
Simon Hacks

Si
m

on
 H

ac
ks

Im
pr

ov
in

g
th

e
Q

ua
lit

y
of

 E
nt

er
pr

is
e

Ar
ch

ite
ct

ur
e

M
od

el
s

Ba
nd

 4
3

Improving the Quality of
Enterprise Architecture Models

-Processes and Techniques-

Aachener Informatik-Berichte,
Software Engineering
Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe
 Prof. Dr. rer. nat. Horst Lichter

Band 43

Improving the Quality of Enterprise Architecture
Models

-Processes and Techniques-

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Simon Hacks, M.Sc.
aus Tönisvorst

Berichter: Universitätsprofessor Dr. rer. nat. Horst Lichter
Professor Pontus Johnson, Ph.D.

Tag der mündlichen Prüfung: 12.09.2019

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar.

[Hac19] S. Hacks:
Improving the Quality of Enterprise Architecture Models.
Shaker Verlag, ISBN 978-3-8440-6977-8. Aachener Informatik-Berichte, Software Engineering, Band 43. October 2019.
www.se-rwth.de/publications/

Kurzfassung
Information Technology (IT) durchdringt Organisationen immer mehr und wird immer wichti-
ger für deren Geschäftsmodelle. Dabei hat sich die IT von einer rein unterstützenden Rolle, hin
zu einer wichtigen strategischen Säule in vielen Organisationen entwickelt. Umso wichtiger ist
es, dass die IT die Anforderungen der Organisation umsetzt. Ansätze, die dies realisieren sollen,
werden in der Forschung häufig unter dem Begriff “business-IT-alignment” subsummiert. Ein
Instrument, mit dem ein “business-IT-alignment” erreicht werden soll, ist die Unternehmensar-
chitektur (engl.: “Enterprise Architecture”). Unternehmensarchitekturen erlauben eine holistis-
che Perspektive auf die Struktur der Organisation und bieten eine Sammlung von Techniken,
um die Entwicklung der Organisation zu einem gewünschten Zielzustand zu begleiten und zu
lenken.

Ein zentrales Artefakt der Unternehmensarchitektur ist das Unternehmensarchitekturmodel.
Es abstrahiert die Elemente und deren Beziehungen der Organisation auf ein verständliches und
steuerbares Maß. Dabei werden üblicherweise von Geschäftsprozessen über Applikationen bis
zu Hardwarekomponenten, auch Datenmodelle und Kundenbeziehungen modelliert. Basierend
auf den im Unternehmensarchitekturmodel gespeicherten Informationen, trifft das Management
der Organisation wichtige Entscheidungen, betreffend der zukünftigen Ausrichtung. Aber auch
auf der operationalen Ebene, kann das Modell wichtige Informationen liefern, zum Beispiel
welche Applikation in welchem Geschäftsumfeld eingesetzt wird und dabei mit anderen Appli-
kationen Daten austauscht.

Um sinnvolle Entscheidungen aus dem Unternehmensarchitekturmodel ableiten zu können,
ist deren Qualität von entscheidender Bedeutung. Daher beschäftigt sich diese Arbeit damit
verschiedene Prozesse und Techniken zu entwickeln, die die Qualität des Unternehmensarchi-
tekturmodells sicherstellen.

Zuerst wird ein Prozess präsentiert, der die Qualität des Unternehmensarchitekturmodels si-
cherstellen sollen, in dem die Modelpflege als eine kontinuierliche Evolution verstanden wird.
Dafür werden verschiedene Schritte definiert, die in einem solchen Prozess durchgeführt wer-
den müssen. Dieser Prozess dient im Folgenden als Grundlage für eine Continuous Delivery Pi-
peline, die dabei helfen soll möglichst viele dieser Schritte zu automatisieren. Im Anschluss da-
ran wird ein Ansatz vorgestellt, der ermöglicht auch widersprüchliche Angabe in Unternehmen-
sarchitekturmodellen zu speichern.

Neben den Prozessen, die die Qualität von Unternehmensarchitekturmodellen verbessern sol-
len, enthält diese Arbeit auch verschiedene Techniken zu diesem Zweck. Um die Qualität des
Models zu verbessern, wird allerdings eine Methode benötigt, um die Qualität zu bewerten, die
ebenfalls innerhalb dieser Arbeit eingeführt wird. Im Anschluss, werden Techniken des Mas-
chinenlernens genutzt, um den Modellierenden dabei zu unterstützen, existierende Elemente des
Models wiederzuverwenden. Zusätzlich wird die Performanz verschiedener Algorithmen verg-
lichen, um den besten in einer bestimmten Situation bestimmen zu können. Darüber hinaus wird
eine Methode vorgestellt, mit der unnötige Elemente im Model identifiziert werden können.

Abstract
Information technology (IT) pervades organizations more and more and becomes increasingly
important for their business models. It has evolved from a purely supportive role to an important
strategic pillar in many organizations. Even more, it is important that IT is aligned to the needs
of the organization. Approaches that realize this are often subsumed under the term “business-
IT-alignment”. One instrument for achieving business-IT-alignment is Enterprise Architecture
(EA). EAs provide a holistic perspective on the structure of the organization and provide a set
of techniques to guide and steer the evolution of the organization to a desired goal state.

A key artifact of EA is the EA model. It abstracts the elements and their relationships to
an understandable and manageable measure. Usually enterprise architects model business pro-
cesses, applications, hardware components, data models and customer relationships. Based on
the information stored in the EA model, the organization’s management makes important de-
cisions regarding future focus. Contrary, also on the operational level, the model can provide
important information, for example which application is used in which business environment
and exchanges data with other applications.

In order to be able to derive meaningful decisions from the EA model, their quality is of crucial
importance. Therefore, this work elaborates on developing different processes and techniques
that ensure the quality of the EA model.

First, we present a process to ensure the quality of the EA model, where model maintenance is
understood as a continuous evolution. For this purpose, we define different steps, which have to
be considered in such a process. This process will serve as foundation for a continuous delivery
pipeline that will help automate as many of these steps as possible. Next, we present an approach
that allows storing contrary information in EA models.

In addition to the aforementioned processes, we developed also several techniques to improve
the quality of EA models. However, for improvement, we need a method to evaluate the quality,
which we also introduce within this work. Subsequently, we facilitate machine-learning techni-
ques to support the modeler reuse existing elements of the model. In addition, we compare the
performance of different algorithms to determine the best on in a certain situation. Additionally,
we present a method to identify unnecessary elements in the model.

Contents

I. Foundations 1

1. Preface 3
1.1. Introduction . 3
1.2. Research Questions . 4
1.3. Structure of the Dissertation . 6
1.4. Recurring Parts Within This Work . 7

1.4.1. A Case Study Environment . 7
1.4.2. An Exemplary EA Model . 8
1.4.3. Design Science Research . 12

2. Related Work 15
2.1. Model Evolution . 15
2.2. Enterprise Architecture Model Evolution . 16
2.3. Enterprise Architecture Evolution . 17
2.4. Quality of Enterprise Architecture Models . 18

II. Enterprise Architecture in Research and Practice 21

3. Concerns of EA Stakeholders 23
3.1. Stakeholder Concerns . 24

3.1.1. Type . 24
3.1.2. Quality . 25
3.1.3. Abstraction Level . 26
3.1.4. Context . 26
3.1.5. Transparency . 26

3.2. Discussion on Stakeholder Concerns . 27
3.2.1. Type . 27
3.2.2. Quality . 27
3.2.3. Abstraction Level . 28
3.2.4. Context . 28
3.2.5. Transparency . 29

3.3. Implications . 29
3.4. Limitations . 29

4. A Taxonomy of EA Analysis Research 31
4.1. EA Analysis Taxonomy . 32

4.1.1. EA Scope Dimension . 32
4.1.2. Analysis Concern Dimension . 34
4.1.3. Modeling Language Dimension . 35
4.1.4. Analysis Technique Dimension . 36

4.2. Discussion . 38
4.3. Limitations . 41

III. Processes to Improve EA Models 43

5. An Enterprise Architecture Model Roundtrip 45
5.1. Research Problem . 46
5.2. Roundtrip Process . 47

5.2.1. Process Trigger . 48
5.2.2. Change Set Determination . 50
5.2.3. EA Model Evolution . 50

5.3. Provision of Updated EA Models . 52

6. A Continuous Delivery Pipeline for EA Model Evolution 55
6.1. A Pipeline for EA Maintenance . 56
6.2. Demonstration . 59

6.2.1. Facilitated Metrics . 59
6.2.2. Implementation of the Pipeline . 60

6.3. Evaluation . 62
6.4. Discussion . 62
6.5. Limitations . 63

7. A Probabilistic Enterprise Architecture Model Evolution 65
7.1. Architecture Modeling Framework for Probabilistic Prediction 66
7.2. A Probabilistic Enterprise Architecture . 67

7.2.1. Demonstration . 71
7.2.2. Discussion . 73

7.3. Limitations . 74

IV. Techniques to Improve EA Models 75

8. Assessing EA Model Quality 77
8.1. A Framework for Assessing the Quality of EA Models 77
8.2. Applying the Framework . 85

8.2.1. Case Environment . 85
8.2.2. Exemplary Framework Application 85

9. Improving the Design of EA Models 91
9.1. Avoiding Redundancies in EA Models . 91

9.1.1. Theoretical Background . 92
9.1.2. Research Proposal . 95
9.1.3. Implementation . 98
9.1.4. Evaluation . 99
9.1.5. Limitations . 101

9.2. A Performance Comparison of Graph Analytic Methods 102
9.2.1. Graph Analytic Approaches . 102
9.2.2. Computing edge similarity . 105
9.2.3. Nearest Neighbor . 106
9.2.4. Results . 107
9.2.5. Limitations . 111

10.Optimizing EA Models 113
10.1. Foundations . 113
10.2. Applying the Modeling Approach to ArchiMate 116
10.3. Different Optimization Subjects . 117

10.3.1. Optimizing with Respect to Minimal Coupling 117
10.3.2. Optimizing the Amount of Needed Lower Layer Elements 119
10.3.3. Optimizing Operational Costs . 120

10.4. Applying the Optimization Model . 120
10.4.1. Exemplary Application . 120
10.4.2. Does the Approach Scale? . 122

10.5. Extension of the Optimization by Transition Costs 123
10.5.1. Formalism . 123
10.5.2. Application . 125

V. Evaluation and Summary 127

11.Evaluation 129
11.1. Research Method . 130

11.1.1. Tested Quality Criteria . 130
11.1.2. Questionnaire Design . 132
11.1.3. Data Collection . 133

11.2. EA Model Maintenance Processes . 134
11.2.1. Process 1: A Federated Approach to EA Model Maintenance 134
11.2.2. Process 2: Process Patterns for EA Management 135
11.2.3. Process 3: A Roundtrip Based EA Model Evolution 135
11.2.4. Preliminary Assumptions . 136

11.3. Results and Discussion . 137
11.3.1. Dependencies Between Quality Criteria 137
11.3.2. Process Comparison . 138

11.4. Limitations . 139

12.Summary 141

13.Outlook 145

Bibliography 147

List of Publications 167

List of Figures 169

Listings 171

List of Tables 173

VI. Appendix 175

A. Research Method Details 177
A.1. Concerns of EA Stakeholders – Creation Process 177

A.1.1. Data Collection . 177
A.1.2. Scheme-guided classification . 178

A.2. A Taxonomy of EA Analysis Research – SLR 179
A.3. Integrated Enterprise Architecture Roundtrip – DSR 181
A.4. A Continuous Delivery Pipeline for EA Model Evolution – DSR 182
A.5. Assessing EA Model Quality – SLR . 183
A.6. Avoiding Redundancies in EA Models – DSR 183
A.7. A Performance Comparison of Graph Analytic Methods – ML Evaluation . . . 184

B. Abbreviations 187

Part I.

Foundations

Chapter 1.

Preface

1.1. Introduction

Information Technology (IT) pervades organizations more and more and becomes further im-
portant [170, 236]. Oliner and Sichel [170] have shown that IT accelerated the overall labour
productivity growth beginning with the mid 1990’s. Moreover, they expected that the influence
of IT will further grow, which was proved by the past, as IT became ubiquitous [236]. Additio-
nally, business models are changing dramatically, even driven by IT [37].

Accordingly, different authors [57, 89, 168] classify the operation mode of organization’s
IT with respect to its influence on the organization. Earl [57] defines four classes building up
on each other: support mode, factory mode, turnaround mode, and strategic mode. Nolan and
McFarlane [168] reorganize this classification by placing those classes into their strategic grid,
which describes the need of the organization for reliable IT and new IT. A slightly different
view on organization’s IT is given by Hanschke [89]. She illustrates IT’s percipience in four tiers
building on top of each other: IT as cost driver, IT as financial asset, IT as business partner, and
IT as enabler. All those classifications show that IT has developed from a supporting department
to a important driver of changes within modern organizations.

Additionally to the rising importance of IT for the business, the integration of business re-
quirements with implemented IT functionality becomes more important. Consequently, the
business-IT alignment has been most important for CIOs of different industries and different
company sizes for a long time [143, 144]. To promote the business-IT alignment, more and more
Information System (IS) change and development projects focus the realization of technical so-
lutions for local business needs. Enterprise Architecture (EA) is a widely accepted discipline
to guide local IS endeavors through a holistic view on the fundamental structures, design, and
evolution principles of the overall organization [31]. EA eases the alignment of IS projects with
enterprise-wide objectives, which leads to reduced complexities as well as integration efforts in
the overall corporate IS landscape [14, 183].

Since it beginnings in the 1980s [116], EA has developed to an established discipline in in-
dustry and research [193, 210]. A widely accepted definition of the term architecture [194] is
given in the ISO 42010:2011 [99]:

Definition 1.1 (Architecture) Architecture describes the fundamental concepts or properties of
a system in its environment embodied in its elements, relationships, and in the principles of its
design and evolution.

4 Chapter 1. Preface

As this definition implies, the EA model, comprised by the elements and relationships of the
organization, is one central artifact of EA. The model provides a holistic view on the organiza-
tion and, therefore, eases the value creation for EA’s stakeholder [165].

Several EA modeling languages like ArchiMate exist, that are used in practice [127, 225]. The
benefits of EA highly depend on the model quality [165]. So far, only a few researchers have
published work that elaborates on the specification of EA quality attributes, but do not develop
means to ensure the quality of EA models. Thus, we address with this work the goal to provide
a set of tools that enable EA practitioners to assess and improve the quality of their EA models.

1.2. Research Questions

To motivate our research questions, we shed light on the maintenance process of EA models si-
milar to a customer journey [133] in the domain of marketing. Therefore, we imagine a company
with an established EA initiative. The EA department consists of ten enterprise architects who
implement the IT-strategy by publishing guidelines, consulting the management, and steering
projects towards the designated direction. Additionally, they provide actual information on the
EA to their stakeholder and prepare decision documents for the higher management. Besides the
enterprise architects, the company employs solution architects. A solution architect is an expert
for a certain sub-domain and takes responsibility for all projects in this sub-domain. Therefore,
their main tasks are to design a solution architecture which conforms to the big picture and to
ensure that the projects adhere to the guidelines.

Our customer journey starts with Mary having her first day in the EA department. After having
her first coffee with the new colleagues, Peter shows her the EA repository containing the current
EA model. As she should get common with the model and its elements, she receives her first
task to satisfy a request for information by a manager. Therefore, she asks herself if there are
any differences between stakeholders on the expectation towards the EA. More concrete she
wonders:

RQ 1 What are the differences of stakeholder concerns on EA?

As soon as she grasped the differences between the different stakeholders, she prepares a suit-
able report and sends it to the manager. Afterwards, she has a little free time as all colleagues
are in meetings. Therefore, she discovers the EA model further and, soon, she thinks about the
possibilities to do analysis on the model and searches for research elaborating on this. Unfortu-
nately, there is already a lot of work around and she is not sure which approaches are suitable
for her model and her purposes. She thinks that a classification scheme would be very helpful to
find the best suiting approach and asks herself:

RQ 2 How is the EA analysis research classified according to its analysis concerns, techniques,
and modeling languages?

She finds a lot of interesting articles and plans to apply some of the approaches. However,
before she can go deeper into the topic, Peter comes back and gives her an introduction into
the maintenance of the EA model. Basically, there is the central model which is maintained by

1.2. Research Questions 5

the enterprise architects. Erratically, they provide an export of the model which is provided to
EA’s stakeholders. One of those stakeholders are projects which facilitate the provided export to
model their changes on the EA. There are a plenty of different projects in every shape, size, and
duration. This results in something Peter calls a distributed EA evolution. Nonetheless, Mary
perceives this process as unstructured and the way the results of the projects get back into the
central model remains unclear to her. Consequently, she wonders:

RQ 3 How does an effective architecture roundtrip process looks like supporting the distributed
EA evolution?

Furthermore, everything Peter tells her, reminds her on problems she knows from the domain
on software engineering. During her studies, she was part in a lab where she built with other
students an application. Every student had his own copy of the central code and their changes
had to be integrated into the central code again. One means, which she perceived as valuable,
were continuous delivery pipelines as they shorten feedback circles and help to uncover flaws
early. Therefore, she likes to answer the question:

RQ 4 How can continuous delivery help to overcome the challenges of manual EA model’s
maintenance?

Whilst she is still thinking about this question, she recognizes a discussion of her colleagues.
Steven and Cathy recently returned from a decision board and recapitulate the happenings. A
project presented two different scenarios how the EA could evolve in the next step. There were a
lot of pro’s and con’s so that the board members did not come to a conclusion. However, Steven
and Cathy like to preserve both scenarios for a future analysis. As Mary is new and, therefore,
open-minded, they ask her if she has an idea:

RQ 5 How can evolutionary EA scenarios provided with uncertainty information be presented
in an EA model?

She promises to think about this and will find a solution for this issue. But, it is lunchtime and
all colleagues got together to a restaurant. On their way, Peter asks her if she feels comfortable
with her new colleagues and what her first impression is. Mary is satisfied so far. Though, her
gut feeling tells her that some parts of the EA model could be improved. Peter agrees on her
impression, but he is also unsure how to identify the weak parts within the model. He thinks that
a framework would be useful to measure the quality. Accordingly, Mary wonders:

RQ 6 What aspects need to be included in a framework for assessing the quality of EA models?

Peter likes Mary’s question and they decide to elaborate together on this soon. Meanwhile,
they reached the restaurant. After a seating at a table, the waiter brings the menus in German and
English as the enterprise architects are bilingual. This reminds Cathy on a situation where she
had to import the new models of projects into the central EA model. Two projects modeled the
same elements, but named them differently as they speak different languages. It took her quite
a long time to recognize that the projects described the same things and to avoid unintentional
redundancies. As Mary’s university time is not that long ago, Cathy asks her:

6 Chapter 1. Preface

RQ 7 How can machine learning techniques help to avoid redundancies in EA models?

Mary already has some ideas and plans to investigate if those techniques might be applicable
within her company. But first, she enjoys her meal. Back in the office, Mary takes a closer look
at the EA model with the aspect of redundancies in mind. Suddenly, she observes that the re-
dundancies are not solely related to the model elements themselves, but also to the artifacts they
present in reality. For example, several applications fulfill the same functionality and probably
not every application is necessary. This raises the question:

RQ 8 How can EA models serve as input to optimize the entire EA?

Meanwhile, it has become evening and Mary’s first day in the EA department comes to an
end. During her first day, she found a lot of open questions which should be answered in the
next time.

1.3. Structure of the Dissertation

This dissertation is structured as follows: After, we have presented the research questions in
section 1.2, we will next present the related work in section 2. More concrete, we present existing
research on model evolution in general and EA model evolution in particular. Additionally, we
give insights into different approaches of EA evolution and work elaborating on the quality of
EA and EA models.

Part II deals with EA in research and in practice. On the one hand, we investigate the different
concerns of stakeholders towards EA, especially, how the concerns are related to the hierarchical
position of the stakeholder in the organization. On the other hand, we develop a taxonomy to
classify EA analysis research based on a Systematic Literature Review (SLR).

We focus on different processes to improve EA models in part III. First, we sketch the issue
of a distributed EA evolution and develop a process to overcome this issue. In section 7.2.1,
we extend this process and unite it with the idea of continuous delivery. This leads to a pipeline
implementation which shortens the feedback cycles and, therefore, eases the improvement of the
EA model. Last, we present how contradictory information can be preserved in an EA model.

In contrast, part IV focuses on different methods to improve EA models. Section 8 introduces
a framework which enables EA practitioners to assess the quality of their EA model. As this
relies more on the improvement of already existing EA models, section 9 provides methods to
support the designer of EA models within the creation phase. A further facet is added in section
10 by not only solely considering the EA model, but also to facilitate it as input to optimize the
entire EA.

In part V, we present the results of a quantitative evaluation on different EA maintenance
processes, before we conclude our work by a summary and an outlook on future work.

As parts of this work got published beforehand, we like to clarify in Table 1.1 which parts of
the published papers were produced by the author of this work.

1.4. Recurring Parts Within This Work 7

Table 1.1.: Contribution to Pre-Published Works.
Part of this work Publication Idea Doing Writing Supervision

Section 3 [79] -
Section 4 [23]
Section 5 [84] -
Section 6 [86] -
Section 7 [82] -
Section 8 [227, 87] -

Section 9.1 [32]
Section 9.2 [185]
Section 10 [81, 83] -
Section 11 [85] -

1.4. Recurring Parts Within This Work

In our research, we facilitated certain parts several times. To ease the read of our work and not to
repeat ourselves, we will present the effected parts following. In concrete, we will present, first,
the case study environment that is utilized in sections 3 and 8. Second, a fictitious EA model
is used in sections 9.2 and 6. Last, the Design Science Research (DSR) method is presented,
which we utilized in Sections 5, 6, 7, and 9.1 to develop the required artifacts.

1.4.1. A Case Study Environment

Our research was mainly conducted in cooperation with an industrial partner. Therefore, some
of our artifacts were partly or completely evaluated within the context of our cooperation partner.
To not repeat ourselves, we will following present the case in detail. Additional information is
given if necessary at the certain point of this work.

The case organization is one of the leading insurance providers in the German-speaking mar-
ket. About 30,000 employees and 16,000 associated agents count toward the workforce of the
company. Furthermore, the case organization has several subsidiaries: One of them is the inter-
nal IT service provider, in which we conducted our cases.

The IT service provider employs around 1,400 employees. These are responsible for operati-
ons and development of technological solutions for the whole organization, including all of its
subsidiaries. The IT provider began establishing EA initiatives in 2008 and currently hosts two
EA units: The first unit, “architecture management” is responsible for application development.
The second unit, “infrastructure architecture management”, is responsible for infrastructure ma-
nagement (e.g., operations of servers). As regulatory instances, both units are responsible for
all EA-related questions, ranging from EA development to EA implementation and EA mainte-
nance.

8 Chapter 1. Preface

Figure 1.2.: Global Organization Structure of an Airport Departure System.

1.4.2. An Exemplary EA Model

The beforehand presented case study environment (cf. section 1.4.1) was not always suitable for
our purposes. This is grounded in the fact that the provided model was to complex to capture it
entirely. But sometimes it is essential to know how the optimal solution for a particular scenario
looks like, e.g., to evaluate different algorithms. Therefore, we sketched an airport departure sy-
stem for EA model analyzing purposes. This case study strategy provides a richer understanding
of the context for the people and the researcher involved. We illustrate a scenario of airport de-
parture system which depicts the functionality of the passengers before boarding to an aircraft.
Figure 1.2 shows the overall organization structure and Figures 1.3, 1.4, and 1.5 an EA model
representing each layer of the immigration process in ArchiMate notation.

To guide future changes in their business and information technology, we transformed our
fictitious example of an airport departure system into an EA model based on ArchiMate 3.0.1.
This case study is used as an example throughout different parts to evaluate and compare dif-
ferent graph analytic techniques to analyses the EA model in a better way and to select the
best-performing algorithm (cf. Section 9.2) or to serve as means to demonstrate the application
of our designed artifact (cf. Section 6).

The business layer depicts the business services offered to the customers, which is mainly used
to build business architecture [78]. In this example, the active entities of the business layer are
airline employees, passengers, and security guards. There are four functions that are provided
by boarding and departure process. The function boarding to airplane is internally divided into
three sub-processes.

The application layer includes for example the airline administration support, which is respon-

1.4. Recurring Parts Within This Work 9

Figure 1.3.: An EA Model Representing the Business Layer of the Immigration Process at an
Airport.

10 Chapter 1. Preface

Figure 1.4.: An EA Model Representing the Application Layer of the Immigration Process at an
Airport.

1.4. Recurring Parts Within This Work 11

Figure 1.5.: An EA Model Representing the Technology Layer of the Immigration Process at an
Airport.

12 Chapter 1. Preface

1. Identify Problem & Motivate

2. Define Objectives

3. Design & Development

4. Demonstration

5. Evaluation

6. Communication

Figure 1.6.: Design Science Research.

sible for handling check-in process, and the boarding control, which handles boarding process.
Furthermore, two application components collaborate in boarding and departure control system,
i.e., the airline administration component and the boarding control to provide application level
services like identifying boarding pass, security and navigation control support.

The technology layer offers several components to the application layer. E.g., there is a bar
code system offering the needed means to validate the bar codes of the boarding tickets and a
Global Positioning System (GPS) navigation system guiding the bus drivers to the right plane
on the airfield.

1.4.3. Design Science Research

To tackle the different issues within this work, we opt several times (cf. Sections 5, 6, 7, and
9.1) for Design Science Research (DSR), which is a widespread means to develop artifacts. DSR
offers a systematic structure (cf. Figure 1.6) for developing artifacts, such as constructs, models,
methods, or instantiations [93]. As our research questions indicate the development of means,
the application of DSR is appropriate. We stick to the approach of Peffers et al. [178], which is
split up into six single steps and two possible feedback loops:

Activity 1: Identify Problem & Motivate A problem discovery activity is mandatory to
identify the research domain and potential subjects to be addressed. The literature is reviewed to
gain knowledge regarding the current state of problem for problem statement formation, which
is then used to develop a viable artifact that provides a solution to the problem.

1.4. Recurring Parts Within This Work 13

Activity 2: Define Objectives The research objectives and goals are formalized to solve
the identified problem and, consequently, provide the intended direction for the research. The
objectives can be either quantitative or qualitative [178].

Activity 3: Design & Development In this activity the artifact is created. Artifacts could
be constructs, models, methods, instantiations, new properties of technical, social, or informa-
tional resources. Further, this activity includes determining the desired functionality and its
architecture.

Activity 4: Demonstration It is important to demonstrate that the artifact can solve one or
more instances of the problem identified before. This could involve its use in experimentation,
simulation, case study, proof, or other appropriate activities.

Activity 5: Evaluation After demonstrating the capability of the artifact that it can solve
an instance of the problem, the next step is to observe and measure how well the artifact solves
the problem. This includes comparing the objectives of the solution to the observed results.
Depending on the nature of the problem and the artifact, the evaluation could be manifold.
For example, it could include a comparison of the artifact’s functionality with the objectives
from activity two, quantitative performance measures, the results of surveys, client feedback, or
simulations. Conceptually, an evaluation could include any appropriate empirical evidence or
logical proof. At the end of the evaluation, the researchers can decide whether to iterate back to
step three to improve the effectiveness of the artifact or to continue.

Activity 6: Communication Towards the end of DSR, it is mandatory to document the
problems, solution, objectives, description related to the developed artifact for communication
with the relevant audience. The outcome of research is presented in the form of research papers,
presentations, and this work. Additionally, insights are given to provide a direction for future
research.

Chapter 2.

Related Work

Based on the presented problem description and the distributed EA evolution scenario that we
want to support, two categories of scientific research can be identified. The one set of research
counts towards information maintenance in EA, but does not necessarily elaborate on the EA
model like we do. The other set concerns questions regarding models, but not in the domain of
EA. Additionally, important parts of our work are related to the quality of EA models. Therefore,
we present also related work to this topic.

2.1. Model Evolution

Focusing on the model facet of our work, one core challenge is to integrate different versions
and scenarios of sub-models, i.e., the change sets, into one central EA model. As this problem
has been researched for some years in the context of model driven software development, we can
apply or adopt existing techniques to merge and integrate models. For instance, Gorek and Kelter
[76] present an approach for matching sub-models in an early project phase. This approach can
be extended and adjusted to distributed developed models (the change sets), as these change sets
usually affect only a subset of the EA model. Hence, these sub-models have to be reintegrated
into the central EA model.

Another problem to be solved is rooted in the different projects’ time spans leading to scena-
rios where projects are using outdated EA information. To handle this problem, we investigate
the approach published by Wenzel et al. [238], which traces model elements through different
versions of models, and the one published by Schmidt et al. [202], that applies history-based
merging of models.

Finally, the most general representation of an EA is a structured text file. Therefore, respective
text merging techniques are of interest as well. According to Mens [149], two-way merging
aims to figure out the differences between two documents, while three-way merging additionally
includes the document from which both documents evolved. In the context of EA evolution,
three-way merging might be promising (see Lindholm [137]), since the projects should use the
EA as central input to develop their solution scenarios and change sets.

The beforehand presented approaches have the assumption in common that the models are
exchanged on a traditional, file-based way. On the contrary, some approaches have proposed
relying on alternative technologies. De Lucia et al. [50] developed a management system which
uses dependency links to support traceability in context-aware change management. The system
can be customized to handle different kinds of software artifacts, e.g., models being serialized

16 Chapter 2. Related Work

in the XML Metadata Interchange (XMI) format [24, 140]. Another approach which is based on
the XMI standard is Odyssey-VCS [156, 171] focusing on software configuration management.
Oda and Saeki [169] propose to use generative techniques in order to manage various types of
visual models.

2.2. Enterprise Architecture Model Evolution

Zimmermann develops in his dissertation [251] a reference process model to guide the Business-
IT-Management (BIM). IT governance, strategic management, multi-project management, and
EA are concepts he reuses. Within the process of project mentoring of the EA, he outlines the
added value of providing up-to-date information regarding the EA model to the projects [251,
pp. 176-178]. Moreover, he highlights that the additional effort on keeping the EA up-to-date
at the end of the project is worth it [251, pp. 176-178]. Unfortunately, Zimmermann neither
illuminates how this update should work nor which problems may arise.

In contrast to Zimmermann [251], Wittenburg [244] appears in outlines an architecture round-
trip. Thus, he depicts the interchange between EA and projects still in a sequential way. But,
there exist several interchanges, which can be understood as small roundtrips. Unfortunately,
Wittenburg focuses on the representation of the application landscape and does not zoom into
the issues we are facing.

Next to a roundtrip is the work of Moser et al. [155]. They model an architecture cycle
which has a continuous interchange with a project cycle. They propose process patterns which
deal with the elicitation of EA data and their quality assurance. Certainly, the authors stay on a
management level and do not give advises how to overcome with issues on the model level.

Since, change sets evolve during the project’s time span, the uncertainty regarding complete-
ness and correctness of the models can be handled by the approach of Johnson et al. [104]. They
observe a network and use a Bayesian network to predict the likeliest representation of the EAs
technology layer. An extension of this approach could allow representing the different solution
scenarios and different evolution steps of the EA. Furthermore, similarity measures applied to
graphs could be valuable to identify elements which were introduced in a project’s change set
but already exist in the EA itself. For instance, Jeh and Widom [103] published SimRank which
can be used to identify similar objects depending on their neighborhood.

EA is used in large organizations and information that is used within the EA is often owned
by different departments. This makes it hard for a central EA team to gather all information
and keep it up-to-date. Fischer et al. propose a federated approach for the maintenance of EA
models [63]. The main idea is that the data is kept within specialized architectures and linked
to a central EA repository. Because this is an organizational as well as technical challenge, the
authors propose a maintenance process that involves different roles.

Farwick et al. elaborate in their work [62] on change events for EA models. Therefore, they
identify, first, a list of EA neighboring processes and related tools which can cause EA change
events. Second, they determine events caused by those processes and categorize them to different
facets like which EA layer is impacted or the as-is or to-be state of the EA model is affected.
Last, they propose a process to incorporate the results of the change events into the EA model.

Other inputs are presented, e.g., by Buschle et al. [39], who facilitate an Enterprise Service

2.3. Enterprise Architecture Evolution 17

Bus (ESB) to extract EA model elements for ArchiMate [224], CySeMol [96, 211], and plan-
ningIT. In contrast, Holm et al. [95] concentrate more on technically observable components as
they map the output of a network scanner to ArchiMate. An extension of this work is presented
by Johnson et al. [104], who incorporate uncertainty into the mapping as they observe a network
and use a Bayesian network to predict the likeliest representation of EA model’s technology
layer. Landthaler et al. [124] conduct a SLR to identify all automated application landscape
documentation approaches. Additionally, they propose a new Machine Learning (ML)-based
technique. Kleehaus et al. [115] propose further different techniques to monitor business, appli-
cation, and technology layer.

The work of Välja et al. [229, 228] focuses on uniting different information from contra-
dictory sources. Hence, they try to estimate the trustworthiness of the sources by facilitating
techniques from the human-computer interaction [175] and data fusion [135] domain. There-
fore, they build their means upon a model of information processing automation. This model is
comprised of the phases of data acquisition, data analysis, decision and action selection, and im-
plementation. In contrast to Välja et al., Kirschner and Roth [113] rely on a human component
to solve arising conflicts from different sources. To get to the point where conflicts need to be
solved, the authors first define a meta-meta-model for EA model repositories to loosely couple
all incoming references of federated tools to the EA meta-model.

2.3. Enterprise Architecture Evolution

EA related research did not only elaborate solely on the technical aspects of EA model main-
tenance. For example, Khosroshahi et al. [112] investigated the social factors influencing the
success of federated EA model maintenance. They structure their research along the socio-
technical system theory framework [33], especially in the areas of structure, people, technology,
and task. Their results show that organizations prefer a strong business involvement, a lean role
allocation, a standardized EA terminology is necessary, and an adequate tool support is needed.

A slightly different point of view is taken by Hauder et al. [92] as they focused on the chal-
lenges of a federated EA model maintenance. Therefore, they took model transformations from
three information sources into account, conducted a survey among 123 EA practitioners, and
performed a literature study. The identified challenges were grouped along four categories, na-
mely data, transformation, business and organization, and tooling.

EA (model) evolution is not barely a technical issue. Usually, the acceptance of EA and its
artifacts within the organization is challenging. Therefore, Brosius et al. [35] study the EA
assimilation and elaborate on the influence of institutional pressures. Those pressures make EA
part of the organization’s work life and, thus, contribute to EA’s intended outcomes. Brosius et
al. can empirically confirm the influence of the institutional pressures on EA assimilation and
EA outcomes. Additionally, the engagement of local organizational stakeholders significantly
mediate the relation between institutional pressures and EA assimilation.

Winter [241] broadens the view on EA and argues that the focus on the traditional EA play-
ers should be widened to those who are not directly related to the IT function. He stresses
that local stakeholders’ acceptance of EA depends on certain preconditions: First, actors need
to be convinced that they benefit of EA. Second, actors need to understand that they can be

18 Chapter 2. Related Work

more efficient. Third, actors need to perceive EA as something that is strategically important
for the organization. Last, actors need to perceive EA deployment as transparent, useful, and
professional.

Wißotzki et al. [243] analyze systematically manifold EA literature sources as well as Enterprise
Architecture Framework (EAF)s in order to derive a set of roles in EA. The results were valida-
ted by dint of an expert interview. Their work presents a generalized overview of EA roles and
relates them to certain EA tasks and required competencies.

Zimmermann et al. [250] aim to support flexibility and agile transformations for both business
domains and related enterprise systems through adaptation and evolution of digital EA. There-
fore, they investigate the digital transformations of business and IT and integrates fundamental
mappings between adaptable digital enterprise architectures and service-oriented information
systems.

2.4. Quality of Enterprise Architecture Models

First, we want to clarify the term of EA model quality. Regarding to ISO/IEC 25010 quality
“is the degree to which a product or system can be used by specific users to meet their needs
to achieve specific goals with effectiveness, efficiency, freedom from risk and satisfaction in
specific contexts of use” [100]. In the context of EA research Ylimäki states that “a high-quality
EA conforms to the agreed and fully understood business requirements, fits for its purpose [. . .]
and satisfies the key stakeholder groups’ [. . .] expectations in a cost-effective way understanding
both their current needs and future requirements” [248, p. 30]. In general, research regarding
EA quality agrees that it is defined by the ability to meet the EA users’ requirements [165, 136,
222, 179]. Most of the related work divides quality aspects of EA into the quality of EA products
(e.g., EA models of current state or future vision), its related services, and EA processes (e.g.,
management tasks like EA planning) [165, 136].

Since model quality is not a research topic solely related to the EA discipline, we also relate
to relevant work from other IS disciplines. In the context of software engineering, the ISO/IEC
organization defines five characteristics to assess a system’s quality and further divides them
into sub-characteristics, namely, effectiveness, efficiency, satisfaction, freedom from risk, and
context coverage [100]. A well-known framework for determining the success of information
systems is the IS success model by DeLone and McLean, last updated in 2003 [52]. Lange et al.
adapted this model to the EA domain and depict EA product quality, EA function setup quality,
EA service delivery and EA cultural aspects as the drivers that influence EA’s user satisfaction
and the intention to use it [125, p. 4234].

At this point, we want to emphasize that the quality framework presented in this work (cf.
Section 8) focuses on assessing the quality of EA models. The EA model is related to the
prior explained concept of EA product quality. We thus understand EA model quality as the
degree of fulfillment towards a set of attributes a model has to fulfill regarding its purpose and
requirements defined by its stakeholders.

In the discipline of enterprise modeling there are approaches that discuss model quality in
general, without focusing on a certain modeling structure. Becker et al. define six principles
that have to be considered when assessing an enterprise model’s quality (e.g., business process

2.4. Quality of Enterprise Architecture Models 19

model, entity-relationship diagram). These principles are namely the principle of validity, the
principle of relevance, the principle of economic efficiency, the principle of clarity, the prin-
ciple of systematic model structure and the principle of comparability [27]. Although, these
principles do not provide explicit measures, they offer a thorough quality frame from different
perspectives regarding a certain model type, e.g. an EA model. Sandkuhl et al. also apply them
to evaluate the quality of their modeling language 4EM and further depict concrete quality attri-
butes: unambiguity, flexibility and stability, homogeneity, completeness, scope, integration and
simplicity [196]. Moreover, Pitschke provides a list of quality attributes for IS models and dis-
cusses them [179]. This list is mainly related to a prior work by Rauh and Stickel from the data
modeling domain [186]. Pitschke expands the quality attributes and explains them in relation to
business process models.

Although literature identifies a lack of research in the topic of assessing EA quality (cf. [165,
122, 216]), some articles investigate EA quality related issues. Ylimäki defines twelve critical
success factors for EA and relates them to maturity levels [248]. In addition, Ravazi et al.
propose a quantitative approach to assess the maintainability and interoperability of a certain
EA [188]. Another generic approach for EA quality assessment is proposed by Lakhrouit et al.
who define a generic evaluation concept model that can be used for several metrics to assess an
EA’s quality [122].

As explained above, general EA quality does not necessarily directly relate to the EA model
as an artifact, but also EA management processes or other services. In the majority of the related
work only general statements on EA quality are made. Still, some articles focus on the investi-
gation of certain attributes that can be used to assess the EA model’s quality. Lim et al. provide
a list of EA quality attributes, which were derived from six established EA frameworks [136].
Likewise, Niemi et al. provide a further list of EA quality attributes based on 14 interviews in
[165]. The authors relate identified attributes to EA product and EA service quality (cf. [125]).
Further, Davoudi and Aliee define measures to assess EA maintainability [48]. Next to their
generic model, Lakhrouit et al. also discuss EA quality indicators they deem reasonable [122].

After analyzing the relevant literature, it becomes obvious that a thorough quality of EA mo-
dels includes both quantitative and qualitative metrics. Khayami suggests a list of qualitative
characteristics of EA models [111]. In contrast, Spence and Mitchell develop quantitative me-
trics for defining an EA models syntactic and semantic correctness as well as its completeness
using insights from set theory [216].

As discussed earlier, the common sense of all articles is that the EA model’s quality has to
be evaluated regarding its purpose and the stakeholders’ concerns [27]. Hence, Lankhorst et al.
emphasize that the establishment of the EA’s purpose and its stakeholders is a vital aspect, each
EA model should follow [127]. As can be seen in this section, numerous research relates to the
topic of EA quality. Still, most of the identified articles do not provide a holistic approach how
to assess the quality of an EA model [165].

Part II.

Enterprise Architecture in
Research and Practice

Chapter 3.

Concerns of EA Stakeholders

As it is important to get an overview over the environment EA takes place, next, we introduce our
work, which elaborates on EA in research and practice. In chapter 4, we structure existing EA
analysis research along common characteristics to enable researches classifying their research
and enabling interested persons capture relevant works faster. But first, we present the results of
conducted interviews resulting in classification of different EA stakeholder concerns, which has
been initially presented in [79].

Motivation Standardized architecture models and frameworks, such as The Open Group Ar-
chitecture Framework (TOGAF) [223], entail valuable EA deliverables. However, these can
hardly be applied without greater adoption. A major reason lies in the high degree of standardi-
zation and comprehensiveness, by which EA deliverables are aimed to become applied to a wide
range of stakeholders and use cases. Yet, leaving EA deliverables untailored to the concerns of
stakeholders jeopardizes guidance effects on both the IT and business side [118].

A few publications cope with the question of how to tailor EA deliverables to different sta-
keholder concerns (e.g., [118, 139, 107, 28]). Despite their discussion around EA deliverables,
the existing literature still lacks a mere concrete intuition to stakeholder concerns on EA. More
specifically, there is a research gap about the hierarchical differences of stakeholder concerns
and their implications to EA. Recognizing these shortcomings in the existing literature, we
formulate our research question:

RQ 1 What are the differences of stakeholder concerns on EA?

In order to identify stakeholder concerns on EA along hierarchical differences, we opt for a
case study to investigate our research objective in a real-life context. Our findings demonstrate
different concerns on EA deliverables and EA, depending on the hierarchical level of the re-
spective interviewee. Using TOGAF exemplary as standardized and highly comprehensive EA
approach, we discuss the implications of our findings for future research.

The research method follows a two-step process, starting with the data collection, followed
by a scheme-guided classification according to Miles and Huberman [150] as well as Eisenhardt
[59] for presenting and discussing the data. The information processed in this work is collected
within the environment already presented in Section 1.4.1. Our final classifications scheme
is comprised of five major dimensions and twelve facilitating characteristics (Table 3.2). We
differentiate between three various types of stakeholders, which are sketched in Figure 3.1. For
more details on the creation process of our classification scheme, we refer to Appendix A.1.

24 Chapter 3. Concerns of EA Stakeholders

Figure 3.1.: EA’s Different Groups of Stakeholder.

Table 3.2.: Stakeholder Concerns on EA.
Cluster Dimension Characteristic Operational Middle Top

Deliverables

Type
Architectures
Policies

Quality
Actuality
Simplicity
Stability

Abstraction Level
Low
High

Organizational Anchoring
Context

Assertiveness
Integration between EA
and other departments
Acceptance of other de-
partments

Transparancy
EA deliverables
EA function

Legend
rarely mentioned
frequently mentioned
often mentioned

3.1. Stakeholder Concerns

In the following, we present the collected stakeholder concerns along the dimensions of the
classification scheme. All concerns were classified by the percentage of stakeholders of each
group reporting to them: Rarely (less than 33% of stakeholders), frequently (between 33% and
66%), and often (more than 66%).

3.1.1. Type

Architectures Interviewees from the operational and middle management level were simi-
larly concerned with architectures (see Table 3.2). The most often reported deliverable was the
as-is architecture. Thereby, concerns referred to infrastructure components on the technology
layer as well as the application layer, i.e., what applications exist and how they are connected.

3.1. Stakeholder Concerns 25

Members of the top management were less concerned than members of the operational and
middle management. As a result of different use cases, interviewees of the top management
mentioned as-is architectures solely as a means of steering.

