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Abstract

Domain-Specific Modelling Languages (DSMLs) help modellers and domain experts in
various domains such as healthcare, energy, information technology, and so on, in reduc-
ing the gap between the problem space and the solution space by placing models at the
centre of development activities. This shift towards model-driven development (MDD),
where models are introduced at early stages in any software or systems engineering
process and are the primary software engineering artefacts, allows modellers to design
complex, heterogeneous real-world abstractions of their systems. In such complex sys-
tems, concepts from individual domains are often integrated as part of the bigger lan-
guage infrastructure. Specifically in an industrial setting, the methodologies to describe
a systematic engineering process for developing such complex yet modular and reusable
DSMLs that provides a seamless modelling experience to modellers in both the large
scale organisations as well as in small and medium enterprises is still largely neglected.

Accordingly, this thesis is aimed at providing the means to engineer graphical DSMLs
that are specifically focussed on industrial contexts. Based on existing approaches, this
work presents a systematic approach to fostering the engineering of industrial DSMLs
by composing reusable language infrastructure parts without the need for creating com-
pletely new language infrastructure for similar domains every time. These reusable units
of a DSML, termed DSML building blocks, consist of reusable language components that,
entirely or in part, contributes to the technical definition of the language itself. The lan-
guage components compose through different forms of language composition to form
heterogeneous, integrated DSMLs. To foster the interoperability of such common lan-
guage infrastructure parts between modelling environments, a bidirectional exchange
mechanism is detailed in this work. This work further provides guidelines and design
decisions that language engineers should consider for their language infrastructure in
order to elevate the overall experience of modellers. An approach for integrating meth-
ods, techniques, and concepts in terms of guidance and recommendations for modellers
is detailed in this thesis that aims to move away from plain technical views of models
to instead model-aware and dynamic views that are focussed on the current modelling
situation of such modellers.

Overall, this thesis presents approaches to modularly build reusable units of DSMLs
that compose together. The approaches presented in this thesis allows language engineers
to provide a more complete and integrated language infrastructure that is ultimately
aimed at improving the modelling experience of practitioners in the industry.






Kurzfassung

Doménenspezifische Modellierungssprachen (DSMLs) hilft Modellierern und Doménen-
experten in verschiedenen Bereichen wie Gesundheitswesen, Energie, Informationstech-
nologie usw. dabei, die Liicke zwischen dem Problemraum und dem Loésungsraum zu
verringern, indem Modelle in den Mittelpunkt der Entwicklungsaktivitaten gestellt wer-
den. Diese Verlagerung hin zur modellgesteuerten Entwicklung (MDD), bei der Modelle
bereits in frithen Phasen eines Software- oder Systementwicklungsprozesses eingefiihrt
werden und die priméren Artefakte der Softwareentwicklung darstellen, ermoglicht es
den Modellierern, komplexe, heterogene reale Abstraktionen solcher Systeme zu entwer-
fen. In solchen komplexen Systemen werden hiufig Konzepte aus einzelnen Bereichen als
Teil einer groBeren Sprachinfrastruktur integriert. Speziell im industriellen Umfeld ist
die Methodik zur Beschreibung eines systematischen Entwicklungsprozesses fiir solche
komplexen und dennoch modularen und wiederverwendbaren DSMLs, die Modellierern
sowohl in groflen Organisationen als auch in kleinen und mittleren Unternehmen eine
nahtlose Modellierungserfahrung bietet, noch weitgehend vernachléssigt.

Dementsprechend zielt diese Arbeit darauf ab, die Mittel zur Entwicklung grafischer
DSMLs bereitzustellen, die speziell auf industrielle Kontexte ausgerichtet sind. Basierend
auf bestehenden Ansétzen wird in dieser Arbeit ein systematischer Ansatz vorgestellt, der
die Entwicklung industrieller DSMLs fordert, indem wiederverwendbare Sprachinfras-
trukturteile zusammengestellt werden, ohne dass jedes Mal eine komplett neue Sprachin-
frastruktur fiir &hnliche Doménen erstellt werden muss. Diese wiederverwendbaren Ein-
heiten einer DSML, die als DSML-Bausteine bezeichnet werden, bestehen aus wiederver-
wendbaren Sprachkomponenten, die ganz oder teilweise zur technischen Definition der
Sprache selbst beitragen. Die Sprachkomponenten lassen sich durch verschiedene For-
men der Sprachkomposition zu einer heterogenen, integrierten DSMLs zusammensetzen.
Um die Interoperabilitéit solcher gemeinsamen Sprachinfrastrukturteile zwischen Model-
lierungsumgebungen zu férdern, wird in dieser Arbeit ein bidirektionaler Austauschmech-
anismus beschrieben. Diese Arbeit bietet auflerdem Richtlinien und Designentscheidun-
gen, die Sprachingenieure fiir ihre Sprachinfrastruktur in Betracht ziehen sollten, um
die Gesamterfahrung von Modellierern zu verbessern. In dieser Arbeit wird ein Ansatz
zur Integration von Methoden, Techniken, und Konzepten in Form von Leitlinien und
Empfehlungen fiir Modellierer vorgestellt, der darauf abzielt, von einer rein technischen
Sichtweise auf Modelle zu einer modellbewussten und dynamischen Sichtweise iiberzuge-
hen, die die aktuelle Modellierungssituation der Modellierer beriicksichtigt.

Insgesamt werden in dieser Arbeit Ansédtze zum modularen Aufbau wiederverwend-
barer Einheiten von DSMLs vorgestellt, die sich zusammensetzen lassen. Die in dieser
Arbeit vorgestellten Ansétze ermoglichen es Sprachingenieuren, eine vollstéindigere und
integrierte Sprachinfrastruktur bereitzustellen, die letztlich darauf abzielt, die Model-
lierungserfahrung von Praktikern in der Industrie zu verbessern.
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Chapter 1
Introduction

As systems grow more complex, heterogeneous, and interlinked in nature, so do chal-
lenges in the efficient engineering of such systems. Consequently, there exists a substan-
tial conceptual gap [FRO7] in the systems engineering domains between the expertise of
domain experts, such as biologists, chemists, mechanical engineers, medical assistants,
and so on, and the challenges posed by systems engineering. To address these challenges,
advancements have been made in the systems engineering domains to move from tradi-
tional documents such as Microsoft Word or Excel to models, by introducing modelling
at the early, but crucial, stages in the systems engineering processes [Fow10, HMR*19].
Often, software engineers are skilled and knowledgeable in ubiquitous General Purpose
Languages (GPLs) [BGM10], such as Java or C++, which are primarily used for soft-
ware development. On the other hand, modellers or domain experts are rarely software
engineers and often do not model on a daily basis. This presents particular challenges
in modelling systems and their domains [PB20] through such GPLs. As such, GPLs
focus strongly on the technical implementation details, and rarely consider solutions
that directly impact only a particular domain. To this end, model-driven development
(MDD) techniques [Sel03] are deployed to foster the comprehensibility of systems using
models that help practitioners and researchers alike understand complex problems and
their solutions through real-world abstractions.

Domain-Specific Languages (DSLs) aim to reduce the gap in a particular domain by
supporting domain-specific abstractions, that are better used to understand, analyse,
and synthesize systems and their parts [Fow10]. Domain-Specific Modelling Languages
(DSMLs), on the other hand, supports both modellers and domain experts in solving
similar challenges in MDD by providing the necessary language infrastructure needed
to solve a problem in a particular domain through models in the textual, graphical, or
projectional technological spaces. Models, when solely represented as documentation,
are of little value as there should be meaning attached to them and the domains they
represent. Naturally, as DSLs are rather restricted in their syntax, their complexity is
also relatively lower than that of GPLs. Therefore, DSMLs provide the relevant concepts
for realising a technical language targeted for a specific domain and modellers do not
need to worry about building their own technical terms. Although DSMLs in research
and industry are based on similar engineering foundations, the focus of this thesis is
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primarily in the industrial engineering of DSMLs [FRR09], specifically in the graphical
space. In a comprehensive book detailing domain-specific modelling, [KT08| describe
the overall development and design of models using DSMLs that focus mainly on the
technical aspects such as code generation and meta-modelling. However, development
methodologies in industrial projects must provide a flexible engineering process that
caters to both the large scale organisations as well as small and medium enterprises
without a lot of investment and with support for a better modelling experience for DSMLs
practitioners. This thesis therefore describes a systematic approach to the engineering of
industrial DSMLs by combining approaches from software language engineering (SLE)
and developing reusable and modular language infrastructure that eliminates the need
to build DSMLs with similar domain concepts every time from scratch.

1.1 Motivation

DSLs and DSMLs, just like any other software languages, are also regarded as software
[FGLP10] and therefore subject to the usual challenges of SLE [HRW18]. Specialised
tools such as language workbenches or modelling tools have been created over the years
to advance support in language engineering for both the academia as well as the indus-
try [EvdSVT13]. Until now, systematic SLE methodologies are rare, tied to individual
departments, and building DSMLs is resource-intensive, often with lack of good usability,
proper guidance, and support for DSML users [MGD™'16]. Further, it is also assumed
that language engineering should focus solely on providing the technical language. In
spite of these previous SLE efforts [KKPT09, CMP20], the engineering of industrial
DSMLs requires a more complete language infrastructure, that is focussed on combining
the technical aspects of a language, with good usability, methods, and concepts to help
modellers reach their goals.

Building graphical DSMLs is challenging as it requires the integration of a complete
graphical syntax and often parts of textual syntax directly within a graphical modelling
tool. The graphical concrete syntax is meant to visually represent the constructs of a
domain in a way its abstractions appear in the real world. Therefore, any kind of drawing
or sketches that are made by hand, should be resembled evenly in a DSML, such as
with images or boxes [LJJ07]. Although previous literature exists on various graphical
modelling tools [Ent23, LNH06, Met, HHFN13] and their applications, the remainder
of this thesis explores the concepts for systematically engineering graphical industrial
DSMLs in MagicDraw [Mag20] and also briefly considers language development aspects
in the textual space, with the MontiCore ecosystem [HKR21].

DSMLs are modularised [DCBT15, CKM™18] into reusable and composable units, re-
ferred to as language components, that defines the (incomplete) language. These reusable
units allow a language definition to be independent of a modelling environment. The
composition of DSMLs are primarily achieved using grammars in the textual space, or
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using language configurations in the graphical space. Technically, language components
are comprised of all the software artefacts needed for describing the language, including
the syntax, the well-formedness rules, and any other code generation techniques. To
foster reusability of DSMLs and its parts, language components are composed to build
novel languages or versions of languages, without a strict coupling between the composed
language and the base languages. Furthermore, this thesis also details mechanisms of
exchanging language components and DSMLs constructs between multiple modelling
environments as a step towards fostering interoperability of domain-specific constructs
across different technological spaces.

A key benefit in equipping users with the necessary language infrastructure required
for them to achieve their modelling goals improves the modelling experience of such
users. In this regard, defining a good user experience (UX) for a DSML is crucial in
positively impacting the feelings and impressions of a modeller. While definitions of
UX have been proposed in the literature [Has08], they are rather too generic and apply
commonly across the software and systems development. A good UX must consider both
the DSML and its accompanying modelling environment, i.e., the language workbench
or the modelling tool. Design decisions including those that help improve the general
usability of a modelling environment must be actively considered during the development
of a language infrastructure, which is explored in this thesis.

The integration of solid methods, techniques, and concepts within a modelling envi-
ronment that elevates the UX of modellers is still missing, partly due to project and
resource constraints. To address this challenge, active and synchronised information
pertaining to the current models must be made available to the users. A way to achieve
this is using method engineering [Bri96] or a kind of recommender system [AT05] that
analyses the designed models and their properties, and retrieve a list of recommended
methodical steps or information from an external source, such as a database, to provide
dynamically changing suggestions to users. Techniques described in this thesis aim to
move away from providing a plain technical view or a rather static, and often outdated,
source of information, and instead provide guidance and support to users by describing
a set of recommendations, tasks, activities, or processes during modelling that are rarely
considered during the development of a language infrastructure.

It is therefore essential to integrate these aspects of industrial DSML engineering into
reusable units that encapsulate the complete language infrastructure, i.e., the language
definition, methods, and concepts related to a domain or a set of domains. These reusable
units, termed DSML building blocks in this thesis, are aimed at providing effective mod-
elling techniques to DSML practitioners. This thesis therefore describes, with industrial
examples and case studies, a systematic approach to engineering industrial DSMLs in
the large by composing reusable language infrastructure parts with the modelling tool
MagicDraw [Mag20]. Different forms of language composition are described that reuse
language components and compose novel languages without the need of generating a
completely new language infrastructure for similar domains every time. Moreover, this



CHAPTER 1 INTRODUCTION

thesis explores the interoperability of such language infrastructure across different mod-
elling environments, provides UX and usability guidelines for improving the modelling
experience of DSML users, as well as provides a framework for integrating active model-
aware recommendations that is directly accessible to practitioners during modelling.

1.2 Research Questions and Objectives

Overall, this thesis contributes to answering questions on engineering DSMLs in the
industrial context. As discussed above, related work does not sufficiently address aspects
of engineering such industrial DSMLs in terms of reusing parts of a language or providing
a more integrated and holistic modelling experience for practitioners. While this thesis
cannot possibly answer all unanswered questions on the engineering of industrial DSMLs,
it does provide a systematic approach in fostering the engineering of such DSMLs that
leads to a wider adoption in industrial contexts. To this end, the following is the main
research question of this thesis:

How can domain-specific modelling languages be composed using reusable lan-
guage units and how can language engineers foster the efficient engineering of
such languages in industrial contexts?

To answer this main research question, this thesis explores possible answers to the
following six partial research questions:

RQ1: How can language engineers systematically develop reusable building blocks for a
language?

To effectively engineer industrial DSMLs, parts of the language infrastructure or the
language itself must be reusable and modular in nature. Such a reusable unit that
potentially provides the complete language infrastructure of a particular aspect of a
domain, i.e., the language components, methods, and concepts, is termed a DSML build-
ing block. In practice, industrial DSMLs constitute the representation of notions from
multiple domains, often with intersecting concepts, raising the need for multiple DSML
building blocks. For example, defining requirements for a project is a common concept
that is reused almost identically in a variety of domains such as medical, energy, infor-
mation technology, and so on. An answer to this research question should propose a
systematic approach to developing such reusable units that are modular in nature and
are eventually composed into larger languages without the need for developing similar
notions of domains from scratch every time.

RQ2: What constitutes a reusable language component?
Software languages are typically realised through software, meaning the artefacts of a
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language encapsulates the (incomplete) definition of the language itself. To foster the
reusability of such artefacts, a software should be decomposed into smaller language
components [EGR12]. This research question on language components has been ex-
plored previously in the textual space [But23|, particularly in the MontiCore language
workbench [HKR21]. This thesis primarily explores the concept of language components
in the graphical space, using the MagicDraw modelling tool [Mag20]. An answer to this
research question should identify the requirements and properties of a language compo-
nent, and provide the definitions and concepts needed to realise language components in
the graphical space. Further, unified and mutual notions of language components, valid
across different technological spaces, must also be answered by this research question.

RQ3: What different forms of language composition can be applied to foster the better
development of heterogeneous DSMLs?

A DSML can be modularised into composable units called language components as men-
tioned in the previous research question RQ2. However, in order to compose complete
and heterogeneous DSMLs, suitable forms of language composition must exist. An an-
swer to this research question should provide the notions for different forms of language
composition, such as language inheritance, extension, embedding, and aggregation pri-
marily in the graphical technological space.

RQ4: How can we achieve the interoperability of DSML constructs between multiple
modelling environments?

In order to foster the interoperability of domain-specific constructs across modelling tools
or environments, it is important to define language components, consisting of software
artefacts, in a way that it promotes a bidirectional exchange mechanism between such
modelling environments. An answer to this research question should provide a method
in which language components, their characteristics, and properties are extracted using
custom GPL code, such as in Java, and reused as-is or with minimal adjustments in
another modelling environment.

RQ5: How can language engineers develop better DSMLs that improves the overall mod-
elling experience for users?

A DSML should elevate the UX for practitioners by providing domain abstracts that are
as close as possible to its real world abstractions. In an industrial setting, practitioners
often face challenges in terms of usability of DSMLs. This is partly due to the inconsid-
eration of language engineers for providing good design aspects within the DSMLs that
effectively represents the domain concepts, and partly because of the limitations in the
functionalities offered by modelling tools. An answer to this research question should
provide effective design guidelines and design decisions that language engineers must
consider that complements the technical definition of a language and its components to
help improve the overall modelling experience for DSML practitioners.
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RQ6: How can we establish a modelling methodology for providing integrated recommen-
dations and guidance to modellers that considers their active modelling situation?

To further enhance the UX of practitioners, methods that actively assist practitioners in
their modelling must be more tightly integrated as part of defining a more complete lan-
guage infrastructure. Such methods must move away from providing only static sources
of information, and rather provide training materials, active recommendations based on
ongoing modelling work, and other processes that eliminate the need to tediously search
through endless pages of DSML documentation, with the guidance provided directly on
the modelling environment itself. An answer to this research question should detail an
approach for developing a more tightly integrated guidance infrastructure with a DSML
and the accompanying modelling environment, which actively provides recommenda-
tions and methods for practitioners that are synchronised with their currently designed
models.

