proceedings of the Unified Modeling
Language, Technical Aspects and Applications, pages 93–109. Physica Verlag,
Heidelberg, Germany, 1998. E.3, E.3

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
Taming the Complexity of Model-Driven Systems Engineering Projects. Part of
the Grand Challenges in Modeling (GRAND’17) Workshop, July 2017. E.3

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann. On
the Need for Artifact Models in Model-Driven Systems Engineering Projects. In
Martina Seidl and Steffen Zschaler, editors, Software Technologies: Applications
and Foundations, LNCS 10748, pages 146–153. Springer, January 2018. E.3

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe,
and Andreas Wortmann. A Classification of Dynamic Reconfiguration in
Component and Connector Architecture Description Languages. In Proceedings of
MODELS 2017. Workshop ModComp, CEUR 2019, September 2017. E.3

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina
Spies. Software and System Modeling Based on a Unified Formal Semantics. In
Workshop on Requirements Targeting Software and Systems Engineering
(RTSE’97), LNCS 1526, pages 43–68. Springer, 1998. E.3, E.3

[BJRW18] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Translating Grammars to Accurate Metamodels. In International Conference on
Software Language Engineering (SLE’18), pages 174–186. ACM, 2018. E.3, E.3

[BKL+18] Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe, Simon
Storms, Stephan Wein, Michael von Wenckstern, and Andreas Wortmann.

261

Related Interesting Work from the SE Group, RWTH Aachen

Multi-Level Modeling Framework for Machine as a Service Applications Based on
Product Process Resource Models. In Proceedings of the 2nd International
Symposium on Computer Science and Intelligent Control (ISCSIC’18). ACM,
September 2018. E.3

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Semantic Differencing for Message-Driven Component & Connector Architectures.
In International Conference on Software Architecture (ICSA’17), pages 145–154.
IEEE, April 2017. E.3

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Continuously Analyzing Finite, Message-Driven, Time-Synchronous Component &
Connector Systems During Architecture Evolution. Journal of Systems and
Software, 149:437–461, March 2019. E.3

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum,
30(1):3–18, Februar 2007. E.3, E.3, E.3, E.3, E.3

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the
Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In
Automotive Software Engineering Workshop (ASE’12), pages 789–798, 2012. E.3,
E.3

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving
Software. In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban
Challenge, pages 243–271. Springer, Germany, 2012. E.3

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe.
Conceptual Model of the Globalization for Domain-Specific Languages. In
Globalizing Domain-Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.
E.3, E.3

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS
9400. Springer, 2015. E.3, E.3

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi
Müller, Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe,
Daniel Schneider, Frank Trollmann, and Norha Villegas. Using Models at Runtime
to Address Assurance for Self-Adaptive Systems. In Models@run.time, LNCS
8378, pages 101–136. Springer, Germany, 2014. E.3

[CGR08] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig,
Germany, 2008. E.3, E.3

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability
within Modeling Language Definitions. In Conference on Model Driven
Engineering Languages and Systems (MODELS’09), LNCS 5795, pages 670–684.
Springer, 2009. E.3, E.3

262

Related Interesting Work from the SE Group, RWTH Aachen

[CKM+18] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan
Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule, Robert Heinrich,
Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias
Schöttle, Misha Strittmatter, and Andreas Wortmann. Concern-Oriented
Language Development (COLD): Fostering Reuse in Language Engineering.
Computer Languages, Systems & Structures, 54:139 – 155, 2018. E.3

[DEKR19] Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. Semantic
Differencing of Statecharts for Object-oriented Systems. In Slimane Hammoudi,
Luis Ferreira Pires, and Bran Selić, editors, Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD’19), pages 274–282. SciTePress, February 2019. E.3

[DGH+18] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Matthias
Markthaler, Bernhard Rumpe, and Andreas Wortmann. Model-Based Testing of
Software-Based System Functions. In Conference on Software Engineering and
Advanced Applications (SEAA’18), pages 146–153, August 2018. E.3, E.3

[DGH+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny
Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and
Andreas Wortmann. SMArDT modeling for automotive software testing. Software:
Practice and Experience, 49(2):301–328, February 2019. E.3, E.3