Policies Policy concerns, discussed mainly in the context of project management and re-
porting activities, referred to complexity-related (e.g., “documents should be formulated in a
simpler way.”) and transparency-related (e.g., “the added value and the function of a policy
should be clear.”) aspects. A further concern, according to the interviewees, referred to guideli-
nes (e.g., architecture principles): On the one hand, interviewees acknowledged the usefulness
of architecture principles. On the other hand, usefulness of architecture principles appeared to
be of limited value once generating too much effort for following them (e.g., “developers ignore
the architecture principles if it is inconvenient.”). Moreover, interviewees concerned missing
assertiveness of the EA, thus, developers are not forced to comply with policies (e.g., “violation
of the architecture principles will not be sanctioned.”).

3.1.2. Quality

Actuality A rarely mentioned concern among all hierarchical levels of stakeholders was ac-
tuality. Interviewees described actuality as expectancy for the case of using the deliverables of
EA (e.g., “... should be up-to-date”). Particularly, actuality has been emphasized for application
layer (e.g., detailed information about applications, communication between applications) due
to its frequency of usage as a basis for architecture design decisions (e.g., “the provided as-is
application layer is not up-to-date. This is insufficient if we were about to use it.”).

Simplicity Another mentioned characteristic of quality was simplicity. Participants stressed
architecture principles to function as guidelines for application developers: Firstly, there should
be a limited number of principles to enable affected persons to keep the overview. Secondly,
principles should not be too complex (e.g., “a multi pages document comprises all information
about the principle privacy and security.”). Finally, deliverables should be easily accessible
(e.g., simple search functionalities along all deliverables, no spread of information in different
sources).

Stability Interviewees expected stability in the management of deliverables (i.e., design, main-
tenance, retirement). Stakeholders throughout all hierarchical levels differentiated two facets of
this concern: First, names of individual deliverables had to be changed only on purpose. Second,
policies should not be changed too often and not too fundamentally.

More generally, quality concerns were reported as important to avoid confusion (e.g., “if a
certain product of EA is renamed, it will take some time to recognize whether the product is
renamed or completely retired.”) and to reduce unintentional effort (e.g., “changing policies
leads to additional effort, because coaching is needed to internalize the changes.”).

26 Chapter 3. Concerns of EA Stakeholders

3.1.3. Abstraction Level

Low Concerns for a low abstraction were mentioned very divergently by the stakeholder le-
vels. Apparently, this characteristic was most relevant for operational management stakeholders.
These stakeholders were particularly concerned with concrete instructions and for operations
usable information. In detail, coaching in projects was requested in order to learn how to build
applications in line with existing policies. Additionally, detailed information on applications as
well as specific information on business structures was concerned. Compared to operational ma-
nagement stakeholders, members from the middle and top management valued a low abstraction
level less high.

High The need for a high abstraction level was reported throughout all stakeholder levels simi-
larly. Concerns were related to the degree of details among steering decisions, which commonly
necessitated a higher level of abstraction. Moreover, a high level of abstraction also favored
better visualization of relevant information to be presented.

3.1.4. Context

Assertiveness Assertiveness played an important role for all interviewees. Concerns of
assertiveness dealt with EA as a control and enforcement function in implementation processes.
This control and enforcement function was particularly highlighted by the interviewees due to
missing sanctions on non-architecture-compliant technological developments and non-principle
conform behavior.

Integration between EA and other departments Like assertiveness, the integration of
EA was stated as important from all stakeholder levels. Concerns referred to the necessity to
integrate neighboring departments into the development of EA policies. Especially, the invol-
vement of the strategy department was mentioned. Moreover, the representatives of business
concerned further involvement in planning processes of EA business aspects (e.g., modeling
business functions and assigning those to applications).

Acceptance of other departments Interviewees argued that IT departments do not follow
the architecture policies for different reasons. Some are not aware of the guidelines. Others are
aware, however, do not follow policies or do not have the resources to follow. On the one hand,
interviewees stated the need for budget to cope with the additional efforts that are generated by
the implementation of architectural principles. On the other hand, budget issues concerned the
sufficient staffing of the EA function.

3.1.5. Transparency

EA deliverables EA deliverables were often mentioned by interviewees from the operational
and middle management. In contrast, interviewees from the top management quoted delivera-
bles occasionally. Concerns referring to transparency mainly resulted as a lack of knowing EA
deliverables (e.g., “I did not know that there exists such a thing like an application portfolio.”).

3.2. Discussion on Stakeholder Concerns 27

Consequently, interviewees suggested a clearer communication of the existing deliverables to
the stakeholders.

EA function The EA function is often acknowledged across all stakeholder groups. The
interviewees often wondered about the process of generating EA deliverables. Most importantly,
the question of how decisions regarding architectures are taken remains unclear (e.g., “what are
the decision processes?”; “what are the inputs of the deliverables?”). Interviewees suggested
a higher degree of transparency of the EA processes as well as their communication toward
affected stakeholders.

3.2. Discussion on Stakeholder Concerns

The review of stakeholder concerns brings about two major distinctions: We found relatively
homogeneous concerns among stakeholders on EA deliverables, such as type, quality, and ab-
straction level. In turn, heterogeneous concerns were found on the role of EA (i.e., context,
transparency), depending on the hierarchical level of the interviewees. In the following, we dis-
cuss these two distinctions of responses along each of our five classification dimensions. For
purpose of demonstrating the implications to EA approaches, we use TOGAF as illustrative
example.

3.2.1. Type

TOGAF [223] differentiates architectures along three levels of granularity: Strategic, segment,
and capability. The stakeholders of these levels -as entailed by TOGAF- correspond to the
identified stakeholder groups in section A.1.2. Consequently, TOGAF states the concern to
deliver in different granularity levels of architecture deliverables to different stakeholder. Unlike
TOGAF, interviewees of the executive management hardly reported concerns on architectures,
which indicate less need for such a granularity level.

Policies are used to ensure implementation governance of the architecture [223] as they set the
frame to steer the application development and to describe the architecture compliance review
process. Furthermore, TOGAF lacks a separation between different stakeholder groups, too.
This lack of differentiation is in line with our case results, finding no differences with regards to
the hierarchical level of stakeholders (such as on policies).

3.2.2. Quality

In TOGAF, actuality does not apply to all EA deliverables [223], which is primarily due to
the high level of abstraction. In contrast, our case results promoted actuality with the same
importance among all hierarchical levels of stakeholders.

Understandability is one of the quality concerns TOGAF defines for EA deliverables [223].
However, interviewees did not acknowledge the term understandability, but the term simplicity.
Understandability selectively reflects simplicity. Interviewees brought up simplicity, though,
in context of all deliverables. This is in contrast to the use of understandability in TOGAF.

28 Chapter 3. Concerns of EA Stakeholders

Further, stakeholders concerned not only an understandable design of deliverables, but also their
easy access. This is also reflected in simplicity, but not in understandability.

TOGAF defines stability as one of the quality criteria [223]. However, it does not differentiate
a relevancy between different stakeholder groups. Within our interviews, we were not able to
confirm such a differentiation either.

In general, the concern for quality characteristics was low among all stakeholder levels. This
may stem from the lack of knowledge regarding EA deliverables among our interview partici-
pants.

3.2.3. Abstraction Level

TOGAF emphasizes the development of EA deliverables in a stakeholder-specific fashion [223].
While promoting a stakeholder focus, TOGAF does not entail a method to systematically iden-
tify stakeholders and their concerns. Moreover, TOGAF proposes a low level abstraction of
architectures for operational managers [223]. In line with TOGAF, our interviewees concerned
deliverables with low abstraction, too. As opposed to TOGAF, stakeholders who belong to the
middle management concerned also deliverables with a low abstraction level.

Compared to low abstraction levels of EA deliverables, stakeholders also raised the need for
high levels of abstraction. Particularly, members of the operational management concerned the
need for a high abstraction of EA deliverables, yet also stated a high abstraction level to be more
feasible for middle as well as top management.

3.2.4. Context

Interviewees often brought up assertiveness to concern controlling the implementation, enfor-
cing policies, and committing adherence to authority structures established by the EA. Certainly,
only the last aspect is reflected properly in TOGAF by its term discipline. TOGAF defines disci-
pline as “a commitment to adhere to procedures, processes, and authority structures established
by the organization” [223]. Therefore, we take over interviewees’ assertiveness to reflect all
pointed out aspects.

Interviewees across operational and middle management named assertiveness of the EA as
an important characteristic. Only stakeholders of the top management were less concerned with
assertiveness. Interviewees assumed that this may stem from the fact that assertiveness regarding
policies is most important on non-strategic levels. Thus, on non-strategical levels, deliverables
are produced which must comply with policies.

According to TOGAF [223], cross integration is an important success factor of architecture
governance which is part of the organizational context. Similarly, interviewees stated the ne-
cessity to integrate neighboring departments into the development of EA policies. Contrary to
TOGAF, our case analysis did not bring about any separation between the stakeholder groups
with regards to the characteristic integration.

Acceptance is selectively reflected in TOGAF [223] as one of the cornerstones for realizing
conformity to procedures, processes, and authority structures. Surprisingly, we observed only
partial interest among interviewees of the top management. This correlates with the promoted
need for a better staffing of the operational management, steered by the top management.

3.3. Implications 29

3.2.5. Transparency

According to TOGAF, transparency is the availability of all implemented actions and their de-
cision support for authorized organizations and provider parties [223]. Moreover, TOGAF pro-
motes the necessity of transparency also for understanding deliverables [223]. One facet of
transparency mentioned by our interviewees dealt with the communication of existing EA de-
liverables. On the one hand, particular members of the operational and middle management,
who are often guided by EA deliverables (e.g., complying with policies), inherently promoted
transparency. On the other hand, members of the top management who are not guided by EA
deliverables were less concerned by transparency of deliverables. In contrast, we could not find
any separation for transparency regarding the EA function.

3.3. Implications

Discussing our findings on the illustrative example of TOGAF, we conclude four implications
for EA approaches in general. Firstly, two rather than three different levels of abstraction for
EA deliverables appear to be sufficient: On the one hand, interviewees stated only concerns
regarding two different layers, namely low and high level. On the other hand, stakeholders of
the top management throughout our interviews appeared not to be interested in architectural
deliverables.

Secondly, some concerns are not entirely reflected in TOGAF. For example, the definition
of quality concerns should be expanded to consider all EA’s deliverables, not being limited to
architecture principles. While interviewees were concerned with simplicity, simplicity is not re-
ferred to in TOGAF’s terminology. The term understandability selectively reflects simplicity, but
not in a fully comprehensive manner. Therefore, it may be helpful for TOGAF’s completeness
to either replace understandability with simplicity or to add simplicity to deliverable qualities.

Thirdly, we identified a transparency concern for the EA function and its deliverables. Future
research should elaborate on strategies how EA departments could more effectively advertise
their deliverables and the EA function itself.

Lastly, our results confirm TOGAF’s standardization ambitions. However, our results also
show the need for a stakeholder specific tailoring, following stakeholders who expect different
abstraction levels of deliverables according to their hierarchical position in the organization.

Apart from the improvement potentials of TOGAF, our investigation delivered additional im-
plications for EA research: Interviewees were just modestly interested in quality criteria of EA
deliverables. Future research can elaborate on this in organizations where EA deliverables are
better known. Moreover, the results may be transferable to other domains in organizations which
have crossing functions, like IT-security or strategy, which can be evaluated in the future.

3.4. Limitations

This research has some limitations. Firstly, all interviewees belonged to the IT. Consequently,
the results may be limitedly applicable to the business. As one of the main objectives of EA is to

30 Chapter 3. Concerns of EA Stakeholders

incorporate the business side, future research may elaborate on their concerns in general as well
as on distinctions of stakeholder on different hierarchical level among these concerns.

Secondly, while focusing exclusively hierarchical differences due to our research objective,
there are further differences in stakeholder concerns within the same hierarchical level, e.g.
Chief Executive Officer (CEO) versus Chief Information Officer (CIO), too. However, all in-
terviewees were part of the IT side. Therefore, interviewees of a certain hierarchical level were
relatively homogeneous in our study. For a study comprising interviewees from the IT side as
well as the business side, this is not imperatively the case.

Finally, one limitation refers to the analysis of a single case study. There are still more con-
cerns included in TOGAF, such as further quality criteria or architecture patterns, which have
not been reflected in the case at hand. For future research, more detailed in-sights from multiple
stakeholder groups will become necessary to strengthen and extend our findings and amplify the
number of considered quality criteria.

Chapter 4.

A Taxonomy of EA Analysis Research

Beforehand, we have elaborated on the concerns of EA stakeholders in practice. Those stakehol-
ders can also benefit from the taxonomy that we present next. This taxonomy allows practitioners
to grasp research faster, which is relevant for their special purpose. Additionally, researchers can
more easily find related work and determine the produced scientific contribution. The following
results have initially been presented in [23].

Motivation The continuous establishment of EA techniques as a means to model a holistic
representation of corporate structures, processes and IT infrastructure still attracts many resear-
chers today [10, 193]. While themes like EA frameworks, modeling languages, and the mana-
gement of EA are reasonably represented in meta-research, EA analysis, a fundamental practice
in EA [147], has received much less attention from the research community.

As EA analysis is one of the most relevant functions in EA, it enables informed decision-
making and plays a crucial role in projects [147]. Following, we will use the definition suggested
by [197]:

Definition 4.1 (EA analysis) EA analysis is the property assessment, based on models or other
EA related data, to inform or bring rationality to decision support of stakeholders.

The property is related to an analysis concern (e.g., risk, business-IT alignment, cost, etc.).
Our definition of concern agrees with the Oxford Dictionary of English definition, which is “A
matter of interest or importance to someone”. We consider as an analysis concern the main
objective of an analysis approach such as cost, risks, performance and so on.

EA analysis is based on the data collected from models and documents. EA modeling itself is
a cost and time-consuming effort and, therefore, organizations expect to extract value from those
EA models in return [128]. EA analysis enables informed decisions and plays a crucial role in
projects because it manages the project’s complexity and provides the possibility of comparing
architecture alternatives [145].

To date, there are a plethora of analysis paradigms such as ontology-based [22], probabilistic
network analysis [106] and network theory [197]; which use several types of EA model based on
Web Ontology Language - Description Logic (OWL-DL), ArchiMate, Graphs and so on. Every
analysis supports a different analysis concern and, thus, for a sound evaluation of the architecture
different kinds of analyses are required [187].

Despite the importance of EA analysis, EA practitioners and researchers do not have an overall
shared and acknowledged comprehension about EA analysis techniques. Little research about

32 Chapter 4. A Taxonomy of EA Analysis Research

mechanisms to classify, compare, or organize the existing EA analysis research can be found.
As a consequence, the task of choosing an analysis approach might be challenging when little
guidance is provided. Even worse, the design of analysis efforts might be redundant if there is
no systematization of the analysis techniques due to the inefficient socialization of practices and
results.

We contribute with one important step in that direction deriving a taxonomy to classify ana-
lysis research according to its layers, analysis concerns, analysis techniques, and modeling lan-
guages. We also evaluate the proposed taxonomy against recent EA analysis research. Doing
so, we create foundational elements aiming to foster the development of this research field and
also establishing alignment among researchers, tool designers, and EA subject matter experts.
Therefore, we answer the following question:

RQ 2 How is the EA analysis research classified according to its analysis concerns, techniques,
and modeling languages?

To tackle this research question, we apply qualitative and descriptive research, which is split
up into four steps. First, we apply the SLR method according to Kitchenham [114] to gather a set
of papers related to EA analysis research. Second, we perform a data categorization [45] to end
up with a taxonomy answering the question: “How to classify EA analysis research according
to its analysis concerns and modeling languages?”. We gathered a second data set with papers
published between 2016 and September 2018. Finally, we apply the created taxonomy created
on the evaluation data set to evaluate and improve the taxonomy. More detailed information can
be found in the appendix A.2.

4.1. EA Analysis Taxonomy

The taxonomy has four main dimensions: EA Scope, Analysis Concern, Analysis Technique,
and Modeling Language, depicted in Figure 4.1.

4.1.1. EA Scope Dimension

By investigating the architecture models, we observed that plenty of papers operate their eva-
luation on rather specific components instead of looking at a whole model. Even if the authors
introduce a case study with a comprehensive EA model, the evaluation considered very spe-
cific parts of it for example only the technical layer or process layer [235, 197]. In [215] the
authors used an EA model’s visions and goals hierarchy for their evaluation although the ex-
emplary data-set consists of much more information. In this case, the relevant components of
the EA model were the dependencies between visions and goals. In [246, 19, 174] even larger
components were used spreading along multiple layers of the EA model.

Our analysis shows that the EA model related work sticks to the well-known layered structure,
e.g. defined in TOGAF [223] or by Winter and Fischer [242]. Accordingly, our EA Model Scope
dimension is composed by following well-known layers:

• Motivation - Since the publication of [242], recent frameworks offer the opportunity to
model elements modeling the motivation or the purpose of the organization (cf. ArchiMate

4.1. EA Analysis Taxonomy 33

E
A

 A
n

a
ly

si
s

T
a

x
o

n
o

m
y

S
co

p
e

M
o

ti
v

at
io

n

B
u

si
n

es
s

P
ro

ce
ss

A
p

p
li

ca
ti

o
n

T
ec

h
n

o
lo

g
y

C
o

n
ce

rn

A
ct

o
r

A
sp

ec
ts

A
p

p
li

ca
ti

o
n

P
o

rt
fo

li
o

A

n
al

y
si

s

B
es

t
P

ra
ct

ic
e

C
o

st
A

n
al

y
si

s

E
A

 A
li

g
n

m
en

t

E
A

 C
h

an
g
e

E
A

 D
ec

is
io

n
s

E
A

 G
o

v
er

n
an

ce

In
fo

rm
at

io
n

D

ep
en

d
en

ce
o

f
an

 A
p

p
li

ca
ti

o
n

M
o

d
el

C

o
n

si
st

en
cy

P
er

fo
rm

an
ce

R
is

k

S
tr

at
eg

y
C

o
m

p
li

an
ce

S
tr

u
ct

u
ra

l
A

sp
ec

ts

T
ra

ce
ab

il
it

y

M
o

d
el

in
g

L
an

g
u

ag
e

A
rc

h
iM

at
e

C
o

m
b

in
ed

M
o

d
el

s

D
O

D
A

F

F
o

rm
al

S

p
ec

if
ic

at
io

n

G
ra

p
h

s

In
te

n
ti

o
n

al

M
o

d
el

li
n

g

O
w

n

P
ro

b
ab

il
is

ti
c

N
et

w
o

rk
s

U
M

L

T
ec

h
n

iq
u

e

(S
em

i)

F
o

rm
al

is
m

B
as

ed

M
et

ri
c

B
as

ed

P
ro

b
ab

il
is

ti
c

B
as

ed

S
tr

u
ct

u
ra

l
A

n
al

y
si

s

V
is

u
al

 A
n

al
y
si

s

Figure 4.1.: Proposed Taxonomy.

34 Chapter 4. A Taxonomy of EA Analysis Research

3.0.1 [225]). Additionally, recent research stresses the need for modeling the business
motivation [215, 227]. Therefore, we opt for a motivational scope, even if it is implicitly
included in the business layer of Winter and Fischer [242].

• Business - This represents the fundamental corporate structure as well as any relationships
between actors or processes of the business architecture [242].

• Process - This layer represents “the fundamental organization of service development,
service creation, and service distribution in the relevant enterprise context” [242].

• Application - Since there was no observation of requirements for a deeper differentia-
tion of business integration and software architecture, we merge the layer “Integration
Architecture” and “Software Architecture” of Winter and Fischer [242]. Consequently, it
represents an organization’s enterprise services, application clusters, and software servi-
ces.

• Technology - This layer represents the underlying IT infrastructure [242].

4.1.2. Analysis Concern Dimension

We define concerns as relevant interests that pertain to system development, its operation or
other important aspects to stakeholders [99]. Since an approach may suit more than one concern
at a time, several papers are classified with more than one concern (e.g., [210, 232]). According
to our research results, the dimension Analysis Concern consists of 55 concerns, grouped in
fifteen categories:

• Actor Aspects - This category covers papers dealing with actor’s relations to business
process, goals, and the impact on them of EA changes, e.g. the organization’s impact on
the motivation and learning of employees [159].

• Application Portfolio Analysis - It means to analyze why certain applications are well
liked and widely used than others and what it means to the EA [157].

• Best Practice - Papers elaborating on the value of best practice analysis establish EA
patterns or evaluate real world EAs with respect to EA patterns [60, 126, 173].

• Cost Analysis - Papers related to the value of cost analysis are manifold. For example,
they estimate or assess the cost of the current IT architecture [68], or determine the Return
on Investment (ROI) of EA [190]. Another facet is related to the costs of changing com-
ponents of the EA [121, p. 440],[210, p. 25].

• EA Alignment - For instance, EA redundancy is contained within papers related to EA
alignment. Those papers identify redundancies and eliminate unplanned redundancies
[41, p. 118]. Additionally, there are papers promoting alignment between layers [34].

• EA Change - This value covers concerns related to modifications of the current EA.
Scientific research related to this value elaborates, for example, the consequences of chan-
ges, scenarios’ choices, or performs gap analysis.

4.1. EA Analysis Taxonomy 35

• EA Decisions - This value covers approaches related to the decision-making process itself.
Exemplary, it is related to the rationale behind decisions, stakeholders’ influence on the
decision-making process, or methods to evaluate alternatives [180, 181].

• EA Governance - Research related to EA Governance evaluates EA from a strategic
viewpoint, comprehending the analysis of EA’s overall quality and its function. This
value includes works dealing with EA effectiveness, EA data quality, EA documentation,
or metrics monitoring [48, 40].

• Information Dependence of an Application - This category aims to evaluate dependent
applications on EA, helping CIOs to manage their application landscape and to eliminate
redundancies [2].

• Model Consistency - This value aims to evaluate the integrity of EA models and its con-
sistency through time and organizations’ evolution [22, 64].

• Performance - This value is concerned with specific measures of performance, e.g., EA
component performance, business performance, or system quality [72, 160].

• Risk - Papers related to the value of risk elaborate on different aspects: risk of compo-
nent’s failure and its consequences, information security as a whole, EA project risks, or
EA implementation risks [72, 77].

• Strategy Compliance - Research on Strategy Compliance analyze if EA decisions, EA
projects, models, and its structure are compliant with the organization’s strategy [182,
219].

• Structural Aspects - This value covers analysis how components are organized, the rela-
tions among the components and their emergent complexity, possible ripple effects, clus-
tering issues, and positional values in the structure [4, 132].

• Traceability It represents the need of querying or tracking components that are connecte-
d/linked to a particular component or have specific attributes values.

4.1.3. Modeling Language Dimension

In some papers, the proposed method relies on certain properties introduced by specific frame-
works [246, 174]. Others require EA models where the actual meta-model was of less impor-
tance or they require models that follow either less formalized or more general meta-models
[197]. Researchers, therefore, may require model data to follow a specific conceptual format
which is captured by the third dimension Modeling Language. In this case, conceptual format
serves as a generic term for meta-model or framework.

We identified several modeling approaches, some already existing, others created by the aut-
hors to suit their specific analysis approach. We categorized the modeling techniques into nine
values of the dimension:

36 Chapter 4. A Taxonomy of EA Analysis Research

• ArchiMate - Obviously all research modeled with ArchiMate is classified within this
value. Mainly, there can three subcategories be distinguished: Firstly, papers applying
ArchiMate [182, 48]. Secondly, papers extending ArchiMate [77, 40]. Finally, papers that
explicitly used the Archimate adapted or merged with other entities and attributes [182].

• Combined models - This category comprises papers that use more than one modeling
language to perform their analysis, e.g., [221] which uses Business Motivation Model
(BMM) and intentional modeling together with ArchiMate to evaluate if and how business
rules and goals are compliant with the organization’s directives.

• DODAF - Papers related to this category, obviously, use the incorporated model of Department
of Defense Architecture Framework (DoDAF) [218].

• Formal specification - This category is characterized by the attempt to describe EA mo-
dels with textual languages or mathematical specifications such as set theory [152], on-
tology [102, 20], or Domain Specific Language (DSL)s [29]. Usually, the related papers
build their models aiming to take advantage of reasoning techniques to support EA analy-
sis.

• Graphs - In this value, the EAs are modeled as graphs, with their components and re-
lations being represented by nodes and edges, respectively. In addition, design structure
matrix is included because they are structurally equivalent to graphs. Examples can be
found in [72, 12].

A special sub case of EA graph models are probabilistic relational models, influence di-
agrams, Bayesian networks, and fault tree analysis models. All those models work with
uncertainty and probability principles in their modeling approaches [173, 106].

• Intentional modeling - This category covers papers concerned with goals, modeled with
the I* framework [249] and related models [16, 146]. Commonly, these papers aim to
analyze strategy related concerns.

• Own - In this value, we included papers that present their own EA modeling framework
and it is not classifiable in none of the other categories [126, 97].

• Probabilistic networks - This category incorporates all models, which work with uncer-
tainty and probability principles [173, 97]. Performance metrics along all EA layers are
common concerns.

• UML - This category covers papers that use Unified Modeling Language (UML) [205,
158] or UML-based models [153, 159] to perform their analysis.

4.1.4. Analysis Technique Dimension

This dimension covers techniques and methods used to perform EA analysis. We identified
a plurality of different approaches, as a large portion of the approaches was proprietary, and
many were poorly detailed, focusing on the results rather than the analysis process. The results

4.1. EA Analysis Taxonomy 37

were classified in 22 categories according to their main characteristics: (Semi) Formalism based,
Analytic Hierarchy Process (AHP), Architecture Theory Diagram (ATD) based, Axiomatic De-
sign, Best practice conformance, Business Intelligence (BI), Business-IT-Alignment (BITAM),
Compliance analysis, Design Structured Matrix, EA Anamnesis, EA executable models, EA
misalignment catalog, Fuzzy based, ML techniques, Mathematical functions, Metrics based,
Multi-criteria analysis, Prescriptive models, Probabilistic based, Proprietary techniques, Struc-
tural analysis, and Visual analysis. About 70% of the studies corresponded to the following five
values:

• (Semi) Formalism Based - It includes description languages, ontologies, set theory, and
other formalisms. All those techniques try to take advantage of reasoning mechanisms to
perform (semi-) automated analysis of the EA, through queries, model consistency, and
restrictions checks, for example [64, 126].

• Metric-based - Analysis approaches including several punctual quantitative metrics to
evaluate operational data from the components (e.g., performance, usage, workload) or
from the overall EA (e.g., entropy) [235, 151].

• Probabilistic-based - Cause and effect, uncertainty and probabilistic events are concepts
present in all variations of methods belonging to this category. Typical techniques are
Bayesian networks, probabilistic Bayesian networks, extended influence diagrams, and
fault-tree analysis. Those are frequently used to perform EA components’ performance
analysis [173, 97].

• Structural analysis - In this category, structural aspects of the overall EA or specific
layers are analyzed. Methods and techniques based on network theory are employed to
identify critical points, clusters or overall indexes for the EA structure [245, 55].

• Visual analysis - This category covers several techniques that use the power of visua-
lization intrinsic to the models to extract valuable information for the experts. Typical
concerns analyzed are alignment between layers, the impact of changes or failures in the
overall structure [200, 132].

The previous dimensions were defined as a result of the SLR performed, as described in
Appendix A.2. In order to assess the taxonomy, we updated the data through a new SLR (see
Figure A.2, Step 3) addressing papers published after the first research’s interval and applied the
taxonomy to its final data-set, containing 46 articles.

The papers on the new data-set addressed 26 concerns classified in 13 categories already
present on the taxonomy, which indicates its good coverage. From the 47 preexisting concerns,
six were merged into three ones and eight new concerns were mapped on the update (into the
categories of Actor aspects, Best practice analysis, Actor aspects, EA Alignment, EA Change,
Model consistency, and Structural aspects).

Regarding modeling approaches, 89.1% of studies presented model-based analysis. Only two
new values of modeling approaches were detected, one of them also resulting in one new cate-
gory (DoDAF models). The papers from the data set were classified, according to the taxonomy,

38 Chapter 4. A Taxonomy of EA Analysis Research

into seven categories – i.e., only one paper was not covered by the taxonomy’s preexisting va-
lues, which, again, indicates its good coverage.

Our first study resulted in a considerable number of different analysis techniques and methods,
classified into 23 categories. When applying the results to the new data-set, we found 19 of those,
and five new categories, determined by specific approaches.

4.2. Discussion

Following, we present existing research classified by our taxonomy and discuss the insights.
All the evaluated papers were covered by the five layers of the EA scope dimension (cf. Figure

4.2). Regarding the frequency of EA targeted scopes, most of the papers approached more than
one layer. Business and Application are the layers that received more focus on the analysis in
general - 77% and 83% of the total, respectively.

We identified about 22 different modeling approaches, divided into nine categories (ArchiMate-
based, Combined models, DoDAF, Formal Specification-based, Graphs-based, Intentional Mo-
deling, Own, Probabilistic networks-based, and UML-based). The distribution of the studies,
from both SLRs, regarding their modeling approaches is depicted in Figure 4.3.

Even though ArchiMate-based and graphs-based represent a large part of the studies, 34.9%
of the approaches used a proprietary model or a combined model to perform their analysis.
The plurality of different modeling approaches reflects the lack of standardization regarding EA
models and corroborates the affirmation from [105] that “there is no clear understanding of what
information a good enterprise architectural model should contain”.

Our taxonomy defined 52 concerns, classified into 15 categories: Actors aspects, Application
Portfolio Analysis, Best practice analysis, Cost analysis, EA Alignment, EA Change, EA De-
cisions, EA Governance, Information dependence of an application, Model consistency, Perfor-
mance, Risk, Strategy Compliance, Structural aspects, and Traceability. The amount of papers
on each concern category is illustrated by Figure 4.4.

It is important to consider that some studies approached more than one concern on their ana-
lysis (e.g., [209] performs an analysis on eight different aspects of the Application scope). Ac-
cording to our research’ results, the focus of EA analysis has been in five main categories: EA
Change, EA Alignment, Strategy Compliance, Performance and Structural Aspects, as shown in
Figure 4.4. Papers covering these concerns correspond to 64.7% of the whole final set.

We identified a plurality of different analysis approaches (i.e., techniques or methods), clas-
sified in 22 categories according to their main characteristics, as shown in Figure 4.5. A large
portion of the approaches was proprietary, and some of them so specific that we gathered them
resulting in a specific category. Many approaches were poorly detailed, focusing on the results
rather than the analysis process.

In our present literature review about EA analysis, from both set of papers, 57.5% of the
works presented empirical data, while 28.7% of them used simulated and 13.8% only theore-
tical data. Although several publications present empirical cases, some of them do not present
enough information about how the study was conducted and the benefits obtained from the ana-
lysis approach (e.g., [75]). This lack of information leads, on the one hand, to the issue of the
reproducibility of methods, as some techniques require a specific set of data. This set of data is

4.2. Discussion 39

Figure 4.2.: Number of Studies Per Scope Category.

Figure 4.3.: Percentage of Studies on Each Modeling Language.

40 Chapter 4. A Taxonomy of EA Analysis Research

Figure 4.4.: Number of Studies Per Concern Category.

Figure 4.5.: Number of Studies Per Analysis Techniques Category.

4.3. Limitations 41

not always available, due to classification as confidential by its owning organization [75]. On
the other hand, the data set might be artificially created for a special purpose, because there was
no data publicly available and, therefore, the created data set might not applicable to real world
scenarios (e.g., [74, 220]). Despite no empirical evidence to which degree EA research faces
those issues is found, many examples of a fallback to artificial evaluation by using exemplary
data sets can be given [70, 215, 19, 246]. In those cases, the developed artifact normally un-
dertakes an evaluation at non-realistic conditions and produces results which do not hold in a
realistic setting [233].

4.3. Limitations

As for limitations, we did not perform backward and forward searches. However, because of
the broad coverage of our search string, we are confident that the additional search would not
uncover much more works. In our SLR, we did not perform a qualitative assessment of primary
studies. We accepted intentionally all the works that aimed to perform EA analysis, without a
very strict quality criteria, to be able to have a broad understanding of the field and the authors’
purpose.

Part III.

Processes to Improve EA Models

Chapter 5.

An Enterprise Architecture Model
Roundtrip

Hitherto, we have developed a taxonomy to classify EA analysis research and elaborated on the
concerns of EA stakeholder. As our results indicate, architecture models in general and their
actuality in special are relevant factors of EA stakeholder. Therefore, we will develop different
processes to ensure the actuality and quality of EA models in the next chapters. First, we sketch
a process, which enables enterprise architects to keep a central EA model up-to-date. Second,
we derive a continuous delivery pipeline based on the previously mentioned process to automate
as many steps as possible. Last, we develop an approach to preserve contradictory information
of different sources in an EA model. The following results have initially been presented in [84].

Motivation EA is no end in itself but has to provide central, important, and up-to-date in-
formation of the organization (e.g., business processes, application and data architectures, or
infrastructure components) to its clients, e.g., to all projects of an organization. The results pro-
duced by the projects may change the EA model, thus, contributing to a continuous evolution of
the EA. But often, the interaction between the projects and the EA department is not coordinated
systematically, leading to only a weak acceptance of EA, to unnecessary overhead, and to a state
where the EA model and the results developed by the projects are not in sync, but inconsistent.

There are a lot of different drivers for changes of the EA model [62], which contribute to
a continuous evolution of the EA. As our research is related to a project driven environment,
we will following refer to projects as the main event of changes to the EA model as already
identified by Sousa et al. [213] and confirmed by Farwick et al. [62]. Though, projects are just
an example for changes and can be replaced by any other trigger.

A systematic EA model roundtrip process is one approach to overcome the problems of EA
model consistency rooted in the continuous evolution of the model by different projects. Existing
research focuses solely on single aspects of such a roundtrip process, like model merging issues
[109] or quality related questions [165]. Since a holistic perspective on a roundtrip for EA is
absent, we identified our research question associated with an architecture roundtrip approach:

RQ 3 How does an effective architecture roundtrip process looks like supporting the distributed
EA evolution?

Obviously, this process has to define the roles and their responsibilities as well as the needed
process steps. Knowing these steps, we can investigate which steps can be either automated to

46 Chapter 5. An Enterprise Architecture Model Roundtrip

Figure 5.1.: Dependencies Between Different Projects Elaborating on the EA model.

avoid error prone manual work [155], like modeling components several times, or technically
supported, like suggestion of possible duplicates. Moreover, existing research may be facilitated
to implement certain process steps.

To tackle the issue of a distributed EA model evolution, we opt for DSR as presented in
Section 1.4.3. For more details on the procedure of applying DSR in this case, we refer to
Appendix A.3.

5.1. Research Problem

As already argued, EA has to provide central, important, and up-to-date information of the
organization to its clients. Therefore, it is necessary to include the changes from all important
sources of information as soon as possible. However, the input can be contradictory. Following,
we will elaborate further, how these contradictions can arise.

The EA model and the distributed projects are related in different ways among each other,
cf. figure 5.1. Each project receives all needed information and a copy of the central EA model
based on the current version of the central EA model when it starts. All architectural changes
performed by the project and affecting the EA model are collected in a so called EA change set
(denoted ∆Px(EAy)). For instance, project P1 receives its needed information based on the
first version EA1 and creates the change set ∆P1(EA1). At the end of project P1, its change set
is returned to the EA model to be integrated and used to evolve EA1 to the succeeding version
EA2.

Projects do not necessarily know about each other and the decisions they are taking. The-
refore, we assume that they develop solution scenarios independently resulting in a distributed
evolution of the EA. This distributed evolution leads to different challenges: For example, the
change sets of projects P1 and P2 are not completely distinct; they share some common EA in-

5.2. Roundtrip Process 47

formation. When both change sets are returned, the union of the change sets with the EA model
can cause different conflicts [110]: On the one hand, there is no conflict between the change sets
and the EA. Consequently, there is no need for action. On the other hand, if there are chan-
ges, four different types can be distinguished: structural changes, attribute changes, reference
changes, and move changes.

The integration of change sets into an EA model is needed to keep it consistent and up-to-date.
But this becomes more difficult if we consider the different time spans of projects. E.g., project
P3 starts when EA1 is the current version and ends after version EA2 already exist, integrating
the change sets of projects P1 and P2. Hence, there could be data contained in the change set
of project P3, which is based on outdated EA information. In those cases, the projects P1 and
P2 are already closed and, obviously, their output cannot be reworked if the issues is caused by
one of them. Consequently, the enterprise architects have to correct the misleading information
in the EA model by themselves.

To sum up, we aim to develop an EA model roundtrip process that guides the project-driven
distributed evolution of an EA model. This helps to offer up-to-date information and models to
EA’s clients at any time, thus, increasing the acceptance and benefits of EA within an organiza-
tion.

5.2. Roundtrip Process

The EA model roundtrip process depicted in figure 5.2 frames our approaches to tackle the issue
of a distributed EA model evolution. As we introduced the problem to solve, we present the
current version of our process after several iterations and introduce its mayor steps following.
But at first, we briefly characterize the two roles that are mainly involved:

In TOGAF [223], the Open Group exemplary defines five categories of EA stakeholders: cor-
porate functions, end-user organization, project organization, systems operation, and external.
Shrinking it to the EA model roundtrip process, we differentiate two main groups of stakeholder:
Those who are just interested in the results of the process, and those who are actively involved
in the process itself. The most important stakeholders of the last category are:

Enterprise architects are responsible to maintain the EA model and keep it up-to-date. They
have to ensure that the EA model evolves appropriately and have to provide EA information to
all EA clients.

Solution architects are members of the project and responsible to create project specific solu-
tion scenarios based on the overall EA model. The developed solutions may affect the EA model
and have to be integrated appropriately.

As an EA model is always just a representation of the EA of an organization, a revealed
deviation between the EA and the EA model is the trigger for the enterprise architects to evolve
the EA model. On the one hand, this can be a genuine change of the EA such as the introduction
of an application, the retirement of a process. On the other hand, a deviation can arise from
faulty or incomplete information in the EA model.

The enterprise architects process these revealed deviations, which includes determining the
change set, aligning the data of the change set to a proper EA level, assuring data’s quality,
updating the EA model, and offering updated information to EA’s stakeholders. To acknowledge

48 Chapter 5. An Enterprise Architecture Model Roundtrip

the two different stakeholder groups and their different doing, the EA model roundtrip process
is composed of two different processes: The maintenance of the central EA model and the
development within projects. In the following we will discuss the single steps of the EA model
roundtrip process in more detail.

5.2.1. Process Trigger

Trigger for the EA model evolution process have been researched by the Farwick et al. [62] in
the past. Therefore, we will present their results in the following.

Trigger for EA model changes can be classified by two different categories: the impact on the
affected area of the EA and the origin they appear from. Not every change within the organi-
zation may cause a trigger for an EA model change. Farwick et al. [62] postulate according to
Winter and Fischer [242] that changes beyond the scope of the EA model should not trigger the
EA model change process. For instance, we assume a setting within the technology layer of the
EA model. A solved service ticket regarding a non-running server does not affect the EA model
as this information is on a very detailed level. In contrast, the introduction of a new server might
have an impact, because a new technical platform could be used.

A further categorization for process triggers arise especially from projects and strategic plan-
ning as they might not only contribute to the as-is of the EA model, but also to the to-be and
the will-be. The to-be refer to the planned evolution of the EA. Will-be states correspond to EA
model states that are decided and will become as-is in the future. However, to-be and will-be are
not necessarily identical.

Farwick et al. [62] identify also a technical perspective of process triggers. More concrete,
they detail the operations that the EA model can change, as elements in the model can be added,
updated, or removed. Additionally, they state a generic operation consisting of a combination of
the beforehand mentioned operations.

Farwick et al. [62] gathered an non-exhaustive list of tool-supported EA neighbored proces-
ses:

• Project Management: Projects are fundamental drivers for EA and, consequently, EA
model changes [213]. Farwick et al. [62] stress the challenge to identify which projects
are architectural relevant and, thus, should be process triggers.

• Release Management: As release management serves as planning for new IS, respecti-
vely, their releases, this information can used as a trigger [6, 89].

• License Management: Newly acquired licenses indicate the introduction of a new IS.
Contrary, a non-renewed license indicate the retirement of an IS. Additionally, new busi-
ness functions could be introduced as an IS might be introduced to support them [214].

• Change Management: Depending on the detail level of IT Infrastructure Library (ITIL)
[201] changes, those can be valuable information sources for EA model maintenance. In
contrast to projects, those changes cover also small changes not worth it to set up a project.

• Service Management: Similar to change management many service processes are main-
tained according to ITIL [201]. Those processes can also serve as input for EA models.

5.2. Roundtrip Process 49
E
nt
er
pr
is
e
A
rc
hi
te
ct

Revealed
Deviation

Determine
Change Set

So
lu
tio
n
A
rc
hi
te
ct

Candidate
Change
Set

Solution
Architecture

Evolve EA Provide Updated
Information

Change
Set

EA

Project
Start

Design Solution
Architecture

Evolve EA

Align Change
Set

Assure Data
Quality Update EA

Change
Set

Quality
Assured
Change
Set

EA

Preprocessed
Change Set

Figure 5.2.: BPMN Model of the EA Model Roundtrip Process.

50 Chapter 5. An Enterprise Architecture Model Roundtrip

• Organizational Management: Buckl et al. [36] discuss how organizational restructuring
should be taken into account for EA. Consequently, changes in Human Resource Mana-
gement (HRM) and Lightweight Directory Access Protocol (LDAP) can cause changes in
EA models.

• Service Registries: Organizations register technical services in registries, e.g., Service
Oriented Architecture (SOA) or micro-service registries. Additional, communication al-
ong such services is often steered along certain technologies, like an ESB [39].

5.2.2. Change Set Determination

Posterior the occurrence of a possible change event, the change set for the next roundtrip needs
to be determined. As determining a change set is a known problem in model driven software
development, some approaches solving this issue are investigated by, e.g., Gorek and Kelter [76],
Wenzel et al. [238], and Schmidt et al. [202]. According to these authors, we define change set
as follows:

Definition 5.1 (Change Set) A change set is a collection of all necessary atomic changes (cre-
ate, update, and delete) to transform a model from one state to another.

Furthermore, the work of Kehrer [109] deserves more interest. Based on the results of the
aforementioned works, he states the necessity to group atomic changes of a model to a single
logical change group. For instance, if a method should be moved from one class to another class,
there are two atomic changes: the deletion of the method in the one class and the addition of
the method into the other class. This simple example shows that both atomic changes are only
useful in combination. Otherwise, the model becomes inconsistent. Hence, a simple change set
determination as proposed by Mens [149] or Lindholm [137] is not suitable, since it does not
take into account the relations between atomic changes.

To enable the enterprise architects determining the change set correctly, the data provider,
e.g., the solution architects, deliver a so called candidate change set besides the modeled (project)
architecture. This candidate change set contains the atomic changes as well as the logical change
groups. Furthermore, the enterprise architects have to consult with the data provider about the
changes while determining the change set to ensure the consistency of the EA model.

5.2.3. EA Model Evolution

Change Set Alignment

After determining the change set, the EA model can be evolved. But first, the data of the change
set may be aligned to yield the right abstraction level, as usually the architecture models provi-
ded by the solution architects are more detailed than needed for EA. The respective alignment
consists of two steps: First, the identification and deletion of too detailed elements and, second,
the insertion of derived relations.

Identifying too detailed elements is challenging, since the right level of abstraction depends
on the organization and even in the research community there is no common agreement on the

5.2. Roundtrip Process 51

right level of abstraction [11]. Indications can be aggregation or composition relations between
elements where the aggregated/composed elements may be needless. Especially, if the aggrega-
ting/composing element is already part of the EA, the aggregated/composed elements may not
be of interest for EA.

Furthermore, element types which are not part of the EA model are candidates to be removed,
too. Another technique to determine unintended elements within EA models can be supervised
machine learning. Enterprise architects could train algorithms, which propose in future itera-
tions possible candidates that may are unintended. However, this list of techniques might be
incomplete and further research is necessary.

If elements are removed, transitional relations may get lost, which should not happen as this
data is still important and needed. Van Buuren et al. [231] suggest a method to derive a relation
between two non-connected ArchiMate elements by analyzing the path between these elements
and choosing the most general relation. This can be applied to ensure the consistency of the EA
model.

Hence, if an element is removed, all connected elements and their relations have to be ana-
lyzed to choose the most general relation. This relation will be added to the model, whilst the
analyzed relations and the corresponding element will be removed.

EA Model Quality Assurance

A quality assurance is necessary to ensure the consistency of the EA model, including, for ex-
ample, the detection of duplicates, the correction of typing errors, or the amendment of semantic
misuse of modeling elements.