1.3 Main Contributions and Thesis Organisation
The main contributions of this thesis are:

e a systematic approach to engineering reusable DSMULs by defining DSML building
blocks for industrial contexts that help language engineers develop modular DSMLs
and its parts;

e describing language components and its constituents in the graphical modelling
space and defining mutual notions of language components that are valid across
the textual and graphical technological spaces of MontiCore [HKR21] and Magic-
Draw [Mag20];

e describing different forms of language composition for composing heterogeneous
DSMLs in the graphical modelling space;

e a tool mechanism to exchange DSML constructs across the modelling tools of Mag-
icDraw and Enterprise Architect [Ent23] for fostering interoperability and exchange
of DSMLs and its parts;

e defining a (non-exhaustive) set of design decisions and design guidelines for lan-
guage engineers to better engineer industrial DSMLs and their constructs in terms
of their real world abstractions, thereby improving a practitioner’s modelling ex-
perience;

e a customisable recommendation tool in MagicDraw that provides active, synchro-
nised, and model-aware recommendations to users for a more holistic and complete
language infrastructure; and
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e multiple case studies that evaluate the systematic approach to engineering indus-
trial DSMLs using such DSML building blocks.

The thesis is structured in a way that it follows a top-down approach: it first explains
a systematic engineering process for developing reusable industrial DSMLs and its parts,
and then takes a look at the various research questions starting from the technical
definition of language components, moving towards the interoperability of DSML parts,
and finally integrating aspects of UX for a more complete language infrastructure. Each
chapter contributes to the main research question and discusses topics that are considered
related work. The chapters are structured as follows:

Chapter 2 presents the foundations and the background knowledge necessary to under-
stand the concepts described in this thesis. The foundations comprise topics such as
an overview of SLE, DSML engineering, introduction of the MagicDraw and MontiCore
ecosystems, and different domain models that are frequented throughout the examples
presented in individual chapters.

Chapter 3 presents an overall developmental approach to the systematic engineering of
industrial DSMLs using the concept of reusable DSML building blocks in MagicDraw.
This chapter also discusses the roles in industrial DSML engineering and combines the
individual approaches presented later in the thesis.

Chapter 4 describes the concepts of language components in the graphical technological
space, discusses how different forms of language composition are achieved in both Mag-
icDraw and MontiCore, and provides mutual notions of composing languages in both
the textual and graphical technological spaces.

Chapter 5 details a mechanism for exchanging DSML constructs between different mod-
elling environments to foster the interoperability of common language components.

Chapter 6 describes a set of UX guidelines and design decisions that language engineers
must consider while defining DSML building blocks to ultimately improve the modelling
experience of industrial DSML practitioners.

Chapter 7 explains a methodology for generating model-aware recommendations and
guidance to DSML practitioners by using the UX guidelines described in Chapter 6 for
developing a tightly integrated language infrastructure.

Chapter 8 takes a look at three individual case studies in different domains based on
the concepts described in the previous chapters.
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Chapter 9 concludes this thesis by providing a summary of the results to the research
questions as well as an outlook for further work.

1.4 List of Publications

Some of the answers to the research questions stated in this thesis have already been
published in various forms before or are currently in press or preparation. Accordingly,
some of the results of this thesis including figures, listing, data, and other relevant content
are part of those publications. The following provides an overview of the publications
and the contribution of the respective authors. If not stated otherwise, the author of
this thesis is the main author of the following mentioned papers:

e [GKR™121] presents a systematic approach towards engineering industrial DSLs us-
ing modular, reusable DSL building blocks. The research problem and the concept
was developed by the author of this thesis in detailed discussion with Nikolaus
Regnat and Sieglinde Kranz. The background and motivation for the research
problem was detailed by Andreas Wortmann and the author of this thesis. The
conceptualisation and implementation of the DSL building blocks was defined in
discussions between Bernhard Rumpe and the author of this thesis. The evalu-
ation of this study was conducted with a focus group of modelling practitioners
and researchers both from the industry and academia. Ambra Cald and Jérome
Pfeiffer provided additional feedback during the course of this study.

e [GJRR22b] showcases the construction of a comprehensive methodical language
workbench by integrating key aspects of a modelling language, the Software Plat-
form Embedded Systems (SPES) [BBK™21] methodology, and the modelling tool
MagicDraw. The research problem and the concepts presented in this paper were
developed by the author of this thesis along with Nikolaus Regnat and Bernhard
Rumpe. The background, motivation, and the overview of the methodology was
detailed by the author of this thesis. The details of the implementation of the
SpesML workbench were illustrated by Nikolaus Regnat and the author of this
thesis, while Nico Jansen provided the implementation details for embedding tex-
tual languages into MagicDraw.

e [GJRR22a] describes the categorisation of key UX aspects, including guidelines and
design decisions, that language engineers must consider during industrial DSML
development. The research problem and concepts presented in this paper were
developed by the author of this thesis along with Nikolaus Regnat. The motivation,
background, and the methodology presented in this paper was developed by the
author of this thesis and Nico Jansen. The definitions of UX and design aspects
as well as the case study were developed in detailed discussions by the the author
of this thesis, Nikolaus Regnat, and Bernhard Rumpe.
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e [BGJ"23] presents individual definitions of language components and the different
forms of language composition in MontiCore and MagicDraw, and describes mutual
notions for developing versions or families of DSMLs valid in both the textual and
the graphical technological spaces. The research problem and concepts presented
in this paper were developed by Arvid Butting, the author of this thesis, and Nico
Jansen. The parts of the paper that detailed the engineering of software languages
in MontiCore, describing example DSMLs in the MontiCore language workbench,
and detailing the method and implementation of language components and their
composition in MontiCore were developed by Arvid Butting and Nico Jansen.
Parts of this paper also refer to the work of Arvid Butting in his thesis [But23].
The other parts of the paper that detail a similar engineering process in MagicDraw
were developed by the author of this thesis and Nikolaus Regnat. The unified
concepts of language components were mainly developed by the author of this
thesis, Nico Jansen, and Bernhard Rumpe.

e [GBJ'24] presents an exchange mechanism between the Enterprise Architect and
MagicDraw modelling tools, that ultimately allows exchanging individually created
DSMLs and their constructs for promoting DSML interoperability. The research
problem, background, methodology, and case study presented in this paper was
developed by the author of this thesis, Christoph Binder, Nico Jansen, and David
Schmalzing. The specification of engineering DSMLs in Enterprise Architect was
provided by Christoph Binder, whereas the specification of engineering DSMLs in
MagicDraw was provided by the author of this thesis and Nikolaus Regnat. In
general, constant feedback on the concepts and implementation of the exchange
mechanism were provided by the other authors.

e [GJRR23] presents a guidance infrastructure that provides methods, techniques,
and recommendations to DSML practitioners that is dependent on their current
modelling situation. The research problem and the concepts presented in this
paper were developed by all the authors. The methodology and its implementation
was carried out by the author of this thesis with detailed feedback from Nikolaus
Regnat and Bernhard Rumpe. The case study and evaluation presented in this
paper is a result of the collaborative efforts of the author of this thesis, Nikolaus
Regnat, and domain experts from Siemens Healthineers. Certain parts of the
overall architecture and threats to this study were discussed in detail by the author
of this thesis and Nico Jansen.






Chapter 2
Foundations

This chapter describes the terms, concepts, tools, and language definitions which form
the basis of this thesis. Concepts that describe SLE and DSMLs are described in Sec-
tion 2.1. The foundations for graphical DSMLs, the choice of tool primarily used in this
thesis, language composition basics, interoperability concepts, improving general usabil-
ity, and active support methods for users are laid out in Section 2.2. Notions of feature
models and function models that provide the basis of certain examples and case studies
described in this thesis are introduced in Section 2.3.

2.1 Software Language Engineering

Software languages descriptions are also considered pieces of software, and therefore,
must be treated in the same way as software [FGLP10]. They are subjected to the usual
challenges of software engineering along with defining a language’s constituents [GKR121].
Therefore, SLE is considered a discipline within the world of software engineering that
describes the systematic design, realisation, deployment, and evolution of software lan-
guages [Kle08]. To this end, software languages are considered languages that are read-
able both by engineers as well as those that are easily processed by machines [But23].
While GPLs are used to solve problems in any domain and are commonly based on
programming languages such as Java or C, DSLs [Fow10] solve problems particular
to a domain. Parts of the Unified Modelling Language (UML) are also used for pro-
gramming [Rum16], but since it focusses on defining a modelling language, it is rather
considered a general-purpose modelling language.

A DSL is a language that is capable of describing a particular system and its parts
either entirely or from a particular viewpoint [Kle08]. A DSL, therefore, aims to re-
duce the gaps in a particular domain by supporting abstractions at a domain-specific
level [CBCR15, GKR21], meaning DSLs and their parts are better analysed and synthe-
sised. The gap from the problem space to the implementation space is thus addressed by
a DSL [FRO7]. As they do not consider other aspects from other viewpoints or domains,
DSLs are often rather restricted in their syntax and their complexity is relatively lower
than that of GPLs. Some common examples of DSLs found in everyday software use
are hypertext markup language (HTML), cascading style sheets (CSS), structured query
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language (SQL), and so on, which aim to solve only a specific problem. For example, an
SQL query cannot be used to design the user interface (UI) design of a webpage, as it is
used only for querying database management systems.

DSMLs, on the other hand, are a specialised form of DSLs, which are important in the
field of MDD. Here, each model is designed in a specific language with the possibility
of transforming this model into another model that could be valid in another modelling
language. Models of a DSML live only within the same domain environment, which
means the models are generally tied to a specific implementation of a domain. As such,
DSMLs are also subject to maintenance and evolution since they are primarily software
languages. The technological spaces for DSMLs are almost always heterogeneous and
can be categorised as either textual, graphical, or projectional [DCB*15, Bet16, Tol06].
This thesis describes concepts pertaining to DSMLs for improving the overall DSML
engineering process in the graphical technological space. Although references to textual
languages are made in this thesis, the use of SLE in the context of graphical DSMLs
means the term language is synonymously used with a graphical DSML unless otherwise
stated.

Definition of a Software Language.

Homo sapiens have designed elaborate and intricate languages for communication. While
such a “set of all linguistic utterances” is described for defining a language [Kle08], MDD
considers the “utterances” of models for describing a language or its parts. To this end,
several definitions of software languages have been proposed in the literature [HR04,
CBCR15], that concern with defining the syntax and semantics of a language. In the
remainder of this thesis, we use the following definition of a software language [HR04,
CGR09, CBCR15] that also applies to DSMLs:

Definition 1 (Software language). A software language definition consists of:

e (1) an abstract syntax that contains the essential information and describes the
structure of a model, e.qg., in the form of context-free grammars or class dia-
grams [HKR21];

e (2) a concrete syntax that is used to describe the concrete representation of the
models, e.g., graphical [DCBY 15], textual [Bet16], or projectional [Cam14];

e (3) semantics, in the sense of meaning [HR04]; and
e (/) context conditions to check the well-formedness of the language.

In the remainder of the thesis, we refer to the definition of DSMLs in the graphical
technological space unless explicitly stated. This means that the concrete syntax of a
DSML is realised as a graphical concrete syntax, such as in a tabular, box-and-line,
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or tree-based format [CFJT16]. To this end, graphical modelling editors or tools are
required to design graphical DSMLs and it is natural that such DSMLs have found their
way into industrial applications.

Applying systematic SLE in a variety of domains is still challenging. While studies
describe the implementation of industrial DSLs [MAGD ™16, TK05], often these method-
ologies are restricted to specific departments within organisations, and require rebuilding
languages from scratch which is rather time-consuming. A way to solve this challenge
is to introduce a central research unit within an organisation that trains language en-
gineers to develop domain-specific concepts with sufficient skills in SLE. The language
engineering and reuse methods have been described to technically improve the languages
with the introduction of explicit language interfaces [BPRW20], language merging tech-
niques [DCBT15], or types of languages [SJ07]. However, considerations to improve the
usability of graphical industrial DSMLs in terms of composition, interoperability, user
experience, and guidance methods for both language engineers and users are still missing
and are the key topics addressed in the remainder of this thesis.

2.2 Domain-Specific Modelling Languages

This section details the foundations of graphical industrial DSMLs that are necessary
for understanding the concepts presented in this thesis (Section 2.2.1). In particular, the
basic features of the modelling ecosystems of MagicDraw (Section 2.2.2) and MontiCore
(Section 2.2.3) are introduced before describing the properties and forms of language
composition in the textual and graphical technological spaces (Section 2.2.4). This sec-
tion also explains the foundations of DSML interoperability (Section 2.2.5) between
modelling tools and introduces various methods (Section 2.2.7) used to improve the
modelling experience of graphical DSML users (Section 2.2.6).

2.2.1 Graphical Industrial DSMLs

The concrete syntax of graphical DSMLs is graphical, meaning certain kinds of graphical
notations are used to visualise the various constructs of a DSML. This concrete syntax is
defined in a way that it uses symbols to represent human-centric notions of a domain and
are abstractions of the symbols commonly found in the real world. Graphical DSMLs
can be thought of in a way that they resemble drawings, sketches, or annotations that
are built by hand for a specific domain-specific scenario. Various types of icons, colours,
customised views, and additional graphical user interfaces (GUIs) are considered part of
representing a graphical concrete syntax. Often graphical notations are combined with
textual notations to offer a more detailed outlook on the DSML constructs [LEGGAL16],
meaning possibilities to transform textual metamodels to a suitable graphical format is
also possible.
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MDD is increasingly being used in industrial projects [FRR09, WG09, WBCW20]
and is continuously evolving in research [FRO7]. At the same time, introducing newer
development paradigms and technologies for MDD or model-based systems engineer-
ing (MBSE) is difficult to adopt for stakeholders in an industrial domain [Sta09]. This
is because either large-scale organisations need stable and incremental development
methodologies, or small and medium enterprises cannot spend huge amounts of money to
realise a rather simpler domain concept using commercial modelling tools. To achieve a
measurable improvement in a DSML’s productivity and quality, industrial projects must
be flexible for adapting the processes of an organisation. This means that as more con-
cepts are added to a DSML, language engineers must ensure that such concepts are not
only captured in the definition of a DSML but also the DSMLs and their infrastructures
evolve to support a good modelling experience.

There exists a number of graphical modelling tools such as Enterprise Architect [Ent23],
Rational Rhapsody [IBM23], MetaEdit [Met], MagicDraw [Mag20], Modelio [Mod23c],
and so on. Most tools support building languages that are based on UML, support
model-driven architecture (MDA) generation templates, and produce similar templates
for fostering the exchange of UML constructs. This thesis explores MagicDraw as the
choice of modelling tool for answering the research questions, as it provides possibilities
to enhance its existing functionalities, thereby allowing comprehensive extension oppor-
tunities for bringing the various parts of a language, its methods, and the tool together
in order to elevate a user’s experience of designing models using a DSML.

2.2.2 The MagicDraw Ecosystem

A significant portion of the research presented in this thesis has been implemented in
the MagicDraw modelling tool. MagicDraw is a proprietary visual modelling tool based
on UML and Systems Modelling Language (SysML) belonging to the mid-sized soft-
ware company CATIA NoMagic, Inc. which was acquired by Dassault Systemes in
2018 [Mag20]. MagicDraw helps business and software analysts, programmers, mod-
ellers, and quality assurance engineers to easily deploy a software development life cycle
(SDLC), and the in-built Open API support allows greater extensibility and flexibility
in MDD solutions.

MagicDraw provides a broad range of customisation possibilities that capture most,
if not all, challenges related to DSML engineering. These customisations allow the
creation of language profiles based on UML that detail different language components
and their artefacts. One such example of an artefact is a language element, which is also
referred to as a stereotype in MagicDraw. Each of these stereotypes are configured with
additional properties in the form of a customisation element that allows defining specific
properties and rules for a given stereotype. MagicDraw also provides options to design
GUIs using a Java-based plugin mechanism that eventually assists users in the integration
of automation and the creation of enhanced functionalities that are not offered by default.
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Further, various kinds of model templates and additional configurations are made to the
DSMLs to ensure that users of such DSMLs easily adopt and work with the modelling
language constructs.

DSMLs have been built in MagicDraw for a wide variety of domains. As part of this
thesis, a large number of projects were either built or studied for research with Mag-
icDraw. Projects in the healthcare domain enable the modelling of medical devices,
radiation therapy imaging, and X-ray equipment. In the information technology do-
main, MagicDraw is used to develop a DSML that models IT workflows and inventory
management processes. Large industrial appliances such as turbines can be modelled
with DSMLs in the energy sector. An integration of the hardware and software aspects
of frequency converters and electric motors can be achieved through DSMLs for digital
industries. The application of MagicDraw is used to show the implementation of domain-
specific aspects in important domains for supporting DSML practitioners. Therefore, the
modelling tool of MagicDraw is used as the foundation of realising the presented research
questions in this thesis.