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith Michael, and
Bernhard Rumpe. Modellierung, Verifikation und Synthese von validen
Planungszuständen für Fernsehausstrahlungen. In Dominik Bork, Dimitris
Karagiannis, and Heinrich C. Mayr, editors, Modellierung 2020, pages 173–188.
Gesellschaft für Informatik e.V., February 2020. E.3

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic
Evolution Analysis of Feature Models. In Thorsten Berger, Philippe Collet,
Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier
Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava,
Thomas Thüm, and Tewfik Ziadi, editors, International Systems and Software
Product Line Conference (SPLC’19), pages 245–255. ACM, September 2019. E.3

[DMR+20] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas
Wortmann. Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits. In Gillian Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle, and
Heinrich C. Mayr, editors, Conceptual Modeling, pages 377–387. Springer
International Publishing, October 2020. E.3

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 45–60. Kluver Academic
Publisher, 1999. E.3, E.3

[EJK+19] Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin
Pruenster, Bernhard Rumpe, and Karin Samira Salman. Applying Product Line

263

Related Interesting Work from the SE Group, RWTH Aachen

Testing for the Electric Drive System. In Thorsten Berger, Philippe Collet,
Laurence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier
Martinez, Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava,
Thomas Thüm, and Tewfik Ziadi, editors, International Systems and Software
Product Line Conference (SPLC’19), pages 14–24. ACM, September 2019. E.3

[ELR+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and
Andreas Wortmann. Architecting Cloud Services for the Digital me in a
Privacy-Aware Environment. In Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta
Heisel, and Bruce Maxim, editors, Software Architecture for Big Data and the
Cloud, chapter 12, pages 207–226. Elsevier Science & Technology, June 2017. E.3

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a
formal modeling notation. Computer Standards & Interfaces, 19(7):325–334,
November 1998. E.3

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als
Indikator für Softwarequalität: eine Taxonomie. Informatik-Spektrum,
31(5):408–424, Oktober 2008. E.3, E.3, E.3

[FLP+11a] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. Der Energie-Navigator - Performance-Controlling für Gebäude und
Anlagen. Technik am Bau (TAB) - Fachzeitschrift für Technische
Gebäudeausrüstung, Seiten 36-41, März 2011. E.3

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011. E.3, E.3

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management. In
Energy Efficiency in Commercial Buildings Conference(IEECB’12), 2012. E.3,
E.3, E.3

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007. E.3, E.3, E.3

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets with
Views for Features, Variants, and Modes. In Proceedings of 4th European Congress
ERTS - Embedded Real Time Software, 2008. E.3, E.3, E.3

[GHK+08b] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. View-Centric Modeling of Automotive Logical
Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IV, Informatik Bericht 2008-02. TU
Braunschweig, 2008. E.3

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram Mir
Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk Reiß,

264

Related Interesting Work from the SE Group, RWTH Aachen

Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wortmann.
Integration of Handwritten and Generated Object-Oriented Code. In Model-Driven
Engineering and Software Development, Communications in Computer and
Information Science 580, pages 112–132. Springer, 2015. E.3, E.3, E.3

[GHK+15b] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram Mir
Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk Reiß,
Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wortmann. A
Comparison of Mechanisms for Integrating Handwritten and Generated Code for
Object-Oriented Programming Languages. In Model-Driven Engineering and
Software Development Conference (MODELSWARD’15), pages 74–85. SciTePress,
2015. E.3

[GHR17] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a
Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects.
Aachener Informatik-Berichte, Software Engineering, Band 30. Shaker Verlag,
December 2017. E.3

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling
Variants of Automotive Systems using Views. In Modellbasierte Entwicklung von
eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU
Braunschweig, 2008. E.3

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-I9631, TU Munich, Germany, July
1996. E.3, E.3

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung
domänspezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU
Braunschweig, August 2006. E.3, E.3, E.3

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Textbased Modeling. In 4th International Workshop on Software Language
Engineering, Nashville, Informatik-Bericht 4/2007.
Johannes-Gutenberg-Universität Mainz, 2007. E.3

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926,
2008. E.3, E.3, E.3

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler.
Integration von Modellen in einen codebasierten Softwareentwicklungsprozess. In
Modellierung 2006 Conference, LNI 82, Seiten 67-81, 2006. E.3, E.3