In this context, we define duplicates as elements in a change set which are already modeled
in the EA but cannot matched to each other. This can be rooted in the solution architect’s lack
of knowledge regarding the EA model. Therefore, they may introduce elements again. For
instance, a solution architect models Windows Server 2008 SP3, but the EA model just contains
the more general Windows Server 2008. This leads to a duplicate that needs to be identified.

To identify duplicates similarity measures can be applied. For example, the well-known Soun-
dex algorithm by Russell [191] can be used, which also helps to overcome with typing errors.
Furthermore, structural similarities can be found by using some techniques applied at the field
of web search. E.g., Blondel et al. [30] propose a measure for similarity between vertices and
apply it to synonym extraction.

The aforementioned semantic misuse can be caused by a wrong mapping or a wrong modeling
by the solution architects. Whereas, a wrong mapping is negligible due to its one time correction
effort, a wrong modeling is a main issue which should be avoided. For example, our experience
shows that the element type Application Component of the application layer and the element
type System Software of the technology layer often get inverted within an ArchiMate model.

The beforehand discussed methods of duplicate identification can be used as well as methods
for anomaly detection to overcome with the semantic misuse. Approaches for anomaly detection
are presented among others by Noble and Cook [167], or Eberle and Holder [58].

To ensure and assess the quality of a certain EA model, we did a first step by designing an
EA Quality Framework (EAQF) (see section 8). Therefore, we adapt the work of Becker et al.
[27] to our purpose and come up with a structure consisting of three parts. One part forms the

52 Chapter 5. An Enterprise Architecture Model Roundtrip

basis on which the other both parts are established. In this basis the purpose, objectives, and
stakeholder are determined. The other parts are utilized to either rate the quality of the whole
model or the quality of a certain view.

EA Model Update

There are two different origins of contradictory EA data input. First, there are technical sources
like network scanners or databases, e.g., the Configuration Management Database (CMDB).
Those sources, mostly contained in the technology layer [229, 228], may deliver data on different
levels of details or even outdated data. Second, data provided by human EA suppliers may cause
conflicts, because there are different ways to model the same aspect or they rely on wrong or
outdated data.

To handle such contradictions, so far two different kinds of approaches are proposed: The
first approach tries to resolve the contradictions, e.g., by estimating the trustworthiness of the
sources [229, 228]. The second approach tries to prevent contradictions before they emerge, for
example, by providing a holistic framework to assess the quality of EA models [227].

After determining the change sets, aligning the data, and assuring data’s quality, the enterprise
architects can import the processed change set into the EA model. This step needs to be done
mostly manually, because conflict resolution cannot be solved fully automatic. Those conflicts
arise from the problems stated in section 5.1. The enterprise architects have to keep the change
sets in mind, which were defined by the solution architects. If a conflict arises, the enterprise
architects and the modeler who have issued the conflict have to discuss these change sets.

An alternative is not trying to solve contradictions, but to keep them. Exemplary, we propose
a method which creates a EA model based on probabilities in section 7. The basic idea is that
projects plan competitive scenarios and estimate their probability to become true. Then, this
information is stored within the EA model.

5.3. Provision of Updated EA Models

Providing the updated information to EA’s stakeholders is straight forward. All reports have to
be created newly and pushed into their communication channels. An area of special interest in
the context of the architecture roundtrip is the project specific view on the EA model. This view
is the basis on which the solution architects model the solution architecture and needed changes
of the EA model.

We distinct two different ways, how the project specific view on the EA is handled. On the
one hand, the solution architects receive the view at the project start and it is used as it is. On
the other hand, the solution architects already worked on an ancestor version of the view and a
merging of both views is necessary to avoid data loss.

The merging consists of three different cases. First, an element does not exist in the ancestor
version and has to be added. Second, an element exists in both views, but it has been changed.
In this case the element in the ancestor version will be overwritten. If this element is already
used it gets marked to inform the solution architect. Third, an element is not contained in the

5.3. Provision of Updated EA Models 53

ancestor version. Therefore, it should be deleted. If the element is already in use, it should be
marked instead of being deleted to enable the solution architect to correct the affected views.

Chapter 6.

A Continuous Delivery Pipeline for EA
Model Evolution

Previously, we have sketched a process to keep a central EA model in an environment up-to-
date, in which different projects refine the EA model in a decentral, uncoordinated manner.
Following, we will present a continuous delivery pipeline to automate as many steps of the
process as possible, which has initially been presented in [86].

Motivation EA are currently mostly modeled manually and changes require huge manual
efforts. This is especially true when complex organizational structures need to be covered and
the organization is constantly changing. The pace of changing structures and complexity is
expected to increase and this makes it even more challenging [240]. In recent years, the field
of enterprise architecture management already adopted techniques to reduce model maintenance
effort. However, there are still challenges in regards to conflicting changes, different semantics
and responsibilities [61].

In the field of software engineering, changing requirements are also very common. Software
engineering deals with this by becoming as agile as possible and uses various social and technical
techniques to improve towards this direction [90].

Examples for social techniques are the ongoing adoption of agile process frameworks like
Scrum or Kanban and even techniques directly related to the development itself like pair pro-
gramming. Technical examples are the rise of continuous integration and delivery. All of these
techniques lead to the same shared goal: Shorten feedback loops [94]. Techniques used for
software engineering are also being adopted for other parts of organizations: With the DevOps
movement, which emphasis on the collaboration of development and operations, infrastructure
is being covered using techniques typically used in the context of software engineering and
processes are also adopted [51].

To overcome the beforehand stated problems of EA modeling, we proposed already an archi-
tecture roundtrip process in Section 5. However, this process is still abstract and needs to be
instantiated. To do so, we facilitate the well-known technique of Continuous Delivery (CD) and
realize the architecture roundtrip process. Accordingly, we formulate our research question:

RQ 4 How can continuous delivery help to overcome the challenges of manual EA model’s
maintenance?

To develop the pipeline, we opt for DSR as presented in Section 1.4.3. For more details on
the procedure of applying DSR in this case, we refer to Appendix A.4.

56 Chapter 6. A Continuous Delivery Pipeline for EA Model Evolution

Prepare	EA
Model	Data

Check	EA
Model	Quality

Evolve	EA
Model

Stakeholders
Approve	EA

Model	Changes

Update	Global
EA	Model

Figure 6.1.: EA Model Maintenance Deployment Pipeline.

6.1. A Pipeline for EA Maintenance

Before we present our pipeline for EA maintenance, we like to clarify the term CD. Humble
and Farley [98] define CD as a set of practices, which enables to speed-up, automate and opti-
mize the delivery of software artifacts to the customer with higher quality and lower risks in a
continuous manner. Continuous delivery uses an automated development infrastructure, called
deployment pipeline, which automates nearly every step of the delivery process. Each commit of
a developer enters the deployment pipeline and an automated process is started, which produces
a new software increment as a result artifact.

The deployment pipeline incorporates all activities known from continuous integration [56] as
automatic build, unit testing, and static code analysis. In addition to these, the pipeline performs
testing activities like integration, performance, and security testing. All these tasks are executed
in a defined order of stages. After each stage, the test results are evaluated at a quality gate,
which stops the processing if the quality conditions are not met. If all quality gates are passed,
the software artifact is stored and can be accessed and used from external clients; it is released.

Next, we will sketch our pipeline for an EA model maintenance. Fischer et al. [63] contribute
two main findings to our pipeline. First, they propose an EA model maintenance process, which
we unite with our work from [84]. Second, they offer a fine-grained role concept, which we
incorporate into the pipeline as well.

To implement our deployment pipeline for EA model maintenance, we opt for the prototype
JARVIS presented by Steffens et al. [217]. JARVIS is the implementation of a conceptual
model for a new generation of software delivery systems. It focuses on two specific challenges
for adopting CD. The first is the lack of flexibility and maintainability of software delivery
systems. The second is the insufficient user support to model and manage delivery processes
and pipelines. Further, it allows integrating the proposed processes into a deployment pipeline.
Therefore, we create a Business Process Model and Notation (BPMN) representation of the
process as JARVIS is equipped to use BPMN as modeling language.

From the BPMN model, we derive the necessary activities, which needs to be implemented
as microservices. During this, we transform the process model to reflect better the principles of
JARVIS and continuous delivery in general. Figure 6.1 shows the resulting BPMN model for
EA model maintenance and Figures 6.2 to 6.6 the concrete realization of each sub-task.

The first process steps from Fischer et al. and Hacks et al. of initializing and collecting the
necessary data of the EA model evolution can be omitted. We assume, that in an environment
following the principles of continuous delivery [98] all artifacts like the global and the special
EA models are under version control and stored in an appropriate Software Configuration Ma-
nagement (SCM) system like subversion or git. Each change to one of these models needs to be
committed to the repository. A change results in a new version of the model. Whenever a change

6.1. A Pipeline for EA Maintenance 57

Prepare	EA	Model	Data

Check	Out
Global	EA
Model

Check	Out
Project	EA
Model

Compute
Change	Set

Align	Model
Data Quality	Gate

Figure 6.2.: Sub-Task Prepare EA Model Data.

Check	EA	Model	Quality

Consistency
Check

Syntax	Check

EAM	KPI
Metrics Quality	Gate

Figure 6.3.: Sub-Task Check EA Model Quality.

Evolve	EA	Model

Consistency
Check

Syntax	Check EAM	KPI
Metrics Quality	Gate

Check
Disconnected
Components

Figure 6.4.: Sub-Task Evolve EA Model.

Stakeholders	Approve	EA	Model	Changes

Prepare	Update
Report

Notify
Stakeholder

Collect
Responses	&
Approval

Quality	Gate

Figure 6.5.: Sub-Task Stakeholders Approve EA Model Changes.

58 Chapter 6. A Continuous Delivery Pipeline for EA Model Evolution

Update	Global	EA	Model

Prepare	Update
Report

Figure 6.6.: Sub-Task Update Global EA Model.

is committed to the repository for the special architecture our deployment pipeline is triggered
automatically.

The technical infrastructure of the SCM and the deployment pipeline ensure the automatic
processing of the first process steps of both proposed maintenance processes. Necessary no-
tifications can be sent by the system to check if the actual process is compliant to the overall
process, but effectively we want the stakeholders only to be involved if really necessary.

The pipeline starts by first checking out the new models versions from the repository and
provide both to the first transformation activity within JARVIS. This activity is called “Compute
Change Set” and uses the provided input models to compute the existing deviations between
both and provide these as a new artifact called “Change Set”. All existing artifacts are now
processed in the next transformation activity “Align Model Data”. Hacks et al. [84] argue that a
specific project may contain more detailed information than the more general global EA model.
Therefore, the two models have to be aligned in order to be effectively compare- and merge-able.
The following quality gates check the successful execution of the proceeded activities and the
existence of the three artifacts. Afterwards, the first stage of our deployment pipeline is finished.
This stage corresponds to the checkout and compile stages in classic software delivery pipelines.

Fischer et al. and Hacks et al. both incorporate steps to check the model quality like consis-
tency or correctness of syntax. We follow their idea and model these as assessments to check
models quality. The assessments are performed on singular artifacts of the preceding stage and
produce a report each. This stage corresponds to static analysis for software source code. Du-
val et al. [56] incorporate an inspection phase into their continuous integration model in which
relevant metrics for software quality are measured and evaluated. We adopt this by applying
well-known EAM Key Performance Indicator (KPI)s [148] to models inside the pipeline.

In the next stage, the artifacts are integrated to produce a new and updated candidate for the
EA model. This candidate is then examined by the same assessments as before. The modular
architecture allows us to integrate even more sophisticated assessments, which can be performed
on EA models. We integrated a check for disconnected components, which checks if parts of the
resulting EA model candidate has components, which are not connected to the rest of the model.
Based on the assessment reports, the quality gate decides if the pipeline should continue to the
next stage where the candidate is presented to the stakeholders of the overall process.

Up to this point the pipeline is performing its tasks completely autonomous, so the stakeholder
are only involved if the model candidate has reached a certain degree of quality due to the
assessments performed before. The manual approval of the stakeholders corresponds to the
User Acceptance Test (UAT) stage in classic pipelines. Bass et al. [25] define the UAT stage
as the last one before going to production and are meant to ensure these aspects of the delivery
process which cannot be automated.

6.2. Demonstration 59

Table 6.7.: Mapping From EA Model Roundtrip Process to the EA Model Maintenance Deploy-
ment Pipeline.

EA Model Roundtrip Process EA Model Maintenance Pipeline
Task Sub-Task Task Sub-Task
Determine Change Set Prepare EA Model Data Compute Change Set
Evolve EA Align Change Set Prepare EA Model Data Align Model Data
Evolve EA Assure Data Quality Check Model Quality
Evolve EA Update EA Update Global EA Model
Provide Updated Information Update Global EA Model

- Stakeholder Approve
EA Model Changes

Design Solution Architecture -

If this stage is successfully executed, the EA model candidate is promoted to the final stage
where it is deployed to the EA model repository. The next run of the pipeline will use this new
version of the EA model and so the roundtrip is completed. Additionally, all reports build now
on this updated data and EA’s stakeholder can receive the latest information.

As already mentioned, our pipeline can understood as an implementation of the EA model
roundtrip process presented in Section 5. Most mappings are intuitively, as we can recognize in
Table 6.7. Table 6.7 sketches that some tasks are more detailed in the roundtrip process. E.g.,
we explicitly state that the updated EA model should be provided to the stakeholders, while
in the pipeline, we subsume this in the update task. Furthermore, the design of the solution
architecture is not modeled explicitly in the pipeline, since it does not take the same holistic
perspective as the roundtrip. One thing, which is not reflected in the roundtrip, is the approval
of the stakeholders. This should be added in a next iteration of the process.

6.2. Demonstration

To demonstrate and evaluate our artifact, we conduct a fictitious case study. We opt for a ficti-
tious case study to create reproducible results as the facilitated example of an airport departure
system presented in section 1.4.2 is freely available. Contrary, a fictitious case study lacks a real
world evaluation. However, as most companies classify their EA models as confidential, results
on those would not be reproducible.

6.2.1. Facilitated Metrics

To simulate the “Check Model Quality” step of the pipeline, we check the EA model against
KPIs from the EAM KPI Catalog [148]. As we do not want to implement all KPIs of the
catalog, we randomly chose three of them as representatives for all KPIs. Those KPIs are only
exemplary and can be replaced by any other calculable metrics. Nonetheless, we have to keep in
mind that it can be quite challenging to assess the necessary input parameters (e.g., if interviews
have to be conducted).

60 Chapter 6. A Continuous Delivery Pipeline for EA Model Evolution

PM guideline adherence checks if IT projects adhere to the stated PM guideline [148, p. 28].
As the information model of the KPI catalog is not directly reflected in ArchiMate, we identify
work package as an IT project and business object with a property PMguideline as PM guideline.
To compute this KPI, the project managers, first, answer the degree the project adheres to every
guideline. Second, we compute the average for every project along all guidelines. The catalog
defines three categories of adherence. If a project adheres to 100% to the guideline it is full
adherence. Between 100% and 75% it is a minor deviation which will cause a warning in our
pipeline. With less than 75% it is a major deviation causing a fail of the pipeline.

Application continuity plan availability [148, p. 19] measures the degree how completely
IT continuity plans for business critical applications have been drawn and tested for the IT’s
application portfolio. To reflect the information model in ArchiMate, we map the application to
application component and continuity plan to business object with the property ContinuityPlan.
The responsible for the operation of the applications answer if there exists a continuity plan for
a certain application and if it is tested. The KPI is then computed by the number of critical
applications where a tested continuity plan is available divided by the total number of critical
applications. The value is good above 80%. Normally, the value will between 60% and 80%
resuming in a warning to related stakeholders. If the value drops beyond 60% the value is
problematic and the pipeline fails.

IT process standard adherence [148, p. 33] checks if a certain application (application com-
ponent in ArchiMate) adheres to the IT standard processes (application process in ArchiMate).
This is answered by the process responsible and then calculated by the number of applications,
which adhere to an IT standard process, divided by the total number of applications. The value
is good at 100%. Normally, the value will between 80% and 100% resuming in a warning to
related stakeholders. If the value drops beyond 80% the value is bad and the pipeline fails.

Besides the EAM KPI Catalog, we check also the connectivity of the graph representing the
EA. A graph is connected if there is a path between every pair of nodes. We assume that the
model of an EA should be always connected. If the model contains isolated elements or sub
graphs, there are parts in the organization, which are not related to the other parts. So to say,
there are parts in the EA pursuing different goals and, therefore, different organizations within
the organization. Nevertheless, for two organizations there would be two EA’s. Consequently,
we expect the model of the EA to be connected. Otherwise, the pipeline should fail.

6.2.2. Implementation of the Pipeline

Our designed pipeline for EA model maintenance was implemented for the continuous software
delivery system JARVIS [217] and each activity not natively supported by JARVIS was imple-
mented as an independent microservice following the architectural framework of JARVIS (cf.
table 6.8). From JARVIS, we reused the complete infrastructure and general activities like the
git checkout activity and the quality gate activity.

To simulate the distributed character of our case with a centrally maintained EA model and
several projects evolving this central model, we set up three git repositories. The first repository
contains the central EA model. The other repositories simulate different projects elaborating on
the central model. Therefore, they clone the central repository at the beginning of the project

6.2. Demonstration 61

Table 6.8.: Implemented Microservices Within JARVIS.
Activity Purpose Microservice JARVIS native
CheckOut EA Mo-
del

Get the central model from git.

CheckOut Project
EA Model

Get the decentral project model from git.

Compute Change
Set

Compute the changes to the central EA model
made by the project.

Align Model Data Remove too detailed information from the mo-
del.

Quality Gate Check if all preceding activities were successful.
Consistency
Checks

Check the model for consistency flaws.

Syntax Check Check if the model adheres to the ArchiMate Ex-
change Format syntax.

EAM KPI Metrics Three different microservices checking the adhe-
rence to the EAM KPIs.

Evolve EA Model Update the central EA model by the changes
done by the project.

Check Discon-
nected Compo-
nents

Check if the EA model as a graph got disaggre-
gated.

Prepare Update Re-
port

Collect all effective changes to the central EA
model.

Notify Stakehol-
ders

An email is sent to all stakeholders containing all
changes.

Upload EA Model
To Repository

Upload the new version to git.

62 Chapter 6. A Continuous Delivery Pipeline for EA Model Evolution

Table 6.9.: Exemplary test cases.
Test
case
ID

Input Expected
outputPM guideline

adherence
Application
continuity plan
availability

IT process
standard
adherence

Connected

1 100% 100% 100% TRUE success
6 100% 70% 100% TRUE warning
7 100% 70% 90% TRUE warning
8 100% 50% 100% TRUE fail

and conduct their changes on the model before they provide it back to the central repository by
a pull request.

6.3. Evaluation

To evaluate our pipeline, we conduct an equivalence class test [38, p. 623] where the values of
the metrics serve as input parameters (three respectively two classes per KPI) and the behavior
of the pipeline (i.e., successful, warning, and fail) represents the output. To test the pipeline, we
combine each possible input class and determine the expected output for each combination re-
sulting in 54 test cases. We always choose the worst expected output (fail>warning>successful)
if different outputs would be possible. An extract of four exemplary test cases is presented in
Table 6.9.

For the execution, the presented example model from section 1.4.2 was stored in a git reposi-
tory and used as the global EA model. A variant of the model was stored in a second repository
and was used as the repository for a simulated specific project model. The variant introduced
changes to the original model which had an negative impact on the model KPIs, especially to
“Application continuity plan availability” and “IT process standard adherence”.

The execution of the test cases by triggering the pipeline with different inputs showed that
our approach is feasible. The expected behavior of our pipeline could be observed. In case of
a failing pipeline the execution always stopped at the first KPI assessment in the Model Quality
stage. This is caused in the fact, that we already test the KPIs on each model in this stage, so
the assessment of the project model results in a fail. By deactivating this assessment the pipeline
performs the Model Execution stage and fails at this point. Both behaviors are correct. Due
to this phenomenon we recognize, that our pipeline is already performing a simpler inspection
process for the models provided by projects, it is embedded in the global EA model maintenance
process.

6.4. Discussion

Before, we presented our pipeline and its application on a fictitious example. Our results show
that the existing approaches are missing certain steps, which we incorporated into our pipeline.

6.5. Limitations 63

For example, our roundtrip process lacks a step for an evaluation of EA KPIs, which are repre-
sented in the Model Quality stage and in the Model Evolution stage of our pipeline. Therefore,
future evolutions of this process should include such mechanisms. As the KPIs can be easily
computed and evaluated automatically, we can apply it inside in a continuous delivery pipeline.
Furthermore, the pipeline incorporates a simple inspection process of models provided by pro-
jects. We think, it may be a good idea to extract this inspection process into its own independent
pipeline and use it during the project solution development. This would lead to a similar result
as with Continuous Integration and Continuous Delivery. Continuous Delivery can be seen as
an extension of Continuous Integration as Fowler argued [67]. The project pipeline would only
consider the single project model as our maintenance process also considers the global EA mo-
del and an EA model candidate which integrates changes from the project model into the EA
model.

In addition, the roundtrip approach has a need for the incremental and iterative nature of an
agile development process. The project solution delivers its model only one time to the main-
tenance process. With incorporating continuous delivery, the project can deliver the changed
model every time to the overall maintenance process. So, the project will get feedback on the
compatibility with the global EA model earlier and can adapt to this feedback more easily. The
deviations between global and specific model are therefore minimized.

On the other hand, changes to the EA model are much earlier distributed to other projects
in the organization, as their maintenance process will use the adapted EA model also for other
active projects. So the deviations between the various projects are minimized. In result, the
automation of the maintenance process may lead to more relevant EA model, which represents
the current state of the organization and its enterprise architecture in a much more accurate way.
Furthermore, the whole process is completely transparent and most important traceable, which
supports further requirements regarding compliance and security.

The process of Fischer et al. [63] lacks the roundtrip approach. As we count on short feed-
back cycles as typical for agile development, we overcome this shortcoming. In addition, our
proposed pipeline reduces the involvement of stakeholders and the necessary manual work to a
minimum. Stakeholders only assess EA model candidates which has achieved a certain degree
of quality.

Furthermore, we introduced a new metric in section 6.2.1 to measure the connectivity of the
EA model represented by a graph. For our case study we assumed that the complete graph
needs to be connected. However, depending on the needs of the organization under observation
multiple connected components are desired. Another organization’s need could be for a metric
to assess the certain degree of connectivity for the whole EA or its sub graphs. As our case study
is only fictitious, it does not offer further insights into these aspects and needs to be investigated
in future research.

6.5. Limitations

However, our research includes still some limitations. First, we were not able to test our appro-
ach in a real world environment. Such a field evaluation may raise additional issues, especially
related to the influence of our approach on the sociological environment. So far, we focused

64 Chapter 6. A Continuous Delivery Pipeline for EA Model Evolution

only on technical aspects, but internal resistance might hinder our approach.
Second, we just took a single project as data provider for our pipeline into account. A plenty

of distributed data provider might cause issues, we did not consider thus far. In particular, we
encourage short feedback cycles, which might cause problems as well if the mindset of the
involved employees is missing.

Third, we took a very technical view on the problem. For instance, we assumed for simplicity
reasons that the needed input for the KPIs, which we facilitate for our quality gate, can be
computed easily. However, the assessing of certain inputs for the KPIs can be quite challenging,
which needs to be further evaluated in future research. Additionally, there might be not only one
perception of a KPI as multiple stakeholders with a diverse background and possibly different
expertise and expectations contribute to its assessment and interpretation, which has to be taken
into account.

Chapter 7.

A Probabilistic Enterprise Architecture
Model Evolution

Both artifacts presented before have in common that they include steps to resolve conflicts ari-
sing from contradictory information. However, there a situations in which we want to keep the
contradictory information, for example, because the information describes future states of the
EA model and we still not know which information will be the truth. Therefore, we present next
an approach to tackle this issue, which has initially been presented in [82].

Motivation As already stressed, the EA model is one central artifact of EA and it supports
the EA’s stakeholders to create added value [165]. Consequently, EA has to provide central,
important, and up-to-date information to its stakeholders. For this purpose, EA needs to collect
data from several sources which may be contradictory.

There are two different origins of contradictory EA data input. First, there are technical
sources like network scanners or databases, e.g., the CMDB. Those sources, mostly contained in
the technology layer [229, 228], may deliver data on different levels of details or even outdated
data. Second, data provided by human EA suppliers may cause conflicts, because there are
different ways to model the same aspect or they rely on wrong or outdated data.

To handle such contradictions, so far two different kinds of approaches are proposed: The
first approach tries to resolve the contradictions, e.g., by estimating the trustworthiness of the
sources [229, 228]. The second approach tries to prevent contradictions before they emerge, for
example, by providing a holistic framework to assess the quality of EA models [227].

Both approaches presented before, which try to solve the conflict, have in common that they
try to determine one single truth for the model. However, in some cases it might be useful
to keep the contradictory information. For example, there are two contradictory information
from different sources and it is not possible to estimate which one is true. Therefore, we want
to keep both information and do not want to abolish one. Another example could be that both
information describe alternative future EA scenarios and we do not know which one will become
true.

Consequently, we formulate our research question:

RQ 5 How can evolutionary EA scenarios provided with uncertainty information be presented
in an EA model?

This research question encloses four facets:

66 Chapter 7. A Probabilistic Enterprise Architecture Model Evolution

1. The EA model needs to provide uncertainty regarding the existence of its entities.

2. The EA model needs to reflect different evolutionary scenarios along a certain time-span,
because projects may deliver competing scenarios for different points in time.

3. As interaction with the EA model is needed, e.g., to integrate new scenarios, the proposed
approach should define process guidelines, by means of a set of rules, to add and remove
scenarios to an EA model as well as how to handle different versions along a certain time
series.

4. A version of the EA model without uncertainty is needed, e.g., the management concerns
an EA model with fewer details or the used EA tool cannot represent uncertainties.

In order to develop means to reflect uncertainty in EA model evolution, we opt for DSR in
accordance to Peffers et al. [178]. Therefore, we generalize the Predictive, Probabilistic Archi-
tecture Modeling Framework (P2AMF) [106] (cf. section 7.1) to a simple graph representation
and add capabilities to represent uncertainty regarding future states of the model.

To discuss our work, we create a proof of concept prototype using a graph database containing
a small EA model, transform our procedures to Cypher [162] to calculate different EA model
states, and, finally, apply Cypher queries to the EA model. We do not rely on our established
example of an airport departure system (cf. section 1.4.2) as it incorporates a high degree of
complexity, which would raise the complexity of our prototype as well. However, this would
complexity is not necessary for our purpose.

7.1. Architecture Modeling Framework for Probabilistic
Prediction

In the following we present concepts to represent a probabilistic EA for solving quality issues.
Our solution is based on P2AMF, a framework to model uncertainty in class and object diagrams
proposed by Johnson et al. [106]. Therefore, they facilitate Object Constraint Language (OCL)
and add attributes storing existence probability values for objects or relations. Moreover, object
attributes can be stochastic. However, we are only interested in objects and relations among
them.

The following example illustrates P2AMF. Assume there are two classes (Service and Cloud)
connected by an association. As a service might be down or we are not absolutely certain about
its presence, its existence is modeled with an uncertainty expressed by a Bernoulli distribution
with a probability of 0.98. In other words, a service has a probability of 98% to be existent and
2% to be not existent. Each service is provided by a cloud. As we have no secure knowledge
regarding the relation between the service and its respective cloud, the association between Ser-
vice and Cloud is also fraught with uncertainty. This may lead to a situation in which the defined
cardinalities get violated. For more details on this issue and how to solve it, we refer to Johnson
et al. [106], especially Section 5.

Second, there is one central cloud instance. Since we definitively know about the presence
of the cloud and due to the advent of modern technologies ensuring its up time, we assume

7.2. A Probabilistic Enterprise Architecture 67

Service

existence

Cloud

existence

Server

existence

Provision

existence

Execution

existence

1..*

1

1..*

0..1

Figure 7.1.: P2AMF Example Class Diagram.

the existence of the cloud equal to 1. One central part to ensure such a up time, is to execute
the cloud on several servers. As not every server is utilized to execute the cloud, we expect a
probability of 70% that a server executes a cloud (cf. line 8).

1 context Service::existence:Boolean
2 init: Bernoulli(0.98)
3 context Provision:existence:Boolean
4 init: Bernoulli(0.98)
5 context Cloud::existence:Boolean
6 init: Bernoulli(1.00)
7 context Execution:existence:Boolean
8 init: Bernoulli(0.70)
9 context Server::existence:Boolean

10 init: Bernoulli(0.97)

Listing 7.1: P2AMF Expression Describing Figure 7.1.

Last, we assume that the existence of a server to be present as 97% (cf. line 10). This
probability distribution expresses our belief that the server will be installed as planned. However,
all those distribution estimations depend on the knowledge of the modeler and should be ideally
supported by historical data.

7.2. A Probabilistic Enterprise Architecture

P2AMF provides a framework to represent uncertainty in class and object diagrams. However,
if we apply this approach to solve our research problem, two shortcomings occur: First, it is
restricted to EAs modeled with UML class and object diagrams. Consequently, dedicated EA
modeling languages like ArchiMate [225] are not supported. Therefore, a more general repre-
sentation is needed. Second, the special needs of decentralized performed projects contributing
to a distributed EA evolution are not sufficiently reflected neither. Those needs can be satisfied

68 Chapter 7. A Probabilistic Enterprise Architecture Model Evolution

by applying Dynamics Bayesian Networks [47] similar to the idea by Johnson et al. [104].
To get a general representation of EA models, we describe an EA model as a pair of a set of

nodes and a set of relations: EA = (N,R). A node, n ∈ N , represents an architectural element
of the EA like a business process, an application, or a server. A relation, r, is a tuple of two
architectural elements, which are linked somehow to each other:

r ∈ R ⊆ {(u, v) : u, v ∈ N}. (7.1)

To model uncertainty, we introduce a probabilistic existence function

p : N ∪R→ {x ∈ R | 0 ≤ x ≤ 1} (7.2)

annotated as p(e) which returns the probability of a node or a relation to be existent. Those
probabilities can be determined in different ways. First, the value could be calculated similar to
the approach presented in Johnson et al. [104]: The more often a certain element appears within
a reported data set, the higher is its probability to be existent. Second, experts could estimate
these probabilities.

Unfortunately, calculating the probability whether a certain scenario will be realized, falls
short, because this needs a large amount of data, typically produced in an automated way. But,
this is not the case in the EA domain due to the following reasons: First, project architects
model a future state which could not be captured automatically. Second, projects architects
would model only changes they plan to carry out. Consequently, changes would appear seldom.
Third, all projects rely on the same data basis. If a project removes an element, other projects
will not, because they necessarily do not know that this element does not exist anymore. Hence,
the model would never change. Therefore, calculating the probabilities is not applicable in our
case.

Expert estimation seems to be a more promising approach to determine existence probabilities
of architecture elements. Obviously, estimation is biased and not perfect, but research has shown
that even more formal approaches are not necessarily better [108]. Moreover, the estimation
effort is low compared to the suggested calculations. Therefore, we opt for expert estimations.

Project architects or project managers are possible experts to estimate these probabilities.
There are two different levels of granularity conceivable to estimate probabilities: First, experts
can estimate the probability for each node and relation individually. Second, experts can esti-
mate the probability for a complete scenario consisting of many nodes and relations to become
existent.

Apart from the question of who should estimate, it is also important to answer the question
when the estimations should be conducted. Obviously, there is the initial estimation at the begin-
ning of a project when the experts know about the different possible scenarios. This estimation
should be updated every time the probabilities of the scenarios change fundamentally, e.g., be-
cause one of the scenarios got discarded.

As estimating each node and relation individually is too fine-grained, we take estimating the
probability of complete scenarios as more feasible. Let S be the set of all scenarios. To represent
a scenario s ∈ S we annotate it as a quadruple with s = (N+

s , R
+
s , N

−
s , R

−
s), N−s ⊆ N and

R−s ⊆ R. To differentiate between added and removed elements of the EA, we introduce + to
describe that a node or relation is added and − to describe that a node or relation is removed.

7.2. A Probabilistic Enterprise Architecture 69

Additionally, we extend the definition of p so that it also returns the probability value of a
scenario to be existent:

p : N ∪R ∪ S → {x ∈ R | 0 ≤ x ≤ 1}. (7.3)

Furthermore, it might occur that different projects deliver their results for the same point in time.
Therefore, it is necessary to know which scenarios are competitive to each other. Thus, we group
all competitive scenarios into one set: SC ⊆ S, where the sum of all scenario probabilities has
to be 1:∑

s∈SC

p(s) = 1. (7.4)

In other words, we know every competitive scenario which delivers its results to a certain point
in time.

The following short example clarifies this concept. We assume an EA model simplified to
nodes and relations as depicted in Figure 7.2(a). Additionally, there is a project contributing to
EA’s evolution by proposing two competitive scenarios (cf. Figure 7.2(b) and 7.2(c)). Either
scenario 1 or 2 will be implemented. An expert estimates the realization of scenario 1 with
p = 0.6 and scenario 2 with p = 0.4. Within both scenarios the node M is added as well
as the relation between M and D. Furthermore, a relation between D and F is added in both
scenarios. Both scenarios differ in handling the node K. Scenario 1 replaces this node by node
L and additionally links L to node C. In contrast, scenario 2 keeps node K and adds a relation to
node C like in scenario 1.

A

B

C

D E

F

G H I

J

K

(a) Origin EA

A

B

C

D E

F

G H I

J

L

M

(b) Scenario 1

A

B

C

D E

F

G H I

J

K

M

(c) Scenario 2

Figure 7.2.: Possible Evolution Scenarios of an EA Model.

For example, scenario 1 and 2 could introduce an application and establish an interface be-
tween this application and another one. Moreover, they could introduce a connection between
two existing applications. Furthermore, another connection between two applications is set up

70 Chapter 7. A Probabilistic Enterprise Architecture Model Evolution

in scenario 2. In contrast, scenario 1 retires this application and introduces a new one with the
same connections.

To merge an origin EA model with all competing scenarios (leading to EA’), the existence
probability for each node and each relation has to be calculated. For added nodes and relations,
we simply sum up the estimated probabilities along all scenarios s ∈ S. If nodes or relations
are removed, we have to subtract the estimated probabilities from 1. If a node or relation is
unchanged, it keeps its initial probability. This leads to the following equation to calculate the
probability for a node n ∈ N ′ = N ∪

⋃
s∈S

N+
s of EA’:

p(n) =

∑
s∈S

getP (n,N+
s) n ∈

⋃
s∈S

N+
s ,

1−
∑
s∈S

getP (n,N−s) n ∈
⋃
s∈S

N−s ,

p(n) else.

(7.5)

with

getP (n,No) =

{
p(n) n ∈ N,
0 else.

No : set of nodes (7.6)

The equation for a relation r of EA’ looks similar. To explain and clarify these equations, we
merge the origin EA model with scenarios 1 and 2 from Figure 7.2. The result is depicted in
Figure 7.3(a). The solid lines represent nodes and relations with p = 1.0, the dashed lines with
p = 0.6, and the dotted lines with p = 0.4. Two observations can be made. First, nodes and
relations occurring in both scenarios get a value of 1. Second, node K and its relation to E have
a probability value of 0.4, because both are removed in scenario 1 and, therefore, the probability
value has to be inverted.

A

B

C

D E

F

G H I

J

K

L

M

(a) Merged Version

A

B

C

D E

F

G H I

J

L

M

(b) Reported Version

Figure 7.3.: Merging the Origin EA Model with Two Different Scenarios.

7.2. A Probabilistic Enterprise Architecture 71

So far, our solution to represent probabilities does not take the time dimension into account.
However, this is necessary since projects usually do not deliver their results synchronously.
Therefore, we introduce points in time, ti ∈ T , and link each point with the current valid EA
model.

Figure 7.4 shows an example. The EA model M contains only entities with p = 1.0 and,
thus, is considered to have no uncertainty. Starting with M as a baseline at t0, we introduce
project A delivering two competitive scenarios A1 and A2 at t1 and project B delivering one
non-competitive scenario B1 at t2. To keep track of the changes of the competitive scenarios,
we trace A1 and A2, until we know which scenario will be realized. At this point in time, we
integrate the chosen scenario into the current EA model and discard the others. E.g., at t3 we
decide to realize scenario A2, thus, we incorporate it into M leading to M ′. A1 is discarded and
B1 remains unchanged as it is not competitive to the other scenarios.

t0 t1 t2 t3

M

A1

M

A2

M

B1

M ′

Figure 7.4.: Evolution of an EA Model M over Time.

If an EA model representation without probabilities is needed, a report can be generated
containing the most likely EA model. This report can either base on elements with a probability
value greater than a threshold or on the most likely scenarios of each project. Assuming a
threshold of p ≥ 0.6, the EA model presented in Figure 7.3(b) is created consisting of the origin
EA model and the changes introduced by scenario 1. If we choose to create the EA model based
on the most likely scenario, the resulting one will be the same.

7.2.1. Demonstration

To demonstrate the proposed approach, we implemented the aforementioned examples in the
graph database Neo4j1. Additionally, we created the needed reports utilizing Cypher [162] as
query language on the database.

Representing the origin EA model depicted in Figure 7.2(a) in a graph database was straight
forward. We simply added all nodes and edges and initialized their existence property with

1https://neo4j.com

https://neo4j.com

72 Chapter 7. A Probabilistic Enterprise Architecture Model Evolution

1.0. To represent points in time, as a project delivers two competitive scenarios, we added two
special nodes. The first node expresses the time value itself (e.g., t0 in Figure 7.4). The second
node, linked to the introduced time node via the AT-relation, represents the current EA model
(cf.,M in Figure 7.4). As we also wanted to relate edges to the current EA model, we introduced
additional nodes for each edge, because it is not possible to create an edge between an edge and
a node. Each special “edge-node” inherits the existence property from its respective edge.

Based on this initial EA model representation, we introduced the two competitive scenarios
from Figures 7.2(b) and 7.2(c) named A1 and A2 in Figure 7.4. First, we added a time node
representing t = 1 (cf., t1 in Figure 7.4) and linked it to the already present time node (t = 0).
Second, we copied the entire EA model related to the current EA node (i.e., M in Figure 7.4)
and linked it to time node t = 1. Third, we added two nodes representing the two scenarios with
the existence property equal to 0.6 respectively 0.4. This is necessary to allow for a rollback
if a scenario gets dismissed, since we store just the computed existence value at each node
and not how it was computed.

Last, we added the edges and nodes introduced by each scenario with their probability to the
database, linked them to the related scenario node via the BELONGS-relation, and recorded that
they are added at the relation to ease a possible rollback. If a scenario retires a node or a relation,
we remove it from M and relate it to the appropriate scenario with a note that the entity should
be retired. Furthermore, we reduce the existence property by the probability of the scenario
to become existent.

Adding further projects and their scenarios to the database works the same way. More interes-
ting is the rollback of a scenario, because the complementary scenario has to be realized. First,
we remove all entities related to the scenario which have been added. Second, we move the
entities, which should have been retired, back to the current EA model and restore their exis-
tence property. Third, we do the opposite with the realized scenario: move the added entities
to the current EA model, set their existence property to 1.0, and remove the retired entities.

So far, we have presented a concept to enhance an EA model with uncertainty and how to
maintain such a model over time. But, how to generate a report representing the EA model in
a “classical” way, e.g., to import the model into existing EA tools? This can be achieved by
evaluating a Cypher query [162], shown in Listing 7.2, which generates a report incorporating
no respectively a certain degree of uncertainty.

1 MATCH
2 (:TIME {time: 1})
3 -[:AT]-
4 ()
5 -[:BELONGS]-
6 (n)
7 WHERE n.existence >= 0.5
8 RETURN (n);

Listing 7.2: Querying for EA entities at t = 1 with existence ≥ 0.5.

To ensure that we only get EA entities to a specified point in time, the query asks for nodes

7.2. A Probabilistic Enterprise Architecture 73

labeled with TIME and a property time equal to 1 (cf. line 2). From this start point, we follow
the relation AT (cf. line 3) to all nodes representing the current EA model and all scenarios (cf.
line 4). From these nodes, we follow the BELONGS relation (cf. line 5) and end up at all entities
of the EA model at the chosen point in time and store them into a variable n (cf. line 6).

Now, we apply a filter to ensure that we select only entities we are interested in, i.e., entities
with a probability of existence greater or equal than the defined threshold 0.5 (cf. line 7).
Last, we return the collected and filtered entities (cf. line 8).

Another and more sophisticated procedure to create such a report is not to rely on the exis-
tence probability of each entity, but on the most probable scenario (see Listing 7.3). The query
is composed of three parts. The first part (cf. lines 1 to 6) retrieves the current EA model at the
time point 1. Line 7 passes the results of the first part to the second part (cf. lines 8 to 11), which
collects all scenarios at time point 1. Next, the maximum value of all existence values along
all scenarios is calculated. This value together with the current EA model is handed over to the
last part in line 12. Last, all entities related to the most probable scenario (cf. lines 13 to 18) are
collected and returned together with the current EA model (cf. line 19).

1 MATCH
2 (:TIME {time: 1})
3 -[:AT]-
4 (:CURRENT)
5 -[:BELONGS]-
6 (c)
7 WITH c
8 MATCH
9 (:TIME {time: 1})

10 -[:AT]-
11 (s:SCENARIO)
12 W\ac{it}H c, max(s.existence) as max
13 MATCH
14 (:TIME {time: 1})
15 -[:AT]-
16 (:SCENARIO {existence: max})
17 -[:BELONGS]-
18 (e)
19 RETURN (c),(e);

Listing 7.3: Querying for EA Entities at t = 1 With Most Probable Scenario.

7.2.2. Discussion

According to Shaw [207] examples are a proper technique to discuss artifacts produced in soft-
ware engineering. Consequently, we discuss to what extent our proposed approach answers the
stated research question represented by its four facets compared to P2AMF.

The first facet of our research question covers the need to represent uncertainty regarding the
entities within the EA model itself. In P2AMF this is considered by adding an existence property

74 Chapter 7. A Probabilistic Enterprise Architecture Model Evolution

to the model elements and assigning it a probability. Further, in an instantiation of a P2AMF
model there is still no uncertainty regarding the existence anymore. Similarly, we have added an
existence property to edges and nodes, but we still have uncertainty in our EA model instances.

The second facet expresses the need for a representation of the evolution of the EA model
over time. This is not present in P2AMF, since one model only represents one state. However,
the probability may be facilitated to express the behavior of a certain entity along a time series.
In contrast, our approach links different evolution alternatives of an EA model along the time to
each other. Therefore, we create an actual representation of the EA model at each point in time
when it is somehow altered.

The third facet requires the ability to manipulate the model. It covers, on the one hand,
adding and removing scenarios to an EA model and, on the other hand, the handling of different
versions along a certain time series. The beforehand stated requirement is not explicitly covered
within P2AMF, since it neither contains competing scenarios nor different versions. However,
there is no need to cover this requirement in P2AMF, because there are no dependencies among
the included entities, which would raise the need for such a rule set. Whereas, we described
beforehand how to fulfill this requirement both in theory and in practice.

The fourth facet incorporates the necessity to create a report without uncertainty. As the
instantiation of P2AMF does not contain any uncertainty regarding the existence of its entities,
this instantiation can be utilized as the required report. In opposition, we suggest two different
ways to extract a representation of the EA model at an arbitrary point in time. This is more
sophisticated, but it is more flexible regarding to the stakeholders’ needs.

7.3. Limitations

Our research encloses still some limitation: We implicitly assumed a continuous evolution of
the EA model. In other words, we expect that a new state added to our time series belongs to a
point in time which is more in the future than all thus far persisted ones. Consequently, there are
still no mechanisms which could handle a change of an included state or the addition of a state
between two existing states. A possible option could be not to copy the current EA each time
but to use symbolic links or to keep only the changes to the model and not the whole model.

Part IV.

Techniques to Improve EA Models

Chapter 8.

Assessing EA Model Quality

Up to now, we have elaborated on the concerns of EA stakeholders and derived from those the
necessity to ensure the quality of EA models. In the previous part, we have developed different
processes which support enterprise architects to achieve a higher level of EA model quality. In
the next chapters, we introduce different methods, which focus on EA models quality solely by
proposing concrete actions for improvement. Therefore, we facilitate ML techniques in Chapter
9 to identify possible duplicates in the EA model and develop a Linear Integer Program (LIP) to
determine improvement potentials due to functional overlapping in Chapter 10.