2.2.3 The MontiCore Ecosystem

MontiCore [HR17, HKR21] is an open-source! language workbench [Fow10] used to en-
gineer textual DSMLs and generates their corresponding language infrastructures to
deal with models of the language. In principle, a MontiCore DSML uses MontiCore
grammars (MCGs) that describe the DSML’s concrete and abstract syntax. Monti-
Core grammars are described using the custom extended Backus-Naur form (EBNF)-
based [ALSUO06, Fey16] notation for context-free grammars (CFGs). Using these gram-
mars, MontiCore is able to generate the corresponding language infrastructure such as
parsers, abstract syntax trees (ASTs) data structures, a visitor infrastructure for travers-
ing the specified abstract syntax data structure, and the harness for context conditions
(well-formedness rules). The language infrastructure generated from a MontiCore gram-
mar is depicted in Figure 2.1.

The grammars defined with MontiCore generally consists of terminals and non-terminals.
Terminals are composed of lexical elements such as fixed character strings, while non-
terminals are composed of either terminals or further non-terminals. MontiCore also
provides interface non-terminals that can extend other non-terminals and, therefore, can
be implemented by multiple non-terminals, similar to the concepts from object-oriented
programming (OOP). The body of a MontiCore grammar consists of a left-hand side
existing of a single non-terminal and a right-hand side containing both terminals and
non-terminals, separated with an “=" sign. MontiCore generates AST classes for each
non-terminal, and symbol tables are used to lookup AST objects.

MontiCore generates a large amount of language infrastructure. A symbol table infras-
tructure enables the symbolic links between name usages and definitions [But23]. Java

"MontiCore is available via: https://monticore.github.io/monticore/
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Figure 2.1: A conceptual overview of the language infrastructure that MontiCore pro-
vides for an input MontiCore grammar. Figure taken from [BGJ*23].

classes are used to describe the context conditions (CoCo) of the language that check
the well-formedness of models by checking against the abstract syntax data structure.
Analyses and model transformations is achieved with the visitor infrastructure while
giving meaning to a model is realised using pretty printers that translates an AST into a
source code conforming to another language. MontiCore also supports code generation
realisation using template-based code generation techniques using FreeMarker [Forl3]
templates. Further interesting work on MontiCore, its associated concepts, and its real-
isation in academic and industrial projects can be found at the end of this thesis under
related interesting work from the SE Group, RWTH Aachen.

2.2.4 Language Composition in Textual and Graphical DSMLs

To describe concepts of reusability in software engineering, it is important to decom-
pose a software into smaller components [EGR12|. The individual technological spaces
present their notions of language composition, which means the concepts described in
composing a language are either vendor-locked or tied to a specific language workbench
or graphical modelling tool. For example, textual languages primarily explore the com-
position of languages using either a shared grammar, a unifying grammar, resolvers, or
strongly kind-typed symbol table files [But23]. On the other hand, graphical DSMLs
explore language composition through the definition of languages described as part of
the configurations that are allowed by the graphical modelling tools.

In MontiCore, a language component comprises of all the software artefacts that are
necessary for describing the syntax, context conditions for validating the well-formedness
rules, symbol management, and any relevant code generation techniques. A composi-
tional language design for MontiCore is proposed in [DJR22]. MagicDraw, on the other
hand, enables graphical DSML engineering [GKR*21]. Here too, software artefacts are
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bundled together to describe a DSML although the domain-specific aspects are described
using stereotypes and additional custom properties that help realise a language. The
software artefacts that are generated and managed for a DSML are a result of the com-
piled source code for both MontiCore and MagicDraw.

In this thesis, we use the following definition of a language component that is inde-
pendent of a technological space [BGJT23]:

Definition 2 (Language component). A language component is a reusable unit encapsu-
lating a potentially incomplete language definition valid for its respective technological
space, including but not limited to the textual or graphical representation. A language
definition consists of reusable software artifacts comprising the realisation of the syntax
and semantics of a software language.

Both of the previously mentioned tools, MontiCore and MagicDraw, support four
forms of language composition: language inheritance, language extension, language em-
bedding, and language aggregation. All the forms of language composition, except lan-
guage aggregation, produce a composed language that comprises an integrated syntax
of the individual languages. Only in language aggregation do the models remain in their
individual artefacts and is therefore considered loosely coupled. Each of the forms of
language composition reuses at least one language in some way or the other and the
composition aspects described in this thesis are based on the composition of the individ-
ual artefacts of the language components. Reusing a language generally requires more
effort than completely building a new one from scratch [MGD*16]. Therefore efforts
must be undertaken to describe common notions of language components and language
composition that serve as the foundation for language reuse across any technological
space.

Language Inheritance.

In general, the concept of language inheritance relationships is transferred to textual and
graphical DSMLs [Sny86]. Language inheritance in MontiCore is achieved by inheriting
grammars. This means that a language is said to inherit from another language if the
grammar inherits from the other language’s grammar. MontiCore grammars that inherit
from other MontiCore grammars reuse, extend, and even overwrite all its nonterminals.
Further, a novel grammar rule is specified in the inheriting language to compose a lan-
guage. Multiple inheritance between languages is possible in MontiCore through the use
of interfaces, as the underlying MontiCore infrastructure is realised in Java, which does
not support multiple inheritance. All the context condition classes are reused in an inher-
ited language because the context condition checker is based on the visitor infrastructure
that traverses the AST and is compositional in nature.

In MagicDraw, language inheritance is achieved at the level of the individual classes
that use the graphical notations of generalisations and specialisations on the UML and
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SysML stereotypes. The inheritance defined in MagicDraw allows an inheriting subclass
to reuse, extend, and override the attributes and methods of one or more superclasses
in the parent language. A language, is therefore, said to inherit from another language
if the language elements are inherited from the other language. MagicDraw also natu-
rally composes all the context conditions, as the Java validation classes of the composed
language are also checked against the inheriting language components. Similar to Mon-
tiCore, multiple inheritance in MagicDraw is achieved through the implementation of
interfaces.

Language Extension.

Language extension is a particular form of language inheritance where a language simply
extends another language. Adding novel parts to a reused language results in language
extension. This means that the extension through novel parts is not meaningful without
the original language.

MontiCore regards the addition of novel parts to a reused language as conservative,
meaning the models of the original language continue to remain valid in the extended
language. Any language inheritance where the inheriting language reuses the start rule
of the inherited language but adds novel parts to the inheriting language is considered
a language extension. This means the start nonterminal of the extended language is
reused and can add any novel parts to any nonterminal of the extended language.

Similar to MontiCore, language extension in MagicDraw requires that novel parts be
added to a reused language. Such extensions in MagicDraw are termed safe, since the
models of the base language continue to remain valid in the extended composed DSML.
Language extension is considered a rather stricter form of coupling as it depends on
the reuse of the base language. In all other parts of the language infrastructure, no
distinction is made for the concepts from language inheritance. However, if the base
language contains restrictions on any particular language element, these restrictions also
exist on the composed language, and such restrictions on DSML constructs is called
language restriction.

Language Embedding.

Language embedding, in contrast to language inheritance and language extension, reuses
at least two languages: a host language H and an embedded language E, without the
languages being aware of each other. The main idea of language embedding is to describe
how a language is embedded fully into the host language.

MontiCore realises language embedding using multiple language inheritance that is
controlled with a novel grammar. The novel grammar inherits from H and E and uses
the start grammar rule of H. At some point, a nonterminal of H is overridden, extended,
or implemented such that it adds new language syntax from H. This integration of the
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two languages is done at a single point. The sets of context conditions for both languages
are unified in the composed language.

In MagicDraw, language embedding is realised using an integration glue, which is a
novel syntax in the composed language that describes the embedding of F into H. This
kind of composition allows the host and embedded languages to be reused completely and
is set via a tooling property in MagicDraw. Any underlying relations to the language
elements in F can be interfaced with H meaning the novel syntax’s metaclass is one
or more of the metaclasses inherited from H and E. The other parts of the language
infrastructure such as the context conditions are naturally composed in the composed
language, and newer context conditions are defined at the level of a composed language
that checks against both the H and E languages.

Language Aggregation.

Language aggregation also reuses at least two languages. Here, the composed models
remain entirely in their own artefacts. However, model elements of these artefacts refer to
each other through their instances. In practice, language aggregation requires knowledge
of the individual languages meaning they are coupled to a certain extent.

MontiCore achieves language aggregation in a number of ways. Language aggregation
in MontiCore is achieved using symbol tables, where symbols are unique elements that
are resolved using their names. A shared grammar that specifies the symbols that all
models adhere to is one way of language aggregation. Using a unified grammar, the
unique constructs of the existing language definitions are accessed, meaning all symbols
in both languages are integrated. Languages are aggregated using resolvers that derive
symbols from their qualified names by looking up a symbol table. Finally, symbol tables
are persisted in artefacts with a symbol table file that allows a complete decoupling of
the tools of the individual languages.

In MagicDraw, language aggregation occurs at an extension point, where associations
to either language are established. By using such relations, models refer to other models
of either language. However, the extension point ensures that only at this point the
associations refer to the other language’s model elements and are otherwise unaware of
the existence of any other references or interfaces to the other language. A key benefit
of language aggregation to compose languages is that no completely new infrastructure
needs to be generated, rather only configuring the associations is required. Other parts
of the language infrastructure also naturally compose, similar to the other forms of com-
position, meaning parts such as context conditions are completely valid in the respective
languages.
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2.2.5 Interoperability of DSMLs

Managing and evolving complex systems in various business lines is a challenging task.
Organisations often have a wide variety of domain-specific concepts that need transla-
tions towards a model-driven approach. Larger organisations, or groups within these or-
ganisations, use different modelling tools that help realise and solve these domain-specific
challenges. However, stakeholders in small and medium enterprises are limited to a single
modelling environment and often work with a single modelling tool. A modelling envi-
ronment is a software environment that potentially consists of language workbenches,
graphical modelling tools, and a set of languages combined with such tools. There is
little consideration for constructs of a DSML, such as language components, to be easily
reusable across a multitude of such modelling environments, meaning these concepts of
DSMLs are not often easily interchangeable [AHRW17]. Therefore, there is a need to
build modular and reusable components of a DSML that are easily interchanged [HRW16]
between different modelling tools and different modelling environments. Conceptually
building a common infrastructure that allows modelling similar aspects of a domain in
different modelling tools requires extensive engineering efforts. However, this is an effort
that must be carried out right from the start of the project. Globalising DSLs using
MBSE approaches has been proposed by [CCFT15], although engineering such DSMLs
in organisations requires constant support during the entire development lifecycle of a
project.

The MDA was proposed by the Object Management Group (OMG) [Spe06] to define
an approach that helps separate the specification of a system functionality from the
implementation functionality. By elevating the abstraction levels towards more automa-
tion, MDA helps achieve portability, interoperability, and reusability of software [ARO08]
and therefore of DSMLs. As newer systems are developed, newer functionalities are in-
troduced for using newer technologies that need to communicate with each other. This
is especially true in web-based systems, as DSLs such as HTML, CSS, and so on, runs
on a web browser and often need an exchange of information from other DSLs such as
back-end data stores, e.g., SQL. Old and new technologies overlap to create and evolve
new systems. Therefore, a large focus of software and systems development is to focus
on building modular units instead of bulky, monolithic systems which makes it ideal for
communicating with other parts of the system, and for updating parts of the system
without significantly modifying other parts of the system. Truly modular units of a lan-
guage must be seamlessly interoperable between different systems to avoid re-engineering
similar language concepts.

Exchanging models and language constructs between various model-driven software
and systems development frameworks still requires significant effort [Rum16]. This be-
comes more challenging as both language engineers and modellers learn to live in their
own modelling environments and are not concerned with other aspects of reusability or
modularity of DSMLs and their constructs in their projects. The OMG has tried to ad-
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dress this challenge of exchanging models in a much more standard way, by using XML
Metadata Interchange (XMI) file formats [XMI23] that are based on Extensible Markup
Language (XML) [XML23]. This is particularly beneficial while using plain UML as
they are much more standard and applicable to almost every domain. However, the
concepts do not still translate to exchanging models between DSML environments and
are therefore a currently unsolved problem. Further, there must be a distinction between
exchanging model information between language workbenches in the same technological
space, or across technological spaces, e.g., textual to graphical DSML exchange or inte-
gration [Sch08]. Modelling tools are not particular in the way they generate the export
and import of domain-specific constructs for similar concepts, which means specifications
of semantics of such exchange formats is not easily possible. This means that if UML
stereotypes need to be modelled with MagicDraw and later exported to an XMI format,
it would generate certain elements that are configured with a metaclass uml:Stereotype,
while this same export generates a uml:Class metaclass when it is exported from Enter-
prise Architect (EA) [GBJT24].

Because of the inconsistencies in storing various parts of a DSML, there is a restric-
tion in reusing constructs between modelling environments which often leads to delays
in deploying similar domain constructs across organisations. In this thesis, interoper-
ability is considered as the ability of two or more graphical modelling tools to exchange
DSML constructs so that these constructs are used effectively without having to rebuild
the language definition from scratch. To enable interoperability of DSMLs and their
constructs the exchange of metamodels and their properties between the various mod-
elling tools that develop such languages must be possible. To this end, it is important
to align such metamodels so that the mapping of DSMLs in an isomorphic form is ben-
eficial in enabling a seamless interchange of domain concepts across various modelling
environments. Bidirectional transformations of DSMLs and their constructs allow the
domain-concepts to be used in both directions, meaning there must be a kind of trans-
formation definition that handles both the primary transform as well as the inverse of
the transform. However, this is difficult in a domain-specific environment because even
if the models are semantically equivalent, the abstractions from a business model are
often lost in this transformation [KWBO03|. Therefore, there needs to be investigations
around defining an exchange mechanism to ensure tool interoperability between DSMLs
and their constructs that help assist both language engineers and modellers in a multi-
tude of modelling environments using different modelling tools or language development
frameworks.

2.2.6 Usability and User Experience in DSMLs

Adapting technology to suit human needs is a key topic addressed by human-computer
interactions (HCIs) and usability engineering. These needs are often perpetual and aim
to introduce cognitive processes and abilities that allow users to operate a program with
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a greater level of efficiency. Just accomplishing modelling tasks with a DSML restricts
users from truly experiencing the pleasurable stimulation, feelings, and experiences that
are gained from integrating the ever-adapting technology. While a lot of these notions
are considered UX, there still exists a lack of guidelines in the technological space of
graphical DSMLs. This is because there is a vast difference in opinions and perception
as to what a good UX must be for both practitioners and researchers. UX can be defined
as a person’s instantaneous feeling, good or bad, while interacting with the DSMLs and
their constructs. A basic question that leads to a better understanding of UX in DSMLs
is “Am I happy at this moment with my models?”. The modelling situation can, here,
refer to the layout and positioning of DSML constructs, the overall model of a system,
or the current relations between different models, among others. A good or bad feeling,
therefore, dictates the outcome of the resulting models. It is also rather important
that notions of good UX are imbibed into the language development process and that
considers all stakeholders relevant to that project.

Modelling tools such as MagicDraw contribute to a great extent in order to improve
a user’s experience of working with a DSML. This is achieved in MagicDraw using
a variety of customisation capabilities during graphical DSML development. However,
this also means that language engineers who have experience in language development
must also be trained to effectively represent the domains in consideration. They must
ideally consider all functional aspects of the language but also focus on the non-functional
aspects of the language that improve the general efficiency and modelling experience for
users. Combining design guidelines within the modelling language and the modelling
tool such as MagicDraw really elevates the user’s experience and lead them to modelling
with more confidence. This thesis will therefore look at providing guidelines and various
design decision aspects that language engineers must consider in developing graphical
DSMLs that eventually improve the overall UX for both novice and expert modellers.

The literature has proposed several definitions of UX [Has08] and best practices for
DSLs, especially in MDD [Voe09]. As a consequence, several notions of feelings, experi-
ences, insights, and pleasurable stimulation are subsumed under the various definitions
of UX. This is because UX is a ceaseless topic with a wide variety of opinions on what a
good UX is in each specific domain. Therefore, a single definition cannot possibly pro-
vide a solution to all kinds of UX problems. A definition of UX as mentioned in the ISO
9241-210 standard [ISO10] on the ergonomics of human-system interaction is “a person’s
perceptions and responses resulting from the use and/or anticipated use of a product,
system or service”. The definition describes UX in a rather generic form and while it
can be reused across various facets of software and systems development, it would need
clarity for a better UX in graphical modelling that captures domain-specific notions.
This means domain experts from different fields of research such as biologists, chemists,
mechanical engineers, and so on, cannot all be sufficed with only a restricted view of a
good UX. Various studies have observed that there is a general lack of consensus as to
which UX and usability definitions such as ISO 9241-11 [BCH15], ISO 13407 [JIMK], or
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Nielsen’s [Nie00] must be considered for graphical DSMLs.