[GLPR15] Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard Rumpe.
Energieeffiziente Städte - Herausforderungen und Lösungen aus Sicht des Software
Engineerings. In Linnhoff-Popien, Claudia and Zaddach, Michael and Grahl,
Andreas, Editor, Marktplätze im Umbruch: Digitale Strategien für Services im

265

Related Interesting Work from the SE Group, RWTH Aachen

Mobilen Internet, Xpert.press, Kapitel 56, Seiten 511-520. Springer Berlin
Heidelberg, April 2015. E.3

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
Engineering Tagging Languages for DSLs. In Conference on Model Driven
Engineering Languages and Systems (MODELS’15), pages 34–43. ACM/IEEE,
2015. E.3, E.3, E.3

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. Continuous Transition from Model-Driven Prototype to Full-Size
Real-World Enterprise Information Systems. In Bonnie Anderson, Jason Thatcher,
and Rayman Meservy, editors, 25th Americas Conference on Information Systems
(AMCIS 2020), AIS Electronic Library (AISeL), pages 1–10. Association for
Information Systems (AIS), August 2020. E.3

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe, Christoph
Schulze, and Andreas Wortmann. Modeling Variability in Template-based Code
Generators for Product Line Engineering. In Modellierung 2016 Conference, LNI
254, pages 141–156. Bonner Köllen Verlag, March 2016. E.3, E.3, E.3, E.3

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-I9533, TU Munich, Germany, October 1995. E.3

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In
Workshop on Modeling, Development and Verification of Adaptive Systems, LNCS
6662, pages 17–32. Springer, 2011. E.3, E.3, E.3, E.3

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development
Projects: A Problem Statement. In Requirements Engineering: Foundation for
Software Quality (REFSQ’12), 2012. E.3, E.3, E.3

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of
Activity Diagrams with Semantic Variation Points. In Conference on Model
Driven Engineering Languages and Systems (MODELS’10), LNCS 6394, pages
331–345. Springer, 2010. E.3, E.3

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,
Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In
Software Product Line Conference (SPLC’13), pages 22–31. ACM, 2013. E.3, E.3

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based
Services in the Internet of Things. In Conference on Future Internet of Things and
Cloud (FiCloud’14). IEEE, 2014. E.3

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,
Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of
Delta Modeling Languages. Journal on Software Tools for Technology Transfer
(STTT), 17(5):601–626, October 2015. E.3

266

Related Interesting Work from the SE Group, RWTH Aachen

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the
cloud-based Internet of Things. Future Generation Computer Systems, 56:701–718,
2015. E.3

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari,
Bernhard Rumpe, and Ina Schaefer. First-Class Variability Modeling in
Matlab/Simulink. In Variability Modelling of Software-intensive Systems
Workshop (VaMoS’13), pages 11–18. ACM, 2013. E.3, E.3

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. An Algebraic View on the Semantics of Model Composition. In
Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA’07), LNCS 4530, pages 99–113. Springer, Germany, 2007. E.3

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous
Systems with Compositional Modeling. In Conference on Software Engineeering in
Research and Practice (SERP’09), pages 172–176, July 2009. E.3, E.3

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software
Architecture Conference (ECSA’11), pages 6:1–6:10. ACM, 2011. E.3

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A
Plug-In-Based Framework for Web-Based Project Portals. In Developing Tools as
Plug-Ins Workshop (TOPI’12), pages 61–66. IEEE, 2012. E.3, E.3

[HLMSN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Composition of
Heterogeneous Modeling Languages. In Model-Driven Engineering and Software
Development, Communications in Computer and Information Science 580, pages
45–66. Springer, 2015. E.3, E.3, E.3, E.3

[HLMSN+15b] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Integration of
Heterogeneous Modeling Languages via Extensible and Composable Language
Components. In Model-Driven Engineering and Software Development Conference
(MODELSWARD’15), pages 19–31. SciTePress, 2015. E.3, E.3, E.3, E.3

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe, and
Andreas Wortmann. Innovations in Model-based Software and Systems
Engineering. The Journal of Object Technology, 18(1):1–60, July 2019. E.3, E.3

[HMSNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas
Wortmann. Compositional Language Engineering using Generated, Extensible,
Static Type Safe Visitors. In Conference on Modelling Foundations and
Applications (ECMFA), LNCS 9764, pages 67–82. Springer, July 2016. E.3, E.3,
E.3

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics
of ”Semantics”? IEEE Computer, 37(10):64–72, October 2004. E.3

267

Related Interesting Work from the SE Group, RWTH Aachen

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Workbench
Edition 2017. Aachener Informatik-Berichte, Software Engineering, Band 32.
Shaker Verlag, December 2017. E.3, E.3, E.3, E.3, E.3, E.3, E.3

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic
Component Interfaces. In Technology of Object-Oriented Languages and Systems
(TOOLS 26), pages 58–70. IEEE, 1998. E.3

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011. E.3, E.3

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03, RWTH Aachen University, February 2012. E.3, E.3, E.3

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling
for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH,
2011. E.3

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving
Delta-oriented Software Product Line Architectures. In Large-Scale Complex IT
Systems. Development, Operation and Management, 17th Monterey Workshop
2012, LNCS 7539, pages 183–208. Springer, 2012. E.3, E.3

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel
von Steuergerätesoftware. In Software Engineering Conference (SE’12), LNI 198,
Seiten 181-192, 2012. E.3, E.3

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically
Deriving Domain-Specific Transformation Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 136–145.
ACM/IEEE, 2015. E.3, E.3

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software Language
Engineering in the Large: Towards Composing and Deriving Languages. Computer
Languages, Systems & Structures, 54:386–405, 2018. E.3, E.3, E.3

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe. Does
Distance Still Matter? Revisiting Collaborative Distributed Software Design.
IEEE Software, 35(6):40–47, 2018. E.3

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In
A. Moreira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99
Workshop Reader, LNCS 1743, Berlin, 1999. Springer Verlag. E.3

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design Guidelines for Domain Specific Languages.
In Domain-Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7–13.
Helsinki School of Economics, October 2009. E.3, E.3

268

Related Interesting Work from the SE Group, RWTH Aachen

[KKR19] Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dynamic
Architectures of Self-Adaptive Cooperative Systems. The Journal of Object
Technology, 18(2):1–20, July 2019. The 15th European Conference on Modelling
Foundations and Applications. E.3, E.3, E.3

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling
Cyber-Physical Systems: Model-Driven Specification of Energy Efficient Buildings.
In Modelling of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM,
October 2012. E.3, E.3, E.3

[KMR+20] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. Model-driven Digital Twin Construction: Synthesizing the
Integration of Cyber-Physical Systems with Their Information Systems. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, pages 90–101. ACM, October 2020. E.3

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,
Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,
Philipp Orth, and Johannes Richenhagen. Improving Model-based Testing in
Automotive Software Engineering. In International Conference on Software
Engineering: Software Engineering in Practice (ICSE’18), pages 172–180. ACM,
June 2018. E.3, E.3

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard Rumpe, and
Thomas Timmermanns. Modeling and Training of Neural Processing Systems. In
Marouane Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss, and Loli
Burgueño, editors, Conference on Model Driven Engineering Languages and
Systems (MODELS’19), pages 283–293. IEEE, September 2019. E.3

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and
Refinement with State Transition Diagrams. In Workshop on Feature Interactions
in Telecommunications Networks and Distributed Systems, pages 284–297.
IOS-Press, 1997. E.3, E.3

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator.
In H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von
Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener
Informatik-Berichte, Software Engineering, Band 14. Shaker Verlag, Aachen,
Deutschland, 2012. E.3, E.3, E.3

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian Stüber.
On the Engineering of AI-Powered Systems. In Lisa O’Conner, editor, ASE’19.
Software Engineering Intelligence Workshop (SEI’19), pages 126–133. IEEE,
November 2019. E.3

[KR18] Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Repair Failed
Model Refinements. In Conference on Model Driven Engineering Languages and
Systems (MODELS’18), pages 289–299. ACM, October 2018. E.3

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen
im Software-Engineering. Aachener Informatik-Berichte, Software Engineering,
Band 1. Shaker Verlag, März 2010. E.3, E.3