However, before we can improve the quality of EA models, we need, first, a deeper under-
standing of EA quality in general (cf. Section 2.4) and, second, a method to assess the quality,
which we present in the following. This method has initially been presented in [227].

Motivation To raise the quality of EA models, it is necessary to ensure the consistency of
it, including, the detection of duplicates, the correction of typing errors, or the amendment of
semantic misuse of modeling elements. Nevertheless, to our knowledge no widely accepted
approach exists, that enables stakeholders of EA to completely assess the EA model’s quality
[122]. Still, the benefits of EA management highly depend on the model quality [165]. As we
found out during our research, only a few articles address this research gap with the specification
of EA quality attributes, but without providing a holistic framework how to actually use them
in an EA context. Thus, we address with this work the following research goal: to develop a
holistic framework that reveals what EA practitioners have to consider when assessing their EA
model’s quality. In contrast to other works (cf. [165]), we therefore solely focus on the EA
model and define the following research question:

RQ 6 What aspects need to be included in a framework for assessing the quality of EA models?

From our point of view this includes the analysis of related work, which also may root in other
domains than EA modeling, the structure of the framework and guidelines for the framework’s
application to real-world contexts.

To develop a method for assessing the quality of EA models, we opt for SLR. For more details
on the procedure of applying the SLR in this case, we refer to Appendix A.5.

8.1. A Framework for Assessing the Quality of EA Models

In contrast to the other research on EA quality, we propose a framework that aims to guide
architects how to assess their EA’s quality. Thereby, the framework solely focuses on the EA

78 Chapter 8. Assessing EA Model Quality

model as one of the EA products. Thus, we do not address EA management processes or services
related to an EA product. The framework was built by (i) identifying and using an appropriate
conceptual framework categorizing different quality aspects of EA models and (ii) identifying
relevant EA model attributes within these categories. In contrast to related work (cf. [122, 165,
111, 136, 179]) this goes beyond merely measure quality attributes and guides architects how
they should apply them to their concrete EA context.

For (i) identifying a conceptual quality framework approaches from disciplines beyond EA
research can be facilitated. Semiotics theory provides a general framework for assessing model
quality [154]. It addresses model quality from the perspectives of syntax, semantic and pragma-
tism and is applied in research related to enterprise reference model quality [230] or conceptual
modeling [138]. While the syntactic quality discusses the alignment between an IS model and
the modeling language it uses, semantic quality refers to the similarity between the IS model and
the domain it reflects on. Further, the pragmatic quality aspect considers choices made during
modeling in terms of comprehensibility [138].

We understand this threefold conceptualization of model quality sufficient when it comes to
detailed IS models like entity relation graphs or business process models. EA models, on the
other hand, are means for decisions regarding business-IT alignment or other strategic issues
related to IT. They focus on a broader and more aggregated extract of reality. In order to
support EA related decisions, architects may also include economic aspects in their EA models.
Further, due to their complexity and the heterogeneity of their addressees, the structure and the
documentation of EA models seem to have a distinctive influence on their quality. Therefore, we
assess the framework from semiotics theory as too narrow and aim to conceptualize EA model
quality from a more holistic point of view. Therefore, we apply the framework of modeling
principles proposed by Becker et al. Besides using the dimensions of semiotics theory they
explicitly define quality aspects addressing economic efficiency and the structure of enterprise
models. They name six principles for proper modeling [27] as explained in the following:

• Principle of validity: Does the model match the segment of reality? Syntactic and se-
mantic correctness are the most important criteria for this principle.

• Principle of relevance: It says that it is not necessary to model all elements from the real
world, just the ones that are needed for the modeling purpose. The decision for relevance
has to be made with aim and purpose of the model.

• Principle of clarity: All stakeholders of the EA model have to comprehend the model,
even without being involved in the modeling process itself.

• Principle of economic efficiency: Modeling should follow a clear purpose or aim. Even
the cost-effectiveness should be taken into account.

• Principle of systematic model construction: All model parts should follow a general
documented structure and should be held consistent.

• Principle of comparison: The model should be comparable in semantic and syntactic
against others, even with different model notations. This includes possible transformations
into different modeling languages.

8.1. A Framework for Assessing the Quality of EA Models 79

These six principles of model quality form the basis we used to fill with quality attributes
from the literature analysis. Therefore, we analyzed relevant research we found for EA quality
attributes that focus on the EA model in concrete and related them to the appropriate quality
principle. Differently named attributes were aggregated, when they addressed the same aspect
of EA model quality. The following articles were identified: [128, 122, 165, 111, 136, 27,
179, 196, 216]. For each attribute we defined a concrete description and identified assessment
methods that help architects to measure them. Thereby, we used both qualitative and quantitative
as metric types. Although they relate to quantitative metrics, we also defined yes/no questions
as a separate type, as well as assessment methods that could be performed by dint of modeling
tools.

Before presenting our framework to assess the quality of EA models (EAQF) in detail, we
explain how to use it. According to Lankhorst et al. modeling is goal-driven and, thus, highly
depends on its purpose, its different stakeholders, and their concerns towards the EA model.
Therefore, an EA model repository stores all model elements and their relationships among each
other. In order to address the manifold stakeholder concerns, different views on this complete EA
model exist, that address different aspects [128]. We deem it vital to align our EAQF with this
approach. Thus, we structure it by three dimensions: (i) EA purpose, objective, stakeholders, (ii)
EA model as a whole, and (iii) certain EA model views. Statements should be made regarding
these dimensions. Thus, for each of these dimensions we identify relating quality attributes from
the different principles from [27].

As shown in the illustration, the EA purpose, its objectives and the stakeholders’ concerns
form the basis to assess the actual EA model’s quality. After clarifying this, the EAQF defines
quality attributes addressing the two EA artifacts of interest: the EA model as a whole and each
EA model view in particular. While the attributes related to the basis help to assess whether the
EA’s scope is sufficiently determined, the architect can use the results from the whole assessment
of the EA model and each EA model view to balance them against the determined EA scope,
if e.g. the level of detail is appropriate. This supports the idea that different EA models focus
on different aspects. For example, if an enterprise uses EA models to analyze the complexity
of their IS landscape, a highly detailed business architecture layer does not seem appropriate.
Although the quality attribute “level of detail” (see Table 8.5) for the business architecture model
view in this case would be rated as “bad” in isolated consideration, in balance against the EA’s
purpose it is appropriate.

The assessment of EA model quality is guided by the simple process depicted in Figure 8.1.
First, the assessor has to determine the EA models purpose by answering the questions of Table
8.3. If she is aware of the purpose, she can tailor the questions regarding the EA model and its
views by removing unintended questions. If the questions of Table 8.4 and 8.5 are aligned to
the identified purpose, she can collect all necessary information e.g. by conducting interviews
or performing calculations. Based on this information, she can identify possible weaknesses,
which should be addressed until the next assessment of EA model’s quality.

Additionally, EAQF can be utilized within existing EA model maintenance processes. For
example, EAQF can serve in the process of Hacks and Lichter [84] as means to assess the model
quality within the process step “Assure Data Quality” or as a further input to the pipeline of
Hacks et al. [86] in “Check Model Quality” and “Model Evolution”. Furthermore, the step

80 Chapter 8. Assessing EA Model Quality

Determine
Purpose

Tailor
Questionnaire

Assess	EA
Models	Quality

Identify
Weaknesses

Improve	EA
Model

Need	to	Assess
EA	Model
Quality

Figure 8.1.: The EAQF Assessment Process.

“Check Consistency” in the process of Fischer et al. [63] can benefit from the input EAQF
can provide. Lastly, EAQF can also be integrated into existing EA frameworks like TOGAF
[223]. Within TOGAFs Architecture Development Method (ADM) process, EAQF can enrich
the architecture creation steps. More concrete, these creation steps imply a gap analysis were
the enterprise architects identify areas of the current and target system for which provision has
not been made. This analysis the gap for real world systems. However, we can link EAQF into
this analysis as well, because issues on the EA model may arise from issues in the real world
systems, too.

The complete EAQF is shown by dint of several tables that are described in the following.
Table 8.2 gives an overview of all EA quality attributes that were identified in literature. They
are described and classified towards the respective quality principle from [27]. Further, the
table reveals from what source the attributes were taken. After relating the attributes to the
quality principles we decided whether an attribute is to be assessed regarding the EA purpose,
the complete EA model or for each single EA view. We therefore initially clarified for each
attribute, if it addresses contextual characteristics (e.g., a clear EA purpose, stakeholders) or
the EA model in particular (e.g., semantic and syntactical correctness). To distinguish between
the assessment of the whole model and the assessment of each view it was clarified whether
the attribute can only be assessed on global model level or depends on a single EA view. For
instance, while statements for the attribute “completeness vs. conciseness” can only be made
on global level, the attributes “Level of Detail” should be discusses for each EA view. Here,
some attributes may also be assessed on both level (e.g., “comprehensibility”). The resulting

8.1. A Framework for Assessing the Quality of EA Models 81

Table 8.2.: EA Quality Principles and Their Related Quality Attributes.
Quality Princi-
ple

Quality Attri-
bute

Description Source

Validity

Syntactical
Properness

Does the model follow the specifications of the cho-
sen modelling language(s)?

[122, 27, 179,
216]

EA model may integrate different modelling langua-
ges.

Semantical Pro-
perness

Is the EA model correct in terms of representing the
reality in relation to the EA’s purpose?

[27, 179, 216]

Up-To-Dateness Does the EA model represent the current situation? [165]
Quality of Infor-
mation Sources

Can the information source, on which the EA model
view relies be considered correct?

[165]

Uniformity and
Cohesion

The EA model should follow a certain framework
behind it. Further, it should represent a coherent ag-
gregate, where all parts of it are integrated with each
other.

[122, 165, 111]

Model Reliabi-
lity

Does the EA model what it is supposed to do and
what is expected from it?

[122, 111]

Reduction of Re-
dundancy

A beneficial EA model does not hold any duplicates
of a model or model elements that only seem to be
different but are the same.

[136, 179]

Relevance

EA Purpose and
Objectives

In order to properly develop a beneficial EA model a
purpose and objectives clearly have to be defined.

[165, 179, 196]

EA Stakeholders
Concerns

Next to the EA purpose in general all involved sta-
keholders have to be defined and their concerns to-
wards the EA model have to need to be defined.

[129]

Usefulness Each EA model should be relevant and beneficial for
its user. Every part of the EA model has to be de-
veloped for a certain purpose and addresses a set of
stakeholders.

[122, 111]

Level of Detail An EA model should provide both a holistic view
and sufficient level of detail in the relevant areas.

[165, 27]

Completeness vs.
Conciseness

Does the EA model represent on the one hand all
necessary information and on the other hand not too
much information is provided regarding its purpose.

[165, 136, 179,
216]

Economic Reusability For efficient development the reusability of model
components has to be enabled. Business of Software
Reference Model can help in this regard.

[122, 136]

Efficiency
Flexibility In order to support the organization’s adaptations to

environmental changes, the EA model should be able
to be highly flexible.

[122, 111, 136]

Model Mainte-
nance

In the light of continuous model quality, the EA mo-
del should be maintained.

[111, 136, 179]

Clarity

Comprehensibility All aspects represented in the EA model have to be
easily understandable for the model user.

[165, 111]

Layout Design Each EA model view should provide a clear layout
of elements.

[136, 27]

Complexity The model complexity should be appropriate regar-
ding its level of detail and purpose.

[165, 179]

Documentation The EA model should be sufficiently documented. [165, 27]

82 Chapter 8. Assessing EA Model Quality

Table 8.2.: EA Quality Principles and its Related Quality Attributes
Quality Princi-
ple

Quality Attri-
bute

Description Source

Communication The EA model has to be communicated by the right
means. Therefore, it has to be clear who needs what
information in what detail at what time.

[165, 136]

Systematic
Model Structure

EA Model Struc-
ture

Every EA model should ground on a thoroughly pre-
defined model structure. The structure should be
aligned with the model’s purpose and guide both the
modeller and user.

[165, 27, 179]

Model View Spe-
cification

In order to properly maintain an EA model, the in-
tention of each model view has to be made transpa-
rent.

[129]

Model View
Linkage

In order to prevent isolated modeling parts, each mo-
del view that is created should be clearly related to
the EA model structure.

[179]

Comparability
Model Interope-
rability

The EA model should be exchangeable e.g. to other
modelling tools.

[122, 136]

Inter-Model Re-
lations

Many organizations work with different modelling
standards (e.g. BPMN for processes) they should be
comparable to the EA model, even when they repre-
sent higher levels of detail.

[129, 27]

Table 8.3.: Quality Attributes Addressing the EA Model’s Purpose.
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Method

Relevance

EA Purpose and
Objectives

Is there a clear purpose for the EA defined? Yes/No
Does the EA team define objectives to fulfill the EA
purpose

Yes/No

Are purpose and related objectives regularly revisi-
ted?

Yes/No

EA Stakeholders
Concerns

Is there a thorough assessment of stakeholders invol-
ved?

Yes/No

Are the concerns of the stakeholders determined? Yes/No

Table 8.4.: Quality Attributes Addressing EA Models.
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Method

Validity

Syntactical
Properness

Calculate the ratio according to [216] quantitative
Validate towards Language Syntax Yes/No

Uniformity and
Cohesion

Is the EA model based on a EA framework? Yes/No
Is a EA development method used? Yes/No
Does the EA model conform to a predefined model
structure?

Yes/No

Does the EA model hold any duplicates Yes/No
Reduction of
Redundancy

Is the EA model repository free from duplicates? Yes/No
Conduct Expert Interviews for EA model to identify
implicit duplicates

qualitative

8.1. A Framework for Assessing the Quality of EA Models 83

Table 8.4.: Quality Attributes Addressing the Whole EA Model
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Method

Relevance

EA Purpose and
Objectives

Is there a clear purpose for the EA defined? Yes/No
Does the EA team define objectives to fulfill the EA
purpose

Yes/No

Are purpose and related objectives regularly revisi-
ted?

Yes/No

EA Stakeholders
Concerns

Is there a thorough assessment of stakeholders invol-
ved?

Yes/No

Are the concerns of the stakeholders determined? Yes/No
Completeness
vs. Conciseness

Are there modeling guidelines defined addressing
what (not) to model?

Yes/No

Does the EA repository only store used elements? Yes/No

Economic
Efficiency

Reusability
Are reoccurring phenomena reused in the model? Yes/No
Does the EA team agree on and use reference mo-
dels?

Yes/No

Flexibility
Does the EA model show alternative paths for orga-
nizational development?

Yes/No

Is a process implemented how EA models support
decisions?

Yes/No

Model
Maintenance

Does the model conform to the most current version
of the modeling language?

Yes/No

Are outdated parts of the model extracted or deleted? Yes/No
Is there a maintenance plan defined? Yes/No

Clarity
Comprehensibility Are the EA model elements clearly named? Yes/No

Communication
Is there a communication/reporting strategy of the
EA model defined?

Yes/No

Conduct Interviews with stakeholders of EA to re-
veal whether communication strategy realizes goals.

qualitative

Systematic
Model Structure

EA Model
Structure

Does an EA model structure definition exist? Yes/No
Does the EA structure follow a top-down design? Yes/No

Comparability
Model Interoperability Is there an exchange format available for the mo-

deling language in use?
Yes/No

Inter-Model
Relations

Does the EA model use information of other existing
models in the organization?

Yes/No

Are relations between parts of the EA models and
other existing models made explicit?

Tool Sup-
port

84 Chapter 8. Assessing EA Model Quality

Table 8.5.: Quality Attributes Addressing EA Model Views.
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Method

Validity

Semantical
Properness

Conduct Expert Interviews qualitative
Conduct Validation Workshops with relevant Stake-
holders

qualitative

Up-To-Dateness
Date of Last Change quantitative
Frequency of Change quantitative

Quality of
Information
Sources

Conduct Expert Interviews qualitative
Conduct Validation Workshops with relevant Stake-
holders

qualitative

Model Reliability
Conduct Expert Interviews qualitative
Conduct Validation Workshops with relevant Stake-
holders

qualitative

Reduction of
Redundancy

Is the EA model repository free from duplicates? Yes/No
Conduct Expert Interviews for EA model to identify
implicit duplicates

qualitative

Relevance

Usefulness
Are the goals of the EA model view clearly defined? Yes/No
Is there a ËA supply chainppresent? Yes/No

Level of Detail
How many levels of detail are used by the model
view?

quantitative

Are the different levels of detail made transparent? Yes/No
Conduct Feedback Interviews with Stakeholders qualitative

Clarity

Comprehensibility
How many elements are documented/explained in
ratio to all elements.

quantitative

Does the EA model vocabulary follow a clear taxo-
nomy (e.g. of a certain domain)?

Yes/No

Layout Design
Does each model view follow a clear layout? Yes/No
Are modeling convention developed for certain situ-
ations to ensure consistent layout?

Yes/No

Do view templates exist that can be used for certain
views?

Yes/No

Complexity
Show number of model view elements. quantitative
Depending on the view’s purpose, is the amount of
elements reasonable?

Yes/No

Documentation
Is the structure of the EA model made transparent? Yes/No
Is further material attached that explains ambiguous
elements?

Yes/No

Is external material referenced? Yes/No

Systematic
Model Structure

Model View Specifica-
tion

Is the intention of each model view explicitly docu-
mented?

Yes/No

Model View Linkage
Does every model view relate to the model structure? Yes/No
Are interrelations among model views made trans-
parent?

Yes/No

allocation of attributes can be seen in Table 8.3 (attributes addressing EA purpose), Table 8.4
(attributes addressing EA models) and Table 8.5 (attributes addressing EA model views). Each
attribute can consist of several assessment methods, that can be either of qualitative, quantitative,
or Yes/No nature. For each model view a separate assessment should be done. Furthermore, we
want to emphasize that these attributes offer a guideline to the architect, who is conducting

8.2. Applying the Framework 85

the EA model quality assessment. Thus, depending on the model’s purpose, he may exclude
irrelevant attributes.

8.2. Applying the Framework

8.2.1. Case Environment

The case is conducted within the environment already presented in Section 1.4.1. Following, we
will present only necessary additional information:

There exist mainly two processes to maintain the elements of the EA model. First, the EA
model is used to execute an Application Lifecycle Management (ALM). Second, the EA model
is used to execute an Infrastructure Lifecycle Management (ILM), whose results are incorporated
into the ALM.

The EA department utilizes the ALM process to calculate the technical fit and the confor-
mance to business demands once a year. Depending on these results the EA department either
determines areas of activity to improve technical fit and business conformance or decides in
accordance with the business to shut down the application. Moreover, the ALM process is em-
ployed to trigger the responsible persons to update all information to applications which are not
relevant for the ALM process.

The ILM process is quite similar utilized compared to the ALM process. It is also executed
once a year and employed to trigger the responsible persons to update infrastructure information.
Especially, the status of the infrastructure is emphasized, i.e. planned, phase in, active, phase
out, or end of life. Since several infrastructure components are exploited to realize applications,
this status is also essential for the ALM process. Therefore, the latest status of all exploited
infrastructure components is included into the ALM rating.

8.2.2. Exemplary Framework Application

We applied EAQF at the beforehand presented case. To answer the questions regarding EA’s
purpose (cf. Table 8.3), we reused the results of the stakeholder interviews in [79]. Following
Patton [176] we conducted a series of open-ended interviews, using a fixed set of questions for
all interviewees. These questions dealt with stakeholder concerns. However, questions regarding
EA products in general and the EA model in particular were also taken into account. Moreover,
the results of [79] could also be used to answer several qualitative questions of the other EAQF
parts (Table 8.4 and Table 8.5). Where the results of [79] were not sufficient to answer EAQF
questions, we conducted deepening expert interviews with members of the EA unit.

Answering questions regarding the whole EA model (Table 8.4), we took the EA model of
the organization into account as well as the results of the interviews. The EA unit notates their
model using ArchiMate 2.1 [224] with slight changes. For example, they introduced so called
work areas which are used to determine operation costs on the host system and to assign them
to certain applications. Last, we answered EAQF’s questions regarding a specific EA model
view (Table 8.5). Therefore, we chose the application systems portfolio, which illustrates all
business domains and which applications are used to realize this business domain. The business
domains are modeled as business functions according to ArchiMate 2.1 within the repository.

86 Chapter 8. Assessing EA Model Quality

The applications are modeled as application collaborations. However, both elements are repre-
sented as stacked boxes in the view which is not in conformance to ArchiMate 2.1, since the
Anwendungssystemportfolio (AWP) view is older than the decision for ArchiMate 2.1.

Quality Attributes addressing the EA Model’s Purpose

The EA model’s purpose is defined at our case. The overall assessment can be found in Table
8.6. On the one hand, it is used to do a guided life cycle management, i.e., ALM and ILM. On
the other hand, it is used for information and decision demands, e.g., to spread who is in response
for a certain application or to offer needed data for an informed decision of the management.

According to EAQF the EA model’s purpose quality lacks only in one point: the purpose
is not regularly revised. The EA unit performed stakeholder interviews in which, inter alia,
stakeholders’ demands towards the EA model were inquired. However, it is not planned to
perform such interviews regularly and to revise the purpose meanwhile.

Quality Attributes addressing the EA Model

The results of assessing the EA model can be found in Table 8.7. As already mentioned, the EA
model is notated in ArchiMate 2.1 with slight changes. Consequently, the validity is not perfect,
which is also reflected in Spence and Michel’s ratios [216]: Qs = 53,6%, Qa = 71,4%, and Qc

= 100%. The value of Qs indicates that nearly the half of the elements of ArchiMate 2.1 is not
used within the repository. Moreover, almost one third of the contained element types in the
repository is not actively used (Qa).

Another shortcoming of the model identified by EAQF can be situated in the principle of
relevance. EAQF asks for modeling guidelines which lay down what (not) to model. Those
guidelines are not explicitly formulated in our case. Rather, there exists some kind of oral
tradition to pass on what (not) to model to new architects.

Further quality flaws can be found in the context of economic efficiency. For example, the
repository contains, apart from unused element types, elements which have not been updated for
a long time, even though, their representation has been changed. However, those elements were
not considered for reports or the like.

Regarding clarity, the stakeholder concerned especially more up-to-date information. They
stated that the used communication channels could be useful, but as long as the information is
not up-to-date the communication channels are useless.

In the cases of systematic model structure and comparability we could not uncover any issues
related to EA model’s quality. This is grounded in the fact that ArchiMate 2.1 is used as modeling
language and, consequently, ArchiMate supports all requested quality attributes for these two
principles.

Quality Attributes Addressing a Specific EA Model View

Stakeholders perceive the validity of the considered view as sufficient, which can be seen in Ta-
ble 8.8 summarizing the results of the assessment. They remarked only a lack of up-to-dateness

8.2. Applying the Framework 87

Table 8.6.: Results of Assessing the EA Model’s Purpose.
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Result

Relevance

EA Purpose and
Objectives

Is there a clear purpose for the EA defined? Yes
Does the EA team define objectives to fulfill the EA
purpose

Yes

Are purpose and related objectives regularly revisi-
ted?

No

EA Stakeholders
Concerns

Is there a thorough assessment of stakeholders invol-
ved?

Yes

Are the concerns of the stakeholders determined? Yes

Table 8.7.: Quality Attributes Addressing EA Models.
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Result

Validity

Syntactical
Properness

Calculate the ratio according to [216]
Qs = .536
Qa = .714
Qc = 1.00

Validate towards Language Syntax No

Uniformity and
Cohesion

Is the EA model based on a EA framework? Yes
Is a EA development method used? Yes
Does the EA model conform to a predefined model
structure?

Yes

Does the EA model hold any duplicates No
Reduction of
Redundancy

Is the EA model repository free from duplicates? No
Conduct Expert Interviews for EA model to iden-
tify implicit duplicates

No dupli-
cates

Relevance

EA Purpose and
Objectives

Is there a clear purpose for the EA defined? Yes
Does the EA team define objectives to fulfill the EA
purpose

Yes

Are purpose and related objectives regularly revisi-
ted?

No

EA Stakeholders
Concerns

Is there a thorough assessment of stakeholders in-
volved?

Yes

Are the concerns of the stakeholders determined? Yes
Completeness
vs. Conciseness

Are there modeling guidelines defined addressing
what (not) to model?

No

Does the EA repository only store used elements? No

Economic
Efficiency

Reusability
Are reoccurring phenomena reused in the model? No
Does the EA team agree on and use reference mo-
dels?

No

Flexibility
Does the EA model show alternative paths for or-
ganizational development?

No

Is a process implemented how EA models support
decisions?

Yes

Model
Maintenance

Does the model conform to the most current version
of the modeling language?

No

Are outdated parts of the model extracted or dele-
ted?

No

Is there a maintenance plan defined? Yes

88 Chapter 8. Assessing EA Model Quality

Table 8.7.: Quality Attributes Addressing the Whole EA Model
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Result

Clarity
Comprehensibility Are the EA model elements clearly named? Yes

Communication
Is there a communication/reporting strategy of the
EA model defined?

Yes

Conduct Interviews with stakeholders of EA to re-
veal whether communication strategy realizes go-
als.

No inter-
views

Systematic
Model Structure

EA Model
Structure

Does an EA model structure definition exist? Yes
Does the EA structure follow a top-down design? Yes

Comparability
Model Interoperability Is there an exchange format available for the mo-

deling language in use?
Yes

Inter-Model
Relations

Does the EA model use information of other exis-
ting models in the organization?

Yes

Are relations between parts of the EA models and
other existing models made explicit?

Yes

as a negative characteristic. Updating the view up to three times a year is not satisfactory to
stakeholders’ needs. The stakeholder concern as short update cycles as possible.

Relevance and Clarity are two principles which evoke no issues related to quality. According
to EAQF, references to external material are needed. However, the stakeholder interviews have
shown that contained information is sufficient and external references for the purpose of the view
are not necessary.

In the field of systematic model structure, the relations between various views are not made
explicit. Moreover, the intention of the view is not explicitly formulated.

Improvement Potentials of the EA Model

After conducting the assessment of the EA model, the results can be interpreted to improve the
quality. Generally, result that is not as wanted indicates improvement potentials. For example,
one usually wants for Yes/No assessments a Yes.

In the case of our exemplary application, we observe that nearly the half of the elements of
ArchiMate 2.1 is not used within the repository and almost one third of the contained element
types in the repository is not actively used. This reveals potential improvements of the model. It
is arguable if it is necessary to use all elements of ArchiMate 2.1, but at least the number of not
used element types can be reduced. This would lead to a clearer structure of the repository and
would, consequently, heighten its quality.

Further, we notice that a couple of elements within the repository have not been updated for a
long time, even though, their representation has been changed. Additionally, those elements are
not incorporated in any reports. Consequently, EA model’s quality could be raised by removing
those.

The investigated view offers improvement potentials. In the field of systematic model struc-
ture, the relations between various views are not made explicit. This is an existing flaw of this
view and should be corrected soon consonant with stakeholders’ opinion. Moreover, the inten-
tion of the view is not explicitly formulated. This should be aligned as well.

8.2. Applying the Framework 89

Table 8.8.: Quality Attributes Addressing EA Model Views.
Quality Princi-
ple

Quality Attribute Attribute Assessment Assessment
Result

Validity

Semantical
Properness

Conduct Expert Interviews Yes
Conduct Validation Workshops with relevant Stake-
holders

Yes

Up-To-Dateness
Date of Last Change 17.05.2017

Frequency of Change
several
times
a year

Quality of
Information
Sources

Conduct Expert Interviews Yes
Conduct Validation Workshops with relevant Stake-
holders

Yes

Model Reliability
Conduct Expert Interviews Yes
Conduct Validation Workshops with relevant Stake-
holders

No

Reduction of
Redundancy

Is the EA model repository free from duplicates? Yes
Conduct Expert Interviews for EA model to identify
implicit duplicates

Yes

Relevance

Usefulness
Are the goals of the EA model view clearly defined? Yes
Is there a “EA supply chain” present? Yes

Level of Detail
How many levels of detail are used by the model
view?

2

Are the different levels of detail made transparent? Yes
Conduct Feedback Interviews with Stakeholders Yes

Clarity

Comprehensibility
How many elements are documented/explained in
ratio to all elements.

100%

Does the EA model vocabulary follow a clear taxo-
nomy (e.g. of a certain domain)?

Yes

Layout Design
Does each model view follow a clear layout? Yes
Are modeling convention developed for certain situ-
ations to ensure consistent layout?

Yes

Do view templates exist that can be used for certain
views?

Yes

Complexity
Show number of model view elements. 203
Depending on the view’s purpose, is the amount of
elements reasonable?

Yes

Documentation
Is the structure of the EA model made transparent? Yes
Is further material attached that explains ambiguous
elements?

Yes

Is external material referenced? Yes

Systematic
Model Structure

Model View Specifica-
tion

Is the intention of each model view explicitly docu-
mented?

No

Model View Linkage
Does every model view relate to the model structure? Yes
Are interrelations among model views made trans-
parent?

No

Chapter 9.

Improving the Design of EA Models

Before, we have presented a means to assess the quality of EA models. This assessment can
also be utilized to identify quality weaknesses of the model after the model has been created.
Another approach, which we like to present next, is to support the modeler in a way that she
does not introduce quality flaws into the EA model.

Motivation One of the major problems in EA is to keep the EA model up-to-date and keeping
on an adequate level of quality [141, 61]. However, this maintenance is still dominated by error-
prone manual work [61, 240]. As the projects are one of the main drivers for changes of the
EA [213], we elaborated in our research on means to support solution architects in their work
modeling changes in the EA. The results of this research are presented in the following sections
and have initially been presented in [32] (section 9.1) and [185] (section 9.2).

9.1. Avoiding Redundancies in EA Models

Enterprise architects, are inter alia responsible for modeling the EA using architecture models.
The fundamental building blocks of the models are the components and the relations between
them. For easier understanding and communicating of the architecture to the stakeholders, the
architects can develop a set of representations of the overall architecture called views.

We investigate the scenario of a company (cf. Section 1.4.1) that uses a repository of all
accepted models. In time, the repository can grow into one complex structure of components
and relations. Adding a new model can cause unnecessary expansion in the repository if they
are not checked beforehand. Components with same attributes, or components used in the same
context but with different names will be treated as newly introduced components and added again
in the repository. We take a simple illustration to depict the problem. The models provided in
Figure 9.1(a) and Figure 9.1(b) are developed independently. After the acceptance of both, the
two models form the initial state of the repository, depicted in Figure 9.2.

In the repository, Transaction Administration aggregates both Accounting and Billing compo-
nents from different models, while retaining only one instance of Transaction Administration.
An architect decides to implement the similar financial scenario in a different model (Figure
9.3). The system proceeds to integrate this model in the repository, which results in several
replicated components, introducing three new components (see Figure 9.4):

– Billing: The architect supplied a shorter name for the component Billing Component.

92 Chapter 9. Improving the Design of EA Models

Accounting
Component

Transaction
Administration

Administrate
Transactions

(a)

Administrate
Transactions

Transaction
Administration

Biling
Component

(b)

Figure 9.1.: Different EA Models Example.

Biling
Component

Accounting
Component

Transaction
Administration

Administrate
Transactions

Figure 9.2.: Simplified Scenario of the State of the Repository Formed from the Models Descri-
bed in Figure 9.1.

– Transactions Administration: Providing behavior for administrating several transactions
can be replaced by the already existing Transaction Administration.

– Manage Transactions: Although the name differs from the Administrate Transactions,
they provide the same functionality.

Currently, there is no mechanism for redundancy check. Components with similar attributes
and purpose can be stored multiple times, which in turn introduces management issues due to the
increased complexity of the repository data. This also makes it difficult for architects to reuse
certain components.

To elaborate on this issue, we opt for DSR as presented in Section 1.4.3. For more details on
the procedure of applying DSR in this case, we refer to Appendix A.6.

9.1.1. Theoretical Background

This section describes the theory behind our approach. First, we define similarity and distance
in the scope of our research. Then, we present the fundamental aspects of graph theory used in
our proposed solution. Finally, we formalize association rules and a set of parameters used for
association analysis.

9.1. Avoiding Redundancies in EA Models 93

Accounting
Component

Transactions
Administration

Billing

Manage
Transactions

Figure 9.3.: Model Containing Redundant Components.

Similarity and Distance

With the use of complex objects, we identify the need of fundamental operation for similarity
assessment between two objects. If we consider the following spaces: F, which denotes the
feature space of an object and RF - the space of all feature representations, then such function
will map the future space to a score s : RF × RF → R.

Similarity function is the measure which determines how closely related two objects are
based on their representation, following the given properties[198]:

– Symmetry: ∀x, y ∈ RF : s(x, y) = s(y, x) - the order of the objects in the input should
not affect the output score

– Maximum self-similarity: ∀x, y ∈ RF : s(x, x) ≥ s(x, y) - nothing can be more similar
than the object itself

If two objects are similar, then the similarity function will have a high positive score.
In contrast to similarity, the dissimilarity is a measure defined by a distance function that

quantifies how different two objects are. For function d : X× X → R to qualify as distance, in
needs to fulfill the following constraints [53]:

– Non-negativity: ∀x, y ∈ X : d(x, y) ≤ 0

– Reflexivity: ∀x ∈ X : d(x, x) = 0

– Symmetry: ∀x, y ∈ X : d(x, y) = d(y, x)

Both dissimilarity and similarity models express the closeness between objects. The con-
version from the first to latter is essentially converting from distance to similarity function.
Since they are negatively correlated, any monotonically decreasing transformation can be app-
lied to convert similarity measures into dissimilarity. Consequently, any monotonically increa-
sing transformation can be applied to convert the similarity to distance. If the similarity values
are normalized in the range from 0 to 1, then the corresponding dissimilarity (distance) can be
expressed as:

d(x, y) = 1− s(x, y) (9.1)

94 Chapter 9. Improving the Design of EA Models

Accounting
Component

Billing
Component

Billing

Transaction
Administration

Transactions
Administration

Administrate
Transactions

Manage
Transactions

Figure 9.4.: Simplified Scenario of the State of the Repository Formed by Adding the Model in
Figure 9.3 to the Repository in the State as in Figure 9.2.

Graph Theory

In order to search for similarities between the EA models, a proper representation is needed. We
find that representing the models as labeled graphs is the most acceptable solution [42].

A labeled graph is defined by a tuple G = (V,E, rV , rE) such that:

– V is a finite set of vertices,

– E is a finite set of edges between the vertices,

– rV ⊆ V × LV is the function that assigns labels to vertices,

– rE ⊆ V × V × LE is the function that assigns labels to edges.

In this manner, we can represent the EA components as vertices and the connections between
them as graph edges.

To calculate the similarity between vertices in a graph, both the labels of the vertices and
the edges in the graph need to be considered. The SimRank [103] algorithm takes this into
consideration. It accepts a labeled graph G as input and compares each vertex of the graph with
the rest. Two vertices are considered similar if they are referenced by other similar vertices in
the graph, or formally expressed with by Eq. 9.2:

sSR(p, q) =
C

|I(p)||I(q)|

|I(p)|∑
i=1

|I(q)|∑
j=1

sSR(Ii(p), Ij(q)) (9.2)

9.1. Avoiding Redundancies in EA Models 95

The constant C ∈ R is a user given value from 0 to 1 called the decay factor, I(p) and I(q)
are the set of all predecessor vertices of p and q(other nodes who point to p and q) with the
total count of |I(p)| and |I(1)| accordingly, and Ii(p) and Ij(q) are the i-th and j-th predecessor
of the nodes p and q. Dividing by the total number of predecessors pairs allows us to obtain
normalized value: a range between 0 (maximum dissimilarity) to 1 (same pair of nodes). For
any vertex v that has no predecessors (I(v) = ∅), the similarity is set to zero. Alternatively, the
equation 9.2 can be expressed using the set of successors O(p) and O(q)of the nodes p and q
(vertices pointed by p and q), or (as shown later in our approach) both I(p) and O(p) combined.

SimRank is calculated recursively: two score between two vertices is dependent of the pre-
calculated similarity of their neighbors. The initial similarity score is calculated using the binary
similarity:

sSR0 (p, q) =

{
1 if p = q

0 else
(9.3)

Association Analysis

Association rule mining [88] searches for recurring relationships in a given data set. More
specific, it discovers the associations and correlations between two item sets.

An association rule is indicated as {A1, A2, ..., Am} ⇒ {B1, B2, ..., Bn}, where ∀i, j | i ≤
m, j ≤ n,Ai andBj are non-empty item sets. In order to select only the rules that are interesting
for evaluation, we use the support and confidence functions. Support supp for the rule A ⇒ B
indicates the fraction of transactions that contain both A and B:

supp(A⇒ B) = P (A ∪B) (9.4)

supp filters out rules that occurred by chance. A rule with support above a given minimum
support threshold (minsup) is called frequent item set. Confidence conf for the rule A ⇒ B
indicates the fraction of items contained in B that are also contained in A. It measures the
reliability made by a rule:

conf(A⇒ B) = P (B|A) (9.5)

Rules with supp ≥ minsup and conf ≥ minconf are called strong rules. For generating
rules that satisfy the minimal support and confidence, we use the Apriori algorithm [3]. This
approach considers only the frequent items as basis for generating candidates and extends them
to larger item sets with other frequent items.

9.1.2. Research Proposal

In this section we give an overview how the similarity models were applied to suit our needs.

Prerequisites

For a given EA model that contains the intended changes conducted by a project (following
referred to as project model), we make the following assumptions:

96 Chapter 9. Improving the Design of EA Models

– The architecture model is complete: the calculation of the candidate set of components,
which might have already a representation in the architecture model, is based on the as-
sumption that all the necessary components and relations are there.

– The views in the architecture projects are clearly defined: this allows successful applica-
tion of the association mining. Since there is no explicit notion for a transaction, we rely
on the views - every component that is a part of the view belongs in the same transaction.

To categorize a component from the model as a newly introduced, we check if a component
with the exact name and type does not exist in the repository. We ignore the description attribute
since this field is used very extensively and already small discrepancies in the description would
lead to a false negative.

Feature Extraction and Similarity Models

The underlying representation of the given EA model provided by the project is a labeled di-
rected graph. Each node of the graph presents a component with the features: name (or title)
and type, whereas the relations between them are modeled as edges. The same representation
applies to the central EA model. For two labeled directed graphs, we combine attribute based
and structure based similarities.

Attribute-based similarities calculate the similarity score between two features while igno-
ring the graph structure. For evaluating the similarity between the names of the components, we
apply the String Edit Distance (dEDIT) [161] as a basis with regularization. The edit distance
is very robust when it comes to comparing single words, but results in large distance score if
the strings contain words in different order. To overcome this, we apply the distance measure
on pairs of words [119]. We introduce word tokenization, remove any digit characters from
the words and discard the words that do not contribute to semantic meaning, such as personal
pronouns and definite or indefinite articles.

Let p and q be two components and p_words and q_words be the tokenized and processed
titles of the first and second component respectively. For each word from p_words, we apply
the String Edit distance to measure the difference with every word from q_words, convert it to
a similarity score and record only the highest word–wise similarity that occurred for that given
word. In the case of difference in the number of words, we compare each word from the input
string that has more words to avoid any loss of information. To achieve normalization between
0 and 1, we divide the similarity value by the larger number of words for the given titles. This is
shown in Listing 1.

For evaluating the similarity between the types of components, we apply the binary similarity.
This is a very restrictive similarity that suits the assumption that the EA models are correct and
the components have the right type. For two given components p and q with their respective
types tp and tq, the type similarity is:

sTY PE(p, q) =

{
1 if tp = tq

0 else
(9.6)

For calculating the similarity based on the description of components, we rely on the semantic
meaning of the text. The description of the text is converted to a Term Frequency - Inverse

9.1. Avoiding Redundancies in EA Models 97

Algorithm 1 Name-based similarity

1: procedure sNAME(p,q)
2: p_words = tokenize(p)
3: q_words = tokenize(q)
4: less_words = min(p_words, q_words)
5: more_words = max(p_words, q_words)
6: total_similarity← 0
7: for each m in more_words:
8: word_similarity← 0
9: for each l in less_words do:

10: current_similarity = 1− dEDIT (m,l) / max(size(m),size(l))
11: if current_similarity > word_similarity then
12: word_similarity = current_similarity
13: total_similarity = total_similarity + word_similarity
14: return total_similarity / size(more_words)

Document Frequency (TF-IDF) vector[163]. This metric was motivated by the length of the
text: the String Edit Distance will not be able to perform well since it relies on the syntactic
matching of the words. TF-IDF emphasizes the importance of a word based on how frequent
they appear for the given component’s description (term frequency) and how rarely they appear
throughout other component’s description (document frequency).

Let t be a word from the description d, N the total number of documents and D the number of
documents where t appears. The TF-IDF score for t is calculated as:

tf_idf(t, d,D) = word_count(t, d)log
N

1 +D
, (9.7)

where word_count(t,d) returns the number how many times the word t has appeared in the do-
cument d.

After obtaining the TF-IDF vector for each word in the description descp and descq of the
components p and q, the description similarity is calculated using the cosine distance:

sDESC(p, q) = 1− dCOS(tf_idf(descp, D), tf_idf(descq, D)) (9.8)

The function tf_idf(descp, D) returns a TF-IDF vector for every word from the description
descp given the previously obtained corpus D from every description in the repository.

To combine the different similarities into one, we use a weighted average function from the
similarity models:

sATTR(p, q) =
w1s

NAME(p, q) + w2s
TY PE(p, q) + w3s

DESC(p, q)

w1 + w2 + w3
(9.9)

The context-based similarity is calculated based on the graph structure of the EA models.
For this, we change the input of the original SimRank approach sSR(p, q). For the initial cases

98 Chapter 9. Improving the Design of EA Models

sSR0 (p, q), we assign maximal similarity if the titles are a complete match and the components
have the same type.

To come up with combined context–based and attribute–based similarity, we integrate the
attribute similarity in the SimRank approach. We call this model Extended SimRank (Eq. 9.10).
To achieve this, we relax the initial similarity sESR

0 by assigning a score calculated from the
attribute similarity model, if the score is above a given threshold t (Eq. 9.11). We also check
both the predecessors and the successors of any node v for the context-based similarity: D(v) =
I(v) ∪O(v).

sESR(p, q) =
C

|D(p)||D(q)|

|D(p)|∑
i=1

|D(q)|∑
j=1

sESR(Di(p), Dj(q)) (9.10)

sESR
0 (p, q) =

{
sATTR(p, q) if sATTR(p, q) > t

0 else
(9.11)

Inspecting every pair of vertices between graphs with n and m nodes leads into generating
n ∗m candidates. To speed up the process of evaluation, we skip the nodes which do not have
any incoming and outgoing edges, since such nodes cannot contribute to the structural similarity
when using sESR. For such nodes, we rely only on the sATTR.

9.1.3. Implementation

The implementation of our solution is dependent on several technologies. Figure 9.5 gives an
overview of the architecture of our solution. The server side is built using the Java technology.
The server returns for a POST request a list of candidates for duplicates. The request accepts the
following parameters:

• file: mandatory field which contains the ArchiMate (Extensible Markup Language (XML))
file that needs to be evaluated.

• k: a number of maximum returned components for a single query component (optional).

The ArchiMate files and the repository are read and converted to directed labeled graphs
using the JGraphT library [208] and its DirectedGraph class. Each XML node represents either
an ArchiMate component, if located under the “Components” section, or an ArchiMate relation,
if located under the “Relations” section.

To get a better understanding of the structure of the repository as a graph, we use Gephi - a
tool for analytics and detailed visualization of graphs [26]. The total size of the graph is 3,922
nodes with 9,657 edges. Out of those, 1,147 are isolated nodes (no incoming and outgoing
edges). The diameter is 7, and the average path length is 4.79. The average degree per node
(both incoming and outgoing considered) is 4.93. Given graph size, we consider the repository
graph as a weakly connected. This is also confirmed by the low value of 0.001 for the density.

9.1. Avoiding Redundancies in EA Models 99

Archi
Server

REST
Interface

PlugIn

Compute
SimRank

Compute
Similarity

Use

Use

return candidate set

Figure 9.5.: Architecture of Our Solution Calculating a Candidate Set of Duplicates.