There exists other aspects of HCI that detail the way people interact and interface
with computers, such as with the ISO 9241-161 standard [ISO16], and how it can be
used to gather practical results that change the way a user interacts with such inter-
faces [PRBCZ17]. Absolute consideration is given for developing the syntax of a lan-
guage, which means the proposed aspects of UX, usability, and HCI are ignored by
language engineers [ABCT17]. This is partly also because of the fact that typically such
engineers are not experts in designing good UX and are seldom domain experts in the
corresponding DSML. Therefore there is a growing need to focus on developing DSMLs
that not only focusses on the language definition but also considers UX aspects, because
a one-size-fits-all approach is generally unsuitable in domain-specific scenarios. Design
aspects that are considered during the development of DSMLs are termed as user experi-
ence design (UXD) [GJRR22a]. These design aspects compliment a good UX, meaning
UXD is defined broadly as any design decision that is undertaken by a language engi-
neer during DSML development that aids in enhancing a user’s experience during their
modelling. Later this thesis will provide concrete definitions of UX and UXD specific to
the graphical modelling space, in particular, defined in the MagicDraw ecosystem.

A key benefit of integrating UX aspects in graphical DSMLs allows practitioners to
reach their modelling goals more efficiently. Here, multiple aspects of UX must be con-
sidered by language engineers that aim to target a wider variety of users. The challenges
of using the constructs of a DSML are greatly improved as a good UX aims to relieve
users of the unnecessary burdens of both the DSML and the modelling tool. This is
achieved through effectiveness, efficiency, and satisfaction of using DSMLs [ISO10]. It
also serves as a starting point in providing effective guidance and suggestions to users in
achieving their modelling goals. In the remainder of this thesis, aspects of delivering a
good UX to users are discussed by proposing design decisions that must be considered
by language engineers for developing graphical DSMLs. A standard set of UX and us-
ability guidelines, that is independent of a specific implementation or a modelling tool,
not only elevates the resulting DSML but also provides both novice and advanced users
with confidence in their modelling.

2.2.7 Methods in DSMLs

As DSLs and DSMLs are also considered software [FGLP10], they are therefore also
subjected to the usual challenges in maintenance and evolution. As defined earlier,
a software language [CFJT16, CBCR15] consists of: (1) abstract syntax; (2) concrete
syntax; (3) semantics; and (4) context conditions. In order to project the domain and
its constructs effectively, language engineers must acquire skills that transcend simple
language development. These language engineers must integrate suitable DSML-based
development methods, techniques, and concepts within the industrial DSMLs so that
users easily model complex industrial systems. The integration of the DSML, relevant
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methods, and the modelling tool ensures that in a single modelling environment, a user is
confident in their modelling and that it improves the overall modelling experience. This
is achieved through active and synchronised recommendations and suggestions provided
to users during their modelling.

Recommender systems [AT05] aim to predict the preferences of users by prioritising a
list of potentially interesting items. They are nowadays commonly used in commercial
applications and help software developers integrate newer and more effective methods of
providing user preferences [RWZ09]. Model-driven engineering (MDE) describes models
as the primary assets in the software and systems modelling world and they are used for
a variety of purposes. Naturally, proposals to combine recommender systems with mod-
elling tasks have gained traction in the modelling community [PK15, CRM16, ARKS19].
MDE tasks involve the creation of models and metamodels, reusing existing artefacts, or
correcting the information for the individual models. A systematic mapping review of
recommender systems in MDE has found that most recommender systems are built for
models that help in either completing a model or repairing an existing model [AGCDL21].
While some ways to recommend users are through a combination of static documenta-
tion and training material, it does not consider the context of the currently designed
models and is often very tedious to search through.

Method engineering has been studied to provide mechanisms to design, construct, and
adapt various methods, concepts, and tools that help design information systems [Bri96].
These methods are meant to provide a sequence of steps that ultimately accomplish a
certain goal [dOCCFD22]. Therefore, they are inherently designed to help benefit all
kinds of users. Method engineering has been studied for MDE and DSMLs in particu-
lar [MKHdK22, Hon13], but is lacking the necessary bridge to real industrial projects.
Often there has been a presumption that users of industrial DSMLs are mostly experts
in modelling. However, in reality, users frequently need ample guidance and support in
using the DSMLs and for gaining more domain know-how and expertise. To solve this
challenge, users must be supported with modelling information that is not only accord-
ing to their current modelling situation but also provides proposals and actionable items
that make their modelling more efficient and equip them with more confidence.

As well as with providing suggestions and recommendations to users, a set of tasks,
activities, or processes in the form of a process model [Sch1l6] allows users to align
themselves to their models. This provides them with a more focussed view on the
models and advises them with yet-to-be accomplished processes that are part of their
incomplete models of the system under development. Passive information is a kind of
static information that exists on documents and webpages, which is mostly outdated and
not suitable to be searched on. It becomes rather tedious to find any modelling relevant
data and even less, how to use a DSML properly to realise the domain’s concepts.
Alternatively, if users are provided with a rather active and up-to-date information,
they would be greatly benefited. As systems grow more complex, it becomes imperative
that only specific recommendations related to the modelling are provided to the user
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and not information that burdens the user with all possible scenarios thereby reducing
their productivity. The literature discusses a few reasons why integrating such methods
directly into the DSMLs is a big challenge [Hon13, NRO§|, and a primary cause is that
DSML projects are time-bound and resource-bound and therefore almost all of the effort
in a project lifecycle is spent on developing the syntax of the modelling language itself.
Such time constraints, resource constraints, and even lack of either software or language
development skills means language engineers often struggle to provide suitable methods
and stakeholders often resist committing to integrating such methods within the DSML
itself.

Overall, language engineers must provide integrated DSML-based development meth-
ods that guide and supports DSML users in improving the engineering and use of mod-
elling languages, thereby improving the overall modelling experience. While certain
businesses have a single modelling environment, it becomes a necessity to provide all
users of this environment with dynamic recommendations that are tuned to their indi-
vidual state of their models. This thesis will therefore explore the possibilities of defining
and integrating model-aware recommendations for industrial DSMLs that are ultimately
independent of a specific implementation or a modelling tool and are focussed on a
user-centric view such that it is more widely adopted in the modelling community.

2.3 Domain Models

This section lays down the foundation of feature models (Section 2.3.1) and function mod-
els (Section 2.3.2) that are used extensively in the thesis to describe the domain-specific
world for assisting modellers in developing software using product lines or describing de-
composition of systems. While further domains are also briefly discussed in Chapter 8,
the concepts described in this thesis are exemplified in the individual chapters mainly
using feature and function models.

2.3.1 Feature Model

In software engineering, a (software) product line is considered a set of products that
together address a specific market segment or accomplishes a particular mission [CN02].
Therefore, the discipline of achieving a consumer’s personal preference in software through
the production of a family of commonly related software concepts is called software prod-
uct line engineering (SPLE) [PBVDLO05|. SPLE therefore produces families or variants
of similar languages rather than building each system individually. To model such vari-
ability is a challenge, even more so by using modular concepts of reusing parts of a
language [BEKT18].

Variants of a software language in a product line are differentiated by their features.
These features are functionalities in a software that is incremented gradually by lan-
guage engineers for a given software [BBRCO06]. Each software therefore consists of
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these individual features which means consumers using one variant of a software may
have functionalities that is different from other variants of the software. Software prod-
uct lines are therefore specified in terms of feature models. Consequently the DSMLs
that describe or support feature models are referred to as feature model languages and
such feature model languages are used to represent entire software product lines. While
some features in a product are mandatory for the efficient functioning of a system, other
features may be optional or non-essential. Examples of mandatory features are features
that must be included in safety-critical systems in aeroplanes, as the failure of such
systems could be catastrophic [WDS*10].

A feature model represents the common and variable features of a software product
line at different levels of abstractions and relations. Relations between features define the
way a feature model is represented visually. All possible products of a software product
line are modelled by including these features and their relations. Therefore, a single
feature model represents a family of products so that as a software evolves, the different
variants of this software are easily configured. For example, in a graphical user interface,
preferences of a user change based on the kind of product that is offered to these users.
These are achieved with configurations of variabilities at various points in the model,
also referred to as wvariation points. However, as feature models grow in complexity, so
does the manual efforts in analysing errors in those models.

In the remainder of the thesis, we consider the following definition of a feature model
that is based on the definitions proposed by [BSRC10, Bat05]:

Definition 3 (Feature model). A feature model consists of
e a hierarchically arranged set of features,

e three relations OR, AND, and XOR, between a parent (or compound) feature and
its child features (or subfeatures), and

e constraints between the specified features based on inclusion or exclusion state-
ments, e.g., if a certain feature f is included, then other features, or a combination
of features, such as f1 or f2 must also be included or excluded.

The relationships between a parent feature and its child features are categorised as:

e Mandatory. A mandatory feature is a child feature that must be included in all
products and variants of a product.

e Optional. An optional feature is a child feature that may or may not be included
in subsequent products and variants of a product.

e And. A set of child features where all of these features must be included in all
products and variants of a product.
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e Or. A set of child features where at least one of these features must be included
in all products and variants of a product.

e Alternative (Xor). A set of child features where exactly one of these features must
be included in all products and variants of a product.

In addition to the relations between the features, the following basic constraints are
also defined for a feature model:

e Requires. The inclusion of a feature f1 in a product implies the inclusion of feature
f2 in the case f1 requires f2.

e Excludes. Both features f1 and f2 cannot be part of the same product when f1
excludes f2.

While other relations and constraints may be used, this thesis considers only the
aforementioned notions of feature models.

2.3.2 Function Model

A function model describes a system as it is observed from the outside. Such a kind
of model does not consider architectural details, but how different functions of a sys-
tem behave and relate to each other. Functions are considered as a bridge between a
human intention and the physical behaviour of artefacts [UTY95]. Therefore function
modelling can be thought of as a representation of the knowledge of different functions
in a system. This is based on the concern that a single developer cannot manage the
development effort of an entire system. Therefore, a system must be decomposed into
smaller subsystems, meaning functions that describe each system or a subsystem must
also be decomposed so that individual aspects of a system are better described. In the
remainder of the thesis, we consider the following definition of a function model that is
based on the definition proposed by [EKVB™T08]:

Definition 4 (Function model). A function model is a model that describes either a system
or parts of a system, including any subsystems, from a purely functional perspective, i.e.,
as the system is observed from the outside.

Functional modelling therefore reduces the gap from the high-level requirements of a
system and the lower-level implementations [EKVBT08]. While functions are described
for individual aspects of a system, they are either related to other domain-modelling
constructs or allow the flow of data through them. For example, a function can be
logically connected to certain kinds of requirements or certain kinds of features in a
DSML project. Functions can be configured with input and output ports that allows
the passage of different kinds of data such as signals, materials, human-machine inter-
faces (HMIs), and various forms of energy. Additionally, a functional context provides
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an external view of the whole system along with its interactions with the external en-
vironment, such as lights, temperature, and so on. Interactions with the environment
are achieved through actors (human actors interacting with a function), sources (such
as a power supply source), sinks (such as data storage facilities), or any other external
functions.

Different kinds of views are provided that support function modelling. A context view
provides a functional context view of an aspect of a system. Structural view shows the
structure of the main function of the system along with its decomposition. A behavioural
view depicts the interaction between the internal functions of a system in a time sequence
manner showing the operation of a system under various circumstances. Thus it is
beneficial to decompose a system to describe the various parts of a system at an objective
level [GRV09].

A primary goal of function models is to show the decomposition of a system. It must
be therefore possible to model functions on different layers of abstraction [BBK™21].
While decomposition of functions lead to a better understanding of a system, function
models must also sufficiently describe how the functions are composed for showing the
overall view of a system. As projects evolve, inputs and outputs of functions on these
layers of abstractions must also be adapted and remain compatible during the modelling
process. Fail-safe techniques must be considered during functional modelling to detect
errors during modelling.
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Chapter 3
Systematic Engineering of Industrial DSMLs

The efficient and systematic engineering of user-friendly DSMLs suited for industrial
practitioners is quite challenging [MvdSC*18]. DSML practitioners often do not model
on a daily basis, meaning models are built over a period of time with assistance from
the provided DSMLs [GFCT08]. While efforts must be made to foster the reduction
of repetitive modelling tasks, there must also be consideration for modularising con-
cepts of common language parts across a DSML and for providing a holistic UX to such
users [KKP109]. This is partly because industrial language engineers struggle in pro-
viding a methodical support that separates various facets of DSML engineering while
also reusing language modules. Another reason for developing common language parts
is the familiarity when using another DSML such that common concepts are interpreted
similarly across different DSMLs. For efficient deployment of DSMLs in an industrial
context, the combination of using reusable modules as well as methods to support in
the modelling journey of a practitioner is of utmost importance. This chapter lays the
foundation of the concepts described in the remainder of this thesis for helping language
engineers systematically engineer industrial DSMLs using the concept of DSML building
blocks. To achieve this, a definition of a DSML building block is provided, followed
by describing various parts of the DSML building block, and how they are composed
together to form a DSML. Further, this chapter provides details on how engineering of
graphical DSMLs and their building blocks are achieved in MagicDraw. Some results of
this chapter have been published in [GKR*21]. Therefore, passages from the paper may
have been quoted verbatim in this chapter.

To reduce the conceptual gap that domain experts face during systems engineer-
ing [FRO7], modelling is being introduced at early phases of the systems engineering pro-
cess [PB20]. DSLs and DSMLs [Fow10] help reduce the gap between the problem space
and the solution space by better supporting abstractions necessary for domain-specific
concepts. Generally speaking, DSMLs help understand the syntheses of systems. Graph-
ical DSMLs assist in modelling in various domains, such as MATLAB Simulink [Chal5],
or SysML [FMS14], but still do not completely reflect every single domain aspect that
are often overlooked during language engineering. Engineering DSMLs that capture a
domain’s terminology (abstract and concrete syntax), semantics [HR04], and rules (well-
formedness checks) is still complicated [MWCS11]. Therefore, it is essential to reuse
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parts of a DSML that easily facilitates the creation of newer DSMLs or versions of a
DSML to achieve effective domain-specific systems modelling. This means the separation
of these engineering concerns must not only include reusing parts of the language defi-
nition, but also additional parts such as describing effective methods for using a DSML,
and fostering interoperability of language components. Therefore, involving industrial
stakeholders from the start of a DSML project helps improve the general usability of
such DSMLs [BAG18].

Industrial DSML engineering must therefore consider concepts of reusable units, de-
fined as DSML building blocks, that essentially combine language definitions, methods to
help practitioners achieve their modelling goals, and UX concerns that elevate a DSML
practitioner’s modelling experience. To this end, each DSML building block serves a
domain-specific purpose, for example, the support for the creation of feature models,
which is eventually combined with other DSML building blocks (e.g., requirements or
function models) to create a truly integrated and heterogeneous DSML. In the follow-
ing, a conceptual model and the definition of a DSML building block is provided in
Section 3.2, followed by describing the various parts of a DSML building block in Sec-
tion 3.2.1 as well as the roles involved industrial DSMLs in Section 3.3. Further, Sec-
tion 3.4 discusses the engineering of a DSML in MagicDraw including developing DSML
building blocks illustrated with an example in Section 3.5. Finally, Section 3.6 discusses
the central design decisions, while Section 3.7 compares related approaches.

3.1 Core Elements of a Proposed Method for Industrial DSML
Engineering

The ubiquitous GPLs used for software development presents their challenges in mod-
elling software and systems [PB20] as they focus more on the technical implementation
details. This not only aggravates analysing systems under development but also pre-
vents domain experts from addressing solutions related to the domains directly. There-
fore, DSLs and DSMLs [Fow10] are built and aimed at reducing this gap by supporting
domain-specific abstractions and are more accessible to analysis and synthesis of systems
and their parts. Despite employing domain terminology, concepts, rules, and meaning,
modelling with DSMLs is often less effective than expected. This is partly due to the
deployment of DSMLs to their users which often incurs various challenges that include
the reusing of syntax and semantics across different stakeholders in different projects.
Further, users model less often, probably once a week or even less. This means reusing
encapsulated DSML parts systematically facilitates the engineering of new DSMLs and
ultimately foster truly domain-specific systems modelling. Industrial DSMLs, in partic-
ular, must consider that users are modelling less often than expected and therefore there
is a greater need for integrating modelling support and usability considerations through
reusable language parts that help such users.
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ENGINEERING

The core elements of a method for industrial DSML engineering are the modelling
language, its parts, and an accompanying modelling tool that the language is built and
used in. Such a method must not be restricted to a particular kind of meta modelling
language, meaning, the meta language described for a method must be interchangeable
with any other meta language. This provides the flexibility for language engineers to
develop languages that are contextually not bound to certain decisions or standards that
DSML projects often come with.

3.1.1 Modelling Language

DSMLs are software languages and software languages are software too [FGLP11]. Hence,
DSML engineering is also subject to the challenges of software and systems engineer-
ing [TKO05]. This means multiple languages and (meta)languages must be considered to
define the complete domain area that a DSML represents. In addition to the graphical
syntax and semantics for industrial DSMLs, the methodologies and techniques that are
highly specific to individual departments must be considered. This is often considered
a time-consuming effort in SLE. To solve this problem, either central research units in
organisations must become more common in developing truly domain-specific solutions
or language engineers must be trained with software engineering development processes
to develop solutions that are aimed at helping practitioners easily adopting various mod-
elling techniques. While technical improvements such as explicit language interfaces or
language types do foster the reusability of methods in language engineering, there exists
a lack of modularly developed language infrastructure that provides not only reusable
language components, but also provide the means to guide users, and improve their
overall modelling experience.