269

Related Interesting Work from the SE Group, RWTH Aachen

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical
model for distributed information processing systems - SysLab system model. In
Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP
Advances in Information and Communication Technology, pages 323–338.
Chapmann & Hall, 1996. E.3

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing.
Springer, Schweiz, December 2014. E.3

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber. Model-Based
Engineering for Avionics: Will Specification and Formal Verification e.g. Based on
Broy’s Streams Become Feasible? In Stephan Krusche, Kurt Schneider, Marco
Kuhrmann, Robert Heinrich, Reiner Jung, Marco Konersmann, Eric Schmieders,
Steffen Helke, Ina Schaefer, Andreas Vogelsang, Björn Annighöfer, Andreas
Schweiger, Marina Reich, and André van Hoorn, editors, Proceedings of the
Workshops of the Software Engineering Conference. Workshop on Avionics
Systems and Software Engineering (AvioSE’19), CEUR Workshop Proceedings
2308, pages 87–94. CEUR Workshop Proceedings, February 2019. E.3

[KRRvW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von
Wenckstern. Modeling Architectures of Cyber-Physical Systems. In European
Conference on Modelling Foundations and Applications (ECMFA’17), LNCS
10376, pages 34–50. Springer, July 2017. E.3

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical
Systems - eine Herausforderung für die Automatisierungstechnik? In Proceedings
of Automation 2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012. E.3,
E.3

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software
Development using Domain Specific Modelling Languages. In Domain-Specific
Modeling Workshop (DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä
University, Finland, 2006. E.3, E.3

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation
for Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop
(DSM’07), Technical Reports TR-38. Jyväskylä University, Finland, 2007. E.3, E.3

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of
Abstract and Concrete Syntax for Textual Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’07), LNCS 4735, pages
286–300. Springer, 2007. E.3, E.3

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular
Development of Textual Domain Specific Languages. In Conference on Objects,
Models, Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315.
Springer, 2008. E.3, E.3, E.3

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer (STTT), 12(5):353–372, September
2010. E.3, E.3, E.3, E.3, E.3

270

Related Interesting Work from the SE Group, RWTH Aachen

[KRV14] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software
Development using Domain Specific Modeling Languages. In Proceedings of the
6th OOPSLA Workshop on Domain-Specific Modeling (DSM‘ 06). CoRR arXiv,
2014. E.3, E.3

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated
semantics-preserving parallel decomposition of finite component and connector
architectures. Automated Software Engineering, 27:119–151, April 2020. E.3

[LMK+11] Philipp Leusmann, Christian Möllering, Lars Klack, Kai Kasugai, Bernhard
Rumpe, and Martina Ziefle. Your Floor Knows Where You Are: Sensing and
Acquisition of Movement Data. In Arkady Zaslavsky, Panos K. Chrysanthis,
Dik Lun Lee, Dipanjan Chakraborty, Vana Kalogeraki, Mohamed F. Mokbel, and
Chi-Yin Chow, editors, 12th IEEE International Conference on Mobile Data
Management (Volume 2), pages 61–66. IEEE, June 2011. E.3

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan
Sprinkle. Model Evolution and Management. In Model-Based Engineering of
Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages
241–270. Springer, 2010. E.3, E.3, E.3, E.3

[MKB+19] Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Weidlich, and
Judith Michael. Privacy-Preserving Process Mining: Differential Privacy for Event
Logs. Business & Information Systems Engineering, 61(5):1–20, October 2019. E.3

[MKM+19] Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Baracaldo, and
Bernhard Rumpe. User-Centered and Privacy-Driven Process Mining System
Design for IoT. In Cinzia Cappiello and Marcela Ruiz, editors, Proceedings of
CAiSE Forum 2019: Information Systems Engineering in Responsible Information
Systems, pages 194–206. Springer, June 2019. E.3

[MM13] Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient
assistance. In Conceptual Modeling - ER 2013, LNCS 8217, pages 403–413.
Springer, 2013. E.3

[MM15] Judith Michael and Heinrich C. Mayr. Creating a domain specific modelling
method for ambient assistance. In International Conference on Advances in ICT
for Emerging Regions (ICTer2015), pages 119–124. IEEE, 2015. E.3

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer, 43(5):42–48, May 2010. E.3,
E.3, E.3