Before calculating any similarity, we filter out any unnecessary replicated information which
might affect the prediction outcome at the end. The repository is cleaned up by discarding all the
replicated components, i.e., components with the same name and type (the description feature is
not mandatory, therefore not considered a factor). This results in a reduction of 28 components.

The description of every component is converted into a TF-IDF vector. For this, a corpus
needs to be built where each description of a component is considered as a document. Every
word (term) gets evaluated using equation 9.7. For tokenization of the title of the components,
we use the WordTokenizer class from the WEKA library for Java. For the association mining we
use the R package arules. This package provides functions to read a Comma Seperated Values
(CSV) file as transactions and to generate the frequent item sets using the Apriori algorithm.
The chosen value for minimal support was 0.17 was the largest value where rules were still
generated. Combined with the minimum confidence value of 0.75, the algorithm resulted in the
generation of 77 rules.

The client side was realized as a plug-in for the Archi tool1, which is an Eclipse-based
Integrated Development Environment (IDE). The plug-in provides a button on the toolbar of
the IDE, which allows the user to select the desired ArchiMate model file. Afterwards, the file
is uploaded to our server and the module waits for a response back. The response contains a
JavaScript Object Notation (JSON) list of components that are not part of the repository and
their most similar components from the repository. The result is presented as a dialog with a
tabular view inside Archi.

9.1.4. Evaluation

The similarity models we applied are unsupervised, meaning we do not have the true output
available. To successfully evaluate them, we manually created a simulation and architecture
model. The repository data consisted of 327 nodes and 275 edges and the model of 35 nodes
and 23 edges. The model components were provided from two sources chosen pseudo-randomly
from the repository and inserted without any relations to the repository.

A subset of 16 model components were subject to manual change of the attributes, so that
different scenarios for similarity can be tested based on a title, description, type, structural simi-

1https://www.archimatetool.com/

https://www.archimatetool.com/

100 Chapter 9. Improving the Design of EA Models

larity and combination of all. Only the nodes that did not appear in the repository were tested.
There were 20 unidentified nodes in total, out of which four did not have any substitution. For
every evaluation test, the k value was set to the lowest value of 1, which evaluates the shortest
result list.

We also set up a simulation of an ArchiMate model for creating models like projects would
do. The simulation file consisted of the same number of components and edges as the previous
simulation model file, distributed in the same number of views. We replaced each unidentified
component with its counterpart from the repository if such existed. Using the approach of cre-
ating transaction per view level, we created a set of five transactions with 18 items. Finally, we
discarded newly introduced components without substitution as well as the components that did
not belong to any view.

For evaluating the correctness of the similarity models, we compared three different metrics:
accuracy, precision, and recall[206]. For the association rule mining, we focused only on the
accuracy, since the results were returned in the form of “if the components on the left–side of
the rule exist, then the components on the right–side of the rule might be of interest”. Therefore
we could not make the connection which result components belong to which query components.
All metrics range from 0 (the lowest value) to 1 (highest value).

We evaluated the similarity models each one separately, as well as the combination between
them. The overview is given in figure 9.6.

The first evaluation was performed on each feature similarity model separately. We set the
number of returned components to one (k = 1). The title and type similarity showed poor
performance in every metric. The description similarity model showed maximum precision
value and better values for accuracy and recall. However, since the description is optional for
the components, it cannot be taken as a single metric. The usage of a single feature similarity
model is not recommended as they do not provide an effective recommendation service.

Next, for the evaluation of the weighted similarity combination sISO we configured the si-
milarity using the values 0.5, 0.1 and 0.4 for the weights w1, w2, and w3 respectively. The
weights were provided from a domain expert and reflected the importance of each feature. To
avoid results with components with low similarity score, we introduced a threshold t = 0.5. The
weighted combination performed better than any separate feature similarity model if the number
of suggested components is taken into account as well, which was 17 for the given threshold.

Next, we evaluated the SimRank approach, using the combined in- and out-degree. We no-
ticed the improvement in the score compared to the weighted combination, so we incorporated
the two methods together as the SimRank Extended sESR with a threshold of 0.5. The SimRank
Extended showed the highest accuracy, recall, and the highest F1 score. Increasing the number
of returned components k to higher number did not affect the score in our simulation.

We performed the association mining with the following input: minimal support of 0.2 (the
highest support value that still returns results), and confidence of 1 (the maximal possible value).
This generated a set of 293 rules. Out of those, for the model that we evaluated, 13 components
were returned. We identified a total of 7 correctly suggested components that were a suitable
replacement, with an accuracy of 0.54. The rules had a low support value, which means that the
component sets did not often appear in transactions. However, confidence had the highest value,
thus giving a high level of certainty concerning the truth of the association rules. However, this

9.1. Avoiding Redundancies in EA Models 101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Title Sim.

Description Sim.

Type Sim.

Weighted Attr. Comb.

SimRank (in+out deg.)

SimRankExt

SimRankExtKComps

F1-score Recall Precision Accuracy

Figure 9.6.: Comparison of all Similarity Models.

method is highly dependent on the data set provided by the architects.

9.1.5. Limitations

As we rely on a graph-like presentation of the EA model, our approach can be generalized and
applied also to other models which can be presented as graphs. We assume that, for instance,
our approach might also work for UML models as ArchiMate and UML class diagrams are quite
similar.

The current limitations are the constraints we impose before evaluating the EA models. The
EA models have to be complete and correct, which means that the tool cannot be used as a re-
commendation system (suggesting components as the model is in the process of creation). This
limitation may be solved in the future by incorporating techniques from the model recommen-
dation domain. Also the approaches are not optimized: as the size of the repository increases,
recommending a list of components takes more time. Consequently, we will elaborate on this
point in the future. Lastly, our approach cannot be fully automatized since we rely on a human
expert to confirm that the recommended components are the right substitution. We do not see
any possibilities to overcome with this issue.

102 Chapter 9. Improving the Design of EA Models

9.2. A Performance Comparison of Graph Analytic Methods

In large organizations, the nature of EA data makes it difficult to quickly select, tune and apply
graph analytic and ML algorithms to provide support for maintaining the EA model. Thus,
much time is spent in searching and selecting the best performing model. To cope with these
challenges, we set up a ML study addressing the following research questions:

RQ 9 Which specific ML algorithms are suited to support EA model maintenance?

RQ 10 What kind of decision can be made out of different graph analytic techniques?

RQ 11 Which algorithm or metric fits best to a particular use case?

To tackle the challenges mentioned above, we provide generic approaches which address
a specific kind of challenges in EA model maintenance; including the identification of dupli-
cate components in the EA repository. To address this issue, we investigate different similarity
techniques to find a match between EA models.

We also propose and evaluate a nearest neighbor approach, an alternate method for SimRank
[103]. This approach helps to analyze the underlying structures of complex EAs by providing
insights from the processes and functions used in different layers of the EA.

Motivated by the life-cycle model for ML frameworks provided by Sapp et al. [199], we
propose a general work-flow framework to analyze EA models by comparing different graph
analytic and ML algorithms and then selecting the best-performing approach based on suitable
performance metrics. More details on the work-flow can be found in Appendix A.7.

9.2.1. Graph Analytic Approaches

Previous research has identified the potential of network science applied to the context of EA
analysis [204]. We depict the EA model as a network-graph representing ArchiMate compo-
nents as nodes and relationships between the components as edges in the graph. Thus, analyzing
EA model as network-graph provides a deeper understanding of the relation between the com-
ponents. As there are several graph analytic techniques, we focus on graph-based similarity and
community detection (unsupervised learning).

Similarity Between Enterprise Architecture Models

Considering EA model as a graph like structure [197], we apply graph similarity techniques
to assess the match between EA models. The graph similarity involves determining a degree of
similarity between the two graphs [117] quantified by a similarity score between 0 (no similarity)
and 1 (complete similarity). We investigate the similarity between EA models based on the node
and edge information. The experiment results provide a way to compare the relatedness between
two EA models. We then compare and evaluate different similarity metrics to select the best-
performing metric.

9.2. A Performance Comparison of Graph Analytic Methods 103

Computing node similarity

The first similarity measure we study, namely node matching similarity, is based on examining
the content of the elements/components name of EA models. Figure 9.7 shows two models
(Business-Application alignment model) representing two simple instances for boarding and
departure process of an airport departure system. Although the naming of components for Model
m2 (Figure 9.7(b)) is slightly different from the Model m1 (Figure 9.7(a)), both the models
illustrate the same boarding process of an airport departure system.

We consider two ways of measuring the similarity between elements of different EA models:
syntactic similarity and Latent Semantic Analysis (LSA).

Syntactic Similarity The term syntactic refers to the structure of words and phrases. The
syntactic approach is related to both, the occurrence of terms and the number of words in the
text/sentence. In this work, we use the Cosine similarity index [17] and Jaccard similarity index
[166] as a syntactic approach to detect the match between components of two EA models. To
find the Cosine and Jaccard similarity score between the phrases (component names) present in
two EA models, phrases are turned into words, words are then converted to vectors with 0s and
1s.

Definition 9.1 (Cosine similarity) Given two set of words A and B represented as vectors, Co-
sine similarity is measured by using the word vectors as in below equation:

Cosine(A,B) =
A.B

||A||||B||
(9.12)

where A.B is the intersection (dot product) between the word vectors A and B, ||A|| and
||B|| represents the vector length of A and B respectively and is calculated as such:

||A|| =

√√√√ n∑
i=1

A2
i and ||B|| =

√√√√ n∑
i=1

B2
i

Apart from the cosine similarity, another well-known measure for determining the degree of
similarity is the Jaccard similarity index. The Jaccard similarity measures the similarity between
finite sample sets and is defined as the cardinality of the intersection of sets divided by the
cardinality of the union of the sample sets [101].

Definition 9.2 (Jaccard similarity) Given two sets of words, A and B, the Jaccard similarity is
computed using the following equation:

Jaccard(A,B) =
A ∩B
A ∪B

(9.13)

where A ∩ B represents the intersection of sample sets and A ∪ B represents the union of the
sample sets.

104 Chapter 9. Improving the Design of EA Models

(a) Model m1

(b) Model m2

Figure 9.7.: EA Models Representing Two Simple Instances of an Airport Departure System to
Illustrate Syntactic Similarity.

9.2. A Performance Comparison of Graph Analytic Methods 105

Latent Semantic Analysis An alternative method to compare the similarity between EA
models is based on fetching the relations between words in the texts. LSA [123] is a corpus
based method which does not use the semantic network, grammars, syntactic and dictionaries.
The main idea behind LSA was to overcome techniques that exclusively try to match search
queries with only the presence of words in a document as discussed in the previous section. The
intuitive idea behind search is based on the related concept of the documents. The difficulty
arises when we want to compare concepts or meaning behind the words. LSA tries to overcome
this problem with a statistical analysis of the latent structures of the documents by finding the
underlying meaning or concepts between the documents. It tries to map the words in a document
into a concept space and then comparing in the space.

9.2.2. Computing edge similarity

The second similarity metric we study, is a similarity metric over the structure of the EA model,
by considering EA model as a network graph. This method is applicable when one knows the
node correspondence for, e.g., the number of nodes present in the two graphs is equal, and edges
do not vary much across two graphs. The main intuitive idea behind this approach is, by knowing
the node correspondence, a node in one graph is said to be similar to a node in another graph if
they share a standard set of neighborhoods. Again, its neighbors are similar if their neighbors
are similar and so on [192]. This method helps enterprise architects to keep track the changes
between similar kind of EA models.

Figure 9.8 illustrates the scenario of the airport departure system. We assume, Architect 1 mo-
dels the application layer as shown in Figure 9.8(a), which shows the presence of realization re-
lationship between “Airline administration support” (Application Component) and “Identifying
boarding pass” (Application Service) and between “Boarding control” (Application Component)
and “Security” (Application Service). Architect 2 models the similar kind of application layer
as shown in Figure 9.8(b). Both the models have an equal number of components with varying
edge connection. Since both the application components have collaborated within “Boarding
& departure control system” (Application Collaboration), there exists a similarity between the
models generated by both the architects irrespective of edge connection.

Let G1(V1, E1) and G2(V2, E2) be the directed graphs that represent the EA models. For a
vertex u ∈ V1 and u ∈ V2, we define N(u) as the set of neighbors of u. Similarly, for vertex
v ∈ V1 and v ∈ V2, we define N(v) as the set of neighbors of v. Degree of vertex u and v is
represented as ku and kv.

Motivated from the work of [134], we selected the most widely used structural similarity
measures based on edges namely Jaccard, Dice, and Adamic-Adar similarity indexes.

Definition 9.3 (Jaccard index) The Jaccard index between two vertices is the number of com-
mon neighbors divided by the number of vertices that are neighbors of at least one of the two
vertices being considered [134]. The similarity score ranges between 0 and 1, where score 0
represents no similarity and score 1 indicates complete similarity. The Jaccard index between
vertices u and v for graph G1 is computed as shown below:

Jaccard(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

(9.14)

106 Chapter 9. Improving the Design of EA Models

(a) Application View of Model m1 (b) Application View of Model m2

Figure 9.8.: Two Simple Instances Illustrating Structural Similarity.

Definition 9.4 (Dice index) The Dice index (Sørensen–Dice index) is twice the number of com-
mon neighbors divided by the sum of degrees of two vertices [212]. Similar to Jaccard, the
function ranges between 0 and 1. The Dice index between vertices u and v for graph G1 is
computed as shown below 9.15:

Dice(u, v) =
2|N(u) ∩N(v)|
|ku + kv|

(9.15)

Definition 9.5 (Adamic-Adar index) The inverse log-weighted similarity or Adamic-Adar in-
dex between two vertices is the number of their common neighbors, weighted by the inverse
logarithm of their degrees. It is based on the assumption that two vertices should be considered
more similar if they share a low-degree common neighbor [1]. The inverted log-weighted index
between vertices u and v for graph G1 is computed as shown below:

Inverted log =
∑

z∈N(u)∩N(v)

1

log kz
, (9.16)

where z is a common neighbor to both nodes u and v and k is the degree of node z.

9.2.3. Nearest Neighbor

To analyze the underlying structure of a complex EA, it is important to find relevant servi-
ces, functionality, and processes and appropriate granularity of the services used in different
layers of the EA model [4]. Therefore, it is necessary to analyze existing business processes,
organizational structures and their relationship with the different elements or components of an
organization’s IT landscape.

Nearest neighbor approach [192] can provide a graph-based recommendation for enterprise
architects in order to avoid modeling already existing elements. Early work on this domain was

9.2. A Performance Comparison of Graph Analytic Methods 107

attempted by [13] in the field of domain engineering supporting the design of a SOA. Thus, fin-
ding communities on a network helps to investigate the roles in an EA model where components
in a single cluster will have similar kind of roles compared to other clusters [184].

We present a technique based on unsupervised learning method, i.e., community detection
or clustering to determine the communities [66]. Considering EA model as a network [197],
we apply different community detection algorithms and analyze the results [172]. The com-
munity detection method tries to group a set of vertices having a higher probability of being
interconnected than being connected to the members of other groups. In this way, it is possible
to investigate similar kinds of grouped components. Thus, in a given network, members within
clusters are highly similar compared to members outside the cluster.

Here, similarity refers to the components having a common subset of neighbors. The re-
sulting clusters or communities results in generating different viewpoints while minimizing the
complex view of the different layers of EA models. Identifying communities in an EA model
also provides decision support for the enterprise architects to place new component into the mo-
del repository based on identified roles and position of the components. When the size of the
model is complex enough to analyze EA model, community detection technique becomes robust
regarding execution speed and outperforms SimRank approach.

We do not know in advance which community detection algorithm can perform well on EA
data. One of the objectives of our work is to estimate and select the best possible community
detection algorithm which performs well on partitioning EA model. This, in-turn help to reduce
the search time of a best-performing algorithm in the future. We have evaluated the most widely
used community detection algorithms supported by the igraph library [46].

Once a community detection algorithm is implemented and the network is partitioned into
communities, it is important to interpret the results to know which algorithm performs well
and detect meaningful communities. Since we do not know the gold standard to which the
communities should belong, highly effective approach to evaluate communities formed by using
internal criteria such as “modularity” [164].

Definition 9.6 (Modularity) The modularity, Q, of a community structure can be defined as:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
, (9.17)

where m is the number of edges, Aij is the element of the adjacency matrix, and ki is the degree
of node k. The value of Q ranges between -1 and +1. Higher the modularity score, better is the
structure of the communities found.

9.2.4. Results

In this section, we outline the evaluation results to select the best performing similarity method
to investigate the similarity between the EA models and to select the best performing community
detection algorithm, which provides the best support of EA model maintenance.

Similarity Between Enterprise Architecture Models

Node Similarity Evaluation

108 Chapter 9. Improving the Design of EA Models

Table 9.9.: Term Document Matrix.
Documents

Terms doc1 doc2
airline 2 0
boarding 10 7
security 3 2
navigation 1 1
surveillance 0 1
traveler 0 2
...

...
...

Table 9.10.: LSA Semantic Space.
Documents

Terms doc1 doc2
airline 2.20 0.00
boarding 2.40 2.08
security 1.39 1.10
navigation 0.69 0.69
surveillance 0.00 1.39
traveler 0.00 2.20
...

...
...

Syntactic Similarity. Concerning Model m1 and Model m2 (see figure 9.7), Cosine and
Jaccard similarity measures are applied to assess the syntactic similarity between compo-
nent names of the EA models. Considering a target similarity score as 1 (whole similarity)
and knowing that Model m1 (Figure 9.7(a)) and Model m2 (Figure 9.7(b)) almost convey
the similar meaning. The comparison results for our case shows that cosine similarity
(0.700) has a better similarity score which is closer to value 1 than Jaccard Index (0.537).
Thus, we conclude cosine similarity performs better than Jaccard index in capturing the
similarity, at least in our example.

Latent Semantic Analysis. Considering a corpus of documents, the first step in the LSA
is to create a term-document matrix. The term-document matrix is a two-dimensional
matrix whose rows represent the terms and columns are the documents, so each entry
(i, j) represents the frequency of term i in document j.

Regarding Figure 9.7, we created a term-document matrix as shown in Table 9.9. For
example, the word “airline” appears twice in doc1 and zero time in doc1, whereas “boar-
ding” appears ten times in doc1 and seven times in doc2 and so on.

The next step is to apply Singular Value Decomposition (SVD), a matrix decomposition
algorithm to the term-document matrix [123]. This allows factorizing an original ma-
trix M as a product of three matrices: term vector matrix T , diagonal matrix S and the
document vector matrix D:

M = TSDT (9.18)

The matrix is then reduced to the specified number of dimensions k = dims which pro-
duces a representation in a new space, called the latent semantic space.

In order to create LSA space for our example (refer Figure 9.7), we used “lsa” 2 package

2https://cran.r-project.org/web/packages/lsa/lsa.pdf

https://cran.r-project.org/web/packages/lsa/lsa.pdf

9.2. A Performance Comparison of Graph Analytic Methods 109

from R library. Table 9.10 summarizes the LSA space, which represents a two-dimensional
reconstruction of the original matrix (see table 9.9) based on SVD.

The new space (Table 9.10) is then used to find similarity between different words or
phrases in the component names present in the two EA models (see Figure 9.7(a) & 9.7(b))
by considering the words that are co-occurring in similar contexts may be considered to
be semantically related.

Then we compute the similarity between two documents consisting of multiple words by
using Costring() function available in the “LSAfun” 3 package. This function calculates
cosine values between two sentences or documents. The LSA similarity computes a score
ranging from 0 (no similarity) to 1 (complete similarity).

Knowing that the Model m1 (Figure 9.7(a)) and Model m2 (Figure 9.7(b)) convey similar
meaning and from the above results, we conclude that by using LSA (0.832) we got the
highest score closer to 1. Thus, LSA outperforms Cosine and Jaccard similarity measure
in capturing relatedness between EA models. Therefore, any one of the models can be
added to the EA repository. Thus, LSA technique is more efficient in finding similarity
between EA models compared to simple cosine similarity (0.700) based on the type of
content present between the component names. For a certain threshold (similarity score)
closer to 1, enterprise architects can decide upon adding a new model into the repository.

Structural similarity evaluation In order to assess the structural similarity between two
graphs, we first calculate the similarity between the pair of vertices by constructing similarity
matrices for the graphs G1 and G2 respectively using Jaccard (equation 9.14), Dice (equation
9.15) and Adamic-Adar (equation 9.16) indexes. Let Sim(G1) and Sim(G2) represent simila-
rity matrices computed for the directed graphs G1 and G2 using the similarity index.

Association or correlation between two similarity matrices is later computed by testing cor-
relation to compare whether two graphs are similar based on its structure. The correlation coef-
ficient can range in value from −1 to +1. The larger the absolute value of the coefficient, the
stronger the relationship between the variables. We used the Pearson correlation coefficient to
compute the association between two similarity matrices (equation 9.19):

ρ(X,Y)& =
cov(X,Y)

σX , σY
(9.19)

Our results show that best associations were obtained using the Jaccard similarity coeffi-
cient (0.968) whose correlation score is closer to 1 than Dice similarity coefficient (0.956) and
Adamic-Adar similarity coefficient (0.853). Thus, we choose the Jaccard similarity index as the
best performing metric in finding the structural similarity.

Comparison Between Community Detection Algorithms

In this section, we discuss the approach to find the best-performing community detection algo-
rithm. Since we do not know to which the communities should belong, we use modularity score

3https://cran.r-project.org/web/packages/LSAfun/LSAfun.pdf

https://cran.r-project.org/web/packages/LSAfun/LSAfun.pdf

110 Chapter 9. Improving the Design of EA Models

(internal measure) as a general criterion to find the best-performing algorithm. We consider two
different cases in determining the communities of similar kind of EA components. Thus, for
each case, we evaluate the performance of different community detection algorithms.

Ignoring Isolated Nodes In this case, we consider the graph by ignoring all the isolated
nodes present in the graph including the title node. Here, the title node refers to the title element
of an EA model. Hence, this case will be applicable when there are no isolated EA components
present in the model. The algorithms were executed using the igraph library available in R
software. Table 9.11 summarizes the resulting community size, modularity score, execution
time and ranking of different community detection algorithms. Based on modularity scores and
running time, the algorithms are ranked from the highest performing to the lowest performing.

Table 9.11.: Modularity Evaluation Result for Case 1.
Algorithm Size Modularity Running

time(in sec)
Ranking

Edge-betweenness 27 0.579 ≈0.05 6
Infomap 28 0.694 ≈0.08 4
Label propagation 26 0.601 ≈50 5
Leading eigenvector 14 0.749 ≈0.11 3
Spinglass 14 0.786 ≈7.82 1
walktrap 18 0.746 ≈0.009 2

As shown in Table 9.11, spinglass takes a top position. Higher the modularity score indicates
better is the network partition. Leading eigenvector and walktrap returns the almost equal result
with modularity score of 0.75. In this situation, running time, t, is considered as a tie-break
criterion. Since walktrap computes faster than leading eigenvector, the user can decide between
the selection of an algorithm based on running time of the specific algorithm. Edge-betweenness
algorithm performed worst in this case with the lowest modularity score of about 0.579. The
lesser the modularity score indicates larger the number of nodes in a single community and
makes it difficult to understand the distribution of communities formed within a network.

Including Isolated Nodes The case 2 is applicable when the EA model contains isolated
components including title component. Thus, we consider the graph with isolated nodes. From
the experiment, we observe that isolated nodes are assigned a separate community. Table 9.12
summarizes the experimental result of the airport departure system model consisting of isolated
components (including title node).

From Table 9.12, we observe walktrap and leading eigenvector algorithm perform well on
the data-set containing an isolated node with modularity score of about 0.75, considered as a
sound algorithm. Since walktrap computes faster than leading eigenvector, walktrap got the top
position. Label propagation algorithm took a longer time to execute with modularity score of
0.612. Edge-betweenness algorithm performed worst in this case with lowest modularity score

9.2. A Performance Comparison of Graph Analytic Methods 111

Table 9.12.: Modularity Evaluation Result for Case 2.
Algorithm Size Modularity Running

time(in sec)
Ranking

Edge-betweenness 28 0.579 ≈0.031 5
Infomap 29 0.690 ≈0.05 3
Label propagation 27 0.612 ≈8.41 4
Leading eigenvector 15 0.749 ≈0.09 2
Spinglass - - - 6
walktrap 19 0.746 ≈0.009 1

of about 0.579, which makes it difficult to understand the distribution of communities formed
within a network. The spinglass algorithm did not work in this case, accusing the network to
have unconnected nodes (e.g. title node). Hence, it got the last position.

9.2.5. Limitations

An obvious limitation of finding similarity method is that computation time is linear concerning
the product of graph sizes due to the size of the similarity matrix. One of the challenges in
determining the similarity between networks is defining a measure of similarity. For instance, it
would be difficult for a domain expert to choose a threshold on the similarity measures to decide
whether two models are similar. Another limitation is that the igraph community detection algo-
rithm fails to handle overlapping communities. Thus, the overlapping community algorithm is
necessary when a large set of components are used in different business processes or functions.

Chapter 10.

Optimizing EA Models

So far, we have concentrated on the EA model as such, meaning that we tried to assess its overall
quality and to improve it. However, the EA model reflects real world assets like applications or
processes. Therefore, we like to improve the quality of the EA model with respect to its real
world properties in the following. The following results have initially been presented in [81, 83].

Motivation The up-to-date EA model can serve as input for EA itself. For example, the model
can be facilitated to identify potential optimizations to achieve a better IT/business alignment.
Typically, EAFs include the management of business capabilities, the information system archi-
tecture, infrastructure components, and information structures [242]. Obviously, the beforehand
stated properties of EA allow to interpret the EA model as a graph, where EA’s elements are
vertices and their relationships are edges. The different layers of EA can be represented by sets
of vertices.

One way to achieve the IT/business alignment is EA [14, 183]. Corresponding to the maturity
of the EA [15] different goals are aimed. For example, the IT landscape should be consolidated
to reduce costs or to identify functional redundancies between business and IT. To support those
goals different techniques are feasible.

In the following, we propose a graph-based technique to improve EAs with respect to lose
coupling, minimal amount of elements, and minimal operation costs, using LIP. We use the
metaphor of triangles to build up our LIP, which is more intuitively compared to other techniques
(e.g., [71, 74]). Those techniques optimize EAs using graphs and LIP.

10.1. Foundations

Since, we can represent an EA as a graph, we can apply existing graph algorithms to solve
problems within the domain of EA. For instance, the well-known Traveling Salesperson Pro-
blem (TSP) can be formulated as a LIP on a graph [21, pp. 1-5]. This universal formulation
allows to apply this solution to other domains like genome sequencing, drilling problems, or
data clustering [21, pp. 59-70].

As presented by [242], an EA is structured in a layered manner. Each layer contains different
architectural elements, which have relations to other elements of the same layer as well as relati-
ons to architectural elements of adjacent layers. We assume that each layer offers capabilities to
the layer that is defined on top of it to realize its needed functions and behavior. In the following,
we will refer to the layer offering capabilities as the “lower layer” comparable to a server and

114 Chapter 10. Optimizing EA Models

Figure 10.1.: Simple EA Model, Which Serves as Input for the Optimization.

call the layer using these capabilities the “upper layer” comparable to a client. Hereafter, we
will describe these layers and elements more vividly:

We want to optimize the relations between the elements of two adjacent layers. For instance,
taking an ArchiMate notated EA in account, we may want to optimize the relations between the
business layer and the application layer. The business layer contains some business functions,
which should be realized by several application components. Therefore, each business function
is connected to all necessary capabilities and each application component is connected to all
capabilities it realizes. Based on the relations between the architectural elements and the capabi-
lities, we suggest a technique to find the “optimal” relations between the elements of the adjacent
layers. In our case, “optimal” can stand for e.g. a minimal amount of elements or minimal costs.

To be more concrete, assume that the business layer contains the business function HR Ma-
nagement, which requires e.g. the capabilities Recruitment, User Administration, and Bank
Transfer as presented in Figure 10.1. These capabilities can be realized either by two different
application components or one single application component. Depending on the understanding
of “optimal”, different solution scenarios are feasible.

Following, we will use a simplified EA model sketched in Figure 10.2. It contains two adja-
cent layers and a set of capabilities. Each architectural element of the upper layer, uli, is related
to several capabilities, cj , which are needed to realize uli.

Having a look from the lower layer, there are several architectural elements, llk, which realize
different capabilities, cj , defined by the relation llk to cj . Based on this structures, we want to
optimize the relations between the upper and the lower layer elements to different subjects.

Before we dive into the optimization, we define the used EA model more formal:

10.1. Foundations 115

Figure 10.2.: Example Enterprise Architecture.

An enterprise architecture is a quadruple EA = (L, C, E,R) comprising an ordered set L of
layers, a set C of capability sets, a set E of architectural elements, and a set R of relations.

Each layer L ∈ L consists of architectural elements and layers are disjunct:

Li ∩ Lj = ∅ | ∀Li, Lj ∈ L, i 6= j (10.1)

For each two adjacent layers, Ll and Ll+1, there is a set of capabilities CLl
∈ C. Each capa-

bility describes some specific behavior, which can be only offered by a certain layer; therefore,
all these capability sets are disjunct:

CLi ∩ CLj = ∅ | ∀CLi , CLj ∈ C, i 6= j (10.2)

A relation is a tuple of an architectural element and a capability:

r ∈ R ⊆ {(e, c) : e ∈ Ll ∪ Ll+1, c ∈ CLl
} (10.3)

We want to find the “optimal” set of relations between the elements of the upper and the
lower layer using beforehand stated foundations. Therefore, we create a complete bipartite

116 Chapter 10. Optimizing EA Models

graph between the layers Ll and Ll+1:

rIL ∈ RI
l ≡ {(ul, ll) : ul ∈ Ll+1, ll ∈ Ll}. (10.4)

This intermediately introduced relations represent all possible connections between the two
adjacent layers with no respect to constraints given by the relations between architectural ele-
ments and capabilities.

10.2. Applying the Modeling Approach to ArchiMate

To illustrate our EA modeling approach based on layers and capabilities, we applied our ap-
proach for ArchiMate modeled EAs, as ArchiMate [128] is a widely accepted and used EA
modeling language.

For the sake of simplicity, we considered only the element types of three ArchiMate layer:
business layer, application layer, and technology layer. Those layers contain element types like
processes or software, which are related to each other. Within the chosen layers, we disregarded
the passive structure element types, since they all represent some kind of information objects in
different ways, which cannot be linked to some kind of capabilities.

Table 10.3 shows the mapping of ArchiMate modeling element types to the three considered
layers and the respective capabilities.

Table 10.3.: Suggested Mapping for ArchiMate Element Types to Proposed Sets.

We mapped the Application Function element type of ArchiMate to a capability, because it
can describe a requirement the business has for an application. Business Process and Business
Function, modeling the overall structure of an organization and how the organization realizes the
value chain, can be obviously mapped to element types of the upper layer. These element types

10.3. Different Optimization Subjects 117

may need some application support from the Application Layer, which can be represented by
the element types Application Component, Application Collaboration, or Application Process,
realizing the needed capabilities, i.e. Application Functions.

Similarly to Application Function, we mapped the Technology Function element type to a
capability describing the needs of the element types of the Application Layer. Furthermore,
Technology Collaboration and Technology Process can be mapped to element types of the lower
layer. Unfortunately, there is no element type called “Technology Component”. Instead, the
element type Node can be used to offer certain functionalities to the Application Layer. Further-
more, it aggregates Device, which represents hardware resources, and System Software, which
represents software resources. Moreover, these aggregated element types are also needed to rea-
lize the functionality of the Application Layer and, consequently, are mapped to elements of the
lower layer.

10.3. Different Optimization Subjects

Beforehand, we formulated a formal description of an EA model. Based on this formal descrip-
tion, we postulated a mapping for ArchiMate. Next, we will define several objectives to optimize
the EA model.

10.3.1. Optimizing with Respect to Minimal Coupling

Loose coupling between two components eases the interchangeability [195]. Hence, the ex-
change of a single component will not be as expensive as in a highly coupled system. This holds
also for EAs. Consequently, managers might be interested to find the minimal coupling between
EAs elements.

Optimizing the EA with respect to a minimal coupling between two adjacent layers Ll and
Ll+1, we have to minimize the amount of used intermediate relations, rIl . Consequently, those
rIl represent the optimization variables of our LIP:

min
∑

xrIl
, (10.5)

where xrIl ∈ {0, 1} and xrIl = 1 means that rIl is in the optimal solution and xrIl = 0 means that
it is not in the optimal solution.

To guarantee the restrictions sketched in Figure 10.2 we have to define several constraints.
To ensure for each upper element that every capability which is needed will be served in the
solution, there has to be at least one relation between an upper layer element and a lower layer
element which supports this capability:

∑
rI∈SR

uli,cj

xrIl
≥ 1 | ∀SR

uli,cj
∈ SR, (10.6)

118 Chapter 10. Optimizing EA Models

with SR 3 SR
uli,cj

⊆ RI
l . Where SR contains all intermediate relations which are taken into

account for the optimization and SR
uli,cj

contains all intermediate relations between uli and llk,
where llk has a relation to cj :

SR
uli,cj

= {(uli, llk) ∈ RI
l } | ∀ (uli, cj) ∈ R,∀ (llk, cj) ∈ R (10.7)

To easily create all SR
uli,cj

we can create a maximum flow problem [91] for each connection
between the upper layer elements and the related capabilities. Therefore, we introduce additional
nodes: a source s, and a sink t. We connect s to uli and replace all upper layer elements
in intermediate relations, rIl , by t. Furthermore, we introduce the capacity of a relation as a
mapping c : R ∪ RI

l ∪ (s, uli) → R+ denoted by c (u, v). The capacity defines the maximum
amount of flow which can pass a relation.

A flow of a relation is a mapping f : R ∪Rv ∪ (s, uli)→ R+ denoted by f (u, v) with subject
to two constraints. First, the flow cannot exceed its capacity:

f (u, v) ≤ c (u, v) | ∀ (u, v) ∈ R ∪Rv ∪ (s, uli) (10.8)

Second, the sum of the entering flows must equal the sum of the leaving flows:∑
u:(u,v)∈R

f (u, v) =
∑

u:(u,v)∈R

f (v, u) | ∀v ∈ Ll ∪ Ll+1 ∪ Cm (10.9)

Before we apply e.g. the algorithm of [65] or [54] to solve the maximum flow problem, we
set the capacity of all intermediate relations, rIl , to 1 and the capacity of all other relations to
infinity. After the application, we add all intermediate relations whose flow is 1 to SR

uli,cj
.

Figure 10.4 shows a subset of the EA in Figure 10.2. It contains ul2 and all related capabilities,
all llk which offer those capabilities, and the intermediate relations represented by the dashed
lines. For instance, solving the maximum flow problem and creating the necessary set for the
relation between ul2 and c1 leads to

SR
ul2,c1 = {(ul2, ll1) , (ul2, ll3) , (ul2, ll5)}, (10.10)

which, consequently, creates the following constraint in our LIP:

x(ul2,ll1) + x(ul2,ll3) + x(ul2,ll5) > 1. (10.11)

Those constraints ensure that in the final solution, proposed by the LIP solver, at least one
intermediate relation between the upper and the lower layer element is used, which are both
related to the same capability. This leads to a distinctive structure stressed out in Figure 10.4 by
the thicker lines: a triangle. These triangles describe the constraints which have to be included
in a later solution.

10.3. Different Optimization Subjects 119

ul1

c1

c3

c5

ll5ll4ll3ll1

needs

realizes

could serve

Figure 10.4.: Visualization of SR
ul2,cj

.

10.3.2. Optimizing the Amount of Needed Lower Layer Elements

The beforehand stated foundations can also be used to optimize the amount of needed lower
layer architectural elements. Managers might want to have the minimal amount of elements in a
certain layer to reduce the needed knowledge to maintain those elements.

To achieve the minimal amount of elements, we have to adjust the optimization function
(10.5) and the constraints (10.6) from relations to lower layer elements. This leads to following
optimization function:

min
∑
ll∈Ll

xll. (10.12)

The constraints are constructed by using the lower layer elements as well:∑
ll∈SE

uli,cj

xll ≥ 1 | ∀SL
uli,cj

∈ SL, (10.13)

with SE 3 SE
uli,cj

⊆ Ll containing all lower layer elements which are part of the intermediate
relations between uli and llk, where llk has a relation to cj :

SE
uli,cj

= {llk : (uli, llk) ∈ RI
l } | ∀ (uli, cj) ∈ R,∀ (llk, cj) ∈ R (10.14)

According to the aforementioned example, solving the maximum flow problem creates

SE
ul2,c1 = {ll1, ll3, ll5}, (10.15)

which leads to following constraint:

xll1 + xll3 + xll5 > 1. (10.16)

120 Chapter 10. Optimizing EA Models

10.3.3. Optimizing Operational Costs

Managers are typically assessed by the costs which occur in their area of response. Conse-
quently, they are often interested in reducing cost without losing functionality.

To optimize the operational costs, we have to apply slightly changes to (10.12) by introducing
an operational cost function CO : E → R+ denoted by CO (e):

min
∑
ll∈Ll

CO(ll)xll. (10.17)

For simplicity reasons we assume that the operational costs are constant and not affected
neither by lower layer elements attached to the considered element nor by relations between
elements within the same layer.

10.4. Applying the Optimization Model

Following, we examine our model to check two aspects. First, we check if the proposed solutions
are optimal. Second, we like to ensure that our approach is solvable for realistic problems in
adequate time.

10.4.1. Exemplary Application

To test our previous formulated LIPs we translated the EA in Figure 10.2 to Java code and
transformed it into a LIP which was solved by LPsolve1. Following, we will present the results
of the optimization. For reasons of simplicity, we split up the graph in four sub graphs. Each
sub graph represents the proposed solution for one upper layer element including the assigned
capabilities and lower layer elements.

The results regarding the minimal coupling optimization are presented in Figure 10.5. The
result set contains ten relations between the upper and the lower layer elements, which create
the enforced twelve triangles. Furthermore, all five lower layer elements are used.

c1

c3

c5

ul1

ll5ll4

(a)

c1

c2

c8

ul2

ll5ll1

(b)

c3

c5

ul3

ll5ll4

(c)

c2

c4

c6

c7

ul4

ll5ll3ll2ll1

(d)

Figure 10.5.: Solution With Respect to a Minimal Coupling.

1https://sourceforge.net/projects/lpsolve/

10.4. Applying the Optimization Model 121

Figure 10.6 sketches the results of the optimization regarding the minimal amount of lower
layer elements. An optimal solution contains four elements as LPsolve suggests excluding ll5.
Since the LIP optimizes only the amount of lower layer elements, it tells nothing about the
concrete assignment of upper to lower layer elements. Therefore, we suggest relations using
solid lines as well as all other possible relations using dashed lines.

c1

c3

c5

ul1

ll4ll3ll2ll1

(a)

c1

c2

c8

ul2

ll4ll3ll1

(b)

c3

c5

ul1

ll4ll3ll2ll1

(c)

c2

c4

c6

c7

ul4

ll4ll3ll2ll1

(d)

Figure 10.6.: Solution With Respect to Minimal Lower Layer Element Amount.

To process the optimization with respect to minimal lower layer element costs, we assigned
costs stated in Table 10.8 to the lower layer elements. In Figure 10.7 we visualized the results.
Compared to Figure 10.6, LPsolve suggests excluding ll4 instead of ll5 what leads to total costs
of 17.

c1

c3

c5

ul1

ll5ll3ll2ll1

(a)

c1

c2

c8

ul2

ll5ll3ll1

(b)

c3

c5

ul3

ll5ll3ll2ll1

(c)

c2

c4

c6

c7

ul4

ll5ll3ll2ll1

(d)

Figure 10.7.: Solution With Respect to Minimal Lower Layer Element Costs.

Table 10.8.: To Lower Layer Elements Assigned Costs.
ll1 ll2 ll3 ll4 ll5

Assigned Cost 5 3 8 4 1

122 Chapter 10. Optimizing EA Models

10.4.2. Does the Approach Scale?

We performed a series of experiments to evaluate if the proposed optimization approach is appli-
cable for realistic industry-sized EAs. To this end, we randomly generated graphs consisting of
60 to 1750 nodes and measured the execution time needed to propose a solution for three opti-
mization scenarios. Each generated graph is split up into two layers and the linking capabilities.

The obtained results are depicted in Figure 10.9. The maximum execution time to compute
a solution for the minimal coupling optimization scenario applied on a 1750 node graph was
nearly 22 minutes (cf. Figure 10.9 (a)). In contrast, applied on the same graph the optimizations
regarding the minimal amount of lower layer elements and lower layer elements minimal costs
took only 16 (cf. Figure 10.9 (b)) respectively 5 seconds the longest (cf. Figure 10.9 (c)). These
remarkable differences can be explained by the fact that the constraints in the minimal coupling
optimization scenario are strongly based on the relations between the layer elements and the
capabilities. As each layer element is linked to several capabilities, the number of constraints
grows faster compared to the other both optimizations scenarios.

The three scenarios have in common that the solution space is based on the cross product
between the nodes of the two layers. Therefore, the execution time is growing exponentially in
all three scenarios.

(a) Minimal Coupling (b) Minimal Lower Layer Element Amount

(c) Minimal Lower Layer Element Costs

Figure 10.9.: Execution Time Consumption.

Unfortunately, only fewer data regarding the size of realistic EAs is available (Schoonjans re-
ports on an EA consisting of 108 nodes [204], Lagerström on one consisting of 407 nodes [120]).
Although the EA of one of our cooperation partners (cf. Section 1.4.1) contains approximately

10.5. Extension of the Optimization by Transition Costs 123

6000 nodes, the maximum number of elements which can be taken in account for a specified
layer is below 500. Unfortunately, as no elements of this EA can be assigned to capabilities, we
could not run our experiments on this EA as well.

Assuming that ordinary EAs are not significantly bigger, the execution time needed for all
three optimization scenarios will be acceptable, especially because these optimizations need not
be applied frequently.

10.5. Extension of the Optimization by Transition Costs

So far, our approach does not differentiate whether the elements belong to the actual state of the
EA or their use is only planned so far. Accordingly, the necessary transition costs to get from
the actual state to the optimal state are not taken into account. However, these transition costs
can be so high that a transition to the optimal state does not make sense in an economic manner.
This can be grounded in the fact that the transition costs from the actual state to a state that is
functional optimal exceed the costs saved. Therefore, we extend our approach to the effect that
the transition costs for an optimization of an EA are taken into account, in order to determine
not only an optimal, but also an economically desirable state of the EA.

10.5.1. Formalism

But what influences the transition costs significantly? We assume that the transition costs are
essentially due to the introduction or removal of elements of the lower layer. Additionally, we
assume that the transition costs are not significantly influenced by changes of the relationships
between elements of two adjacent layers. As a result, an optimization that properly accounts the
transition costs must consider changes of lower-layer elements.

Therefore, we introduce a transition cost function CT : E → R+, annotated as CT (e), which
returns the transition costs for an element e. For the sake of simplicity, we assume that the
same costs are incurred for insertion and removal. Expanding the optimization function for the
number of elements on the lower layer by this transition cost function results in the following
function:

min
∑
ll∈Ll

CT (ll)xll. (10.18)

Obviously, this does not eliminate the weakness in the modeling of the initial optimization
problem. Therefore, we introduce another function, the state function S : E → 0, 1, annotated
as S(e). This determines whether an element is present in the actual state of the EA (S(e) = 1)
or not (S(e) = 0). However, transition costs should only be taken into account if changes are
needed in the transition from the actual state to the optimal state. Therefore, we subtract the
value of the optimization variable from the result of the state function and determine the amount
from it. In other words, in the event of a change the value of the transition cost function is
multiplied by 1 and thus the transition costs are included in the optimization function. If there is
no change, the amount is 0 and the costs are not taken into account in the optimization function.

124 Chapter 10. Optimizing EA Models

Table 10.10.: Properties of Lower Layer Elements.
Lower Layer
Element, ui

Part of as-is State Transition Costs Operational Costs
t = 0 t = 1 t = 2 Σ

u1 Yes 3 2 3 5 10
u2 No 5 5 5 5 15
u3 Yes 2 4 5 11 20
u4 No 4 4 5 9 18
u5 Yes 8 2 2 3 7

Accordingly, the optimization function is:

min
∑
ll∈Ll

CT (ll)xll|S(ll)− xll|. (10.19)

We would like to show the effect of this optimization function using the example below.
For this, we apply them to the EA shown in Figure 10.2. In addition, we use the additional
information for lower layer elements contained in Table 10.10.