Modular Language Parts. Reusing a language and its parts is challenging in any
modelling environment. While fostering modularity of languages leads to a structured
reusable benefit of commonly using domain concept across different environments, of-
ten the effort it takes to build a modular language is counter-productive to the needs
of an industrial project. However, to truly achieve modularity of languages and for
individual languages to be bundled as part of a library of languages, the reusability
of languages must be considered by language engineers. Industrial languages represent
heterogeneous domain concepts and is often not limited to an independent domain or
domain concept. Therefore, a method to provide a library of languages is beneficial in
ensuring complex languages are logically and independently developed through various
building blocks. These building blocks of languages must capture the essential language
infrastructure of a particular view of a domain. DSML building blocks serve as a step-
ping stone in presenting views such as a technical view, a logical view, or a functional
view that would otherwise be intertwined together with minimal logical separation in
a DSML. These blocks must be constructed in a way that they are flexible enough for
extensions and adaptations, and ensure they provide the necessary interfaces to interact
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with other building blocks. Essentially, a building block consists of a reusable language
infrastructure including the language components, methodological techniques, and us-
ability aspects that provides the complete modelling capabilities for a particular view of
an industrial domain.

Language Components. From a technical perspective, SLE and component-based
software engineering (CBSE) communities promote the reuse of existing and future soft-
ware solutions. Therefore, language engineers undertake the task to maintain and reuse
software artefacts, while breaking larger artefacts into smaller decomposed artefacts.
Similarly, in DSMLs, language components primarily describes the definition of a lan-
guage, while providing the necessary artefacts and interfaces required for the component
to interact within its modelling environment [BHP*98]. The artefacts generated as part
of the definition of a language component must be stored in specific file formats that
are generated as part of the compiled source code. This means that artefacts could be
grammar files to parse a textual language infrastructure or through storing information
related to the graphical language definitions in software file systems. Language compo-
nents are composed through mechanisms of language inheritance, extension, embedding,
and aggregation for ultimately fostering the reusability of independent language parts
to build larger DSMLs. Therefore, language engineers must consider a thorough specifi-
cation of the language infrastructure to ensure that the individual language components
comply to the concepts that they describe for a domain. Defining language infrastructure
that are used across modelling environments fosters the need for modularity of DSMLs
and their building blocks. To effectively, interchange models between tools [LMT*18],
methods to exchange language constructs across modelling environments must be de-
veloped. A modular and reusable component of a DSML provides an effective solution
in exchanging DSML concepts across modelling tools [HRW18]. Such language compo-
nents, when developed independently, require minimal transformations when integrated
in another modelling tool [BGNT04]. However, extensive efforts are required when con-
ceptually building a common infrastructure that allows the modelling of similar aspects
of a domain across different modelling environment.

Recommendations and Process Models. Methodological techniques aimed for improv-
ing the experience of modellers must provide modelling solutions that help in either
completing the design of a certain model or to repair existing through recommender sys-
tems models [AGCDL21]. Various tasks such as the creation of models and metamodels,
reuse of existing models, or interlinking already designed models must be considered as
part of the overall modelling in an industrial DSML project. While static information
are readily available to modellers through documentation, training materials, and hand-
books, conveying active and dynamically changing information pertaining to the models
is still a challenge. This thesis, therefore explores methodologies that are integrated di-
rectly within the individual DSML building blocks and the modelling tool for providing
a more user-centric set of suggestions and recommendations to users that are based on
the current modelling context of users. This aims at providing modellers with a focussed
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view on those models and parts of their system that are currently under development.
Further, process models, activities, and tasks that describe the extent to which models
have been currently developed ensure that modellers are provided with a more holistic
view of their modelled systems and take various actions to further improve their models.

User Experience Concepts. The methodological techniques contribute largely to the
modelling experience of modellers. Thus, user experience and usability serves an im-
portant role in ensuring that modellers feel positively during their interaction with the
DSML and its constructs. Any negative feelings must be lessened to ensure that the
resulting models not only are closer to their actual systems, but also integrate well with
the other models of the system. Therefore, language engineers must ensure that DSMLs
consist of methods, techniques, and usability design aspects that enhance the overall ex-
perience of all stakeholders in the project [PRS™]. This ensures that DSMLs are efficient
and that modellers are satisfied both with the use of DSMLs and their constructs as well
as within the modelling environments.

Modelling Stakeholders. Various language engineering tasks are undertaken by vari-
ous stakeholders. While, the responsibilities of these stakeholders in an industrial DSML
project vary, each stakeholder must have a clearly defined role in the organisation. In
essence, this thesis considers the roles of language engineer, domain experts, and mod-
ellers to be the most important ones in the context of the engineering and use of DSMLs.
The development and maintenance of DSMLs and their functionalities must be per-
formed by language engineers who build the language infrastructure for the complete
DSMLs and their building blocks. They must also consider integrating certain methods
and techniques that eventually help ease the difficulties in using a DSML along with
a modelling tool. Domain experts possess expertise in particular application or tech-
nical domains [FR05]. They are responsible for providing their domain know-how and
familiarity with various domains to solve complex domain problems. Domain experts
also closely work with language engineers and modellers to provide a bridge between the
technical and business aspects of any industrial DSML projects. Finally, modellers are
the users of DSMLs who create models towards reaching a certain modelling outcome.
They are not necessarily experts in language engineering and may not also be domain
experts, but must be skilled in working with DSMLs and the chosen modelling tools.

3.1.2 Modelling Tool

The efficient use of a DSML requires a corresponding modelling tool. The development
of the tool itself is not considered an integral part of a DSML development as it requires
extensive software engineering. Often, language engineers and modellers live in their in-
dividual modelling environment, therefore reusability aspects within a certain modelling
tool are lost as projects become complex. Therefore, language engineers must consider
the development of tool independent solutions at the start of any industrial project. As
functionalities to import and export domain-specific constructs for similar aspects of

33



CHAPTER 3 SYSTEMATIC ENGINEERING OF INDUSTRIAL DSMLS

domain differ with every modelling tool, the exchange of semantics and methodological
techniques also requires a deeper understanding that is answered subsequently in this
thesis. To completely understand a described language part, graphical notations are an
essential part of the modelling tool and the modelling language. They foster compre-
hensibility of DSMLs as otherwise in a graphical modelling environment a language will
be rendered illegible. This means special considerations to the way DSML parts are
expressed to the user must be considered and both the modelling tool and language be
developed accordingly.

These described core elements: the modelling language, its reusable components,
methodological techniques, process models, user experience considerations, and the cor-
responding modelling tool contribute to the proposed method for the systematic engi-
neering of industrial DSMLs and have been studied subsequently in detail in the re-
mainder of this thesis. The description of DSML building blocks and their constituents,
methodological techniques, and usability considerations all contribute to the main re-
search question. The concepts described in various chapters have been presented from an
industrial perspective with various real-world examples being reused. The approaches
consider engineering DSMLs from a graphical perspectives while reusability towards
textual environments are also discussed to promote the development of these concepts
independent of a technological space. Modularly designing software and systems is im-
portant in an ever growing heterogeneous and complex world with an extensive number
of interdisciplinary concepts. The reuse of common language parts for building holistic
DSMLs is necessary to facilitate a greater confidence in industrial language engineering.
To this end, these building blocks of languages must be able to provide the necessary
language infrastructure for representing a particular aspect of the domain.

3.2 DSML Building Blocks

The systematic engineering process of developing industrial DSLs using modular reusable
DSL building blocks is described in [GKR21]. While the mentioned study describes the
engineering process in graphical DSLs, the same process is reused for graphical DSMLs
as well. This means a DSML potentially consists of various DSML building blocks, each
designed to solve a particular aspect of a domain-specific problem. Therefore, a DSML
building block is defined as follows:

Definition 5 (DSML Building Block). A DSML building block is a reusable unit that helps
in the creation of efficient DSMLs aimed at modelling software and systems in a variety
of domains.

In other words, a DSML building block provides the language infrastructure, i.e. the
(potentially incomplete) language definition, methods, and concepts, to represent a par-
ticular view of a single system of interest. This means, if a DSML concerns with de-
scribing the concepts of only one aspect of the industrial domain, such as for describing
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feature models, then a feature model DSML will consist of only one DSML building
block that captures the complete language definition and concepts describing a feature
model.

However, in practice, industrial DSMLs often require the representation of multiple
interdisciplinary domains with intersecting concepts [HJK23]. For example, a DSML
that is used in the healthcare industry must provide the ability to model different aspects
of a medical project such as the functional and non-functional requirements for a medical
device, use cases, actors, tasks, features, system functions, and medical device architec-
tures [MCO8|. Here, the concepts of each of these individual aspects of the DSML are
modularised into reusable DSML building blocks that are eventually composed into the
final DSML. These DSML building blocks are reusable to the extent that the language
infrastructure for a DSML need not be built from scratch every time a new DSML,
with overlapping domain-specific concepts, has to be developed. This means, if a DSML
building block z is used in DSML d, then the same DSML building block z or a slightly
different version of z ('), is reused to build DSML d’ which is a DSML similar to d but
developed for another customer. This fosters the reusability of language parts as well as
allows for the efficient creation of versions or families of a language [Beu08], which are
important in SPLE [PBVDLO05]. Real world case studies of DSML building blocks and
how they are reused is further described in Chapter 8.

The concepts presented in the remainder of this thesis, unless stated explicitly, apply
to DSML building blocks and hence implicitly to DSMLs as well. Therefore in the course
of answering the various research questions, if a DSML is described for modelling the
concepts that enables the solution to specific aspects of a domain, we consider the DSML
to consist of one or more DSML building blocks that are configured with the language
infrastructure for that particular domain.

Figure 3.1 shows a conceptual model of a graphical DSML and the various DSML
building blocks that compose together to form the complete language infrastructure.
While Def. 1 in Section 2.1 defines the constituents of a DSML, the provided definition
here considers a DSML from the perspective of defining a language that describes a
particular domain. In practice, an industrial DSML must provide the ability to model
different aspects of the domain in consideration. The individual aspects of a domain are
logically grouped together and defined in the individual DSMLs building blocks. As an
example, one aspect of modelling using an industrial DSML is the ability to model func-
tions for an industrial domain. Therefore, describing the functional aspects of a system
through function models (Section 2.3.2) must be possible using a DSML building block
that describes the language infrastructure needed to model functions. Another aspect of
modelling using an industrial DSML is the ability to model features for representing the
common and variable features and their relations in a software or system product line.
This is described using feature models (Section 2.3.1) that is possible using a DSML
building block that describes the necessary language infrastructure needed to model fea-
tures. The concepts for modelling different aspects of a domain are therefore captured
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Figure 3.1: A conceptual model showing the artefacts of a graphical DSML. The DSML
is composed of different DSML building blocks each representing the language

infrastructure for solving individual modelling aspects of a domain. Figure
adapted from [GKR*21].

and represented in the individual DSML building blocks. This means, DSML Building
Block 1 could be used to model the functional and non-functional requirements for a
project, DSML Building Block 2 is used to model features of the system, and DSML
Building Block 3 is used to model functions of the system. Other DSML building
blocks are similarly used to model other individual aspects of the system which are de-
scribed in detail in Chapter 8. Therefore, a DSML in reality is the combination of these
individual DSML building blocks and such a language expresses the complete domain
that is required to be modelled by a practitioner.
This approach separates the concerns of industrial DSML engineering and use into the
following two levels:
1. the tool-specific implementation level, where language engineers realise the con-
cepts of a domain by creating the required language infrastructure for a DSML
using a graphical modelling tool, and

2. the usage level, where modellers are able to use the provided DSMLs in a modelling
environment for designing models.
Because a DSML consists of different aspects that need to be modelled, and the kinds
of DSML users are diverse, it is important that the combination of the DSML building
blocks is described sufficiently in a way that it captures most, if not all, of the domain
concepts.
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3.2.1 Parts of a DSML Building Block

Every DSML building block consists of the language infrastructure needed to describe
a particular aspect of the domain. In our earlier definition of a DSML (Section 2.1), we
considered the abstract syntax, concrete syntax, semantics, and well-formedness rules,
as the parts that form a DSML. While this is true in a strictly technical language sense,
additional language infrastructure must also be considered for industrial DSMLs. This
is because substantial efforts are spent in designing the syntax of a language because
of time and resource constraints. However, this often leads to static and dull usage of
DSMLs, with very little support or guidance to users. It is necessary that DSMLs must
be equipped with more active and continuous support for the individual domains that
go above and beyond the plain modelling language and its supporting tool. Therefore,
a support for providing methods, guidance, and continuous domain knowledge must be
an essential part of DSML engineering. To this end, a language infrastructure must also
provide methodological guidance that is:
e context-sensitive,

e active, to the current state of models, and

e evolve as DSMLs grow.
In the context of industrial DSMLs, the creation of this kind of language infrastructure is
achieved by combining available technologies, such as with commercial modelling tools,
supported with existing usability guidelines to model complex scenarios.

[DSML Building Block]

consists of

v v v

Language User Experience
Components Design

[ Methods

consist of

[Concrete Syntax] [Abstract Syntax] [ Semantics ]

Figure 3.2: The different parts of a graphical DSML building block that consists of the
language infrastructure for representing a specific aspect of a domain. Figure
adapted from [GJRR22b].

Such a language infrastructure is provided for a DSML building block by defining the
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parts as shown in Figure 3.2. Each DSML building block must essentially consist of a
set of language components that describe partially, or in whole, the language definition
needed to describe a particular aspect of a domain. For example, a feature model DSML
building block consists of language elements and artefacts that effectively represents a
feature model [Voel0O]. Methods must provide active, synchronous recommendations,
guidance, and supporting techniques to users so that they are assisted in their modelling
that relate to the domain under consideration. For example, a feature model DSML
building block must contain methods that help users in configuring mandatory or op-
tional features, or simply take them through their feature model journey. Methods also
correlate to pragmatics [Thal2], a notion used to describe how languages are used for
intended deployment functions contributing to the purpose and goals of modelling sit-
uations. Finally, UXD aspects must be integrated directly into the infrastructure of a
DSML building block, such that they help users in a seamless modelling experience Sec-
tion 2.2.6. As an example, providing colours and icons to different kinds of features in a
feature model DSML building block allows users to better understand and visualise the
constructs of a feature model, such as for distinguishing the mandatory features from the
optional features. The following discusses these parts of a DSML building block in more
detail. Further, subsequent chapters of this thesis, Chapter 4 for language components,
Chapter 7 for method support techniques, and Chapter 6 for UXD also detail the parts
of a DSML building block at a more in-depth level.

Language Components.

The most essential part of a DSML building block is the definition of the language it-
self. Without describing the syntax and semantics of a language, it is impossible to
use a DSML. To this extent, reusable language components that allow for defining a
(potentially incomplete) language [Rum16] is used to achieve modularity in industrial
DSML engineering. Therefore, a language component essentially consists of an abstract
syntax, the concrete syntax, and the semantics as described in Figure 3.2. Building a
family of languages that share common concepts is further promoted through reusable
language components which fosters the creation of similar versions of DSMLs. Such a
family, library, or catalogue of languages is beneficial in eliminating the need for build-
ing DSMLs from scratch. Language components that are part of a DSML building
block, therefore, include artefacts of a (potentially incomplete) language definition for
a particular domain [But23]. A language component is thus also defined as reusable
unit consisting of language artefacts that allows for defining a particular domain’s lan-
guage. While language components are sufficient to describe a DSML building block,
and therefore a DSML, it is not often adequate in describing the entire graphical DSML
engineering process, as this means considerations for parts other than the pure syntax
and semantics are not considered [Fral3]. Language components typically consist of
software artefacts realised in the form of files in a file system directory format. The
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abstract syntax is normally described for a graphical DSML as class diagram files, the
graphical concrete syntax is described using graphical elements, e.g., box-and-line based,
tabular, or tree-based [CFJT16], and the well-formedness rules are realised using Java
class files. Further concepts of language components and their composition techniques
is described in Chapter 4.

Methods.

A DSML must provide the necessary domain constructs needed to describe a particular
domain, or a set of domains. Thus the language engineering process must be supported
additionally with reliable and active methods that help users understand and make effec-
tive decisions for the domains in consideration [Hon13]. With the increase in complexity
in the syntax and semantics of a language [CGR09], multiple domains are now strongly
getting interlinked, and an industrial DSML therefore typically represents concepts from
multiple domains. It becomes increasingly necessary to guide and assist users in creat-
ing effective models that is representative of these interlinked domains. Such methods
to guide and support users in their modelling need to be established to cover specific
modelling aspects during various stages of designing models. Often, practitioners lack
the know-how in every aspect of their domain, as there is not enough guidance in their
current modelling scenarios [Roql6]. The method part of a DSML building block (Fig-
ure 3.2) describes various ways to provide such a guidance to users. Generally, the
following methods (non-exhaustive) are described for each DSML building block:

e (1) general training material for models in the form of overview, documentation,
guides, hyperlinks, training videos, methodical steps, and commonly asked ques-
tions need to be directly integrated within a DSML building block;

e (2) various configurable business rules helps provide active, synchronised, and dy-
namically changing recommendations to users that identify incomplete or missing
parts of a DSML diagram, as well as specifying certain properties or values of
DSML elements that could be based on historical or recommended data; and

e (3) prescriptive process models in the form of activity diagrams that detail the
current state of the models, and describe tasks and activities that have either
already been performed or needs to be performed to achieve the desired modelling.