[MMR+17] Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A. Shekhovtsov,
and Claudia Steinberger. Model Centered Architecture, pages 85–104. Springer
International Publishing, 2017. E.3

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Towards
Privacy-Preserving IoT Systems Using Model Driven Engineering. In Nicolas
Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Solberg, Manuel Wimmer, and
Andreas Wortmann, editors, Proceedings of MODELS 2019. Workshop MDE4IoT,
pages 595–614. CEUR Workshop Proceedings, September 2019. E.3

271

Related Interesting Work from the SE Group, RWTH Aachen

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for
Semantic Model Differencing. In Proceedings Int. Workshop on Models and
Evolution (ME’10), LNCS 6627, pages 194–203. Springer, 2010. E.3

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic
Differencing for Activity Diagrams. In Conference on Foundations of Software
Engineering (ESEC/FSE ’11), pages 179–189. ACM, 2011. E.3, E.3, E.3

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational
Semantics for Activity Diagrams using SMV. Technical Report AIB-2011-07,
RWTH Aachen University, Aachen, Germany, July 2011. E.3, E.3

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class
Diagrams Analysis Using Alloy Revisited. In Conference on Model Driven
Engineering Languages and Systems (MODELS’11), LNCS 6981, pages 592–607.
Springer, 2011. E.3, E.3

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic
Differencing for Class Diagrams. In Mira Mezini, editor, ECOOP 2011 -
Object-Oriented Programming, pages 230–254. Springer Berlin Heidelberg, 2011.
E.3

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams.
In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages
281–305. Springer, 2011. E.3

[MRR11f] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically
Configurable Consistency Analysis for Class and Object Diagrams. In Conference
on Model Driven Engineering Languages and Systems (MODELS’11), LNCS 6981,
pages 153–167. Springer, 2011. E.3, E.3

[MRR11g] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing Semantic
Model Differences. In Bernhard Schätz, Dirk Deridder, Alfonso Pierantonio,
Jonathan Sprinkle, and Dalila Tamzalit, editors, ME 2011 - Models and Evolution,
October 2011. E.3

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views. In Meyer, B. and
Baresi, L. and Mezini, M., editor, Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’13), pages 444–454. ACM New York, 2013.
E.3

[MRR14a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views (extended abstract). In
Wilhelm Hasselbring and Nils Christian Ehmke, editors, Software Engineering
2014, LNI 227, pages 63–64. Gesellschaft für Informatik, Köllen Druck+Verlag
GmbH, 2014. E.3, E.3

[MRR14b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component
and Connector Models against Crosscutting Structural Views. In Software
Engineering Conference (ICSE’14), pages 95–105. ACM, 2014. E.3

272

Related Interesting Work from the SE Group, RWTH Aachen

[MRV20] Judith Michael, Bernhard Rumpe, and Simon Varga. Human behavior, goals and
model-driven software engineering for assistive systems. In Agnes Koschmider,
Judith Michael, and Bernhard Thalheim, editors, Enterprise Modeling and
Information Systems Architectures (EMSIA 2020), pages 11–18. CEUR Workshop
Proceedings, June 2020. E.3

[MS17] Judith Michael and Claudia Steinberger. Context modeling for active assistance.
In Cristina Cabanillas, Sergio España, and Siamak Farshidi, editors, Proc. of the
ER Forum 2017 and the ER 2017 Demo Track co-located with the 36th Int.
Conference on Conceptual Modelling (ER 2017), pages 221–234, 2017. E.3

[MSNRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An Extended
Symbol Table Infrastructure to Manage the Composition of Output-Specific
Generator Information. In Modellierung 2016 Conference, LNI 254, pages 133–140.
Bonner Köllen Verlag, March 2016. E.3, E.3, E.3

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Model-Driven Engineering for High Performance and
Cloud Computing Workshop, CEUR Workshop Proceedings 1118, pages 15–24,
2013. E.3, E.3

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line
Annotations with UML-F. In Software Product Lines Conference (SPLC’02),
LNCS 2379, pages 188–197. Springer, 2002. E.3, E.3

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for
Behaviour Modelling with Automata. In Proceedings of the Industrial Benefit of
Formal Methods (FME’94), LNCS 873, pages 154–174. Springer, 1994. E.3, E.3