From a functional point of view, the elements u1, u2, and u4 are included in a result, which
yields the minimum number of elements on the lower layer. In addition, considering the actual
state and the transition costs all elements of the lower layer (u1 to u5) are included in a functi-
onally optimal solution and transition costs of 9 are needed to introduce u2 and u4 at costs of 5
and 4, respectively. The remaining elements are already part of the actual state, which is why no
transition costs are incurred for them. Elements u3 and u5 are not removed from the lower layer
because this would cause additional costs of 2 and 8 that are not compensated. Accordingly,
this optimization function is only suitable for finding the most favorable state in which all the
missing capabilities of the lower layer are present. In other words, unneeded elements of the
lower layer are not removed.

In order to take this aspect into account and to achieve the most adequate model of reality,
the transition costs must be balanced against the operating costs incurred. To do so, we define
an operating cost function Ct

O : E → R+, annotated as Ct
O(e) analogous to the transition cost

function, which provides the operating costs for an element e. In order to obtain the operating
costs at a certain time, we index the operation cost function with a time t ∈ T , where T is the
set of times considered. The optimization function takes this into account by the fact that not
only the sum over the operating costs of the elements is formed, but that it is now formed over
several points in time. Now the sum of both functions can be optimized towards the minimum:

min

∑
ll∈Ll

CT (ll)xll|S(ll)− xll|+
∑
t∈T

∑
ll∈Ll

Ct
O(ll)xll

 . (10.20)

Since the transition costs are incurred only once, but the operating costs accumulate over
time, the results of the optimization also depend on the period considered. This is shown by
the following example: We apply the optimization function to our example EA, whereby the

10.5. Extension of the Optimization by Transition Costs 125

operating costs listed in Table 10.10 are now also considered over a period of 0 to 2 (see column
4). In the optimal state determined on this basis, the elements u1, u2, u4, and u5 are included
with transition costs of 11 and operating costs of 50. Element u3 has been removed because
its capabilities are already provided by other elements. This also applies to element u5, but it
is not removed because its transition costs (8) are higher than the operating costs (7) over the
considered period. In contrast to the previous approach, where only the transition costs were
taken into account, unnecessary elements are removed if the expense for the transition does not
exceed the operating costs over the considered period.

10.5.2. Application

To demonstrate the applicability of the proposed optimization approach, we generate a random
EA consisting of 500 business processes, 750 capabilities, and 1,000 applications. A business
process requires an average of 15 capabilities; An application offers an average of 8 capabilities.
The application costs are between 1 and 100, with a median of 49, an average of 48, and a
standard deviation of 29. Transition costs for an application range from 1 to 50, with median
and average at 25 and standard deviation at 14. Using 515 applications in the actual EA, their
total cost of ownership is 25,240.

In order to determine an optimal solution for this EA without considering any costs, we trans-
form it into the LP format and have it solved in LPSolve. The optimal functional solution has
operating costs of 2,672 and uses 161 applications. If this solution were implemented, 13,223
transition costs would arise.

If the transition costs are also considered, LPSolve needs 16.4% more time to determine the
appropriate solution. This solution has an operating cost of 2,674 for 161 applications used. On
the other hand, there are transition costs of 13,097, which corresponds to a savings of 128 over
the considered period compared to the functionally optimal solution and 37.5% compared to the
original solution.

Part V.

Evaluation and Summary

Chapter 11.

Evaluation

As most of our artifacts are outputs of conducting DSR or similar methods, according to He-
vner et al. [93], five methods for evaluation are possible: observations, analysis, experiments,
tests, and descriptions. Usually, we showed the applicability of our created artifacts by con-
ducting case studies or interviews to evaluate our results (cf. Table 11.1). However, case studies
grant just a first in-depth reflection in a real life scenario [247] and further evaluation is needed.
Though, a further evaluation often requires substantial resources or access to a lot of organizati-
ons and their confidential information.

For example, our results regarding EA stakeholder concerns presented in section 3 could be
evaluated further. First, we can conduct the case study in several organizations. Unfortunately,
we do not have access to other organizations than the considered. Furthermore, the needed
resources to carry all the necessary interviews out is not neglectable and exceeds our capabilities.
Second, we can evaluate the results of the case study by enrolling a quantitative study. But, we
wanted to focus on discovering new insights of stakeholder concerns and a questionnaire with
closed questions is not able to fulfill this need, while one with open questions do not allow us to
steer the interviewee like in an interview.

For other research, we just showed that the artifact that we have created solved the identified
issue (cf. sections 6 and 7). According to DSR [93] and Software Engineering (SE) research
[207, 131] this is a feasible approach to evaluate artifacts. Additionally, we applied tests to
ensure the expected functionality (cf. sections 6).

There are also parts which are adequately evaluated. To evaluate our classification scheme
presented in section 4, we applied a wide-spread and accepted means by splitting our input set
into two parts, where the first part is facilitated to build the taxonomy and the second part to
challenge it. Same holds for the artifacts of section 9 as we use our well documented EA model
described in section 1.4.2 to prove our results. If other approaches arise, we can reuse the EA
model and compare them directly to each other.

Lastly, there is our research on the optimization of EAs. We conducted no evaluation of
the optimization itself as it is either correct or not. Contrary, we evaluated the applicability
of the optimization regarding its calculation time and showed that a solution is computed in a
reasonable time.

Taking a closer look to our evaluations, we perceive for the most of our created artifacts a
satisfying degree of evaluation. Solely, the proposed EA model evolution process in section 5
falls short in regards to its evaluation. Therefore, we will elaborate on a further evaluation of
this process in more detail in the following, which has initially been presented in [85].

130 Chapter 11. Evaluation

Table 11.1.: Applied Evaluation Methods.

Part of this work Applied Evaluation Method
Case Study Interviews ML Evaluation SLR Testing

Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9.1
Section 9.2
Section 10

Motivation So far, different researchers have elaborated on processes to ensure a (semi-
)automated EA model maintenance (see [63, 155, 84]). For practitioners this raises the que-
stion of how the processes can be compared to each other. We focus on quality aspects and,
accordingly, we wonder first:

RQ 12 What are important quality criteria of EA model maintenance processes?

After answering this question, we can move forward to our research question:

RQ 13 How differ certain EA model maintenance processes with respect to these quality crite-
ria?

To answer this question, we identified five quality criteria and asked EA practitioners and EA
researcher to rate three different EA model maintenance processes [63, 155, 84] based on this
quality criteria.

11.1. Research Method

Within this evaluation, we like to compare different EA model maintenance processes which
are the resulting artifact of the application of DSR [84] or can be interpreted as the resulting
artifact of the application of DSR [63, 155]. Further, we conduct a quantitative analysis of the
proposed processes, which can be seen as an additional evaluation of the processes. Cleven et al.
[44] provide a set of twelve variables quantified by two to seven values to classify DSR artifact
evaluation. Accordingly, we classify our research according to Cleven et al. [44] as presented in
Figure 11.2.

11.1.1. Tested Quality Criteria

Assessing the quality of a process is quite challenging. Especially, if the process cannot be
applied in reality but has to be assessed based on its description only, as in our case. Therefore,

11.1. Research Method 131

Figure 11.2.: Configuration of our Evaluation According to Cleven et al. [44].

we wanted to create a set of quality criteria which captures a broad range of process facets.
Additionally, the set should not be too big so that the participant can keep the different criteria in
mind. First, we evaluated our own quality framework to rate EA models [227]. Unfortunately,
our framework assesses only the model quality and no deeper aspects of the process.

Next, we searched for a small set of quality criteria and ended up with the well-known eight
dimensions of quality [73]. However, those quality criteria are related to products and, therefore,
some criteria are hardly applicable to our issue. For example, aesthetics is a criterion which does
not really matter for processes.

Last, we evaluated quality criteria arising from the domain of software engineering [142, p.
66]. We reduced the extensive set of quality criteria by removing those which does not suit
the issue of rating process quality. For example, we neglect modularity as we do not want to
assess the reusability of the processes. Following, we present the five quality criteria, we use to
compare the three processes to each other:

• Comprehensibility describes how easy the process model can be understood.

• Effectiveness relates to the likelihood how easy the process under inspection can keep an
enterprise architecture model up-to-date.

• Completeness assesses if the process contains all the necessary process steps to maintain
an enterprise architecture model.

• Minimality reflects if the process contains only those process steps that are necessary to
maintain an enterprise architecture model.

• Efficiency presents how efficient the process is perceived –in terms of time– to maintain
changes into an enterprise architecture model.

We expect that the beforehand introduced quality criteria are not completely independent of
each other as sketched in Figure 11.3. First, we anticipate a strong mutual correlation between

132 Chapter 11. Evaluation

Figure 11.3.: Expected Dependencies Between Quality Criteria.

completeness and effectiveness. This is grounded in the fact that a process, which is not com-
plete, can be hardly effective as if something is missing effectiveness cannot be guaranteed.
Same holds vice versa, because if a process is not effective, it is likely that something is missing
within the process. Nonetheless, –up to our mind– effectiveness and completeness are not the
same. We argue that, for example, just small parts of the process could be missing which have a
strong influence on the perceived effectiveness.

Second, we expect a mutual correlation between minimality and efficiency. If a process is mi-
nimal, there are no additional parts which could slow down the process and, therefore, decrease
its efficiency. Same holds vice versa as the most efficient process does not contain unnecessary
process steps. However, we do not expect the correlation between efficiency and minimiality
as strong as between completeness and effectiveness, because efficiency of the whole process is
strongly related to the efficiency of each process step which is not the case for minimality. Last,
we await a positive correlation between minimality and comprehensibility, as we think that it is
easier to understand a process which is minimal than a process which is not.

We will check our beforehand stated assumptions in Section 11.3.1 and if necessary, we will
discard a criterion.

11.1.2. Questionnaire Design

To collect the necessary data, we created a seven-page questionnaire in German and English
language. The first page gives a introduction to the research topic, and defines the targeted
group of participants.

The second page explains the expectations towards the participant and introduces the five qua-
lity criteria to be assessed (cf. Section 11.1.1). Both pages have in common that they contain a
not negligible amount of text to create a high hurdle [189]. Doing so, we want to sort out par-

11.1. Research Method 133

ticipants which are not motivated to answer our questionnaire and reward the other participants
as it is easier to capture the whole content on the following pages.

The next three pages present in each case one of the processes in a unified representation
(see Figure 11.4, 11.5, and 11.6). Therefore, we sketched the processes in a “box-and-lines”
notation, because we want the participant to focus on the process itself and not on notations.
Additionally, we give a short description of the process’ aim, followed by a characterization of
all included roles. We unified also the role names and their description to ease the understanding
of the different processes. Additionally, we provide an abstract of the process itself.

As the participant got all information she needs to assess process’ quality, we ask her to rate
every quality criterion on a five-point Likert-scale [49] to which degree the process suits the
criterion from 1 (not) to 5 (perfect). If she is not able to assess a certain criterion, she can also
indicate this. After rating the criteria, we offer the participant to give qualitative feedback on
each process, too.

The sixth page is facilitated to collect demographic information on the EA experience of the
participant and her organization. Further, she can also provide feedback on the questionnaire or
give other comments.

On the last page, we ask the participant on her seriousness and consent to use her data. This
is a common technique to exclude questionnaires which were not seriously filled [226, p. 114f].

To ensure usability of our questionnaire, we conducted a three stage development. In the
first step the first author created the questionnaire and the second author checked it for any
flaws. In the second stage, the questionnaire was distributed within the research group of the
authors to check for flaws and to determine the necessary time to answer it. In the last stage the
questionnaire was spread throughout several EA practitioners for a last check.

11.1.3. Data Collection

We spread the questionnaire among different channels to reach as much EA practitioners and
researcher as possible. Therefore, we asked our industrial cooperation partners to answer the
questionnaire and to spread it also to other EA practitioners. Additionally, we asked the parti-
cipants of three regional EA related meetings to answer the questionnaire. To get responses of
the scientific EA community, we send the questionnaire to our research network and distributed
it through several EA related e-mail-lists.

In total, we received 123 questionnaires which finished at least the questions related to the
processes. First, we removed all questionnaires where the participant stated that she did not
answer the questionnaire seriously ending up with 100 questionnaires. Second, we checked the
demographic answers of the questionnaires where the participant did not answer the question
regarding conscientiousness. As those answers seemed to be very randomly (e.g., 999 years of
experience in EA or 1000 architects employed in a medium-sized organization), we removed
further 20 questionnaires.

The most of the left 80 participants are employed within the IT sector (27.5%), followed by
the insurance sector (16.3%). 18.8% are working in an organization with more than 10,000 em-
ployees, followed by 15% working in an organization with 1,000 to 2,500 employees. However,
the participants are likely distributed along all organization sizes and gained a experience of 3.8

134 Chapter 11. Evaluation

years in average. The predominant part of the participants works as an employee without per-
sonnel responsibility (60%), followed by 16.7% working in the operational management (e.g.,
team or group leader). In average, the companies employed around 18 enterprise architects and
the median is at 5. The companies have in average an EA initiative since 6.6 years in place.

11.2. EA Model Maintenance Processes

Following, we present the three processes we evaluate. We restrict us to three processes to stick
in a time frame of maximum 15 minutes to answer the questionnaire. The first process [63]
focuses on the integration of information distributed in different systems and is highly cited.
The second process [155] focuses on the integration of information from different sources and
is also highly cited. The third process [84] is designed by the authors and focuses on integrating
information generated by projects.

11.2.1. Process 1: A Federated Approach to EA Model Maintenance

The process presented at [63] focuses on the integration of information distributed in different
systems. Essentially, four different roles are assigned to the process:

• EA Coordinator: EA coordinator is part of the EA team and reports to the chief architect.
Her main tasks include improving the EA meta-model, maintaining the EA model, and
designing EA reports.

• EA Repository Manager: The focus of the EA repository manager is more technical.
She is responsible for user administration, software updates, and the repository update.

• EA Stakeholders: EA stakeholders are business and IT departments that use EA infor-
mation, e.g., to implement the strategy or security management.

• Data Owner: A data owner is responsible for a system whose data is to be transferred to
the central EA model.

The process (see Figure 11.4) starts with the EA coordinators wanting to update the EA model
and, for that reason, requesting up-to-date information from the appropriate data owner. Once
she has delivered the information, the EA coordinators check the information for consistency. If
inconsistencies persist, the data owner is notified and revises the information accordingly.

If the consistency check was successful, all changes to the EA model are identified and made
available to all affected stakeholders. They review the changes and, if vetoed by a stakeholder,
the EA coordinators coordinate a discussion to resolve the differences between stakeholders
and data owners. After everyone agrees to the changes, the EA model can be updated and the
changes communicated.

11.2. EA Model Maintenance Processes 135

Figure 11.4.: A Federated Approach to EA Model Maintenance [63].

11.2.2. Process 2: Process Patterns for EA Management

The process of Moser et al. [155] focuses on the integration of information from different
sources. Essentially, three different roles are assigned to the process:

• Domain Expert: Domain experts are a subset of EA’s stakeholders. They formulate
information requirements to the EA and are recipients of the information.

• Enterprise Architect: Enterprise architects are responsible for maintaining and keeping
the EA model up-to-date.

• Data Owner: A data owner is responsible for a system whose data is to be transferred to
the central EA model.

The process (see Figure 11.5) starts when a domain expert notices that she does not have all
the information she needs for a particular task. So she asks the enterprise architects for this
information. These check the request and contact the data owner who holds the corresponding
information. She provides the information to the enterprise architects, whereupon they check its
quality. If the result of the check is negative, the data owner improves the information.

Once the quality check has been successfully completed, the information is transformed and
prepared for import. Before that, the changes will be checked by domain experts and enterprise
architects. If there is no objection from any side, the information is imported and the updated
EA model is made available.

11.2.3. Process 3: A Roundtrip Based EA Model Evolution

The process presented in [84] focuses on integrating information generated by projects. Ho-
wever, the projects can also be replaced by any other source of information. Essentially, two

136 Chapter 11. Evaluation

Figure 11.5.: Process Patterns for EA Management [155].

different roles are assigned to the process:

• Enterprise Architect: Enterprise architects are responsible for maintaining and keeping
the EA model up to date.

• Solution Architect: The solution architects develop a solution for the project that evolves
the EA and, thus, the EA model. Therefore these changes have to be included in the
central model.

The process (see Figure 11.6) starts when enterprise architects identify changes in the EA
and want to incorporate these changes into their core EA model. First of all, all changes that
should be included in the next evolution of the EA model are captured. Subsequently, the data is
quality-assured and aggregated to the necessary abstraction level of the EA model. Afterwards,
the changes can be incorporated into the central EA model and the updated model distributed to
the EA stakeholders.

For example, new projects receive this information and model the changes they make. These
changes are then made available to enterprise architects and are the starting point for the next
evolutionary step.

11.2.4. Preliminary Assumptions

Bringing the quality criteria and the processes together, we can formulate some assumptions
how the processes are related to each other. First, we expect that process one and two are less
comprehensible than process three as they include significant more process steps and roles. The
plenty of process steps and roles in process one and two causes also our expectation that the
third process gets the best rating for minimality.

As the third process includes no explicit negotiation between the different roles, we expect that
the participants perceive this one as the most incomplete. Towards effectiveness and efficiency,
we have no concrete expectations.

11.3. Results and Discussion 137

Figure 11.6.: An EA Model Evolution [84].

11.3. Results and Discussion

Following, we will present the results of our survey. As the participants could choose not to rate
a certain criterion, we like to mention that only the comprehensibility was always rated. The
efficiency of the processes was answered scarcest with a ratio of 93% (see Table 11.7).

11.3.1. Dependencies Between Quality Criteria

To test if our questionnaire might contain criteria which are coupled too close to each other, we
calculated ρT according to [43]. Commonly, ρT > 0.7 means that the conducted items are in
an acceptable matter linked to each other. As we calculate a value of 0.697, we can assume
that we measure different concepts in our questionnaire. However, the value is close to 0.7 and,
therefore, we calculate for each pair of our criteria ρT . As a result, we recognize for effectiveness
and efficiency a value of 0.76. All other values are lower than 0.6.

To test the expected dependencies between our criteria, we calculated the Pearson correlation
[177] for each pair of criteria. First, we can confirm a correlation between completeness and
effectiveness. However, the correlation is not as strong as expected with a value of 0.42. Second,
we found also a correlation between efficiency and minimality (0.39). Third, we could not
uncover a correlation between minimality and comprehensibility (0.27).

Apart from the expected correlations, we notice a strong correlation between effectiveness and
efficiency (0.62) and weak correlations between comprehensibility and effectiveness (0.34) as
well as between completeness and efficiency (0.34). We assume that the correlation between ef-
fectiveness and efficiency can be explained by the fact that people often struggle to differentiate
between both terms. This could also explain the unexpected correlations between and comple-
teness and efficiency as we expected a correlation between completeness and effectiveness. The
correlation between comprehensibility and effectiveness can also be explained by the confusion
of efficiency and effectiveness and a transitive relation along minimality.

138 Chapter 11. Evaluation

Table 11.7.: Descriptive Analysis of the Given Ratings.
Comprehensibility Effectiveness Completeness Minimality Efficiency

Answering Ratio 1.00 0.98 0.95 0.98 0.93
Process 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Median 4 4 4 3 4 3 4 4 3 3 3 4 3 3 3
Mean 3.65 3.84 3.80 3.33 3.44 3.34 3.68 3.49 3.33 2.94 3.32 3.58 3.16 3.24 3.35

SD 0.85 0.74 0.71 0.77 0.76 0.75 0.70 0.83 0.85 0.74 0.71 0.79 0.89 0.79 0.70

11.3.2. Process Comparison

We show the results of the descriptive analysis of all responses in Table 11.7. Every quality
criterion contains three values per measurement where the first value represents the first process,
the second value represents the second process, and the third value represents the third process.

Following, we will discuss the insights we gathered from the survey:

• Comprehensibility: The participants could understand all process models more or less
likely. However, the first process achieved a smaller mean as the other processes as well as
the Standard Deviation (SD) is higher, indicating a bigger uncertainty. On the one hand,
this is surprising as the second process contains more process steps and more decisions.
On the other hand, process one comprises the biggest set of roles. Therefore, we conclude
that the amount of roles is much more important for the perceived comprehensibility of a
process model than the number of elements and decisions within a process.

Additionally, we expected the third process to be most comprehensible as it is the simplest
model. But, this is not the case. Consequently, a too abstract description –resulting in less
process steps– does not necessarily lead to a better comprehensibility.

• Effectiveness: The participants perceived the effectiveness of the processes similarly ac-
cording to the mean and SD. Only process two seems to be little more effective as the
median is higher than for the other processes. This may stem from the fact that process
two lasts of the most process steps and, therefore, the participants assume that it is most
effective.

• Completeness: In accordance to our expectations, the third process got the lowest scores
for completeness, because it is the simplest process and the participants are missing certain
steps (e.g., “The process is missing certain information”, “There are no binding criteria for
reporting deviations or need for action.”, or “Does the enterprise architect get all needed
information”). Additionally, the participants are very uncertain about the completeness as
the SD is 0.85 which is the second highest score in general.

• Minimality: The minimality scores are as expected. In accordance to our observations at
comprehensibility, we can recognize that the plenty of roles in process one have a bigger
effect on the minimality than the plenty of process steps and decisions in process two.
Furthermore, we can appreciate a higher influence of this fact. This is also stressed by the
participants as they state that “the plenty of roles lead to a communicative overhead” and
the necessity to coordinate vetoes every time is questioned.

11.4. Limitations 139

• Efficiency: All processes have in common that they are not perceived as very efficient.
Again, process one gains a very low score and the participants are very uncertain. The
communication between the different roles seems to be the main driver for this low score.
This is in line with the feedback of the participants as they think that “reconciliation with
so many parties may lead to efficiency losses” and that “there are too many communication
channels”.

Apart from the feedback directly related to the quality criteria, we can differentiate two diver-
gent groups related to the complexity of the processes. The first group advocates for a “lean”
maintenance process and claim a reduction of process steps and roles in processes one and two.
The second group demands not only more roles and steps in process three but also further re-
conciliations in process two.

A further point, which should be considered, concerns all processes: Several participants
remark a neglect of business stakeholder in the processes (e.g., “The maintenance of EA artifacts
must also be handled by the business side”). They should not be “demoted to be only the
auditor”, but “actively involved into the [EA model] maintenance”.

To summarize, if the organization tends to be more “agile” or “lean” the third process would
be the best guess. If the organization tends to be more “classical” with strict hierarchies and
lots of different stakeholders the second process suits best. The first process was never able to
outperform the other processes in a significant manner.

11.4. Limitations

Our survey incorporates some limitations. First, the 80 answered questionnaires are not re-
presentative for the complete population of all EA experts. Additionally, the main part of the
participants came from Europe in general and German-speaking countries in special. However,
we believe that our questionnaire gives a good insight into the perception of maintenance pro-
cess’ quality. Second, we focused on a set of five quality criteria to keep the questionnaire lean.
Obviously, there are other quality criteria which could be assessed, too. Nonetheless, none of
the participants remarked that an important criterion is missing.

Chapter 12.

Summary

EA is a means to steer business-IT alignment. One of its central artifacts are EA models which
can be facilitated to communicate the as-is architecture, plan the future to-be architecture, and
control the progression by comparing will-be architectures to to-be architectures. Within this
work, we have presented different processes and methods to support the quality of EA models.

First, we discussed the expectations of EA’s stakeholders towards EA in general and the EA
model in special. Therefore, our conducted study contributes to the existing literature on stake-
holder concerns by introducing a differentiation of hierarchical stakeholder levels. In the study,
we focused stakeholder groups from the operational management, middle management, and top
management. For most concerns, the needs of the different stakeholder groups were found to be
rather homogeneous. However, concerns on architecture, abstraction level, assertiveness, accep-
tance of other departments, and transparency of EA deliverables were discovered to be rather
heterogeneous.

Second, we developed a taxonomy to classify EA analysis research. Accordingly, we per-
formed a SLR on EA analysis research, its adopted models, analysis techniques and concerns
analyzed. Grounded in those findings, we derived an initial taxonomy for EA analysis research
to help researchers classify their work according to the analysis scope, technique, concern and
modeling language. We validate the taxonomy’s coverage with a second data-set of 46 papers.
We consider the 46 papers in the final data-set give a good perspective regarding the coverage
of our taxonomy. Therefore, we present the state of art of EA analysis research initiatives. We
believe that tool modelers can also take this study as a conceptual reference to design EA ana-
lysis functionalities. The findings also show that EA analysis research presents very diverse EA
models and concerns. Nevertheless, cases where most EA layers were analyzed rarely appeared.

After exploring the EA in research and practice, we presented different processes to improve
EA models. The first process helps to overcome the problems related to a distributed EA mo-
del evolution. This process is comprised by a set of different process steps which are mainly
performed by enterprise architects and solution architects.

Next, we provide a concrete implementation of the proposed process. Therefore, we imple-
mented it within our tool JARVIS. Our first evaluation shows that our process benefit from the
ideas of the agile domain leading from a model maintenance to a model evolution perspective.
Additionally, we could show that the interaction between stakeholder and enterprise architects
can be further reduced. Consequently, both can concentrate more on the essential parts of EA
than on technically related issues.

Further, we propose an approach to keep contradictory information within EA models. Our
approach refines P2AMF [106], which already incorporates a way to represent uncertainty re-

142 Chapter 12. Summary

garding the existence of modeled entities. To ease the use of our technique, we generalized
P2AMF from its UML/OCL notation to a graph presentation. Therefore, it can also be applied
to P2AMF models notated in arbitrary formats like ArchiMate [225]. Furthermore, we added
competing scenarios and different versions along a time series to meet the requirements of a dis-
tributed P2AMF evolution. To show the applicability of our approach, we utilized the theoretical
described calculations and guidelines on a Neo4j graph database. Following, we argued that our
realization meets the stated requirements of a distributed EA evolution.

After exploring different processes to improve EA models, we elaborate next on different
methods for the same purpose. First, we designed a framework to assess and improve the quality
of EA models called EAQF. To create the framework, we conducted a SLR, facilitated the
framework of Becker et al. [27] and adapted it to our purpose. We came up with a structure
consisting of three parts. One part forms the basis on which the other both parts are established.
In this basis the purpose, objectives, and stakeholder are determined. The other parts are utilized
to either rate the quality of the whole model or the quality of a certain view. This framework
puts existing attributes into context and provides a means to assess EA model quality depending
on its purpose and stakeholders’ concerns.

Second, we discussed ML related techniques to support solution architects in their modeling
of EA models. The first approach relied on finding patterns between two EA models. For
this, we defined the term similarity between two EA components. We presented several models
and also showed how to combine them. The second approach adopted a collaborative way of
recommending components that might be of interest. Given a set of EA models from the same
domain, we suggested how to convert architecture models to transactions in order to successfully
apply association rule mining.

Further, we researched which ML method suits best a certain scenario. The first method is
based on syntactic and LSA technique. Our results show that LSA outperforms traditional co-
sine similarity measure to capture similarity between EA models. The second method is based
on edge information where a node in one graph is said to be similar to a node in another graph
if they share a common set of neighborhoods. We have compared the outcomes of the three
structural similarity metrics (Jaccard, Dice, and Adamic Adar) by computing the correlation be-
tween similarity matrices generated from different metrics. Thus, different similarity measures
will show different performance in different applications.

Additionally, we addressed the issue of how to analyze the underlying structures of com-
plex EAs. We investigated the performances of different community detection algorithms. The
algorithms are compared by considering a set of different scenarios and evaluated based on
performance metrics like modularity to select a well-performing algorithm for EA data. This
methodology provides decision support for the enterprise architects by answering which parts
of the EA model belong together and, therefore, suggesting probably related components.

Another investigated approach helps enterprise architects optimizing the EA itself. Therefore,
we presented a technique to optimize the EA with focus on the relations between two adjacent
layers. Thus, we constructed a LIP and searched for the optimal assignment between the ele-
ments of both layers and take different objectives into account.

As we use the metaphor of triangles to describe the constraints of the LIP, it makes it easier to
give e.g. managers an insight into the LIP. This metaphor makes the constraints become more

143

vivid and, consequently, easier to understand. This leads to a higher acceptance of the solution
compared to existing solutions and, consequently, rises the chance to apply it.

Moreover, we present a mapping between the elements of our technique and the widely accep-
ted ArchiMate notation to enable organizations applying our approach. This mapping enables an
optimization between the business and the application layer as well as between the application
and the technology layer. Lastly, we could show that our approach solves problems of a realistic
size in appropriate time and, thus, is applicable to real world problems.

For evaluation purposes, we check for every artifact of our work the appropriateness of its
evaluation and recognize that a further evaluation for the proposed EA model evolution process
is needed. Therefore, we compared our process to different EA model maintenance processes
based on their quality. We identified a set of five quality criteria and asked EA researchers and
practitioners to rate those for each process. Facilitating the outcome of this questionnaire, we
cannot answer the question which process is qualitatively best in general. In point of fact, the
answer is related to the setting the process should be deployed: Our process suits best in an
“agile” environment while another process suits better in a “classical” environment.

Chapter 13.

Outlook

Our research still offers improvements and implications for future research. For instance, our
research on EA stakeholders concerns potential improvements of EA approaches, as it has been
reflected on the example of TOGAF: The described three different granularity levels of archi-
tectures may be sufficiently covered by two, while some stakeholders were not interested in the
granularity level at all. The quality term should be applied not only to architectural principles,
but also to all deliverables. Moreover, different quality concerns need further refinement. Lastly,
investigation for EA advertising strategies will become a necessary focus for future research.

Our research on a taxonomy for EA analysis incorporates future works in three main directi-
ons. First, because the taxonomy is not exhaustive, we may need to look especially to the work
of [130] to align all categories created. Then, the taxonomy’s dimensions may be further valida-
ted and refined with experts (e.g., by conducting a survey to enclose more real-world examples).
Second, based on our systematized set of analysis initiatives, a web catalog may be designed to
share past results and to stimulate the reuse of EA models (EA data) among researchers. This
could boost the EA empirical analysis research, as occurred in areas such as machine learning
UC Irvine1 which was supported by standard shared databases on which researchers apply their
analysis approaches. For example, the open models initiative2 [69] goes on that direction, offe-
ring a collection of models and also a rough classification of them.

At the same time, further work is needed to investigate technical aspects like model anonymi-
zation or model portability to lower the barriers for EA model sharing. Since existing analysis
specifications usually presuppose a specific structure of meta-models and models, it is very diffi-
cult to reuse them with organizational models that do not conform to the respective assumptions.
They required a high effort to transform the actual EA model in a manner, that the analysis can
be executed. Additionally, the respective meta model does not make any statements about what
concepts are actually used [126]. A generic meta-model could help in that as the one studied
in [187]. Another option would be focusing in ArchiMate-based models, the de facto market
standard for EA modeling.

Further work still remains on our EAQF. First, our conducted SLR covers limited number of
search terms. For example, a further review should contain ancillary phrases like synonyms for
the used terms. This could identify further quality attributes EAQF may include. Second, the
external validity of EAQF needs further investigations. Therefore, supplementary DSR loops in
other contexts should be executed. E.g., EAQF should be applied in different organizations from

1https://archive.ics.uci.edu/ml/index.php
2http://www.openmodels.org/

146 Chapter 13. Outlook

different industries or with different maturity grades. Third, a case study does not ensure that
the quality attributes are sound and complete. Consequently, other evaluation methods should
be applied in future work as well.

The maturity grade of the EA unit may be an important point, since for organizations with a
low grade other quality attributes can be interesting compared to those with a higher grade. Con-
sequently, EAQF should be aligned according to the maturity grade of the unit under inspection.

This stresses also another aspect for future research: the configurationally of EAQF. Every
organization has special demands towards EA. Therefore, the demands of each organization
should be reflected in EAQF properly. Nevertheless, organizations from equal industries may
have similar demands which can represent as standard configurations within EAQF.

Last, executing EAQF has shown that questions are interrelated with each other. Though,
these relations are not made explicit. This should be explored in future work, since this can
reduce the needed effort to execute EAQF significantly.

For keeping contradictory information in EA models, we have shown the applicability of our
approach. Next, the approach should be included into existing tools for EA. If the tool allows
defining attributes on model elements and their relations, the existence probability can be de-
picted easily. Same holds for modeling the competing scenarios and the different versions along
a time series if the tool allows altering its meta-model freely, i.e., add new model element types
and relationship types. To create the needed reports, the tool needs to support free formulated
queries. Especially, the last aspect is not easy to accomplish using the tools we know, since often
some kind of scripting would be necessary.

Another way to enrich existing tools by the advantages of our approach is to patch a graph
database in before the EA tool. The graph database would handle the uncertainty as presented
in section 7.2.1 and an export would be generated which can be handled by the EA tool. In this
case the database becomes the data master for the EA model. Therefore, all sources for the EA
model have to be linked to the database which processes the data and delivers the results to the
EA tool.

The proposed techniques to support the solution architects modeling the changes of the EA
produces relevant results and can easily handle hundreds of nodes. However, more investigation
is needed to determine whether it can scale extremely large graphs, those containing tens of
thousands of nodes. So far, we focused on finding a match between two EA models based on
the component names. As a future work, additional similarity approach can be extended to find
similarity between EA models based on the description information of an EA component.

Our proposed approach to optimize the EA offers several possible extensions. First, we can
assume different points in time with different costs and profit to predict the optimal time for each
change. Second, we take no dependencies between our elements within one layer into account.
But there are such dependencies in reality. Therefore, our model should be extended in this
direction. Last, the model need to be evaluated in existing organization to test if the suggested
optimizations really lead to savings.

Our evaluation offers insights for future EA model maintenance designs: All processes lacked
the integration of the business side. The participants stressed that it is necessary to involve the
business stakeholder actively into the maintenance. This would result in a shift from a centrally
maintained EA model to a more locally maintained model.

Bibliography

[1] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social networks,
25(3):211–230, 2003.

[2] J. S. Addicks. Enterprise architecture dependent application evaluations. In Digital
Ecosystems and Technologies, 2009. DEST’09. 3rd IEEE International Conference on,
pages 594–599, 2009.

[3] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Da-
tabases. In Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publis-
hers Inc.

[4] S. Aier. How Clustering Enterprise Architectures helps to Design Service Oriented Ar-
chitectures. In IEEE International Conference on Services Computing SCC’06, 2006.

[5] S. Aier. Understanding the Role of Organizational Culture for Design and Success of
Enterprise Architecture Management. In R. Alt and B. Franczyk, editors, Proceedings
of the 11th International Conference on Wirtschaftsinformatik (WI2013), pages 879–894,
Leipzig, 2013. Universität Leipzig.

[6] S. Aier, S. Buckl, B. Gleichauf, F. Matthes, C. M. Schweda, and R. Winter. Towards
a More Integrated EA Planning: Linking Transformation Planning with Evolutionary
Change. In M. Nuettgens, O. Thomas, and B. Weber, editors, Enterprise Modelling and
Information Systems Architectures (EMISA 2011), volume 190, pages 23–36, Bonn, 2011.
GI.

[7] S. Aier, B. Gleichauf, and R. Winter. Understanding Enterprise Architecture Management
Design: An Empirical Analysis. In The 10th International Conference on Wirtschaftsin-
formatik WI 2.011 (Zurich), pages 645–654.

[8] S. Aier, S. Kurpjuweit, C. Riege, and J. Saat. Stakeholderorientierte Dokumentation und
Analyse der Unternehmensarchitektur. GI Jahrestagung (2), 134:559–565, 2008.

[9] S. Aier, N. Labusch, and P. Pähler. Implementing Architectural Thinking. In A. Persson
and J. Stirna, editors, Advanced Information Systems Engineering Workshops, volume
215 of Lecture Notes in Business Information Processing, pages 389–400. Springer Inter-
national Publishing, 2015.

[10] S. Aier, C. Riege, and R. Winter. Classification of Enterprise Architecture Scenarios-
An Exploratory Analysis. Enterprise Modelling and Information Systems Architectures,
3(1):14–23, 2008.

148 Bibliography

[11] S. Aier, C. Riege, and R. Winter. Unternehmensarchitektur: Literaturüberblick und Stand
der Praxis. Wirtschaftsinformatik, 50(4):292–304, 2008.

[12] S. Aier and M. Schönherr. Process orientied architecture integration with EAI. Wirt-
schaftsinformatik, 48(3):188–197, 2006.

[13] S. Aier and M. Schönherr. Integrating an enterprise architecture using domain clustering.
Journal of Enterprise Architecture, 3(4):25–32, 2007.

[14] S. Aier and R. Winter. Virtual Decoupling for IT/Business Alignment – Conceptual Foun-
dations, Architecture Design and Implementation Example. Business & Information Sy-
stems Engineering, 1(2):150–163, 2009.

[15] S. Aier, R. Winter, and F. Wortmann. Entwicklungsstufen des Unternehmensarchitektur-
managements. HMD - Praxis der Wirtschaftsinformatik, 284(49):15–23, 2012.

[16] O. Akhigbe, D. Amyot, and G. Richards. A Framework for a Business Intelligence-
Enabled Adaptive Enterprise Architecture. In E. Yu, G. Dobbie, M. Jarke, and S. Purao,
editors, Conceptual Modeling, pages 393–406, Cham, 2014. Springer International Pu-
blishing.

[17] A. C. Alhadi, A. Deraman, Yussof, Wan Nural Jawahir Wan, A. A. Mohamed, et al.
An Ensemble Similarity Model for Short Text Retrieval. In International Conference on
Computational Science and Its Applications, pages 20–29, 2017.

[18] P. Andersen and A. Carugati. Enterprise Architecture Evaluation: A Systematic Literature
Review. In L. Mola, A. Carugati, A. Kokkinaki, and N. Pouloudi, editors, Proceedings of
the 8th Mediterranean Conference on Information Systems, 2014.

[19] G. Antunes, J. Barateiro, A. Caetano, and J. L. Borbinha. Analysis of Federated Enterprise
Architecture Models. In ECIS, 2015.

[20] G. Antunes, J. Borbinha, and A. Caetano. An Application of Semantic Techniques to the
Analysis of Enterprise Architecture Models. In 2016 49th Hawaii International Confe-
rence on System Sciences (HICSS), pages 4536–4545, 2016.

[21] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman pro-
blem: a computational study. Princeton university press, 2011.

[22] M. Bakhshadeh, A. Morais, A. Caetano, and J. Borbinha. Ontology Transformation of
Enterprise Architecture Models. In L. M. Camarinha-Matos, N. S. Barrento, and R. Men-
donça, editors, Technological Innovation for Collective Awareness Systems, pages 55–62,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[23] A. Barbosa, A. Santana, S. Hacks, and N. v. Stein. A Taxonomy for Enterprise Ar-
chitecture Analysis Research. In Proceedings of the 21st International Conference on
Enterprise Information Systems, volume 2, pages 493–504. SciTePress, 2019.

Bibliography 149

[24] I. Barone, A. D. Lucia, F. Fasano, E. Rullo, G. Scanniello, and G. Tortora. COMOVER:
Concurrent model versioning. In IEEE International Conference on Software Mainte-
nance, 2008, pages 462–463, Piscataway, NJ, 2008. IEEE.

[25] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, 1st edition, 2015.

[26] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An Open Source Software for Exploring
and Manipulating Networks. 2009.

[27] J. Becker, W. Probandt, and O. Vering. Grundsätze ordnungsmäßiger Modellierung:
Konzeption und Praxisbeispiel für ein effizientes Prozessmanagement. BPM kompetent.
Springer Berlin Heidelberg, Berlin Heidelberg, 2012.

[28] S. A. Bernard. An Introduction to Enterprise Architecture. AuthorHouse, Bloomington,
IN, 2 edition, 2005.

[29] M. Bhat, T. Reschenhofer, and F. Matthes. Tool Support for Analyzing the Evolution of
Enterprise Architecture Metrics. In ICEIS, 2015.

[30] V. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. van Dooren. A Measure of Simi-
larity between Graph Vertices: Applications to Synonym Extraction and Web Searching.
Society for Industrial and Applied Mathematics Review, 46(4):647–666, 2004.

[31] W. F. Boh and D. Yellin. Using Enterprise Architecture Standards in Managing Informa-
tion Technology. Journal of Management Information Systems, 23(3):163–207, 2006.

[32] V. Borozanov, S. Hacks, and N. Silva. Using Machine Learning Techniques for Eva-
luating the Similarity of Enterprise Architecture Models. In P. Giorgini and B. Weber,
editors, Advanced Information Systems Engineering, pages 563–578. Springer Internati-
onal Publishing, 2019.

[33] R. P. Bostrom and J. S. Heinen. MIS Problems and Failures: A Socio-Technical Per-
spective. Part I: The Causes. MIS Q, 1(3):17–32, 1977.

[34] X. Boucher, J. Chapron, P. Burlat, and P. Lebrun. Process clusters for information system
diagnostics: An approach by Organisational Urbanism. Production Planning & Control,
22(1):91–106, 2011.

[35] M. Brosius, S. Aier, K. Haki, and R. Winter. Enterprise Architecture Assimilation: An In-
stitutional Perspective. In Thirty Ninth International Conference on Information Systems
(ICIS 2018), pages 1–16, San Francisco, CA, 2018. Association for Information Systems.

[36] S. Buckl, A. M. Ernst, H. Kopper, R. Marliani, F. Matthes, P. Petschownik, and C. M.
Schweda. EA Management Patterns for Consolidations after Mergers. In Software Engi-
neering, 2009.

150 Bibliography

[37] D. Buhalis and R. Law. Progress in information technology and tourism management:
20 years on and 10 years after the Internet: The state of eTourism research. Tourism
Management, 29(4):609–623, 2008.

[38] I. Burnstein. Practical software testing: a process-oriented approach. Springer Science
& Business Media, 2006.

[39] M. Buschle, M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth. Automating
enterprise architecture documentation using an enterprise service bus. 18th Americas
Conference on Information Systems, 2012.

[40] J. Capirossi and P. Rabier. An Enterprise Architecture and Data Quality Framework. In P.-
J. Benghozi, D. Krob, and F. Rowe, editors, Digital Enterprise Design and Management
2013, pages 67–79, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[41] C. Castellanos, D. Correal, and F. Murcia. An Ontology-Matching Based Proposal to
Detect Potential Redundancies on Enterprise Architectures. In 2011 30th International
Conference of the Chilean Computer Science Society, pages 118–126, 2011.

[42] P.-A. Champin and C. Solnon. Measuring the Similarity of Labeled Graphs. In Pro-
ceedings of the 5th International Conference on Case-based Reasoning: Research and
Development, ICCBR’03, pages 80–95, Berlin, Heidelberg, 2003. Springer-Verlag.

[43] E. Cho. Making Reliability Reliable. Organizational Research Methods, 19(4):651–682,
2016.

[44] A. Cleven, P. Gubler, and K. M. Hüner. Design Alternatives for the Evaluation of Design
Science Research Artifacts. In Proceedings of the 4th International Conference on Design
Science Research in Information Systems and Technology, DESRIST ’09, pages 19:1–
19:8, New York, NY, USA, 2009. ACM.

[45] D. S. Cruzes and T. Dyba. Recommended Steps for Thematic Synthesis in Software
Engineering. In 2011 International Symposium on Empirical Software Engineering and
Measurement, pages 275–284, 2011.

[46] G. Csardi and T. Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5):1–9, 2006.

[47] P. Dagum, A. Galper, and E. Horvitz. Dynamic network models for forecasting. In Pro-
ceedings of the eighth international conference on uncertainty in artificial intelligence,
pages 41–48. Morgan Kaufmann Publishers Inc, 1992.

[48] M. R. Davoudi and F. S. Aliee. Characterization of Enterprise Architecture quality at-
tributes. In 2009 13th Enterprise Distributed Object Computing Conference Workshops,
pages 131–137, 2009.

[49] J. Dawes. Do data characteristics change according to the number of scale points used?
An experiment using 5-point, 7-point and 10-point scales. International journal of market
research, 50(1):61–104, 2008.

Bibliography 151

[50] A. de Lucia, F. Fasano, R. Oliveto, and G. Tortora. ADAMS: advanced artefact mana-
gement system. In Conference on Software Maintenance and Reengineering (CSMR’06),
pages 349–350, 2006.