Describing methods presents its own challenges as such additional methodical aspects
are only defined on the composed DSML to ensure all domain aspects are captured
in providing guidance and recommendations to users. Further concepts and realisation
techniques for providing suitable methods that guide users in their modelling is described
in Chapter 7.
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User Experience Design.

As domains become more heterogeneous and the complexity of languages increases with
respect to the syntax and semantics of these languages, providing a good UX to practi-
tioners becomes a key notion. Methods described so far assist and guide users in their
modelling, but providing such methods is also a challenge for language engineers. They
need to consider both the combination of language components and methods, whilst
also integrating techniques for improving DSMLs that make it easy for practitioners
to model with such DSMLs. To this end, UX aspects are integrated directly within
language components as well as the methods.

By defining and implementing standards of UXD and usability heuristics directly on
the individual DSML building blocks and therefore the DSML and its accompanying
modelling tool, the overall modelling experience of users are improved [GJRR22a]. It
must be noted that UX is a subjective topic, and the preference of users often differ vastly
for each domain. As an example, a user would like to see features in a feature model
DSML more prominently defined and visible, rather than plain technical requirements
that are important in the larger context but not necessary in a feature model. How-
ever, with a combination of DSML building blocks, addressing these challenges is also
important to solve concerns of all key stakeholders. Improving the UX for users is key
to achieving modelling goals with the accompanying language constructs and methods.

UX is described in a way it invokes positive instantaneous feelings for a user during
interactions with various constructs of a DSML or within the modelling environment. To
this end, certain design decisions, termed UXD, are integrated by a language engineer
that ultimately leads to a good UX, one that leads to positive rather than negative
feelings during modelling. Chapter 6 details extended definitions of UX and UXD, and
lists down a set of categories, standards, and usability heuristics for designing a good
UX.

3.3 Roles in Industrial DSML Engineering

As with any other software engineering task, language engineering also consists of a
number of specific roles that are performed by people possessing certain skills. These
roles are used for different kinds of tasks, such as for conceptualising, designing, imple-
menting, or even using a DSML [KRV06]. The engineering and use of industrial DSMLs
involves three main roles, language engineers, domain experts, and modellers. The dif-
ferent roles are specified such that the different kinds of tasks and responsibilities are
separated based on the capabilities of each role. It is also however normal that a single
person takes up responsibilities or be trained to accomplish tasks that belong typically to
some other person, therefore representing multiple roles. This thesis primarily discusses
the following three roles that will be referred to, throughout the thesis.
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3.3.1 Language Engineers

A language engineer’s main task is the development and maintenance of DSMLs and its
building blocks. This includes building reusable language components, creating methods
integrated with a DSML building block, and ensuring aspects of UX are considered within
each building block, and hence the DSMLs (Section 3.2.1). They are therefore considered
experts in engineering languages. Aspects of defining a language’s syntax and semantics,
defining extension and variation points in a DSML (Section 2.2.4), specifying methodical
steps, recommendations, and process models, as well as improving the usability of DSMLs
are some of the important responsibilities of a language engineer [HRW18]. However,
they are not considered experts in designing user interfaces nor are they experts in a
particular domain. In general, language engineers must possess a basic understanding
of software development and therefore have the ability to create basic programs using a
GPL, such as Java, to build customisations for the DSMLs, but is not a necessity and
they must be trained to acquire this skill.

3.3.2 Domain Experts

Domain experts are not necessarily language engineers - sometimes they are not even
software or systems engineers, but people who possess expertise in a particular do-
main [FRO5]. A domain generally refers to application domains such as a business
process or a discipline of engineering, or even to technical domains such as relational
databases or even state-based systems [RW11]. Domain experts are generally people
who have gained special knowledge or a skill in that particular domain. They are gen-
erally experts in the problem domain, sometimes even in neighbouring domains, and
who are also familiar in modelling with this knowledge. Domain experts often work with
language engineers in defining the specifics of a DSML and assist in customising different
parts of a DSML based on stakeholder requirements. Examples of domain experts are
system architects, key experts, business analysts, and subject matter experts.

3.3.3 Modellers

Modellers are often users of DSMLs who use the DSMLs to create models based on their
modelling goals. A modelling goal is a statement that is aimed towards reaching a desired
modelling outcome [CFBO05]. Such users do not possess expertise in language engineering
and are often not even software engineers or developers. While modellers can also be
domain experts, it is rarely so in industrial projects as the number of stakeholders is
quite high, and each stakeholder has their own responsibilities. Modellers must however
possess basic knowledge of the modelling tools they work with, or gain experience in
using such tools as they progress with their modelling. It is also helpful for modellers
to be equipped with language engineering expertise as they can then comprehend the
syntax and the semantics of a DSML much better. In an industrial context, modellers

41



CHAPTER 3 SYSTEMATIC ENGINEERING OF INDUSTRIAL DSMLS

are also often referred to as industrial practitioners or merely practitioners [GKR21].
Throughout the different parts of this thesis, the terms modellers, users, industrial prac-
titioners, or practitioners, are interchangeably used. However, they commonly refer to
the roles defined for a modeller.

3.4 Industrial DSML Development in MagicDraw

This section describes a systematic engineering process involved in the creation of graph-
ical DSMLs. It must be noted that other modelling tools also serve the same purpose
of language development, hence the concepts described in this section are transferable
to a certain extent to other modelling tools as well (Section 2.2.1). However, further
research is needed to validate this concern and the scope of this thesis considers only
the out-of-the-box and customisation capabilities that MagicDraw offers. For now, the
remainder of this section describes how DSMLs for industrial contexts are engineered
using a mixture of MagicDraw’s functionalities and custom GPL code such as those
written in Java.

3.4.1 Language Profile with Stereotype Definitions

Defining a DSML in MagicDraw requires the creation of a language profile that eventually
consists of language components and their configurations [Neu06]. All the parts of a
DSML are therefore created in a dedicated language profile. As a DSML building block
consists of language components, these language components are therefore inherently
located inside a DSML profile. A DSML profile in MagicDraw not only defines the various
stereotypes of domain-specific elements, but also allows defining customisations to these
elements. These elements are configured with additional rules such as context conditions.
Further, methods and UXD aspects are directly included in a DSML building block,
and are therefore tightly integrated with the language components themselves (Def. 5).
However, because of budget or project constraints, language engineers may choose to
design a language profile that solely consists of the set of language components for a
DSML and ignore designing additional methods or UXD aspects as part of the language
infrastructure.

In order to define DSML elements, individual stereotypes are created for each domain-
specific concept. This allows only specific elements to be assigned a particular kind
of stereotype and hence a particular UML metaclass. Each of these stereotypes are
configured with customisations that help set the meaning and behaviour of the DSML
elements, while also providing opportunities to integrate aspects of good UX directly for
each configured language element. As an example (shown in Figure 3.3), a stereotype
only allows a “Functions” package in a function model DSML building block to contain
functions and sub-functions, but prevent inputs and outputs data flows types to be
present in this package. However, input and output data flows are allowed to only exist
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in another package (“In/Out Types”) dedicated for such elements in the function model
DSML.
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Figure 3.3: (Left) An example of a function model that consists of different function
packages and functions, and (right) the stereotype definition of a function
model package.

3.4.2 Customised UML Diagrams for a DSML

Once the language components are created as part of the language profile, language
engineers create custom diagram definitions for their DSMT.S. "MagieHiraw provides the s~ e m=er
capabilities to create these custom diagrams that are based on UML diagrams [Mag20].
Every custom diagram supports the creation of customised toolbars containing DSML
elements that are specific to that diagram. This means a function context diagram
must be able to provide functions and their interactions along with any other supporting
data flows between these functions. These toolbars directly assist in creating model ele-
ments with the already applied stereotypes, thereby reducing manual efforts to configure
domain-specific properties.

As part of these diagrams, language engineers also define custom matrices, tables, and
relation maps, that are all considered types of diagrams in MagicDraw. The custom
diagrams are always intended for specific purposes and are preconfigured to show only
those elements, their attributes or relations, that are required for that specific purpose
and is described later in this thesis in Section 6.3.1. A diagram for defining features,
therefore, must restrict the creation of functions on the same diagram, unless the diagram
shows the overall context of the features and its relations to certain functions.
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3.4.3 Embedding Textual Languages in MagicDraw

The creation of graphical DSMLs in MagicDraw cannot be truly considered graphical,
since some specific model elements are better written in a textual form. Therefore,
one can argue that MagicDraw predominantly fosters graphical modelling, but allows
support for integrating textual languages. The model elements such as guards and ac-
tions as part of state machine diagrams are considered better represented in a textual
form [HKR21]. MagicDraw comes with a predefined set of textual languages that include
object constraint language (OCL) [RG02], groovy [Koe07], or structured expressions that
are represented in XML [XML23]. But the main challenge with these languages is that
they are not extensible enough, meaning a modeller cannot reference arbitrary model
elements in MagicDraw language profiles. Referencing arbitrary textual model elements
requires models of such languages to be editable such that they are stored in the graphical
editor of MagicDraw [DJRS22]. Further, those textual model elements must be checked
for correctness such that their equivalent model parts in the graphical editor are also
checked accordingly. To reference textual model elements, certain kinds of symbols must
be used through the use of a symbol table infrastructure that promotes an AST to a
graph based structure [But23]. Functionalities that are associated with a textual model
element must be seamlessly integrated within MagicDraw, which means there must exist
a mechanism to provide hook points to refer to these model elements [DJRS22]. There-
fore, simple expressions such as validating or assigning values are usually not supported
and must be developed. Finally, support for guiding users into using a combination of
textual and graphical editors must be provided that alleviates the challenges of embed-
ding textual languages into MagicDraw.

To solve this challenge, methods have been proposed to integrate custom textual lan-
guages in MagicDraw [GJRR22b, DJRS22]. To validate models, modellers enter String-
based expressions in a text box for defining the guards or actions, and this expression
is processed by a parser. This parser is based on an existing library of language com-
ponents [BEH'20] using MontiCore. If the input text cannot be parsed, this validation
mechanism reports an error, otherwise proceeds to construct the symbol table for the
language profile. In this way, references are resolved to access certain attributes of model
elements and the elements are type checked as well as checked if they are accessible from
within the current scope.

3.4.4 Predefined DSML Project Templates

Once the language profile, custom diagrams, and any textual languages have been in-
tegrated into a DSML, a project template is configured. This template is a predefined
project pattern that initialises the basic models for a DSML. This template therefore
sets up a model quickly and serves as a starting point for a modeller. It contains not
only a predefined numbered package structure, but also other language elements and
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custom diagrams within specific packages as shown in Figure 3.3. Project templates aid
in improving the UX and are therefore also described later in this thesis in Section 6.3.3.

3.4.5 Customising Functionalities of MagicDraw with Perspectives

Next, language engineers define certain kinds of perspectives that modellers benefit from.
These perspectives allow further customisation of the language profiles and custom dia-
grams that add or remove certain constructs of the DSMLs as well as functionalities of
MagicDraw itself. Adding or removing toolbar menu entries, context menu items, and
displaying specific elements for specific diagrams are configured as part of perspectives.
Modellers therefore focus more on their modelling concepts, with novice users guided
more easily, and advanced users utilise more functionalities that the DSML offers.

In addition to such perspectives, sufficient levels of documentation and help must
also be provided to modellers. This is achieved by using MagicDraw’s functionality of
providing dedicated hyperlinks to all the configured language profile elements and custom
diagrams. Modellers additionally use a dedicated Help button, created using Application
Programming Interface (API) extensions, to be redirected towards more information
about their models. Concepts of perspectives and documentation are further discussed
later in Section 6.3.2.

3.4.6 Extending MagicDraw Functionalities through APIs

To enhance a DSML in MagicDraw with further custom concepts, API-based extensions
are created that are written in Java. Such extensions are used to visually enhance the
DSML elements, or automatically attach a stereotype on a model element upon instan-
tiation on a custom diagram, or create additional validation checks that are not possible
by default with MagicDraw. Automatically assigning stereotypes to elements means lan-
guage engineers configure the element to show only specific properties, colours, or icons,
for a specific element to ensure consistency with the DSML concepts. Visualisations
help improve the look and feel of model elements that make them distinct. Custom
validation rules, or context conditions, for checking the accuracy, completeness, and cor-
rectness of models are written in Java, such that the models of a DSML are checked for
well-formedness. These rules are configured to run either automatically during design
time or are manually triggered to be executed.

3.4.7 DSML Development Overview for the Defined Roles

Language engineers develop and maintain DSMLs. Figure 3.1 described a conceptual
model that shows the different artefacts in an industrial DSML development process.
At the tool-specific implementation level, language engineers build the DSML building
blocks as well as the resulting DSML. On the usage level, modellers understand the
provided DSML including the constructs of the DSML, the various methods needed to
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reach their modelling goals, and other language infrastructure that is needed to success-
fully model their systems and subsystems. While such users may or may not be domain
experts, they must possess a basic understanding of the involved domains.

Language Engineer . Modeller Domain Expert

@ Gathers requirements ll

from project stakeholders Describes the UX and : Starts MagicDraw and .

and domain experts methods for this DSML : installs the DSML :
DSML Building Block : :

requirements DSML Building Block @ . Suggeslt improved
@ (Language Components, @ : : requirements

reieﬁz:ﬁteistsmr?to UX, Methods) . Creates models and
uli I . . . :

individual domains Develops this DSML Building | : alf:if"fﬁemggﬂ:'_”gn%"ifsls :

Block and adds it to the DSML 9

individual DSML Building
Blocks
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Analyse current DSML

DSML
requirements I

Defines the language
components for one
DSML Building Block

DSML and its represented

concepts

Are more domain
concepts
remaining?
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improvements
needed?
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Figure 3.4: An activity diagram describing the tasks and activities involving the three
roles in the development and usage of an industrial DSML. Figure adapted
from [GKR™21].
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DSML Building Block
(Language
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Figure 3.4 shows an activity diagram that describes the tasks and activities per-
formed by the three roles. As this methodology follows an iterative developmental
approach [BT75], further requirements are continuously refined and added at differ-
ent stages in the development lifecycle. Therefore, in reality, the different activities and
blocks in the activity diagram will usually be executed in an agile approach. The follow-
ing discusses the individual activities and tasks in more detail. To begin with, all project
stakeholders and domain experts meet to discuss the modelling project requirements.

@ Language engineers understand and gather all the requirements for a DSML along
with all the stakeholders. Involving all stakeholders early on in the projects ensures
that the key project requirements are clear from the start and also influences
integrating a good UX with suitable methods.
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The language engineers then need to separate out the requirements based on the
domain under consideration. For example, if a project requires the modelling
support for both function and feature models, then the language engineers easily
distinguish both of these concepts to create individual language infrastructures that
support modelling these aspects of the domain. Therefore, in this case, language
engineers will create:

1. a function model DSML building block, and
2. a feature model DSML building block.

However, to ensure that all the aspects for a modelling functions is completely

developed, the language engineers first decide to develop a DSML building block
for a function model by defining the various language components.

They further integrate various methods and UX aspects aimed at improving the
modelling experience of a modeller.

In general, two scenarios exist for developing a DSML building block:

1. If the DSML for a given domain is already developed in another project, then
the corresponding DSML building blocks are simply reused and modified with
any special project requirements. In this case, creating versions of a language
is easily achieved, since it does not involve developing all existing domain
aspects completely from scratch.

2. If the DSML for a given domain has not yet been developed, and is com-
pletely new, then the language engineers must develop the complete language
infrastructure for this domain from scratch. Here, although efforts need to
be made to develop new DSML building blocks, ultimately such a language
infrastructure are easily reused in other projects.

The outcome of both scenarios is to prevent the development of the complete
language infrastructure for a domain more than once.

The language engineer next identifies the concepts of a feature model into a feature
model DSML building block, develops it accordingly, and integrates it with the
same DSML having the function model.

The finally built DSML is provided by the language engineers to a modeller, who

installs the DSML in their own modelling environment, here a MagicDraw instance.
With the previously described concepts in this section, the DSML is readily avail-
able at tool start-up.
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@ Modellers use the concepts integrated in this DSML to create models to achieve

their modelling goals. Each DSML building block serves an individual purpose of
modelling specific aspects of a domain, e.g., either functions or features of a do-
main under consideration. As the development of a DSML is iterative, continuous
feedback and improvements to the DSMLs is suggested by both the modellers and
the domain experts.

Any further improvements to the DSML is then analysed by domain experts for

suggesting improvements in the DSML. These domain experts also consult project
stakeholders and modellers to ensure there is no gap in the domain-specific under-
standings of the concepts described with the DSML.

Domain experts further suggest improvements necessary to enhance the function-

ality and usage of the DSML. This feedback is sent back to the language engineers
for continuously improving the state of the DSMLs and for providing up-to-date
language components, enhanced UX, and newer methods that support and guide
a modeller more effectively.

@ Modellers continue to use the DSML and create their models further continuing

their modelling journey.