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures.
In Congress on Formal Methods in the Development of Computing System
(FM’99), LNCS 1708, pages 96–115. Springer, 1999. E.3, E.3

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and
Baclavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15. Northeastern University, 2001. E.3

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications.
In Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and
System Specifications, pages 281–297. Kluwer Academic Publishers, 2003. E.3, E.3

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and
Connector Systems. Aachener Informatik-Berichte, Software Engineering, Band
19. Shaker Verlag, 2014. E.3

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265–286. Kluwer Academic Publishers, 1996. E.3

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme -
Syslab-Systemmodell. Technischer Bericht TUM-I9510, TU München,
Deutschland, März 1995. E.3

273

Related Interesting Work from the SE Group, RWTH Aachen

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing. International Journal
of Software and Informatics, 2011. E.3

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. Journal of Software Engineering for
Robotics (JOSER), 6(1):33–57, 2015. E.3, E.3, E.3

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas Wortmann.
Teaching Agile Model-Driven Engineering for Cyber-Physical Systems. In
International Conference on Software Engineering: Software Engineering and
Education Track (ICSE’17), pages 127–136. IEEE, May 2017. E.3

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software
Architecture Structure and Behavior Modeling to Implementations of
Cyber-Physical Systems. In Software Engineering Workshopband (SE’13), LNI
215, pages 155–170, 2013. E.3, E.3, E.3, E.3

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann.
MontiArcAutomaton: Modeling Architecture and Behavior of Robotic Systems. In
Conference on Robotics and Automation (ICRA’13), pages 10–12. IEEE, 2013.
E.3, E.3, E.3

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener
Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, December
2014. E.3, E.3, E.3

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral Compatibility of Simulink Models for
Product Line Maintenance and Evolution. In Software Product Line Conference
(SPLC’15), pages 141–150. ACM, 2015. E.3

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996. E.3

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In
T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697–701. Idea Group
Publishing, London, 2002. E.3, E.3, E.3

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In
Symposium on Formal Methods for Components and Objects (FMCO’02), LNCS
2852, pages 380–402. Springer, November 2003. E.3, E.3

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical
Innovations of Software and Systems Engineering in the Future (RISSEF’02),
LNCS 2941, pages 297–309. Springer, October 2004. E.3, E.3, E.3, E.3

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin,
September 2011. E.3

274

Related Interesting Work from the SE Group, RWTH Aachen

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle,
Refactoring, 2te Auflage. Springer Berlin, Juni 2012. E.3, E.3, E.3, E.3, E.3

[Rum13] Bernhard Rumpe. Towards Model and Language Composition. In Benoit
Combemale, Walter Cazzola, and Robert Bertrand France, editors, Proceedings of
the First Workshop on the Globalization of Domain Specific Languages, pages 4–7.
ACM, 2013. E.3

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016. E.3, E.3, E.3

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017. E.3

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement in
Hierarchically Decomposable and Underspecified CPS-Architectures. In Lohstroh,
Marten and Derler, Patricia Sirjani, Marjan, editor, Principles of Modeling:
Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, LNCS
10760, pages 383–406. Springer, 2018. E.3, E.3, E.3, E.3, E.3, E.3

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker
Verlag, 2012. E.3, E.3, E.3

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard Rumpe,
Matthias Brockmann, Andreas Wortmann, Judith Maibaum, Manuela Dalibor,
Pascal Bibow, Patrick Sapel, and Moritz Kröger. Effizientere Produktion mit
Digitalen Schatten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb,
115(special):105–107, April 2020. E.3

[SM18] Claudia Steinberger and Judith Michael. Towards Cognitive Assisted Living 3.0
(Extended Abstract): Integration of non-smart resources into cognitive assistance
systems. EMISA Forum, 38(1):35–36, Nov 2018. E.3

[SM20] Claudia Steinberger and Judith Michael. Using Semantic Markup to Boost
Context Awareness for Assistive Systems, pages 227–246. Computer
Communications and Networks. Springer International Publishing, 2020. E.3

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai.
Metamodelling: State of the Art and Research Challenges. In Model-Based
Engineering of Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS
6100, pages 57–76. Springer, 2010. E.3, E.3, E.3