[51] P. Debois. Agile Infrastructure and Operations: How Infra-gile are You? Agile 2008
Conference, pages 202–207, 2008.

[52] W. H. DeLone and E. R. McLean. The DeLone and McLean model of information sys-
tems success: A ten-year update. J. Manage. Inf. Syst., 19(4):9–30, 2003.

[53] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[54] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with
power estimation. Soviet Math. Doll., 11(5):1277–1280, 1970.

[55] D. Dreyfus and B. Iyer. Enterprise architecture: A social network perspective. In HI-
CSS’06. Proceedings of the 39th Annual Hawaii International Conference on System
Sciences, 2006, volume 8, 2006.

[56] P. Duvall, S. M. Matyas, and A. Glover. Continuous Integration: Improving Software
Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-Wesley Pro-
fessional, 2007.

[57] M. J. Earl. Management Strategies for Information Technology. Prentice-Hall, Inc, Upper
Saddle River, NJ, USA, 1989.

[58] W. Eberle and L. Holder. Discovering Structural Anomalies in Graph-Based Data. In
Seventh IEEE International Conference on Data Mining Workshops, pages 393–398, New
York, NY, USA, 2007. IEEE.

[59] K. M. Eisenhardt. Building theories from case study research. Academy of management
Review, 14(4):532–550, 1989.

[60] A. M. Ernst. Enterprise Architecture Management Patterns. In Proceedings of the 15th
Conference on Pattern Languages of Programs, PLoP ’08, pages 7:1–7:20, New York,
NY, USA, 2008. ACM.

[61] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and I. Hanschke. Requirements for
automated enterprise architecture model maintenance. In 13th International Conference
on Enterprise Information Systems (ICEIS), Beijing, 2011.

[62] M. Farwick, C. M. Schweda, R. Breu, K. Voges, and I. Hanschke. On Enterprise Ar-
chitecture Change Events. In S. Aier, M. Ekstedt, F. Matthes, E. Proper, and J. L. Sanz,
editors, Trends in Enterprise Architecture Research and Practice, pages 129–145, Berlin,
Heidelberg, 2012. Springer.

[63] R. Fischer, S. Aier, and R. Winter. A Federated Approach to Enterprise Architecture
Model Maintenance. In EMISA, 2007.

152 Bibliography

[64] H. Florez, M. Sánchez, and J. Villalobos. Extensible Model-Based Approach for Suppor-
ting Automatic Enterprise Analysis. In 2014 IEEE 18th International Enterprise Distri-
buted Object Computing Conference, pages 32–41, 2014.

[65] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian journal of
Mathematics, 8(3):399–404, 1956.

[66] S. Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

[67] M. Fowler. Continuous integration, 2006.

[68] C. Francalanci and V. Piuri. Designing information technology architectures: A cost-
oriented methodology. Journal of Information Technology, 14(2):181–192, 1999.

[69] U. Frank, S. Strecker, and S. Koch. Open Model: Ein Vorschlag für ein Forschungspro-
gramm der Wirtschaftsinformatik. In Wirtschaftsinformatik, 2007.

[70] U. Franke. Enterprise Architecture Analysis with Production Functions. In Enterprise
Distributed Object Computing Conference (EDOC), 2014 IEEE 18th International, pages
52–60, 2014.

[71] U. Franke, O. Holschke, M. Buschle, J. Rake-Revelant, and P. Närman. IT Consolidation:
An Optimization Approach. In 14th IEEE International Enterprise Distributed Object
Computing Conference Workshops, 2010.

[72] A. Garg, R. Kazman, and H.-M. Chen. Interface descriptions for enterprise architecture.
Science of Computer Programming, 61(1):4–15, 2006.

[73] D. Garvin. Competing on the eight dimensions of quality. Harv. Bus. Rev., pages 101–
109, 1987.

[74] V. Giakoumakis, D. Krob, L. Liberti, and F. Roda. Technological architecture evolutions
of information systems: Trade-off and optimization. Concurrent Engineering, 20(2):127–
147, 2012.

[75] I. Gmati, I. Rychkova, and S. Nurcan. On the Way from Research Innovations to Practi-
cal Utility in Enterprise Architecture: The Build-Up Process. International Journal of
Information System Modeling and Design (IJISMD), 1(3):20–44, 2010.

[76] G. Gorek and U. Kelter. Abgleich von Teilmodellen in den frühen Entwicklungsphasen.
In Proceedings Software Engineering, Lecture Notes in Informatics, pages 123–134. GI,
2011.

[77] E. Grandry, C. Feltus, and E. Dubois. Conceptual Integration of Enterprise Architecture
Management and Security Risk Management. In 17th IEEE International Enterprise
Distributed Object Computing Conference Workshops, pages 114–123, 2013.

[78] B. A. Guild. A Guide to the Business Architecture Body of Knowledge (BIZBOK Guide),
volume V04. 2014.

Bibliography 153

[79] S. Hacks, M. Brosius, and S. Aier. A Case Study of Stakeholder Concerns on EAM.
In U. Franke, S. Aier, and M. Mocker, editors, 21st International Enterprise Distributed
Object Computing Workshop (EDOCW), 2017.

[80] S. Hacks and H. Lichter. Distributed Enterprise Architecture Evolution–A Roundtrip
Approach. In Doctoral Consortium Wirtschaftsinformatik 2017 (unpublished), 2017.

[81] S. Hacks and H. Lichter. Optimizing Enterprise Architectures Using Linear Integer Pro-
gramming Techniques. In M. Eibl and M. Gaedke, editors, INFORMATIK 2017, pages
623–636, Bonn, 2017. Gesellschaft für Informatik e.V.

[82] S. Hacks and H. Lichter. A Probabilistic Enterprise Architecture Model Evolution.
In 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference
(EDOC), pages 51–57, 2018.

[83] S. Hacks and H. Lichter. Optimierung von Unternehmensarchitekturen unter Berück-
sichtigung von Transitionskosten. HMD Praxis der Wirtschaftsinformatik, 55:928–941,
2018.

[84] S. Hacks and H. Lichter. Towards an Enterprise Architecture Model Evolution. In C. Czar-
necki, E. Sultanow, and C. Brockmann, editors, Workshops der Informatik 2018, Lecture
Notes in Informatics, Bonn, 2018. Gesellschaft für Informatik e.V.

[85] S. Hacks and H. Lichter. Qualitative Comparison of Enterprise Architecture Model Main-
tenance Processes. In EMISA 2019 conference (to be published), 2019.

[86] S. Hacks, A. Steffens, P. Hansen, and N. Rajashekar. A Continuous Delivery Pipeline for
EA Model Evolution. In I. Reinhartz-Berger, J. Zdravkovic, J. Gulden, and R. Schmidt,
editors, Enterprise, Business-Process and Information Systems Modeling. BPMDS 2019,
EMMSAD 2019, pages 141–155. Springer International Publishing, 2019.

[87] S. Hacks and F. Timm. Towards a Quality Framework for Enterprise Architecture Models
(Extended Abstract). EMISA Forum, 38(1):32–33, 2018.

[88] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc, San
Francisco, CA, USA, 2005.

[89] I. Hanschke. Strategisches Management der IT-Landschaft: Ein praktischer Leitfaden für
das Enterprise Architecture Management. Carl Hanser Verlag GmbH Co KG, 2013.

[90] G. K. Hanssen, D. Šmite, and N. B. Moe. Signs of Agile Trends in Global Software
Engineering Research: A Tertiary Study. In 2011 IEEE Sixth International Conference
on Global Software Engineering Workshop, pages 17–23, 2011.

[91] T. E. Harris and F. S. Ross. Fundamentals of a method for evaluating rail net capacities.
DTIC Document, 1955.

[92] M. Hauder, F. Matthes, and S. Roth. Challenges for Automated Enterprise Architecture
Documentation. In TEAR/PRET, 2012.

154 Bibliography

[93] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information systems
research. MIS quarterly, 28(1):75–105, 2004.

[94] J. Highsmith and A. Cockburn. Agile Software Development: The Business of Innova-
tion. IEEE Computer, 34:120–122, 2001.

[95] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt. Automatic data collection for
enterprise architecture models. Software & Systems Modeling, 13(2):825–841, 2014.

[96] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt. P2CySeMoL: Predictive, Probabilis-
tic Cyber Security Modeling Language. IEEE Transactions on Dependable and Secure
Computing, 12(6):626–639, 2015.

[97] O. Holschke, P. Närman, W. R. Flores, E. Eriksson, and M. Schönherr. Using enterprise
architecture models and bayesian belief networks for failure impact analysis. In Interna-
tional Conference on Service-Oriented Computing, pages 339–350, 2008.

[98] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley Professional, 1st edition, 2010.

[99] ISO, IEC, and IEEE. Systems and software engineering – Architecture description,
01.12.2011.

[100] ISO/IEC 25010. Systems and software engineering - Systems and software Quality Requi-
rements and Evaluation (SQuaRE) - System and software quality models, volume 25010
of ISO/IEC. ISO, Geneva, 2011.

[101] A. Jain, A. Jain, N. Chauhan, V. Singh, and N. Thakur. Information Retrieval using
Cosine and Jaccard Similarity Measures in Vector Space Model. International Journal of
Computer Applications, 164(6), 2017.

[102] J. Janulevičius, L. Marozas, A. Čenys, N. Goranin, and S. Ramanauskaitė. Enterprise
architecture modeling based on cloud computing security ontology as a reference model.
In 2017 Open Conference of Electrical, Electronic and Information Sciences (eStream),
pages 1–6, 2017.

[103] G. Jeh and J. Widom. SimRank: A Measure of Structural-context Similarity. In Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 538–543, New York, NY, USA, 2002. ACM.

[104] P. Johnson, M. Ekstedt, and R. Lagerström. Automatic Probabilistic Enterprise IT Ar-
chitecture Modeling: A Dynamic Bayesian Networks Approach. In U. Franke, J. La-
palme, and P. Johnson, editors, 20th International Enterprise Distributed Object Compu-
ting Workshop (EDOCW), pages 123–129, 2016.

[105] P. Johnson, L. Nordström, and R. Lagerström. Formalizing analysis of enterprise archi-
tecture. In Enterprise Interoperability, pages 35–44. Springer, 2007.

Bibliography 155

[106] P. Johnson, J. Ullberg, M. Buschle, U. Franke, and K. Shahzad. An architecture modeling
framework for probabilistic prediction. Information Systems and e-Business Manage-
ment, 12(4):595–622, 2014.

[107] H. Jonkers, M. M. Lankhorst, R. van Buuren, S. Hoppenbrouwers, M. Bosangue, and
L. van der Torre. Concepts for Modelling Enterprise Architectures. International Journal
of Cooperative Information Systems, 13(3):257–287, 2004.

[108] M. Jørgensen. A review of studies on expert estimation of software development effort.
Journal of Systems and Software, 70(1):37–60, 2004.

[109] T. Kehrer. Calculation and Propagation of Model Changes Based on User-level Edit
Operations: A Foundation for Version and Variant Management in Model-driven Engi-
neering. Dissertation, University of Siegen, Siegen, Germany, 2015.

[110] U. Kelter, J. Wehren, and J. Niere. A Generic Difference Algorithm for UML Models.
Software Engineering, 64(105):4–9, 2005.

[111] R. Khayami. Qualitative characteristics of enterprise architecture. Procedia Computer
Science, 3:1277–1282, 2011.

[112] P. A. Khosroshahi, S. Aier, M. Hauder, S. Roth, F. Matthes, and R. Winter. Success
Factors for Federated Enterprise Architecture Model Management. In A. Persson and
J. Stirna, editors, Advanced Information Systems Engineering Workshops, Lecture Notes
in Business Information Processing, pages 413–425. Springer International Publishing,
2015.

[113] B. Kirschner and S. Roth. Federated Enterprise Architecture Model Management: Col-
laborative Model Merging for Repositories with Loosely Coupled Schema and Data. In
Multikonferenz Wirtschaftsinformatik 2014, 2014.

[114] B. Kitchenham. Procedures for Performing Systematic Reviews, Version 2.3: Technical
Report EBSE-2007-01, Department of Computer Science, Keele University and National
ICT, Australa Ltd.

[115] M. Kleehaus, Ö. Uludag, and F. Matthes. Towards a Multi-Layer IT Infrastructure Mo-
nitoring Approach based on Enterprise Architecture Information. In CSE@ SE, pages
12–17, 2017.

[116] S. Kotusev. The History of Enterprise Architecture: An Evidence-Based Review. Journal
of Enterprise Architecture, 12(1):31–37, 2016.

[117] D. Koutra, A. Parikh, A. Ramdas, and J. Xiang. Algorithms for graph similarity and
subgraph matching. In Proc. Ecol. Inference Conf, 2011.

[118] S. Kurpjuweit and R. Winter. Concern-oriented business architecture engineering. In
SAC, 2009.

156 Bibliography

[119] M. La Rosa, M. Dumas, R. Uba, and R. Dijkman. Business Process Model Merging:
An Approach to Business Process Consolidation. ACM Trans. Softw. Eng. Methodol.,
22(2):11:1–11:42, 2013.

[120] R. Lagerström, C. Baldwin, A. MacCormack, and D. Dreyfus. Visualizing and Measuring
Enterprise Architecture: An Exploratory BioPharma Case. In J. Grabis, M. Kirikova,
J. Zdravkovic, and J. Stirna, editors, The Practice of Enterprise Modeling: 6th IFIP WG
8.1 Working Conference, PoEM 2013, Riga, Latvia, November 6-7, 2013, Proceedings,
pages 9–23. Springer, Berlin, Heidelberg, 2013.

[121] R. Lagerström, P. Johnson, and M. Ekstedt. Architecture analysis of enterprise systems
modifiability: A metamodel for software change cost estimation. Software Quality Jour-
nal, 18(4):437–468, 2010.

[122] J. Lakhrouit, K. Baïna, and K. Benali. Model and Application Architecture Indicators
of Evaluation the Enterprise Architecture. In Á. Rocha, A. M. Correia, F. . B. Tan, and
K. . A. Stroetmann, editors, New Perspectives in Information Systems and Technologies,
Volume 2, volume 276 of Advances in Intelligent Systems and Computing, pages 63–71.
Springer International Publishing, Cham, 2014.

[123] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to latent semantic analysis.
Discourse processes, 25(2-3):259–284, 1998.

[124] J. Landthaler, Ö. Uludağ, G. Bondel, A. Elnaggar, S. Nair, and F. Matthes. A Machine
Learning Based Approach to Application Landscape Documentation. In IFIP Working
Conference on The Practice of Enterprise Modeling, pages 71–85, 2018.

[125] M. Lange, J. Mendling, and J. Recker. A Comprehensive EA Benefit Realization Model–
An Exploratory Study. In 2012 45th Hawaii International Conference on System Scien-
ces, pages 4230–4239, 2012.

[126] M. Langermeier, C. Saad, and B. Bauer. Adaptive Approach for Impact Analysis in
Enterprise Architectures. In B. Shishkov, editor, Business Modeling and Software Design,
pages 22–42, Cham, 2015. Springer International Publishing.

[127] M. Lankhorst. Enterprise Architecture at Work: Modelling, Communication and Analysis.
The Enterprise Engineering Series. Springer Berlin Heidelberg, Berlin, Heidelberg and
s.l., 2017.

[128] M. M. Lankhorst. Enterprise Architecture Modelling - The Issue of Integration: Enter-
prise Modelling and System Support. Advanced Engineering Informatics, 18(4):205–216,
2004.

[129] M. M. Lankhorst. Enterprise Architecture at Work: Modelling, Communication and Ana-
lysis. Springer, Berlin, 2005.

Bibliography 157

[130] B. Lantow, D. Jugel, M. Wißotzki, B. Lehmann, O. Zimmermann, and K. Sandkuhl.
Towards a Classification Framework for Approaches to Enterprise Architecture Analysis.
In The Practice of Enterprise Modeling - 9th IFIP WG 8.1. Working Conference, PoEM
2016, Skövde, Sweden, November 8-10, 2016, Proceedings, pages 335–343, 2016.

[131] M. Lázaro and E. Marcos. Research in Software Engineering: Paradigms and Methods.
In CAiSE Workshops, pages 517–522, 2005.

[132] H. Lee, J. Ramanathan, Z. Hossain, P. Kumar, B. Weirwille, and R. Ramnath. Enterprise
Architecture Content Model Applied to Complexity Management While Delivering IT
Services. In 2014 IEEE International Conference on Services Computing, pages 408–
415, 2014.

[133] K. N. Lemon and P. C. Verhoef. Understanding customer experience throughout the
customer journey. Journal of Marketing, 80(6):69–96, 2016.

[134] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.
journal of the Association for Information Science and Technology, 58(7):1019–1031,
2007.

[135] M. Liggins II, D. Hall, and J. Llinas. Handbook of multisensor data fusion: Theory and
practice. CRC press, 2017.

[136] N. Lim, T.-g. Lee, and S.-g. Park. A Comparative Analysis of Enterprise Architecture
Frameworks Based on EA Quality Attributes. 2009 10th ACIS International Conference
on Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing, pages 283–288, 2009.

[137] T. Lindholm. A Three-way Merge for XML Documents. In Proceedings of the 2004 ACM
Symposium on Document Engineering, pages 1–10, New York, NY, 2004. ACM.

[138] O. I. Lindland, G. Sindre, and A. Solvberg. Understanding quality in conceptual mo-
deling. IEEE Software, 11(2):42–49, 1994.

[139] Å. Lindström, P. Johnson, E. Johansson, M. Ekstedt, and M. Simonsson. A survey on CIO
concerns: Do enterprise architecture frameworks support them? Information Systems
Frontiers, 8(2):81–90, 2006.

[140] A. D. Lucia, F. Fasano, G. Scanniello, and G. Tortora. Concurrent Fine-Grained Ver-
sioning of UML Models. In R. Ferenc, editor, 13th European Conference on Software
Maintenance and Reengineering, 2009, pages 89–98, Piscataway, NJ, 2009. IEEE.

[141] C. Lucke, S. Krell, and U. Lechner. Critical Issues in Enterprise Architecting - A Litera-
ture Review. In 16th Americas Conference on Information Systems, 2010.

[142] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt. verlag, 2013.

158 Bibliography

[143] J. N. Luftman. Key Issues for IT Executives 2004. MIS Quarterly Executive, 7, 2005.

[144] J. N. Luftman and T. Ben-Zvi. Key Issues for IT Executives 2010: Judicious IT Invest-
ments Continue Post-Recession. MIS Quarterly Executive, 9, 2010.

[145] L. Manzur, J. M. Ulloa, M. Sánchez, and J. Villalobos. xArchiMate: Enterprise Architec-
ture simulation, experimentation and analysis. SIMULATION, 91(3):276–301, 2015.

[146] D. Marosin and S. Ghanavati. Measuring and managing the design restriction of enterprise
architecture (EA) principles on EA models. In 2015 IEEE Eighth International Workshop
on Requirements Engineering and Law (RELAW), pages 37–46, 2015.

[147] F. Matthes, S. Buckl, J. Leitel, and C. M. Schweda. Enterprise Architecture Manage-
ment Tool Survey 2008. TU München, Chair for Informatics 19, Prof. Matthes (sebis),
München, 2008.

[148] F. Matthes, I. Monahov, A. W. Schneider, and C. Schulz. EAM KPI Catalog v1.0. Gar-
ching, 2011.

[149] T. Mens. A State-of-the-art Survey on Software Merging. IEEE Transactions on Software
Engineering, 28(5):449–462, 2002.

[150] M. B. Miles and A. M. Huberman. Qualitative data analysis: An expanded sourcebook.
Sage Publications, Thousand Oaks, 1994.

[151] R. Montino, M. Fathi, A. Holland, T. Schmidt, and H. Peuser. Calculating risk of integra-
tion relations in application landscapes. In Electro/Information Technology, 2007 IEEE
International Conference on, pages 210–214, 2007.

[152] S. Morimoto. Encouragement of Defining Moderate Semantics for Artifacts of Enter-
prise Architecture. In F. L. Gaol and Q. V. Nguyen, editors, Proceedings of the 2011
2nd International Congress on Computer Applications and Computational Science, pa-
ges 141–149, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[153] A. Morkevicius, S. Gudas, and D. Silingas. Model-driven quantitative performance ana-
lysis of UPDM-based enterprise architecture. In Proceedings of the 16th International
Conference on Information and Software Technologies, pages 218–223, 2010.

[154] C. W. Morris. Foundations of the Theory of Signs. In International encyclopedia of
unified science, pages 1–59. Chicago University Press, 1938.

[155] C. Moser, S. Junginger, M. Brückmann, and K.-M. Schöne. Some Process Patterns for
Enterprise Architecture Management. In J. Münch and P. Liggesmeyer, editors, Software
Engineering 2009 - Workshopband, pages 19–30, Bonn, 2009. Gesellschaft für Informatik
e.V.

Bibliography 159

[156] L. Murta, C. Corrêa, J. G. Prudêncio, and C. Werner. Towards odyssey-VCS 2: Impro-
vements over a UML-based Version Control System. In Proceedings of the 2008 Interna-
tional Workshop on Comparison and Versioning of Software Models, CVSM ’08, pages
25–30, New York, NY, USA, 2008. ACM.

[157] P. Närman, H. Holm, D. Höök, N. Honeth, and P. Johnson. Using enterprise architecture
and technology adoption models to predict application usage. Journal of Systems and
Software, 85(8):1953–1967, 2012.

[158] P. Narman and P. Johnson. Analyzing Coordination and Flexibility in Organizations Using
Enterprise Architecture. In 2016 IEEE 20th International Enterprise Distributed Object
Computing Workshop (EDOCW), pages 1–8, 2016.

[159] P. Närman, P. Johnson, and L. Gingnell. Using enterprise architecture to analyse how
organisational structure impact motivation and learning. Enterprise Information Systems,
10(5):523–562, 2016.

[160] P. Närman, M. Schönherr, P. Johnson, M. Ekstedt, and M. Chenine. Using Enterprise
Architecture Models for System Quality Analysis. In Enterprise Distributed Object Com-
puting Conference, 2008. EDOC ’08. 12th International IEEE, pages 14–23. 2008.

[161] G. Navarro. A Guided Tour to Approximate String Matching. ACM Comput. Surv.,
33(1):31–88, 2001.

[162] Neo4j Inc. Cypher Query Language: Version 9.

[163] J. L. Neto, A. D. Santos, C. A. A. Kaestner, N. Alexandre, D. Santos, et al. Document
clustering and text summarization. Proc. of 4th Int. Conf. Practical Applications of Kno-
wledgeDiscovery and Data Mining (PADD-2000), pages 41–55, 2000.

[164] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577–8582, 2006.

[165] E. Niemi and S. Pekkola. Enterprise Architecture Quality Attributes: A Case Study. In
2013 46th Hawaii International Conference on System Sciences, pages 3878–3887. IEEE,
2013.

[166] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu. Using of Jaccard
coefficient for keywords similarity. In Proceedings of the International MultiConference
of Engineers and Computer Scientists, volume 1, 2013.

[167] C. C. Noble and D. J. Cook. Graph-based Anomaly Detection. In Proceedings of the
Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-
ning, pages 631–636, New York, NY, USA, 2003. ACM.

[168] R. Nolan and F. W. McFarlan. Information technology and the board of directors. Harvard
business review, 83(10):96, 2005.

160 Bibliography

[169] T. Oda and M. Saeki. Generative technique of version control systems for software di-
agrams. In ICSM 2005, pages 515–524, Los Alamitos, Calif, 2005. IEEE Computer
Society.

[170] S. D. Oliner and D. E. Sichel. The Resurgence of Growth in the Late 1990s: Is Informa-
tion Technology the Story? FEDS Working Paper, (20), 2000.

[171] H. Oliveira, L. Murta, and C. Werner. Odyssey-VCS: A Flexible Version Control Sy-
stem for UML Model Elements. In Proceedings of the 12th International Workshop on
Software Configuration Management, SCM ’05, pages 1–16, New York, NY, USA, 2005.
ACM.

[172] G. K. Orman, V. Labatut, and H. Cherifi. Comparative evaluation of community detection
algorithms: a topological approach. Journal of Statistical Mechanics: Theory and Expe-
riment, 2012(08), 2012.

[173] M. Österlind, R. Lagerström, and P. Rosell. Assessing Modifiability in Application Servi-
ces Using Enterprise Architecture Models – A Case Study. In S. Aier, M. Ekstedt, F. Mat-
thes, E. Proper, and J. L. Sanz, editors, Trends in Enterprise Architecture Research and
Practice-Driven Research on Enterprise Transformation, pages 162–181, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[174] S. Oussena and J. Essien. Validating enterprise architecture using ontology-based appro-
ach: A case study of student internship programme. In Proceedings of the 15th Interna-
tional Conference on Enterprise Information Systems - ICEIS, pages 302–309, 2013.

[175] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A model for types and levels of hu-
man interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans, 30(3):286–297, 2000.

[176] M. Q. Patton. Qualitative Research & Evaluation Methods. Sage Publications, Thousand
Oaks, 3 edition, 2002.

[177] K. Pearson. Notes on regression and inheritance in the case of two parents. Proceedings
of the Royal Society of London, 58:240–242, 1895.

[178] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A Design Science Rese-
arch Methodology for Information Systems Research. Journal of Management Informa-
tion Systems, 24(3):45–77, 2007.

[179] J. Pitschke. Gute Modelle–Wie die Qualität von Unternehmensmodellen definiert und
gemessen werden kann, 2011.

[180] G. Plataniotis, S. de Kinderen, and H. A. Proper. Capturing Decision Making Strate-
gies in Enterprise Architecture – A Viewpoint. In S. Nurcan, H. A. Proper, P. Soffer,
J. Krogstie, R. Schmidt, T. Halpin, and I. Bider, editors, Enterprise, Business-Process
and Information Systems Modeling, pages 339–353, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

Bibliography 161

[181] G. Plataniotis, S. de Kinderen, and H. A. Proper. EA Anamnesis: An Approach for De-
cision Making Analysis in Enterprise Architecture. International Journal of Information
System Modeling and Design (IJISMD), 5(3):75–95, 2014.

[182] G. Plataniotis, S. d. Kinderen, Q. Ma, and E. Proper. A Conceptual Model for Compliance
Checking Support of Enterprise Architecture Decisions. In 2015 IEEE 17th Conference
on Business Informatics, volume 1, pages 191–198, 2015.

[183] L. Plazaola, J. Flores, E. Silva, N. Vargas, and M. Ekstedt. An approach to associate
strategic business-IT alignment assessment to enterprise architecture. In Fifth Conference
on Systems Engineering, 2007.

[184] M. A. Porter, J.-P. Onnela, and P. J. Mucha. Communities in networks. Notices of the
AMS, 56(9):1082–1097, 2009.

[185] N. Rajashekar, S. Hacks, and N. Silva. A Performance Comparison of Graph Analy-
tic Methods for Supporting Enterprise Architecture Model Maintenance. In Practice of
Enterprise Modelling 2019 Forum (to be published). Springer, 2019.

[186] O. Rauh and E. Stickel. Konzeptuelle Datenmodellierung. Teubner-Reihe Wirtschaftsin-
formatik. Vieweg+Teubner Verlag and Imprint, Wiesbaden, 1997.

[187] J. Rauscher, M. Langermeier, and B. Bauer. Characteristics of Enterprise Architecture
Analyses. In Proceedings of the Sixth International Symposium on Business Modeling
and Software Design (BMSD 2016), pages 104–113, 2017.

[188] M. Razavi, F. Shams Aliee, and K. Badie. An AHP-based approach toward enterprise
architecture analysis based on enterprise architecture quality attributes. Knowledge and
Information Systems, 28(2):449–472, 2011.

[189] U.-D. Reips. Standards for Internet-based experimenting. Experimental psychology,
49(4):243–256, 2002.

[190] D. F. Rico. A framework for measuring ROI of enterprise architecture. Journal of Orga-
nizational and End User Computing, 18(2):I, 2006.

[191] R. C. Russell. Soundex, 1918.

[192] S. Saha and S. P. Ghrera. Nearest Neighbor search in Complex Network for Community
Detection. arXiv preprint arXiv:1511.07210, 2015.

[193] P. Saint-Louis and J. Lapalme. Investigation of the lack of common understanding in
the discipline of enterprise architecture: A systematic mapping study. In U. Franke,
J. Lapalme, and P. Johnson, editors, 20th International Enterprise Distributed Object
Computing Workshop (EDOCW), 2016.

[194] P. Saint-Louis, M. C. Morency, and J. Lapalme. Defining Enterprise Architecture: A
Systematic Literature Review. In U. Franke, S. Aier, and M. Mocker, editors, 21st Inter-
national Enterprise Distributed Object Computing Workshop (EDOCW), 2017.

162 Bibliography

[195] R. Sanchez and J. T. Mahoney. Modularity, flexibility, and knowledge management in
product and organization design. Strategic Management Journal, 17(S2):63–76, 1996.

[196] K. Sandkuhl, J. Stirna, A. Persson, and M. Wißotzki. Enterprise modeling. Tackling
Business Challenges with the 4EM Method. Springer, 309, 2014.

[197] A. Santana, A. Souza, D. Simon, K. Fischbach, and H. de Moura. Network Science Ap-
plied to Enterprise Architecture Analysis: Towards the Foundational Concepts. In 2017
IEEE 21st International Enterprise Distributed Object Computing Conference (EDOC),
pages 10–19, 2017.

[198] S. Santini and R. Jain. Similarity Measures. IEEE Trans. Pattern Anal. Mach. Intell.,
21(9):871–883, 1999.

[199] C. E. Sapp. Preparing and Architecting for Machine Learning, 2017.

[200] A. Šaša and M. Krisper. Enterprise architecture patterns for business process support
analysis. Journal of Systems and Software, 84(9):1480–1506, 2011.

[201] F. Scarff, editor. ITIL. TSO, London, 2013.

[202] M. Schmidt, S. Wenzel, T. Kehrer, and U. Kelter. History-based Merging of Models.
In Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models, pages 13–18, Washington, DC, USA, 2009. IEEE Computer Society.

[203] A. K. Schnackenberg and E. C. Tomlinson. Organizational Transparency: A New Per-
spective in Managing Trust in Organization-Stakeholder Relationships. Journal of Ma-
nagement, 42(7):1784–1810, 2014.

[204] A. Schoonjans. Social Network Analysis techniques in Enterprise Architecture Manage-
ment. PhD thesis, Ghent University, Ghent, 2016.

[205] R. Seghiri, F. Boulanger, C. Lecocq, and V. Godefroy. An Executable Model Driven
Framework for Enterprise Architecture Application to the Smart Grids Context. In 2016
49th Hawaii International Conference on System Sciences (HICSS), pages 4546–4555,
2016.

[206] G. Shani and A. Gunawardana. Evaluating recommendation systems. In Recommender
systems handbook, pages 257–297. Springer, 2011.

[207] M. Shaw. What Makes Good Research in Software Engineering? International Journal
on Software Tools for Technology Transfer, 4(1):1–7, 2002.

[208] J. Sichi, J. Kinable, D. Michail, B. Naveh, and Contributors. JGraphT - Graph Algorithms
and Data Structures in Java (Version 1.1.0), 2017.

[209] D. Simon and K. Fischbach. IT landscape management using network analysis. In Enter-
prise Information Systems of the Future, pages 18–34. Springer, 2013.

Bibliography 163

[210] D. Simon, K. Fischbach, and D. Schoder. An Exploration of Enterprise Architecture
Research. Communications of the Association for Information Systems, 32(1):1–72, 2013.

[211] T. Sommestad, M. Ekstedt, and H. Holm. The cyber security modeling language: A tool
for assessing the vulnerability of enterprise system architectures. IEEE Systems Journal,
7(3):363–373, 2013.

[212] T. Sørensen. A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on Danish
commons. Biol. Skr., 5:1–34, 1948.

[213] P. Sousa, J. Lima, A. Sampaio, and C. Pereira. An Approach for Creating and Managing
Enterprise Blueprints: A Case for IT Blueprints. In A. Albani, J. Barjis, and J. L. G.
Dietz, editors, Advances in Enterprise Engineering III, pages 70–84, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[214] P. Sousa, R. Martins, and A. Sampaio. A Clarification of the Application Concept: The
Caixa Geral de Depósitos Case. In E. Proper, K. Gaaloul, F. Harmsen, and S. Wry-
cza, editors, Practice-Driven Research on Enterprise Transformation, pages 1–17, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[215] S. Sousa, D. Marosin, K. Gaaloul, and N. Mayer. Assessing risks and opportunities in en-
terprise architecture using an extended ADT approach. In Enterprise Distributed Object
Computing Conference (EDOC), 2013 17th IEEE International, pages 81–90, 2013.

[216] C. Spence and V. Michell. Measuring the Quality of Enterprise Architecture Models.
Journal of Enterprise Architecture, 12(3):64–74, 2016.

[217] A. Steffens, H. Lichter, and J. S. Döring. Designing a Next-Generation Continuous Soft-
ware Delivery System: Concepts and Architecture. In 2018 IEEE/ACM 4th International
Workshop on Rapid Continuous Software Engineering (RCoSE), volume 00, pages 1–7,
2018.

[218] B. Stroud and A. Ertas. Enterprise cyclomatic complexity. In 2016 Annual IEEE Systems
Conference (SysCon), pages 1–7, 2016.

[219] N. Subramanian, L. Chung, and Y.-t. Song. An NFR-Based Framework for Establishing
Traceability between Enterprise Architectures and System Architectures. In Seventh ACIS
International Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing (SNPD’06), pages 21–28, 2006.

[220] R. Sundarraj and S. Talluri. A multi-period optimization model for the procurement of
component-based enterprise information technologies. European Journal of Operational
Research, 146(2):339–351, 2003.

[221] S. Sunkle, D. Kholkar, H. Rathod, and V. Kulkarni. Incorporating directives into en-
terprise TO-BE architecture. In Enterprise Distributed Object Computing Conference

164 Bibliography

Workshops and Demonstrations (EDOCW), 2014 IEEE 18th International, pages 57–66,
2014.

[222] T. Tamm, P. B. Seddon, G. Shanks, and P. Reynolds. How does enterprise architecture
add value to organisations? 28:141–168, 2011.

[223] The Open Group. TOGAF Version 9.1. Van Haren Publishing, Zaltbommel, 1 edition,
2011.

[224] The Open Group. ArchiMate 2.1 Specification. 2013.

[225] The Open Group. ArchiMate 3.0.1 Specification. 2017.

[226] M. T. Thielsch and S. Weltzin. Online-Umfragen und Online-Mitarbeiterbefragungen.
Praxis der Wirtschaftspsychologie II, pages 109–127, 2012.

[227] F. Timm, S. Hacks, F. Thiede, and D. Hintzpeter. Towards a Quality Framework for En-
terprise Architecture Models. In H. Lichter, T. Anwar, and T. Sunetnanta, editors, Procee-
dings of the 5th International Workshop on Quantitative Approaches to Software Quality
(QuASoQ 2017) co-located with APSEC 2017, pages 10–17. CEUR-WS.org, 2017.

[228] M. Välja, M. Korman, R. Lagerström, U. Franke, and M. Ekstedt. Automated architecture
modeling for enterprise technology manageme using principles from data fusion: A secu-
rity analysis case. In Portland International Conference on Management of Engineering
and Technology (PICMET), 2016.

[229] M. Välja, R. Lagerström, M. Ekstedt, and M. Korman. A Requirements Based Approach
for Automating Enterprise IT Architecture Modeling Using Multiple Data Sources. In
19th International Enterprise Distributed Object Computing Workshop, 2015.

[230] J.-P. van Belle. Evaluation of selected enterprise reference models. In Reference Modeling
for Business Systems Analysis, pages 266–287. IGI Global, 2007.

[231] R. van Buuren, H. Jonkers, M.-E. Iacob, and P. Strating. Composition of Relations in
Enterprise Architecture Models. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Ro-
zenberg, editors, Graph Transformations Second International Conference, 2004.

[232] A. Vasconcelos, C. M. Pereira, P. M. A. Sousa, and J. M. Tribolet. Open Issues on
Information System Architecture Research Domain: The Vision. In ICEIS, pages 273–
282, 2004.

[233] J. Venable. A framework for design science research activities. In Emerging Trends and
Challenges in Information Technology Management: Proceedings of the 2006 Informa-
tion Resource Management Association Conference, pages 184–187, 2006.

[234] J. Venable, J. Pries-Heje, and R. Baskerville. FEDS: a framework for evaluation in design
science research. European Journal of Information Systems, 25(1):77–89, 2016.

Bibliography 165

[235] R. K. Veneberg, M.-E. Iacob, M. J. van Sinderen, and L. Bodenstaff. Enterprise architec-
ture intelligence: combining enterprise architecture and operational data. In Enterprise
Distributed Object Computing Conference (EDOC), 2014 IEEE 18th International, pages
22–31, 2014.

[236] S. Vodanovich, D. Sundaram, and M. Myers. Research Commentary—Digital Natives
and Ubiquitous Information Systems. Information Systems Research, 21(4):711–723,
2010.

[237] J. Webster and R. T. Watson. Analyzing the Past to Prepare for the Future: Writing a
Literature Review. MIS Q, 26(2):xiii–xxiii, 2002.

[238] S. Wenzel, H. Hutter, and U. Kelter. Tracing Model Elements. In International Confe-
rence on Software Maintenance, pages 104–113, New York, NY, USA, 2007. IEEE.

[239] S. A. White. BPMN modeling and reference guide: understanding and using BPMN.
Future Strategies Inc, 2008.

[240] K. Winter, S. Buckl, F. Matthes, and C. M. Schweda. Investigating the state-of-the-art in
enterprise architecture management method in literature and practice. In 5th Mediterra-
nean Conference on Information Systems. AIS, 2010.

[241] R. Winter. Establishing Architectural Thinking in Organizations. In J. Horkoff, M. A.
Jeusfeld, and A. Persson, editors, The Practice of Enterprise Modeling : 9th IFIP WG 8.1.
Working Conference, PoEM 2016, Skövde, Sweden, November 8-10, 2016, Proceedings,
volume 267 of Lecture Notes in Business Information Processing, pages 3–8. Springer
International Publishing, 2016.

[242] R. Winter and R. Fischer. Essential Layers, Artifacts, and Dependencies of Enterprise
Architecture. In 10th IEEE International Enterprise Distributed Object Computing Con-
ference Workshops, pages 30–38, New York, NY, USA, 2006. IEEE.

[243] M. Wißotzki, F. Timm, and P. Stelzer. Current State of Governance Roles in Enterprise
Architecture Management Frameworks. In International Conference on Business Infor-
matics Research, pages 3–15, 2017.

[244] A. Wittenburg. Softwarekartographie: Modelle und Methoden zur systematischen Visua-
lisierung von Anwendungslandschaften. Dissertation, TU München, München, Germany,
2007.

[245] J. Wood, S. Sarkani, T. Mazzuchi, and T. Eveleigh. A framework for capturing the hidden
stakeholder system. Systems Engineering, 16(3):251–266, 2012.

[246] A. Xavier, A. Vasconcelos, and P. Sousa, editors. Rules for Validation of Models of
Enterprise Architecture - Rules of Checking and Correction of Temporal Inconsistencies
among Elements of the Enterprise Architecture. SciTePress, 2017.

166 Bibliography

[247] R. K. Yin. Case Study Research: Design and Methods. Sage Publications, Thousand
Oaks and London and New Delhi, 5 edition, 2013.

[248] T. Ylimäki. Potential Critical Success Factors for Enterprise Architecture. Journal of
Enterprise Architecture, 2(4):29–40, 2006.

[249] E. Yu, M. Strohmaier, and X. Deng. Exploring Intentional Modeling and Analysis for
Enterprise Architecture. In 2006 10th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW’06), page 32, 2006.

[250] A. Zimmermann, R. Schmidt, D. Jugel, and M. Möhring. Evolving enterprise architec-
tures for digital transformations. In A. Zimmermann and A. Rossmann, editors, Digital
Enterprise Computing (DEC 2015), pages 183–194, Bonn, 2015. Gesellschaft für Infor-
matik e.V.

[251] K. Zimmermann. Referenzprozessmodell für das Business-IT-Management: Vorgehen,
Erstellung und Einsatz auf Basis qualitativer Forschungsmethoden. Dissertation, Univer-
sity of Hamburg, Hamburg, Germany, 2013.

List of Publications

[1] A. Barbosa, A. Santana, S. Hacks, and N. v. Stein. A Taxonomy for Enterprise Architecture
Analysis Research. In Proceedings of the 21st International Conference on Enterprise
Information Systems, volume 2, pages 493–504. SciTePress, 2019.

[2] B. Bebensee and S. Hacks. Applying Dynamic Bayesian Networks for Automated Mo-
deling in ArchiMate: A Realization Study. In Proceedings of the 2019 IEEE 23rd Interna-
tional Enterprise Distributed Object Computing Conference Workshops and Demonstrati-
ons (to be published), 2019.

[3] V. Borozanov, S. Hacks, and N. Silva. Using Machine Learning Techniques for Evaluating
the Similarity of Enterprise Architecture Models. In P. Giorgini and B. Weber, editors,
Advanced Information Systems Engineering, pages 563–578. Springer International Pu-
blishing, 2019.

[4] N. Dohmen, K. Koopmann, and S. Hacks. Optimizing Enterprise Architecture Considering
Different Budgets. In C. Czarnecki, E. Sultanow, and C. Brockmann, editors, Workshops
der Informatik 2019 (to be published), Lecture Notes in Informatics, Bonn, 2019. Gesell-
schaft für Informatik e.V.

[5] S. Hacks, M. Brosius, and S. Aier. A Case Study of Stakeholder Concerns on EAM.
In U. Franke, S. Aier, and M. Mocker, editors, 21st International Enterprise Distributed
Object Computing Workshop (EDOCW), 2017.

[6] S. Hacks, A. Hacks, S. Katsikeas, B. Klaer, and R. Lagerström. Creating Meta Attack
Language Instances using ArchiMate: Applied to Electric Power and Energy System Ca-
ses. In Proceedings of the 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (to be published). IEEE, 2019.

[7] S. Hacks, H. Höfert, J. Salentin, Y. C. Yeong, and H. Lichter. Towards the Definition
of Enterprise Architecture Debts. In Proceedings of the 2019 IEEE 23rd International
Enterprise Distributed Object Computing Conference Workshops and Demonstrations (to
be published), 2019.

[8] S. Hacks and H. Lichter. Distributed Enterprise Architecture Evolution–A Roundtrip Ap-
proach. In Doctoral Consortium Wirtschaftsinformatik 2017 (unpublished), 2017.

[9] S. Hacks and H. Lichter. Optimizing Enterprise Architectures Using Linear Integer Pro-
gramming Techniques. In M. Eibl and M. Gaedke, editors, INFORMATIK 2017, pages
623–636, Bonn, 2017. Gesellschaft für Informatik e.V.

168 List of Publications

[10] S. Hacks and H. Lichter. A Probabilistic Enterprise Architecture Model Evolution. In 2018
IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC),
pages 51–57, 2018.

[11] S. Hacks and H. Lichter. Optimierung von Unternehmensarchitekturen unter Berücksichti-
gung von Transitionskosten. HMD Praxis der Wirtschaftsinformatik, 55:928–941, 2018.

[12] S. Hacks and H. Lichter. Towards an Enterprise Architecture Model Evolution. In C. Czar-
necki, E. Sultanow, and C. Brockmann, editors, Workshops der Informatik 2018, Lecture
Notes in Informatics, Bonn, 2018. Gesellschaft für Informatik e.V.

[13] S. Hacks and H. Lichter. Qualitative Comparison of Enterprise Architecture Model Main-
tenance Processes. In EMISA 2019 conference (to be published), 2019.

[14] S. Hacks, A. Steffens, P. Hansen, and N. Rajashekar. A Continuous Delivery Pipeline for
EA Model Evolution. In I. Reinhartz-Berger, J. Zdravkovic, J. Gulden, and R. Schmidt,
editors, Enterprise, Business-Process and Information Systems Modeling. BPMDS 2019,
EMMSAD 2019, pages 141–155. Springer International Publishing, 2019.

[15] S. Hacks and F. Timm. Towards a Quality Framework for Enterprise Architecture Models
(Extended Abstract). EMISA Forum, 38(1):32–33, 2018.