3.5 Example

To demonstrate the applicability of DSML building blocks in MagicDraw, let us consider
the example of an industrial project for modelling a medical system. A medical company
wants to model a specific part of their medical system that involves examining a patient
and generating reports for this patient. This examination involves a patient entering a
patient room consisting of various devices such as input and output devices, power sup-
plies, and mechanical elements such as table that the patient will lay on. Thus, to model
such a medical system or parts of this system, various functional and non-functional
requirements, functions with different views supporting different types of data flows,
as well as features for this system linked to either the requirements or the functions
must be defined. This means that the aspects of modelling that need to be considered
for designing the medical system involves feature models, function models, and require-
ment models. Conceptually, the DSML that is built for this medical company would be
composed of individual DSML building blocks that provides the ability to model these
individual models as well as the overlapping concepts from the other models.

Figure 3.5 shows an example of how the various DSML building blocks of the medical
system are conceptually represented for this industrial DSML. Based on the develop-
ment overview for the defined roles, language engineers first identify and gather the
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Feature Model DSML Function Model DSML Requirements DSML
Building Block Building Block Building Block

composed of

DSML

&1 Medical System
B- B3 1 Requirements Model
B ,% Relations
' _Tracing
i-F Requirement Table
-| *4 RequirementsToFunctions Matrix
e NFR1 - Security
iy REQ1 - Registration
ks REQ2 - Reports
B- B3 2 Function Model
| B Tracing
B1-F3 Function Library
&-Eg Solutions
E- & Views
B Behavioral View
-3 Context View
: B §& Structural View
B~ 5 3 Technical Feature Model
[Z'a _Tracing
-2 Technical Features

- Feature Model Diagram
- |83 Feature Structure Map
B~ 2 Technical Variants

Figure 3.5: An example of an industrial DSML consisting of the various DSML building
blocks (top) that represent the feature model, function model, and require-
ment model in MagicDraw (bottom).

requirements for this DSML along with all the stakeholders. They must decide which
aspects of the domain must be enabled for the medical company for modelling specific
parts of their system. Here, the emphasis is on separating out the concerns of the various
models that will be designed by users. This means, a medical system must be able to
provide the means to model requirements, functions, and features. Separating the lan-
guage infrastructure for designing individual models allows the DSML more flexibility in
terms of capturing different abstractions of the system. For example, the requirements
model DSML building block provides the necessary language infrastructure to model the
requirements of the medical system. These include modelling both functional (REQI,
REQ?2) requirements and non-functional requirements (NFR1). An example of the lan-
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guage definition for a functional requirements DSML element is shown in Figure 3.6.
This figure shows customised attributes of the stereotype that are used to enhance the
experience of a user. For example, the abbreviation ensures that new elements are cre-
ated with the prefix RE(Q and the status of this requirement will be set to New. The icon
on the top right distinguishes this element from other elements, e.g., the non-functional
requirement seen in Figure 3.5. Further, matrices and tables are defined as part of the
language definition to better visualise and represent requirements information directly
to the user. Additionally, different icons, colours, and naming conventions contributes
to the overall improvement in the UX for a modeller.

MagicDraw Language Definition|

«stereotype» IREY
Functional Requirement
[Class]

«CustomNamedElementDefinition»
HideElementName = false

-Status : Requirement Status [1] = New
-Requirement ID : String
-Version : String

«Customization» %
Functional Requirement

«Customzation»

abbreviation = "REQ"

category = "Elements"

customizationTarget = reaFunctional Requirement
hiddenOwnedDiagrams = "Any Diagram"
hiddenOwnedTypes = ¥Element
hideMetatype = true

possibleOwners =

[ZIRequirements Model

[ IRequirements Package

= Provided Requirements

[l Requirements TrashBin

representationText = "Functional Requirement"

Figure 3.6: The language definition of a requirements DSML element.

Similarly, the language infrastructure for the respective DSML building blocks are
constructed by language engineers and constantly enhanced due to the agile nature of
such industrial projects. As an example, the language definition and the subsequent use
of the function model to create function DSML elements was described in Figure 3.3.
Thus, stereotypes and their customisations serve as the basis for defining the syntax of
the language (Section 3.4.1), while matrices and tables are used to show specific elements,
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their attributes or relations. The result of configuring a project template (Section 3.4.4)
for this medical system is shown in Figure 3.5, where the requirements model, function
model, and the feature model are all numbered in a sequence starting from one. This
enables users to quickly start configuring their models as a predefined project pattern is
already created for them.

Figure 3.7 shows the links between the requirements model to the functions in the
function model for this medical system in a matrix (Section 3.4.2). The RealizesRe-
quirement association links a function to a requirement and the numbers represent the
number of links between between them. In this example, the GeneratePatientReport
function realises NFR1 - Security and REQ1 - Registration requirements, therefore the
sum of the number of associations (2) is displayed as part of this function. Here, the
menu bar at the top is configured to show an additional perspective to the user (Sec-
tion 3.4.5) that allows a user to export the contents of the matrix to an excel file using
the extended MagicDraw functionalities through APIs (Section 3.4.6). The functions
described in this figure involves positioning the patient and generating reports for that
patient. Therefore, the language infrastructure for representing different concepts are
separated through these DSML building blocks and provides for a modular approach to
building interdisciplinary DSMLs.

D RequirementsToFunctions ... %

iPe i By i QY gl Export to MS Excel

Legend

/ RealizesRequirement

& 7 Function Model [0

@ 5.2.1.2 Structural View [Solutions: v LT_I

-\'\ P .)cx GeneratePatieniReport------------------

3 Position Patient and Generate Report [1--
Position Patient and Generate Report--i

i w5
El 51 1 Requirements Model 1

L @ NFR1 - Security 11

|REd REQ1 - Registration 11

. (rel REQ2 - Reparts 1 1/

Figure 3.7: A matrix showing the links between functions (columns) and the require-
ments (rows) they realise.

Each DSML building block must also provide the support and guidance to modellers
for making effective decisions in their modelling. This is described using training ma-
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terials, documentations, recommendations, or activity diagrams. Figure 3.8 shows a
prescriptive process model in the form of an activity diagram for describing the method
of a requirements DSML building block. This process model details tasks and activities
that the modeller must consider to model specific healthcare and software capabilities
and requirements of an individual medical system. Modellers are guided to focus on
identifying healthcare problems and needs, defining the quality of software required, and
verifying, validating, and managing such requirements through innovative development
processes [CR16]. Such a process model not only helps in the know-how of the current
modelling situation but also provides a kind of guidance to modellers to further improve

their models.
Identify the healthcare Identify thg software Align the requirements
. capabilites as
need requirements. . of the system.
requirements.
Model the individual

requirements and their
properties.

Verify, validate, and
manage all healthcare

and software [All requirements [All requirements not

\ requirements. modelled] modelled] /

Figure 3.8: A prescriptive process model describing the sequence of methodical steps for
modelling the needs and software requirements of a healthcare system.

An advantage of describing these individual building blocks is that if a different in-
dustrial project now requires only, for e.g., the ability to model features, functions, and
requirements, then these building blocks are easily reused again without completely de-
veloping them from scratch. This example is later, in Chapter 8, extended to a more
detailed medical system in the context of a medical company and further discussed for
reuse in the context of a digital industry example for modelling software architectures
and for implementing an MBSE methodology with MagicDraw. Therefore, the example
described in this chapter briefly discusses the core elements of the proposed method and
lays the foundations for discussing the concepts in subsequent chapters.

The implementation of the DSML for modelling a medical system was done to show
how the different language components and UX techniques were imbibed into reusable
language infrastructures through the DSML building blocks. The creation of stereo-
types, their customisations, perspectives, templates, and API extensions through the
examples provided in this chapter demonstrate how separating the concerns of differ-
ent system concepts enable language engineers to build modular and reusable parts of
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a DSML. In particular, each DSML building block must describe language compo-
nents and their constituent artefacts for representing the concepts of a particular system
under development. Figure 3.5 (bottom) showed the different model constructs rela-
tive to the medical system through its described DSML. This means, elements such
as REQI1, REQ2, RequirementsToFunctions Matrix are all considered elements designed
using the language infrastructure provided. The models that represent different software
and system concepts, such as requirements, functions, and features, are captured in their
individual DSML building blocks. For example, a Technical Feature Model consists of
various kinds of features such as mandatory or optional, as well as other kinds of custom
diagrams such as Feature Matriz, Feature Structure Map, and Feature Model Diagram.
Products and product lines are modelled within the Technical Variants package that
is further discussed in Section 8.1. The Function Model consists of various types of
views (described in Section 2.3.2) that containing the different types of functions and
their data flows within the Solutions package. Cross-references and relations between
functions and requirements are modelled using the RequirementsToFunctions Matrix.
Later, in Chapter 8, the same, or slightly different versions of these DSML building
blocks will be reused to demonstrate an actual implementation of the systematic process
described in this chapter for developing industrial DSMLs. Therefore, DSML constructs
that help model functions in a system are easily be reused across a variety of projects
that require support for function model. By separating the concerns for representing in-
dividual software and system concepts into these DSML building blocks, a more seamless
reusable process to develop, maintain, and use DSMLs and their constructs is achieved.
Language engineers are able to develop such modular and heterogeneous DSMLs that
help modellers and domain experts in designing models for their respective domains.

3.6 Discussion

The approach presented in this chapter allows language engineers to systematically en-
gineer and maintain graphical DSMLs. The main aspects to consider during engineering
of such graphical DSMLs that are deployed in industrial contexts are reusability of com-
mon domain parts and providing a more holistic experience for modellers. To achieve
reusability of common domain aspects, the separation of concerns of industrial DSML
engineering is essential. Every domain is represented using a set of domain-specific
constructs that are used to model abstractions of real world systems and subsystems.
Because DSMLs are often not used to model on a daily basis, efforts to create such
reusable concepts are largely ignored [GFCT08]. This means modularisation of domain
concepts are also ignored, which leads to language engineers often building DSMLs from
scratch every time. This is not only counter-productive as more effort in development
is required, but it also reduces the consistencies in defining domain-specific aspects. For
example, a function modelled in one independent function model for a DSML may look
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and be modelled completely different than a function for a completely different DSML
from another organisation.

To address these challenges, this chapter presents a systematic engineering process of
developing DSMLs that are based on the concept of reusable DSML building blocks.
In theory, a DSML is developed to represent and model concepts of a single domain,
hence domain-specific modelling language. However, in practice, especially in the in-
dustry, one DSML is often configured to represent multiple domains that help model
a complete system and all of its constituents [BCCP21]. Therefore, a DSML actually
consists of multiple domain aspects that are modularised and logically grouped together
into reusable units that help create efficient graphical DSMLs. Each DSML building
block therefore represents the concepts for modelling a single aspect of the domain and
are reused across any industrial project that require the integration of these aspects of
the domain. This is especially beneficial in the case when the same or a slightly differ-
ent version of this DSML building block needs to be created. A single DSML building
block is therefore used across different projects and is enhanced with newer language
infrastructure or allow the removal of unnecessary language infrastructure.

The principle idea is that each DSML building block consists of the language infras-
tructure that is needed to describe a particular aspect of a domain. Therefore, defining
the concepts of the domain along with describing any accompanying guidance for the
domain constructs are also beneficial for modellers. To this end, DSML building blocks
consist of language components that, partially or in whole, defines the language for the
domain, methods that support active and continuous support for the domain, as well as
any usability considerations that help improve the overall UX for using a DSML. Defin-
ing the language for a domain is the most important part for any DSML. Language
engineers typically spend most of the project resources to create a solid foundation for
representing strictly the domain aspects from a technical viewpoint [Gro09]. In doing
so, usability considerations are often overlooked. Methods generally assist modellers in
their modelling related to a particular domain by providing training materials, recom-
mendations, and prescriptive process models for their current state of their modelling.
UXD aspects are integrated directly on the language definition as well, such that the
constructs refer more closely to real world abstractions which are growing more complex
and heterogeneous for every modelling project.

Language engineers are generally responsible for the development and maintenance
of DSMLs. This chapter discussed a development overview that considers the different
aspects and software artefacts involved in a DSML development process. The develop-
ment and use of a DSML is separated out into a tool-specific implementation level and a
usage level. While both of these levels are closely interlinked, a separation of this concern
enables a language engineer to strictly focus on language development while a modeller
is designing their models. Initially, the project requirements is logically separated and
grouped into different aspects of the domain that a language engineer identifies. For
each such group, they build a corresponding set of language components, methods to
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support the domain-concepts, as well as integrate UXD aspects that generally help im-
prove the usability of a DSML. This is achieved and is demonstrated in this chapter using
MagicDraw’s default functionalities and customisation capabilities. Language profiles,
customised diagrams, templates, perspectives, API extensions, and subsequently sup-
port for embedding textual languages help define a comprehensive set of DSML building
blocks and the corresponding DSML. The idea of this development overview is to foster
the reuse of commonly used domain constructs that prevents the reinvention of language
infrastructure every single time.

To effectively adopt the concepts presented in this chapter, language engineers and
domain experts must be trained with advanced concepts of software and systems engi-
neering. These concepts include the ability of language engineers to design and develop
customised solutions using GPLs that enable the generation of language infrastructure
such as debuggers and editors. This is achieved by the use of design patterns [DJR22]
and object-oriented techniques [BHRW21]. Domain experts on the other hand must be
trained in skills that allow them to comprehend different aspects of individual domains
and to subsequently analyse and understand complex software and systems that are typ-
ical in their application domains [CFJ*16]. This is critical in bridging the gap between
the methodologies presented and its implementation. Problems such as ineffective us-
ability of DSMLs, modellers’ unfamiliarity with a multitude of DSML constructs, steep
learning curve of the tools involved, and inefficient interoperability of modelling tools hin-
ders the adoption of complex DSMLs in the industry [KWJMO02]. Therefore, breaking
down a DSML into modular reusable parts alleviates the overall engineering and im-
proves the usability of DSMLs for modellers. A decisive link of communication between
language engineers and domain experts allows the core elements of the proposed method
of industrial DSML engineering to be effectively built through separation of concerns.
This means clear modelling goals must be defined at the start of a modelling project
with flexibility of iterative development of advanced domain concepts. Modellers using a
DSML help measure the performance of such a methodology by how easily they are able
to model different complex modelling scenarios that involves various domain concepts.
In practice, this methodology is suitable for complex modelling problems that are further
illustrated in Chapter 8. The concepts presented in this chapter provides ample flexi-
bility such that newer domain concepts are seamlessly integrated into existing DSMLs
or when completely new DSMLs need to be developed. Developing smaller DSMLs that
concern only a specific aspect of a domain, which is well-known by a modeller and does
not need to be extended in the future, does not require the use of the approach men-
tioned in this chapter. This means developing a DSML that supports the modelling of
only feature models for modellers, who are domain experts in feature models, would re-
quire additional language development effort for integrating support methods and UXD.
However, such a one-dimensional development approach would be disadvantageous for
modellers who are unfamiliar with feature models. While other approaches to graphical
DSML development on graphical modelling frameworks are beneficial in the development
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of the syntax and semantics of a language [CJKWO07, Voe09], the approach presented in
this chapter discusses their extension to allow support methods and focus on UX that
helps both language engineers and modellers. The concepts are presented in a generic
way such that it is applicable to any modelling framework that supports the access of
model and language construct information through APIs as well as with supporting the
creation of a language (Def. 1). Therefore, a graphical modelling tool must support the
flexibility to customise parts of the displayed functionalities of the tool for allowing the
better usability of a DSML and its constructs through methods and improved UX.

The concepts presented in this chapter is realised using MagicDraw [Mag20]. However,
it must be noted that other graphical modelling tools such as MetaEdit+ [Tol06] and En-
terprise Architect [Ent23] have different technical capabilities, which poses a challenge
towards adopting this methodology seamlessly across all tools. Language engineering
tools such as MPS [VV10], Spoofax [WKV14], and Melange [DCB™15] provide certain
means for language composition and customisation, but lack the techniques to provide
methods for systematic reuse of similar domain concepts. The concepts described in
this chapter is presented in a way that it is generic enough to be easily adopted in
other modelling environments, as the core idea of graphical modelling tools is the same,
language development. Further work includes providing methods that allows language
components to be easily analysed to make it more machine-processable and accessible to
automation techniques. Overall, the systematic engineering process of DSMLs described
in the chapter, and in the remainder of this thesis, not only fosters reuse and interoper-
ability of language parts for language engineers, but also provides a more holistic set of
methods to actively support modellers in fostering continuous modelling.