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and
Andreas Wortmann. A New Skill Based Robot Programming Language Using
UML/P Statecharts. In Conference on Robotics and Automation (ICRA’13),
pages 461–466. IEEE, 2013. E.3

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen.
Aachener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.
E.3, E.3, E.3

275

Related Interesting Work from the SE Group, RWTH Aachen

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag,
2012. E.3, E.3, E.3, E.3

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige,
Kumardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data
Analysis and Filtering for Inaccurate Flight Trajectories. In Proceedings of the
SESAR Innovation Days. EUROCONTROL, 2011. E.3, E.3

276

	Table of Contents
	Introduction
	Motivation and Context: Cyber-Physical Systems
	The Problem-Implementation Gap in CPS Engineering
	Functional Model-Driven Engineering of Cyber-Physical Systems

	Research Questions
	Preliminaries
	Notation and Conventions
	Constituents of a Formal Model-Driven Engineering Methodology
	The Automotive Cooling System
	The Architecture Description Language MontiArc
	SysML

	Publications
	Thesis Organization

	Cyber-Physical Types
	Preliminaries on Types and Classes
	Cyber-Physical Class Diagrams

	Modeling Cyber-Physical-Types
	Physical Quantities, Units, and Position
	Energy
	Matter
	Data

	Summary: Cyber-Physical Types

	A Theory of Cyber-Physical Functions
	Timed Streams
	A Complete Partial Order of Timed Streams

	Cyber-Physical Streams
	Energy streams
	Item Streams
	Fluid Streams
	Data Streams
	Signals
	Event Streams

	Timed Stream Processing Functions and Behavior
	Channels and Histories
	Behavior
	Composition
	Refinement

	Specifying Cyber-Physical Functions
	Specification by Interface Assertions
	Specification by Hybrid Automata
	Architectural Specification

	A Methodology for Functional Model-Driven Engineering of CPSs
	The Functional Development Paradigm
	The Five Principles of Functional Development

	Formal Methodology for Engineering CPSs
	Transformations of the Interface of a Functional Specifications
	Transformations of the Behavior

	Related Work

	Formalizing Design Catalogs as Libraries of Physical Functions
	Mechanical Design Methodology
	Functional Structures
	Design Catalogs, Elementary Functions and Principle Solutions
	Challenges of the Functional Synthesis
	Summary: A Conceptual Model of Physical Functions

	Formalizing the Koller Design Catalog
	Energy Operations
	Material Operations
	Operations between Energy and Material

	Discussion
	Energetic Losses
	Delay
	Related Work

	A Language Engineering Perspective on Physical Functions
	A Meta-Model for Functional Modeling Languages To Digitalize the Mechanical Design Process
	Functional Interfaces
	Functional Architectures
	Discussion

	Modeling Physical Functions and Solutions in SysML
	Functional Interface
	Functions
	Solutions

	Implementation of SysML4FMArch in MagicDraw
	Implementing Graphical DSLs in MagicDraw
	SysML4FMArch Language Components as a MagicDraw Profile
	The Modeling Method of SysML4FMArch in MagicDraw
	User Experience Features of SysML4FMArch in MagicDraw

	A Digital SysML4FMArch Design Catalog in MagicDraw
	Discussion and Related Work

	Evaluation
	A Functional Model of an Audio Entertainment System
	Audio Entertainment Systems
	Discussion

	Modeling an Automotive Electric Coolant Pump in SysML4FMArch
	Channel Types
	Architecture of the Electric Coolant Pump
	Solution-Models

	Dimensioning and Testing an Automotive Electrical Coolant Pump
	Dimensioning
	Dimensioning Procedures in SysML4FMArch
	Testing Principle Solutions in SysML4FMArch
	Modeling Tests in SysML4FMArch
	Discussion
	Related Work

	Conclusion and Future Work
	Bibliography
	Definitions of Physical Quantities
	Terms and Definitions from Algebra
	A Complete Partial Order on The Set of Timed Streams
	Complete Partial Orders

	An Algebraic Interpretation of Units
	Unit Systems
	Physical Quantities

	The SysML4FMArch MagicDraw Profile
	Types
	Functions
	Solutions

	Glossary
	Acronyms
	List of Figures
	List of Tables
	Leere Seite