[16] S. Katsikeas, P. Johnson, S. Hacks, and R. Lagerström. Probabilistic Modeling and Si-
mulation of Vehicular Cyber Attacks: An Application of the Meta Attack Language. In
Proceedings of the 5th International Conference on Information Systems Security and Pri-
vacy, pages 175–182. SCITEPRESS - Science and Technology Publications, 2019.

[17] D. Mathew, S. Hacks, and H. Lichter. Developing a Semantic Mapping betwen TOGAF
and BSI-IT-Grundschutz. In P. Drews, B. Funk, P. Niemeyer, and L. Xie, editors, Multi-
konferenz Wirtschaftsinformatik (MKWI) 2018, volume 5, pages 1971–1982, 2018.

[18] N. Rajashekar, S. Hacks, and N. Silva. A Performance Comparison of Graph Analytic Met-
hods for Supporting Enterprise Architecture Model Maintenance. In Practice of Enterprise
Modelling 2019 Forum (to be published). Springer, 2019.

[19] F. Timm, S. Hacks, F. Thiede, and D. Hintzpeter. Towards a Quality Framework for En-
terprise Architecture Models. In H. Lichter, T. Anwar, and T. Sunetnanta, editors, Procee-
dings of the 5th International Workshop on Quantitative Approaches to Software Quality
(QuASoQ 2017) co-located with APSEC 2017, pages 10–17. CEUR-WS.org, 2017.

List of Figures

1.2. Global Organization Structure of an Airport Departure System. 8
1.3. An EA Model Representing the Business Layer of the Immigration Process at

an Airport. 9
1.4. An EA Model Representing the Application Layer of the Immigration Process

at an Airport. 10
1.5. An EA Model Representing the Technology Layer of the Immigration Process

at an Airport. 11
1.6. Design Science Research. 12

3.1. EA’s Different Groups of Stakeholder. 24

4.1. Proposed Taxonomy. 33
4.2. Number of Studies Per Scope Category. 39
4.3. Percentage of Studies on Each Modeling Language. 39
4.4. Number of Studies Per Concern Category. 40
4.5. Number of Studies Per Analysis Techniques Category. 40

5.1. Dependencies Between Different Projects Elaborating on the EA model. 46
5.2. BPMN Model of the EA Model Roundtrip Process. 49

6.1. EA Model Maintenance Deployment Pipeline. 56
6.2. Sub-Task Prepare EA Model Data. 57
6.3. Sub-Task Check EA Model Quality. 57
6.4. Sub-Task Evolve EA Model. 57
6.5. Sub-Task Stakeholders Approve EA Model Changes. 57
6.6. Sub-Task Update Global EA Model. 58

7.1. P2AMF Example Class Diagram. 67
7.2. Possible Evolution Scenarios of an EA Model. 69
7.3. Merging the Origin EA Model with Two Different Scenarios. 70
7.4. Evolution of an EA Model M over Time. 71

8.1. The EAQF Assessment Process. 80

9.1. Different EA Models Example. 92
9.2. Simplified Scenario of the State of the Repository Formed from the Models Des-

cribed in Figure 9.1. 92
9.3. Model Containing Redundant Components. 93

170 List of Figures

9.4. Simplified Scenario of the State of the Repository Formed by Adding the Model
in Figure 9.3 to the Repository in the State as in Figure 9.2. 94

9.5. Architecture of Our Solution Calculating a Candidate Set of Duplicates. 99
9.6. Comparison of all Similarity Models. 101
9.7. EA Models Representing Two Simple Instances of an Airport Departure System

to Illustrate Syntactic Similarity. 104
9.8. Two Simple Instances Illustrating Structural Similarity. 106

10.1. Simple EA Model, Which Serves as Input for the Optimization. 114
10.2. Example Enterprise Architecture. 115
10.4. Visualization of SR

ul2,cj
. 119

10.5. Solution With Respect to a Minimal Coupling. 120
10.6. Solution With Respect to Minimal Lower Layer Element Amount. 121
10.7. Solution With Respect to Minimal Lower Layer Element Costs. 121
10.9. Execution Time Consumption. 122

11.2. Configuration of our Evaluation According to Cleven et al. [44]. 131
11.3. Expected Dependencies Between Quality Criteria. 132
11.4. A Federated Approach to EA Model Maintenance [63]. 135
11.5. Process Patterns for EA Management [155]. 136
11.6. An EA Model Evolution [84]. 137

A.1. EA’s Different Groups of Stakeholder. 178
A.2. Research Design. 179
A.4. Work-flow Framework to compare different ML algorithms. 185

Listings

7.1. P2AMF Expression Describing Figure 7.1. 67
7.2. Querying for EA entities at t = 1 with existence ≥ 0.5. 72
7.3. Querying for EA Entities at t = 1 With Most Probable Scenario. 73

List of Tables

1.1. Contribution to Pre-Published Works. 7

3.2. Stakeholder Concerns on EA. 24

6.7. Mapping From EA Model Roundtrip Process to the EA Model Maintenance
Deployment Pipeline. 59

6.8. Implemented Microservices Within JARVIS. 61
6.9. Exemplary test cases. 62

8.2. EA Quality Principles and Their Related Quality Attributes. 81
8.3. Quality Attributes Addressing the EA Model’s Purpose. 82
8.4. Quality Attributes Addressing EA Models. 82
8.4. Quality Attributes Addressing the Whole EA Model 83
8.5. Quality Attributes Addressing EA Model Views. 84
8.6. Results of Assessing the EA Model’s Purpose. 87
8.7. Quality Attributes Addressing EA Models. 87
8.7. Quality Attributes Addressing the Whole EA Model 88
8.8. Quality Attributes Addressing EA Model Views. 89

9.9. Term Document Matrix. 108
9.10. LSA Semantic Space. 108
9.11. Modularity Evaluation Result for Case 1. 110
9.12. Modularity Evaluation Result for Case 2. 111

10.3. Suggested Mapping for ArchiMate Element Types to Proposed Sets. 116
10.8. To Lower Layer Elements Assigned Costs. 121
10.10.Properties of Lower Layer Elements. 124

11.1. Applied Evaluation Methods. 130
11.7. Descriptive Analysis of the Given Ratings. 138

A.3. Results by engine for the two time intervals of our SLR. 180

Part VI.

Appendix

Appendix A.

Research Method Details

A.1. Concerns of EA Stakeholders – Creation Process

To come to the EA stakeholder concerns, presented in Section 3, we follow a two-step process,
starting with the data collection, followed by a scheme-guided classification for presenting and
discussing the data. The information processed in this work is collected within the environment
already presented in Section 1.4.1.

A.1.1. Data Collection

A single case fits our purpose of gaining a first, in-depth reflection of hierarchical differences
of different stakeholder concerns in a real life scenario [247]. A case study is further suitable
to shed light on the phenomenon of interest from different perspectives [247], which fitted our
research objective of tackling stakeholders from different hierarchical levels with diverse con-
cerns (Figure A.1). Following Patton [176], we decided to conduct our case study by a series of
open-ended interviews, using a fixed set of questions for all interviewees. Choosing this met-
hod over a fixed set of questions thereby contributed to a high degree of comparability of our
respondents’ answers.

In line with our research objectives, interview questions were focused on EA deliverables as
well as stakeholder concerns on EA. In total, 36 questions were developed. In order to guide
our participants structured through the interviews, the developed questions were assigned into
seven sequential blocks of questions (i.e., introduction, perception, points of contact, strategic
role, architectures, policies, and solution architectures).

The interviews lasted up to 60 minutes. In total, 38 stakeholders participated in the interviews.
The chosen stakeholders represented different hierarchical levels (see Figure A.1): Operational
management (e.g., group leaders, solution architects), middle management (e.g., division lea-
ders, project leads), and top management (i.e. management board). The operational manage-
ment was represented by 18 interviewees, the middle management by 15 interviewees, and the
top management by five interviewees.

All interviews were recorded and transcribed. Finally, the transcripts were synthesized into
a comprehensive summary of 1,042 stakeholder concerns for further classification (see scheme-
guided classification).

178 Appendix A. Research Method Details

Figure A.1.: EA’s Different Groups of Stakeholder.

A.1.2. Scheme-guided classification

In order to synthesize and present the collected 1,042 stakeholder concerns, we used a scheme-
guided classification. Following the two steps by Miles and Huberman [150] as well as Eisen-
hardt [59], two of the three involved researchers accounted responsible for the early analysis and
coding.

Early analysis At the outset, the consolidated transcript was screened, encompassing 1,042
synthesized statements of stakeholder concerns. These statements were studied for the identi-
fication of common characteristics: Statements referring to the same concern —or to similar
characteristics of one and the same concern— were assigned to one dimension. Finally, the
early analysis resulted in five dimensions of stakeholder concerns (Table 3.2). Consistent with
our research objectives, these two dimensions differentiate EA deliverables and organizational
anchoring.

Coding Counting toward the most comprehensive and widest implemented EA approaches
[223], we applied TOGAF for developing the terminology of dimensions and for facilitating
these dimensions with illustrative characteristics (Table 3.2). The first dimension of stakeholder
concerns gave particular rise to the differences among EA deliverables:

Type [223]. Type refers to EA artefacts, being contractually specified and formally revie-
wed. In line with TOGAF, we differentiated two main groups of deliverables that interviewees
reported, namely, architectures (e.g., as-is architectures, business domain model, infrastructure
blueprint) and policies (e.g., principles, documentation rules, decision boards, standards).

The second dimension introduces quality to EA deliverables. Following TOGAF [223], three
quality criteria were added to consolidate the respondents’ concerns: Actuality, stability, and
simplicity. While EA needs to deliver in quality to a wide range of diverse stakeholders, deliver-
ables are required to maintain a certain degree of abstraction [223], which represents the third
dimension of the classification scheme. More general, we differentiate high and low levels of
abstraction. The fourth dimensions, context, describes the environmental setting and specifici-
ties, in which EA operates [223]. Context spans the set of expectations toward and acceptances
of the EA function, which prevail in the organizational environment, as well as the structural

A.2. A Taxonomy of EA Analysis Research – SLR 179

Figure A.2.: Research Design.

arrangement of organizational units. This includes, among others, the sufficient staffing of ar-
chitecture relevant tasks as well as an organizational culture centered on architectural policies.
Finally, transparency accounts as fifth dimension of the classification scheme [223], focusing on
“the perceived quality of intentionally shared information” in the context of architectural gui-
dance [203]. Transparency applies to EA deliverables as well as the organizational anchoring of
the EA function.

Classification scheme Our final classifications scheme is comprised of five major dimen-
sions and twelve facilitating characteristics (Table 3.2).

A.2. A Taxonomy of EA Analysis Research – SLR

Within this section, we like to present the details of the SLR grounding the taxonomy in Section
4. This is a qualitative and descriptive research split up into four steps. First, we apply the SLR
method according to Kitchenham [114] to gather a set of papers related to EA analysis research
(Step 1 in Figure A.2). Second, we perform a data categorization [45] to end up with a taxonomy
answering the question: “How to classify EA analysis research according to its analysis concerns
and modeling languages?” (Step 2 in Figure A.2). We gathered a second dataset with papers
published between 2016 and September 2018 (Step 3 in Figure A.2). Finally, we apply the
taxonomy created in Step 2 in the evaluation dataset (from Step 3) to evaluate and improve the
taxonomy. Our research design is depicted in Figure A.2. The SLR steps are detailed in the next
sections.

Research Query The keyword design was intentionally generic as it aimed for wide co-
verage of publications in the EA analysis field. The final string combined the terms related to
EA and its subsets, as used in the work of [210]; and terms related to “analysis” such as goals,
metrics, and evaluation, as listed by [18]. Thus, our final string was:

180 Appendix A. Research Method Details

(“Enterprise architecture” OR “business architecture” OR “process architecture” OR
“information systems architecture” OR “IT architecture” OR “IT landscape” OR “information

architecture” OR “data architecture” OR “application architecture” OR “application
landscape” OR “integration architecture” OR “technology architecture” OR “infrastructure

architecture”) AND (Goals OR concerns OR methods OR procedures OR approaches OR
analysis OR evaluate* OR assess* OR indicator OR method OR measur* OR metric)

Inclusion and Exclusion Criteria The inclusion criteria consisted of papers containing
techniques, methods or any initiative to evaluate EA, e.g., papers which use EA as input for ta-
king decision or papers that analyze EA itself, its changes and evolution. Papers in any language
but English, related to product architecture analysis or internal architecture of software, contai-
ning only modeling approaches or that do not analyze EA itself but instead they describe the
EA as a whole organizational function to an organizational variable (e.g., organizational perfor-
mance) were not included. Literature reviews about EA (secondary studies) and papers dealing
with the discussion of analysis approaches, but not performing any, were also excluded from the
study.

Used Engines We selected the main engines/databases accessed in the information system
community as our data-sources for primary studies: Scopus, IEEE, ScienceDirect, ISI Web of
knowledge and AIS electronic library. Duplicates were removed. Table A.3 presents the results
returned by each engine.

Table A.3.: Results by engine for the two time intervals of our SLR.
Engine Time interval 1 Time interval 2

IEEE 1,762 358
ScienceDirect 832 623

Scopus 3439 949
AISEL 25 0

ISI 1,162 no access
Total (duplicates removed) 5174 1076

Screening Phases The SLR was performed considering two intervals. The first one (Step
1 of our research design) covers papers published until 2015. Then, using the data extracted
from those papers, we applied the data categorization to derive our taxonomy’s constructs. The
second interval (related to Step 3 of our research design) encompasses papers published from
2015 to September 2018.

Considering the previous inclusion and exclusion criteria, our screening process was divided
into three rounds for each one of the two-time intervals. For the first interval, during our first
round, we read 7,220 abstracts and titles of primary studies returned by the engines. In the
next round, the reading focus was on the introduction and conclusion sections of 803 remaining
papers. Finally, the 183 resulted papers were completely read, forming a set of 120 final papers.

A.3. Integrated Enterprise Architecture Roundtrip – DSR 181

For the second interval (2016 to September 2018), we performed the same previous screening
strategy: the first round had 1,076 titles and abstracts to be read, the second had 168 introductions
and conclusions, 65 full paper readings in the third and 46 final papers as final dataset. We took
the papers from this second set to validate the produced taxonomy.

Data Categorization We screened the 120 papers from the first data-set for the identification
of common dimensions related to the EA analysis. Considering our research goals, this ended
up in the four dimensions: EA Scope, Analysis Technique, Analysis Concern, and Modeling
Language.

To bring the coding into practice, we follow an inductive approach of Cruzes and Dyba [45].
We reviewed the data line by line in detail and as a value becomes apparent, a code is assigned.
To ascertain whether a code is appropriately assigned, we compare text segments to segments
that have been previously assigned the same code and decide whether they reflect the same value.
This leads to continuous refinement of the dimensions of existing codes and identification of new
ones [45]. This process does not necessarily take a linear order rather an iterative and dynamic
one. In the next section, we present the proposed taxonomy.

A.3. Integrated Enterprise Architecture Roundtrip – DSR

Following, we like to give a short overview of the DSR process applied in Section 5.

Problem Identification and Motivation To keep EA models up-to-date is a well-known
issue in research (e.g., [62, 63, 155, 112, 113, 228]). However, none of those existing approa-
ches tries to tackle the problem from an holistic point of view. Therefore, we elaborate on the
technical issues of this problem (cf. Section 5.1). The problem itself occurs first time at the EA
unit of one of our cooperation partners described in Section 1.4.1). Projects document which
changes they plan to apply on the EA and the EA unit desires to integrate those changes into the
central EA model.

Define Objectives The objectives of the artefact to be created get specified by the research
question in Section 5. Especially, we focus on technical facets of this research question and
neglect socio-technical problems as exemplary elaborated by Aier et al. [5, 7, 8, 9]. As we
understand the sketched process as framework to guide our research, the research question gets
detailed in the further parts of this work.

Design and Development We developed a process depicted in Section 5.2. This process
is already a result of several iterations applying the DSR methodology. The process was pre-
sented and discussed in several different environments, e.g., at a doctoral consortium [80], at
a workshop on EA [84], internally at our research group, and externally with our cooperation
partner.

182 Appendix A. Research Method Details

Demonstration The demonstratoin of our process is put into practice by applying it to a
single case study (cf. Section 6). Single case studies gain a first, in-depth reflection on means
in real life scenarios [247]. Moreover, single case studies are a feasible instrument to show
applicability.

Evaluation The proposed architecture roundtrip process itself is evaluated in Section 11. We
follow the approach presented by Venable et al. [234], classify our evaluation along Cleven et al.
[44], and conduct a quantitative study to compare different EA model maintenance processes.

Communication The communication step of DSR is carried out by publishing parts of the
work and the work itself. Based on the results of our work, i.e., the architecture roundtrip
process, future research can elaborate on different result’s facets. First, the whole process can
be implemented in different organizations to evaluate and improve the process. Second, single
steps of the process deserve more attentiveness, since existing approaches need to be adapted
to the domain of EA or existing research seems to be still scarce. Last, the influence of the
process on the organization and its employees shall be investigated as well. Therefore, possible
drawbacks of an alignment of projects to a roundtrip could be interesting. For example, it could
be explored if projects get slowed down by the alignment or the additional communication effort
reduces project’s agility.

A.4. A Continuous Delivery Pipeline for EA Model Evolution
– DSR

Following, we like to give a short overview of the DSR process applied in Section 6.

Identify Problem & Motivate As previous research has shown, reasons to change the EA
model are manifold [62] and raise many different challenges [92]. One of them is to handle dif-
ferent sources and how to design a suitable process for EA model maintenance. We believe that
the principle of continuous delivery offer efficient means to support the EA model maintenance
process.

Define Objectives Based on our research problem stated before, we identified mainly three
sources for objectives: First, Farwick et al. [61] identified several requirements on automated
EA model maintenance which should be incorporated into a feasible solution. Second, Fischer et
al. [63] describe a EA model maintenance process and related roles which needs to be inherited
into our resulting artifact. Last, we presented a process for a distributed EA model evolution
[84] describing different tasks and their sequence which should serve as conceptual framework
for our pipeline.

Design & Development To realize an artifact in accordance to the beforehand identified
objectives, first, we align the input of the three objectives’ sources. Then, we design an abstract
process model using BPMN [239] and implement it using JARVIS [217]. Our derived integrated

A.5. Assessing EA Model Quality – SLR 183

EA maintenance process consists of activities, which will be implemented as microservices fol-
lowing JARVIS’ architectural framework. In addition to the activities defined in our objectives,
we include additional steps inspired by principles found in the continuous delivery domain.

Demonstration The demonstration is put into practice by applying the proposed means to a
single fictitious case study. Single case studies gain a first, in-depth reflection on means in real
life scenarios [247]. Moreover, single case studies are a feasible instrument to show applicability.
Our case study is based on an EA model illustrating an airport.

Evaluation We identified 54 equivalence classes of possible actions which should be consi-
dered in our pipeline. Therefore, we created for each class an exemplary test case as a represen-
tative for this class [38, p. 623].

Communication The communication is done with this work itself and its presentation on a
conference.

A.5. Assessing EA Model Quality – SLR

Following, we present the details on our conducted SLR, which we utilized to develop ourEAQF
presented in 8. For the development of means to solve our research question, we conducted a
SLR by combining the approaches by Kitchenham et al. [114] and Webster and Watson [237].
After defining the SLR scope, which is in line with our research question, we searched for
the combination of the terms “enterprise architecture”, “model” and “quality” in abstracts of
articles on the Scopus1 and AISeL2 databases from 2007 to the present. After analysing the
titles and abstracts of the 209 results, we gathered a first pool of four directly relevant articles,
that discussed the quality of EA models [122, 48, 111, 136]. In a next step we searched back-
and forward [165] with this basis and completed the literature base with further related work
known to us [129, 27].

To demonstrate and evaluate our produced artifact, we apply it to a single case study. Our case
study does not ensure that our quality attributes are sound and complete. Consequently, future
feedback loops have to take this into account.

A.6. Avoiding Redundancies in EA Models – DSR

Following, we like to give a short overview of the DSR process applied in Section 9.1.

Identify Problem & Motivate We have identified the issue that due to different reasons
enterprise architects may introduce new components into the EA repository, which already have
a representation within the repository. This leads to an unintended pollution of the repository
and might cause misled decisions based on faulty reports.

1https://www.scopus.com
2http://aisel.aisnet.org

https://www.scopus.com
http://aisel.aisnet.org

184 Appendix A. Research Method Details

Objectives and Solution The objective was to develop a solution that will identify all new
components, evaluate the model against the repository, and return a list of components already
stored in the repository that can be reused in the given project. The final decision whether the
suggested components will be incorporated or not is left to the architect. This ensures that the
architecture model retains its correctness.

Design and Development The solution we proposed was a machine learning model. The
data on our disposal was unlabeled – we did not have any information on what the correct
substitution for the specific component should be. Therefore, we focused on the unsupervised
approaches, combining them into one suitable model.

Demonstration and Evaluation We tested our solution with a simulated repository and
architecture models where we knew in advance the correct substitutions for every newly intro-
duced component. This allowed us to evaluate a labeled data so that we could see how correct
the model recommends the components.

Communication The solution was distributed to the architects as a software service. It con-
sisted of two parts: a server-side module where we performed the evaluation, and a client-side
module which allowed architects to select the model that they wanted to evaluate.

A.7. A Performance Comparison of Graph Analytic Methods
– ML Evaluation

Following, we present the details on our conducted comparison of different algorithms presented
in 9.2. Motivated by the life-cycle model for ML frameworks provided by [199], we propose
a general work-flow framework (cf. Figure A.4) to analyze EA models by comparing different
graph analytic and ML algorithms and then selecting the best-performing model based on suita-
ble performance metrics. The main idea is to improve the performance of a model by comparing
different algorithms and metrics.

1. Raw data: XML schema is a widely used file exchange format in the context of modeling
EA. Any architecture models can be easily expressed in XML, which is mainly used for
storage and communication purposes. Thus, we first acquire our EA data in XML format.
For further analysis, XML data is converted to data table format with three different files
consisting of elements, relations, and properties tables. All the elements are identified by
unique identifiers so that a relation will reference an element in the other files.

2. Data preprocessing: This step includes transforming raw data into a relevant format and
cleaning the data set. Since EA models represent components and relationship between
the components, this can be easily depicted as a graph-like structure where components
represent nodes, and the relationship between the components represents edges in the
graph. Thus, raw data obtained from elements and relations files will be parsed to obtain
graph data object using igraph library [46].

A.7. A Performance Comparison of Graph Analytic Methods – ML Evaluation 185

Raw
Data

Data
Preprocessing

Feature
Engineering Data Modelling

Model Evaluation
& Performance

Measure

Performance
Improvement

Learning
Algorithms

Figure A.4.: Work-flow Framework to compare different ML algorithms.

Data normalization is necessary to standardize the range of independent variables or fea-
tures of data. Also, isolated components may tend to increase the size of the repository.
This should be inspected and removed.

3. Feature engineering: The next step is to extract or compute relevant graph feature statis-
tics. The features extracted from data will directly influence the predictive models and the
results which we can obtain. Extracting a right feature set may boost the performance of
a model.

4. Data modeling: After extracting the relevant data set and feature set, the next step is to
perform the core ML task. Making use of supervised/unsupervised learning algorithms,
we can evaluate similarity and investigate clusters/communities formed in order to analyse
EA models in different context.

5. Model evaluation & Performance measure: Model evaluation mainly helps to find the
best performing model based on suitable performance metrics that represent the data and
how well the chosen model will work in the future.

6. Performance improvement: Iterating over different graph analytic or ML algorithms
and feature set can result in obtaining optimized results which improve the overall perfor-
mance of the algorithms under inspection.

Appendix B.

Abbreviations

ADM Architecture Development Method

AHP Analytic Hierarchy Process

ALM Application Lifecycle Management

ATD Architecture Theory Diagram

AWP Anwendungssystemportfolio

BI Business Intelligence

BIM Business-IT-Management

BITAM Business-IT-Alignment

BMM Business Motivation Model

BPMN Business Process Model and Notation

BSI Bundesamt für Sicherheit in der Informationstechnik

CAN Controller Area Network

CD Continuous Delivery

CEO Chief Executive Officer

CIO Chief Information Officer

CMDB Configuration Management Database

CSV Comma Seperated Values

DoDAF Department of Defense Architecture Framework

DSL Domain Specific Language

DSR Design Science Research

EA Enterprise Architecture

188 Appendix B. Abbreviations

EAF Enterprise Architecture Framework

EAQF EA Quality Framework

ECU Electronic Control Unit

EISA Enterprise Information Security Architecture

ENISA European Network and Information Security Agency

ESB Enterprise Service Bus

FEAF Federal Enterprise Architecture Framework

GPS Global Positioning System

HRM Human Resource Management

IDE Integrated Development Environment

IDPS Intrusion Detection and Prevention System

IoT Internet of Things

IS Information System

ISM Information Security Management

ISMS Information Security Management System

IT Information Technology

ITIL IT Infrastructure Library

ILM Infrastructure Lifecycle Management

JSON JavaScript Object Notation

KPI Key Performance Indicator

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LIN Local Interconnect Network

LIP Linear Integer Program

LSA Latent Semantic Analysis

MAL Meta Attack Language

ML Machine Learning

189

OCL Object Constraint Language

OWL-DL Web Ontology Language - Description Logic

P2AMF Predictive, Probabilistic Architecture Modeling Framework

PBX Private Branch Exchange

PM Project Management

ROI Return on Investment

SCM Software Configuration Management

SD Standard Deviation

SE Software Engineering

SLR Systematic Literature Review

SOA Service Oriented Architecture

SVD Singular Value Decomposition

TF-IDF Term Frequency - Inverse Document Frequency

TOGAF The Open Group Architecture Framework

TSP Traveling Salesperson Problem

UAT User Acceptance Test

UML Unified Modeling Language

XMI XML Metadata Interchange

XML Extensible Markup Language

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable,
yet abstract and multi-view modeling language for modeling, designing and programming still allows to
use an agile development process.” Modeling will be used in development projects much more, if the
benefits become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for
example, we concentrate on the integration of models and ordinary programming code. In [Rum12] and
[Rum16], the UML/P, a variant of the UML especially designed for programming, refactoring and evolu-
tion, is defined. The language workbench MontiCore [GKR+06, GKR+08] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and evolve models
[LRSS10], a precise definition for model composition as well as model languages [HKR+09] and refac-
toring in various modeling and programming languages [PR03]. In [FHR08] we describe a set of general
requirements for model quality. Finally [KRV06] discusses the additional roles and activities necessary
in a DSL-based software development project. In [CEG+14] we discuss how to improve reliability of
adaprivity through models at runtime, which will allow developers to delay design decisions to runtime
adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound derivate
of the UML designed for product and test code generation. [Sch12] describes a flexible generator for
the UML/P based on the MontiCore language workbench [KRV10, GKR+06, GKR+08]. In [KRV06],
we discuss additional roles necessary in a model-based software development project. In [GKRS06] we
discuss mechanisms to keep generated and handwritten code separated. In [Wei12] demonstrate how to
systematically derive a transformation language in concrete syntax. To understand the implications of
executability for UML, we discuss needs and advantages of executable modeling with UML in agile
projects in [Rum04], how to apply UML for testing in [Rum03] and the advantages and perils of using
modeling languages for programming in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99] many
of our contributions build on the UML/P variant, which is described in the two books [Rum16] and
[Rum12] implemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We
discuss formal semantics for UML [BHP+98] and describe UML semantics using the “System Model”
[BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied
to define class diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when
checking variants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of
both kinds of diagrams [MRR11e]. We also apply these concepts to activity diagrams [MRR11b] which
allows us to check for semantic differences of activity diagrams [MRR11a]. The basic semantics for ADs
and their semantic variation points is given in [GRR10]. We also discuss how to ensure and identify
model quality [FHR08], how models, views and the system under development correlate to each other
[BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02]. The question how
to adapt and extend the UML is discussed in [PFR02] describing product line annotations for UML and
more general discussions and insights on how to use meta-modeling for defining and adapting the UML
are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08] allows
the specification of an integrated abstract and concrete syntax format [KRV07b] for easy development.
New languages and tools can be defined in modular forms [KRV08, GKR+07, Völ11] and can, thus, easily
be reused. [Wei12] presents a tool that allows to create transformation rules tailored to an underlying DSL.
Variability in DSL definitions has been examined in [GR11]. A successful application has been carried
out in the Air Traffic Management domain [ZPK+11]. Based on the concepts described above, meta
modeling, model analyses and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL
quality [FHR08], instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and
Eclipse-based tooling for DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language com-
ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer a
language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the MontiCore langua-
ge workbench provides techniques for an integrated definition of languages [KRV07b, Kra10, KRV10].
In [SRVK10] we discuss the possibilities and the challenges using metamodels for language definition.
Modular composition, however, is a core concept to reuse language components like in MontiCore for
the frontend [Völ11, KRV08] and the backend [RRRW15]]. Language derivation is to our believe a pro-
mising technique to develop new languages for a specific purpose that rely on existing basic languages.
How to automatically derive such a transformation language using concrete syntax of the base language
is described in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta languages
[HHK+15a, HHK+13], where a delta language is derived from a base language to be able to construc-
tively describe differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We
use streams, statemachines and components [BR07] as well as expressive forms of composition and re-
finement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc
[HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was extended to describe
variability [HRR+11] using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. [GHK+07]
and [GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] ex-
tends it to model variants. [MRR14] provides a precise technique to verify consistency of architectural
views [Rin14, MRR13] against a complete architecture in order to increase reusability. Co-evolution of
architecture is discussed in [MMR10] and a modeling technique to describe dynamic architectures is
shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-
chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-
mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore
[KRV10] that can even be used to develop modeling tools in a compositional form. A set of DSL design

guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the com-
position of context conditions respectively the underlying infrastructure of the symbol table. Modular
editor generation is discussed in [KRV07a]. [RRRW15] applies compositionality to Robotics control.
[CBCR15] (published in [CCF+15]) summarizes our approach to composition and remaining challenges
in form of a conceptual model of the “globalized” use of DSLs. As a new form of decomposition of mo-
del information we have developed the concept of tagging languages in [GLRR15]. It allows to describe
additional information for model elements in separated documents, facilitates reuse, and allows to type
tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detailed
versions that are applied to class diagrams in [CGR08]. To better understand the effect of an evolved
design, detection of semantic differencing as opposed to pure syntactical differences is needed [MRR10].
[MRR11a, MRR11b] encode a part of the semantics to handle semantic differences of activity diagrams
and [MRR11e] compares class and object diagrams with regard to their semantics. In [BR07], a simpli-
fied mathematical model for distributed systems based on black-box behaviors of components is defined.
Meta-modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages
for the description of an exemplary object interaction, today called sequence diagram. [BGH+98] discus-
ses the relationships between a system, a view and a complete model in the context of the UML. [GR11]
and [CGR09] discuss general requirements for a framework to describe semantic and syntactic variations
of a modeling language. We apply these on class and object diagrams in [MRR11e] as well as activi-
ty diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test case generation,
refactoring and evolution techniques. [LRSS10] discusses evolution and related issues in greater detail.

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evoluti-
on [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], trans-
lating models from one language into another [MRR11c, Rum12] and systematic model transformati-
on language development [Wei12]. [Rum04] describes how comprehensible sets of such transformati-
ons support software development and maintenance [LRSS10], technologies for evolving models wi-
thin a language and across languages, and mapping architecture descriptions to their implementation
[MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is
explained in [PR99]. Refactorings of models are important for model driven engineering as discussed in
[PR01, PR03, Rum12]. Translation between languages, e.g., from class diagrams into Alloy [MRR11c]
allows for comparing class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer deve-
lops several products with many similarities but also many variations. Variants are managed in a Software
Product Line (SPL) that captures product commonalities as well as differences. Feature diagrams describe

variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150% models. Redu-
cing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom up technique
starting with a small, but complete base variant. Features are additive, but also can modify the core. A
set of commonly applicable deltas configures a system variant. We discuss the application of this tech-
nique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for using them for software product
line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systematically derive delta
languages. We also apply variability to modeling languages in order to describe syntactic and semantic
variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to
define variants of modeling languages [CGR09] and applied this as a semantic language refinement on
Statecharts in [GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-
tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-
mous driving [BR12a] to processes and tools to improve the development as well as the product itself
[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest for the European airspace [ZPK+11]. A component and connector architecture de-
scription language suitable for the specific challenges in robotics is discussed in [RRW13b, RRW14].
Monitoring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12,
FPPR12, KLPR12].

State Based Modeling (Automata)
Today, many computer science theories are based on statemachines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using statemachines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) under-
standing how to model object-oriented and distributed software using statemachines resp. Statecharts
[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96]
and composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In
[Rum96] constructive transformation rules for refining automata behavior are given and proven correct.
This theory is applied to features in [KPR97]. Statemachines are embedded in the composition and beha-
vioral specification concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton
[RRW13a, RRW14] as well as in building management systems [FLP+11].

Robotics
Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usually
leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible, which
hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW13a] ex-
tends ADL MontiArc and integrates various implemented behavior modeling languages using Monti-
Core [RRW13b, RRW14, RRRW15] that perfectly fit Robotic architectural modelling. The LightRocks
[THR+13] framework allows robotics experts and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance
Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-
riants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described
in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-
sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. [RSW+15] describes an approach to use model checking techniques to identify behavi-
oral differences of Simulink models. Quality assurance, especially of safety-related functions, is a highly
important task. In the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for
intelligent, sensor-based functions through fully-automatic simulation [BBR07]. This technique allows a
dramatic speedup in development and evolution of autonomous car functionality, and thus enables us to
develop software in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in
development and evolution on a more general level by considering any kind of critical system that relies
on architectural descriptions. As tooling infrastructure, the SSElab storage, versioning and management
services [HKR12] are essential for many projects.

Energy Management
In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation approach to compare sensor data
can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality and new application domains. It pro-
mises to enable new business models, to lower the barrier for web-based innovations and to increase the
efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-Physical
Systems and their privacy [HHK+14, HHK+15b], Big Data, App and Service Ecosystems bring atten-
tion to aspects like responsiveness, privacy and open platforms. Regardless of the application domain,
developers of such systems are in need for robust methods and efficient, easy-to-use languages and tools
[KRS12]. We tackle these challenges by perusing a model-based, generative approach [NPR13]. The core
of this approach are different modeling languages that describe different aspects of a cloud-based system
in a concise and technology-agnostic way. Software architecture and infrastructure models describe the
system and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool
demonstrators and our own development platforms. New services, e.g., collecting data from temperature,
cars etc. can now easily be developed.

References

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems Engi-
neering Process and Tools for the Development of Autonomous Driving Intelligence. Jour-
nal of Aerospace Computing, Information, and Communication (JACIC), 4(12):1158–1174,
2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Conside-
rations and Rationale for a UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 43–61. John Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Definition
of the UML System Model. In K. Lano, editor, UML 2 Semantics and Applications, pages
63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model
for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU Munich, Germany,
February 2007.

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model
for UML. Part 3: The State Machine Model. Technical Report TUM-I0711, TU Munich,
Germany, February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard Rum-
pe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Object Interaction
Descriptions. In Object-oriented Behavioral Semantics Workshop (OOPSLA’97), Technical
Report TUM-I9737, Germany, 1997. TU Munich.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,
Views and Models of UML. In Proceedings of the Unified Modeling Language, Technical
Aspects and Applications, pages 93–109. Physica Verlag, Heidelberg, Germany, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies. Soft-
ware and System Modeling Based on a Unified Formal Semantics. In Workshop on Require-
ments Targeting Software and Systems Engineering (RTSE’97), LNCS 1526, pages 43–68.
Springer, 1998.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als Grundlage
der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban
Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Automotive Software
Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software. In
C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge, pages
243–271. Springer, Germany, 2012.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Conceptu-
al Model of the Globalization for Domain-Specific Languages. In Globalizing Domain-
Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and Bern-
hard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS 9400. Springer,
2015.

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi Müller,
Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe, Daniel Schneider,
Frank Trollmann, and Norha Villegas. Using Models at Runtime to Address Assurance
for Self-Adaptive Systems. In Models@run.time, LNCS 8378, pages 101–136. Springer,
Germany, 2014.

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics
of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Germany, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within Mode-
ling Language Definitions. In Conference on Model Driven Engineering Languages and
Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling Semantics
of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems, pages 45–60. Kluver Academic Publisher, 1999.

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a formal
modeling notation. Computer Standards & Interfaces, 19(7):325–334, November 1998.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für
Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober 2008.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.
State-based Modeling of Buildings and Facilities. In Enhanced Building Operations Con-
ference (ICEBO’11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy Na-
vigator - A Web-Platform for Performance Design and Management. In Energy Efficiency
in Commercial Buildings Conference(IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard Rumpe.
View-based Modeling of Function Nets. In Object-oriented Modelling of Embedded Real-
Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and
Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features, Vari-
ants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded Real Time
Software, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling Variants
of Automotive Systems using Views. In Modellbasierte Entwicklung von eingebetteten
Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model
with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspezifischer Spra-
chen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braunschweig, August 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
Textbased Modeling. In 4th International Workshop on Software Language Engineering,
Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
MontiCore: A Framework for the Development of Textual Domain Specific Languages. In
30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, Companion Volume, pages 925–926, 2008.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von
Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung 2006
Conference, LNI 82, Seiten 67–81, 2006.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engineering Tag-
ging Languages for DSLs. In Conference on Model Driven Engineering Languages and
Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical Report
TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop on
Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages 17–32.
Springer, 2011.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Re-
quirements Management and Complexity Costs in Automotive Development Projects:
A Problem Statement. In Requirements Engineering: Foundation for Software Quality
(REFSQ’12), 2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity Dia-
grams with Semantic Variation Points. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’10), LNCS 6394, pages 331–345. Springer, 2010.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard
Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software Product
Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard Rumpe, and
Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Services in the Internet of
Things. In Conference on Future Internet of Things and Cloud (FiCloud’14). IEEE, 2014.

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard
Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of Delta Modeling
Languages. Journal on Software Tools for Technology Transfer (STTT), 17(5):601–626,
October 2015.

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard Rumpe,
and Klaus Wehrle. A comprehensive approach to privacy in the cloud-based Internet of
Things. Future Generation Computer Systems, 56:701–718, 2015.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard Rum-
pe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In Variability
Modelling of Software-intensive Systems Workshop (VaMoS’13), pages 11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völ-
kel. An Algebraic View on the Semantics of Model Composition. In Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA’07), LNCS 4530, pages
99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völ-
kel. Scaling-Up Model-Based-Development for Large Heterogeneous Systems with Com-
positional Modeling. In Conference on Software Engineeering in Research and Practice
(SERP’09), pages 172–176, July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta-
oriented Architectural Variability Using MontiCore. In Software Architecture Conference
(ECSA’11), pages 6:1–6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-Based
Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins Workshop
(TOPI’12), pages 61–66. IEEE, 2012.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of ”Se-
mantics”? IEEE Computer, 37(10):64–72, October 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component In-
terfaces. In Technology of Object-Oriented Languages and Systems (TOOLS 26), pages
58–70. IEEE, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der Linden.
Hierarchical Variability Modeling for Software Architectures. In Software Product Lines
Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,
RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for Soft-
ware Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Ent-
wicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-oriented
Software Product Line Architectures. In Large-Scale Complex IT Systems. Development,
Operation and Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208.
Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung eines
Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel von Steuergerä-
tesoftware. In Software Engineering Conference (SE’12), LNI 198, Seiten 181–192, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically Deriving
Domain-Specific Transformation Languages. In Conference on Model Driven Engineering
Languages and Systems (MODELS’15), pages 136–145. ACM/IEEE, 2015.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In A. Moreira and
S. Demeyer, editors, Object-Oriented Technology, ECOOP’99 Workshop Reader, LNCS
1743, Berlin, 1999. Springer Verlag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-Specific
Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki School of Econo-
mics, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling Cyber-
Physical Systems: Model-Driven Specification of Energy Efficient Buildings. In Modelling
of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM, October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and Refine-
ment with State Transition Diagrams. In Workshop on Feature Interactions in Telecommu-
nications Networks and Distributed Systems, pages 284–297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In
H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoftware.
Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Software Enginee-
ring, Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band 1. Sha-
ker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model
for distributed information processing systems - SysLab system model. In Workshop on
Formal Methods for Open Object-based Distributed Systems, IFIP Advances in Information
and Communication Technology, pages 323–338. Chapmann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing. Springer,
Schweiz, December 2014.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Systems
- eine Herausforderung für die Automatisierungstechnik? In Proceedings of Automation
2012, VDI Berichte 2012, Seiten 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development
using Domain Specific Modelling Languages. In Domain-Specific Modeling Workshop
(DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä University, Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for Com-
positional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07), Technical
Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract and
Concrete Syntax for Textual Languages. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’07), LNCS 4735, pages 286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Development
of Textual Domain Specific Languages. In Conference on Objects, Models, Components,
Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for Com-
positional Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle. Model
Evolution and Management. In Model-Based Engineering of Embedded Real-Time Systems
Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer, 2010.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture Descriptions
of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Semantic Model
Differencing. In Proceedings Int. Workshop on Models and Evolution (ME’10), LNCS
6627, pages 194–203. Springer, 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differencing
for Activity Diagrams. In Conference on Foundations of Software Engineering (ESEC/FSE
’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics for
Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen University,
Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Diagrams Ana-
lysis Using Alloy Revisited. In Conference on Model Driven Engineering Languages and
Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams. In
Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281–305.
Springer, 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable Consis-
tency Analysis for Class and Object Diagrams. In Conference on Model Driven Engineering
Languages and Systems (MODELS’11), LNCS 6981, pages 153–167. Springer, 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component and
Connector Models from Crosscutting Structural Views. In Meyer, B. and Baresi, L. and
Mezini, M., editor, Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’13),
pages 444–454. ACM New York, 2013.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and Connec-
tor Models against Crosscutting Structural Views. In Software Engineering Conference
(ICSE’14), pages 95–105. ACM, 2014.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as Interac-
tive Systems. In Model-Driven Engineering for High Performance and Cloud Computing
Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations with
UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages 188–197.
Springer, 2002.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Behaviour
Modelling with Automata. In Proceedings of the Industrial Benefit of Formal Methods
(FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In Con-
gress on Formal Methods in the Development of Computing System (FM’99), LNCS 1708,
pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Baclavski,
K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa Bay, Florida, USA,
October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In Kilov,
H. and Baclavski, K., editor, Practical Foundations of Business and System Specifications,
pages 281–297. Kluwer Academic Publishers, 2003.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Connector Sys-
tems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker Verlag, 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In B. Harvey
and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages 265–286. Kluwer
Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematisches
Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell. Technischer
Bericht TUM-I9510, TU München, Deutschland, März 1995.

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann. Language
and Code Generator Composition for Model-Driven Engineering of Robotics Component
& Connector Systems. Journal of Software Engineering for Robotics (JOSER), 6(1):33–57,
2015.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Architec-
ture Structure and Behavior Modeling to Implementations of Cyber-Physical Systems. In
Software Engineering Workshopband (SE’13), LNI 215, pages 155–170, 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton: Mo-
deling Architecture and Behavior of Robotic Systems. In Conference on Robotics and
Automation (ICRA’13), pages 10–12. IEEE, 2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and Behavi-
or Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener Informatik-
Berichte, Software Engineering, Band 20. Shaker Verlag, December 2014.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert, and Pe-
ter Manhart. Behavioral Compatibility of Simulink Models for Product Line Maintenance
and Evolution. In Software Product Line Conference (SPLC’15), pages 141–150. ACM,
2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In T. Clark
and J. Warmer, editors, Issues & Trends of Information Technology Management in Con-
temporary Associations, Seattle, pages 697–701. Idea Group Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium on
Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages 380–402.
Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innovations of
Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941, pages 297–309.
Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring,
2te Auflage. Springer Berlin, Juni 2012.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer Interna-
tional, July 2016.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P. Aa-
chener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag, 2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamodelling:
State of the Art and Research Challenges. In Model-Based Engineering of Embedded Real-
Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76. Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-
mann. A New Skill Based Robot Programming Language Using UML/P Statecharts. In
Conference on Robotics and Automation (ICRA’13), pages 461–466. IEEE, 2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener
Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen. Aachener
Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev Chat-
terjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and Filtering for
Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation Days. EUROCON-
TROL, 2011.