3.7 Related Work

To develop, maintain, and easily evolve complex systems, it is important that the under-
lying technology that supports in building such systems support concepts of reusability.
Systems and software therefore need to be designed in a way that it captures all relevant
aspects of a single domain into reusable units, that are easily attached to grow larger,
complex systems, or detached such that users are often not burdened with unnecessary
concepts [CCFT15, CBCR15]. To scale model-based development in large heteroge-
neous systems, a modular approach using compositional modelling has been proposed in
a previous study [HKR109]. These compositional modelling aspects have been described
in [BR0O7, RW18] to detail modular aspects in interacting systems. While a language
and its components, or a set of artefacts, are necessary to detail the essential parts of a
DSML [TAB*21, BEH"20], their applicability is rather restricted in offering language
engineers the flexibility in quickly developing versions or catalogues of languages based
on similar concepts of a domain for industrial practitioners. A DSML must therefore
consider the usual challenges faced in software engineering too [FGLP10].
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In general, a software language consists of [CGR09, CBCR15]: an abstract syn-
tax [HR17, CBW17]; a concrete syntax [DCB'15, Bet16, Cam14]; semantics [HRO04];
and context conditions [HKR21]. The research area of SLE [Kle08, HRW18] has dis-
cussed defining and improving the overall situation of engineering DSMLs, e.g., with
language workbenches and graphical modelling tools [EvdSV 113, BLWPO13]. With the
core idea of language development, many such tools provide language engineering sup-
port such as generation of debuggers [DCBT15], editors [Bet16], or reusable language
modules [HR17] from abstract syntax descriptions. Even then, the methodologies for
systematically engineering DSMLs in the large using SLE or MDE [BCOR15] techniques
are rare. Those studies that do discuss details on how industrial graphical DSMLs are
implemented [MGD™16, TKO05], often describe such methodologies in a highly specific
manner, meaning they are either tied to specific departments, or simply require more
efforts in fostering reusability than creating DSMLs from scratch. There is therefore
a need to either train more language engineers that implement a reusable DSML units
along with better usability for users, or central research units must become more common
in truly developing DSMLs from scratch every time.

Many studies have looked at providing a comprehensive DSML development ap-
proach [MHS05, Hud98, KBM16]. [ICLF*13] propose a collaborative method that is
based on completing different stages, from process bootstrapping, to meta-model induc-
tion, to evaluation and discussion, to voting phase, and finally language development.
While such a method engage users to play an active role in language development, of-
ten this leads to more overhead because of project constraints such as time or budget.
Reusable and generic design decisions for developing UML-based DSLs have been pro-
posed in the literature that are relevant and important in various software engineering
projects [HSS17, CG11, Fral3]. These design decisions are certainly helpful in providing
a more holistic development approach, but must be used in combination with various
methods and guidance that help practitioners utilise a complete end-to-end language
infrastructure. Using free modelling as an agile method to develop DSMLs is possible by
allowing the building of both models and metamodels at the same time at different lev-
els of abstraction [GBD"16]. Here, the authors discuss about the possible implications
of using graphical DSMLs and how the tools for the development for graphical DSMLs
must be flexible and support reusability and extensibility, while also ensuring consistency.
Tools other than MagicDraw has been evaluated as language development platforms in
a previous study [AFRO06], therefore the results of this thesis provides language develop-
ment and infrastructure techniques primarily in MagicDraw, but also reusable in other
language development tools.

Various roles are defined in the development and usage of a DSML [KRV06]. Mod-
elling with a DSML must be easy and seamless for users as it reduces complexities in
using a language’s constructs [CTVW19]. Usability of a DSML must be evaluated at
various stages in a project [PPZ'21]. While general design guidelines for DSLs and
DSMLs are found in plenty [KKPT09, BDH94, Fral3], their application is rather limited
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to DSLs in general. This thesis discusses elaborated guidelines later that is intended
for industrial DSML practitioners. So far, literature provides a handful of solutions
in providing modelling recommendations to practitioners [ARKS19, AR20, NKBK12].
However, suggesting active modelling recommendations that are in sync with the cur-
rent modelling situations of modellers is still missing and is addressed later in this thesis.
The remainder of the thesis takes a deep dive into language components, active method
recommendations, and usability guidelines that are essential in fostering the systematic
engineering and use of graphical industrial DSMLs.
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Chapter 4

Language Components in the MontiCore
and MagicDraw Ecosystems

For a DSML, or parts of the DSML, and its building blocks to be reusable, the modular-
isation of the language is crucial. Modularisation is key to the reusability of languages
and their components across individual technological spaces, such as in textual language
workbenches or graphical modelling tools. Reusable parts of a language are often not
directly transferable across individual modelling spaces [BCCT10]. To develop DSMLs
from scratch, significant efforts by language engineers are required, and even with con-
cepts of generalisation, creating DSML building blocks that are reused are challenging.
This chapter discusses the development of language components and the various forms
of language composition that are utilised primarily in a graphical modelling environ-
ment, such as in the MagicDraw ecosystem, and that fosters the reusability of common
language components in order to build modular DSML building blocks that are reused
across instances of the modelling tool, or even across the textual modelling space. To
achieve this, a definition of a language component in MagicDraw is provided, followed
by the various forms of language composition that is realised in MagicDraw. Then, a
short comparison to similar language composition techniques in MontiCore, a textual
language workbench, is discussed. Finally, unified cross-cutting concepts of language
components are discussed that foster the development of versions or families of language
with similar domain concepts in developing complex and modular DSMLs. Some results
of this chapter have been published in [BGJ*23]. Therefore, passages from the paper
may have been quoted verbatim in this chapter.

As discussed in Chapter 3, DSMLs and their individual building blocks consists of
composable units that we call language components which is important for modulari-
sation. While there are language workbenches and modelling tools that support such
modularisation, defining them in a common way is important. In the textual space, some
language workbenches such as MontiCore [HKR21], allow defining DSMLs using a tex-
tual syntax. In the graphical space, modelling tools such as MagicDraw [Mag20], allow
creating languages with graphical concrete syntax [GKR™21] by separating out the con-
cerns of language development. A difference to note here is the way in which language
workbenches assign meaning to models [HR04], such as by using interpreters or code
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generators. These workbenches are also capable of validating the language and its com-
ponents using well-formedness rules as context conditions using OCL like notations or
GPL implementations such as using Java classes. While, several definitions of language
components are proposed in the literature [CKM*18, BW21, BEK'18, CBCR15], they
are almost exclusive to a specific technological space and are almost entirely reusable
only in their respective environment.

Reusing a language, or parts of it, is already quite challenging even in a single modelling
environment. In some cases, it takes more effort to reuse a language, than to implement
a new one, for example using clone-and-own [MAGD™16, SvdBV18] concepts. At the
end of this chapter, we shall understand how a common notion for language components
enable the composition of languages and how building blocks of a language are useful in
bridging the gap between different technological spaces. In the following, using a running
example of two basic languages in Section 4.1, the concepts and realisation of language
components in MontiCore is first described in Section 4.2. Then the requirements and
properties of language components are discussed in Section 4.3, followed by the individual
definition of a language component in MagicDraw in Section 4.4. In Section 4.5, the
various forms of language composition in MagicDraw are described, before Section 4.6
presents a joint definition for language components in both the textual and graphical-
based technological spaces. Section 4.7 discusses the central design decisions and threats
to validity, while Section 4.8 compares the approach to existing literature.

4.1 Running Example

The mechanisms of language components and how they are composed as complete lan-
guages in MontiCore and MagicDraw are illustrated in the remainder of this chapter
using two basic, yet commonly used stand-alone modelling languages. First, a language
UseCaseDSML similar to UML use case diagrams for modelling simple use cases and
their relationships is described. Second, a language ActorDSML for describing actuators
and their tasks is described. The aspects of language composition that are described for
these languages offer additionally the possibility to model unique techniques. In the fol-
lowing, we describe these two languages in detail and elaborate on their implementation
in MontiCore and MagicDraw.

4.1.1 Use Case DSML

The models of individual use cases are represented using a UseCaseDSML. Use cases
allows defining the high-level functionality of a system. The UseCaseDSML is a language
that is, in principle, similar to UML use case diagrams that allows the modelling of use
cases and their relationships.

Figure 4.1 shows the context-free grammar in EBNF notation [Wir96], representing the
realisation within MontiCore. It contains production rules, defining nonterminals on the
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01 | grammar UseCaseDSML extends MCBasics {

02 symbol scope UCDiagram =

03 "usecasediagram" Name "{" UseCase* "}" ;

04

05 symbol UseCase =

06 "case" Name ("extends" ext:Name@UseCase)? ";";
07 |1}

Figure 4.1: MontiCore grammar for the UseCaseDSML. Figure adapted from [BGJ*23].

left side, with terminals or references to other nonterminals on the right side, separated
by an equals sign. Furthermore, nonterminals are augmented with stereotypes, such
as symbol or scope, indicating unique access via their name, enabling structuring and
cross-referencing in the symbol table. The grammar defines the overall diagram (Il. 2-3),
starting with a respective keyword, identified via a name, and containing an arbitrary
number of use cases. These use cases also have a unique name, as they are defined as
symbols, and may extend other use cases by referencing these via their name (11. 5-6).

UseCaseDSML Metamodell

«stereotype»

Stereotype Names

| ———>UseCase
[UseCase]
attributes
-attribute1 : String UML Metaclass
Ay
«stereotype» «stereotype»
MyFirstUseCase MySecondUseCase
[UseCase] [UseCase]
«Customization» N «Customization» 2N
MyFirstUseCase MySecondUseCase
«Customization» «Customization»
customizationTarget = «>MyFirstUseCase customizationTarget = «<>MySecondUseCase
hiddenOwnedTypes = L¥IElement disallowedRelationships = [|Relationship
hiddenOwnedTypes = [¥Element

Figure 4.2: A MagicDraw metamodel for the use case diagram modelling language de-
tailing use cases. Figure adapted from [BGJ*23].

Figure 4.2 shows the MagicDraw metamodel for realising the UseCaseDSML. The
stereotypes are indicated using the «stereotype» keyword, while the customisations are
indicated using the «Customization» keyword. An arbitrary number of use cases are
modelled using the stereotype UseCase and its attribute, attributel. In this exam-
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ple, two specialised versions of use cases, MyFirstUseCase and MySecondUseCase,
are configured. The MySecondUseCase explicitly disallows all relationships for this
diagram element, that is specified in the disallowedRelationships property. The
definitions of the stereotypes and customisations are configured in a DSML Profile (Sec-
tion 4.4.2) and is sufficient to describe the syntax of the language.

4.1.2 Actor Task DSML

The models of individual actors and the tasks they perform are represented using an
ActorDSML. Actors specify a role played by a user or a system that interacts with the
use cases defined previously [Spe07]. The ActorDSML is a language that enables the
modelling of different actors, their tasks, and the corresponding relations.

01 | grammar ActorDSML extends MCBasicTypes {

02 symbol scope RoleDiagram =

03 MCImportStatement* "rolediagram" Name

04 "{" RDElement* "}" ;

05

06 interface RDElement;

07

08 symbol Actor implements RDElement = "actor" Name
09 ("extends" sup:Name@Actor)? ";" ;

10

11 symbol Task implements RDElement = "task" Name ";";
12

13 Relation implements RDElement =

14 actor:Name@Actor "->" task:Name@Task ";" ;
15|}

Figure 4.3: MontiCore grammar for the ActorDSML. Figure adapted from [BGJ*23].

Figure 4.3 shows the textual grammar for defining the ActorDSML language within
MontiCore. The model (1. 2-4) starts with a set of import statements, followed by the
actual diagram definition containing the respective keyword, a name, and an arbitrary
number of diagram elements (cf. RDElement) in curly brackets. The import state-
ments allow referencing and hence importing other models and their features, thereby
facilitating the composition of different artifacts. RDElement is defined as an interface
nonterminal, enabling the grouping of several nonterminals. Thus, each nonterminal that
implements this interface (cf. Actor L. 8) is employed where the general RDElement
is referenced. This mechanism offers an explicit hook point intended for extension in
inheriting languages. The diagram itself contains actors, tasks, and relations. An actor
(1. 8f.) has a name and extends other actors by referencing them via their name. Tasks
(1. 11) start with a corresponding keyword and are also identified via their unique name.
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Finally, relations (1l. 13f.) associate actors with their tasks, utilising their property as a
symbol for unique cross-referencing access via their names.

«stereotype»
Actor
[Actor]
«stereotype»
Performs
«stereotype» [Dependency]
MyFirstActor
[Actor] «Customization» %
Performs
«Customization» % «Customization»
MyFirstActor customizationTarget = «<>Performs
«Customization» hideMetatype = true
allowedRelationships = «>Performs typesForSource = «>Actor
customizationTarget = «>MyFirstActor typesForTarget = «»>Task
«stereotype»
Task
[Class]
attributes
-attribute1 : String
«stereotype» «stereotype»
SystemTask SoftwareTask
[Class] [Class]
«Customization» RN «Customization» &N
SystemTask SoftwareTask
«Customization» «Customization»
customizationTarget = «>SystemTask customizationTarget = <> SoftwareTask
hiddenOwnedTypes = EMElement hiddenOwnedTypes = E¥Element

Figure 4.4: A MagicDraw metamodel for the actor task modelling language detailing
stereotypes for Actor, Task, and their Performs relations. Figure adapted
from [BGJ*23].

Figure 4.4 shows the MagicDraw metamodel for realising an ActorDSML. The main
elements containing the stereotype definitions for the ActorDSML are the Actor, Task,
and Performs. These elements are either directly customised or extended with spe-
cial variants such as the MyFirstActor, which extends the general actor class and
is also specified with an allowed relationship to the Performs association. Using this
configuration, a hook point is established via the general stereotype for easily extending
an actor into specialised actors. An arbitrary number of tasks (activities) are mod-
elled usmg the Stereotype Task, by referring to and changlng the name of the attribute

- kA o1 inct types of
tasks such as SystemTask or a SoftwareTask In thls metamodel dependenmes such
as the Performs relation is configured such that it indicates the associations between
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tasks and actors, as specified with the typesForSource and typesForTarget customisation
properties. In general, the relations also apply to the extended actors and tasks as de-
fined within these properties, meaning both the Actor or Task and their specialised
stereotypes are also associated with the Performs relation.

4.2 Language Components in MontiCore

As discussed earlier in Section 2.2.3, MontiCore [HKR21] is an open-source! language
workbench for the development of textual DSMLs. A MontiCore grammar describes
the abstract and concrete syntax of a DSML in the form of an EBNF-based notation
for CFGs which defines language infrastructure such as parsers, ASTs, symbol tables,
and pretty printers. MontiCore provides symbol tables that cross-references to the AST,
while the underlying infrastructure realises type checks as well as the different forms
of language composition. Symbols correspond to the model element names, and their
scopes, either artefact, global, or neither of them, define their visibility. An artefact
scope describes the visibility of symbols for the entire model artefact, whereas the global
scope describes the visibility of symbols across different model artefacts.

4.2.1 Concepts of Language Components in MontiCore

This section discusses the concepts of modular language components and analyses their
applicability in the MontiCore ecosystem.

Requirements for Language Components

The flexible reuse of (potentially incomplete) languages as language components in the
form of self-contained logical units is a requirement for language composition in Monti-
Core [But23]. An important feature is that language components are developed indepen-
dently of each other, although potentially designed with extension in mind. Moreover,
it is necessary to understand the relation between incorporated modelling languages, as
their artefacts (i.e., grammar definitions and generated or hand-written Java classes)
depend on each other. In MontiCore, a language component comprises a grammar to
define the concrete and abstract syntax as well as additional validation and tooling,
such as well-formedness rules, symbol management, and syntheses via pretty-printing or
language-specific code generators. To enable their reuse, MontiCore provides design pat-
terns for compositional language design [DJR22] for facilitating seamlessly integrating
implemented functionality in a black-box fashion.

"'MontiCore is available at: https://monticore.github.io/monticore/
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Properties of Language Components

The language composition via language inheritance, extension, embedding, and aggre-
gation in MontiCore relies on the symbol tables of the languages. The forms of language
composition, except for language aggregation, are controlled via grammar inheritance,
which is automatically solved by the generation of specific language infrastructure. In
language inheritance, language extension, and language embedding, a composed lan-
guage is aware of the other composed languages, whereas in language aggregation, the
languages are unaware of each other.

4.2.2 Parts of a Language Component

This section describes the parts of a language component, specifically, the definition
of a language in the MontiCore ecosystem along with the realisation of such language
components.

Definition of a Language Component

A language component in MontiCore is defined by [BW21] as follows:

Definition 6 (Language Component in MontiCore). A language component in MontiCore
is a reusable unit encapsulating a potentially incomplete language definition. A language
definition comprises the realisation of syntax and semantics of a software language.

This means that all the artefacts that help in realising a DSML are contained in a
language component. By default, this language component definition does not distin-
guish between different kinds of artefacts that contribute specific parts to the language,
such as a grammar file or a context condition class. Related language component def-
initions [BEH'20] often rely on such concrete artefact kinds (e.g., a grammar file) or
describe a language in terms of the conceptual contributions that these artifacts make
(e.g., abstract syntax). However, these definitions tend to be highly specific to only a
certain technological space, and needs to be further generalised. Language composition
in MontiCore is carried out by employing an artefact model [GHR17] that describes
the complete implementation of a language, extracts the implementation of a language
component as artefact data, and realises language composition for each artefact kind
of the language individually. As an example, an artefact extractor determines which
MontiCore grammar file(s) a language component uses and which parts of the language
components are composed, using a composition operator for MontiCore grammar files.
Further, the language component definition makes no assumption about a language com-
ponent interface.
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Realisation of Language Components

Language components are designed in a way that hook points, or extension points, exist
within them that are used to refer to other languages and their components. For instance,
productions in MontiCore that are marked as external serve as the hook points, while
named nonterminals are inbuilt features even though they can be overwritten to adapt
a language as well. Further, a language component comprises of well-formedness rules
in the form of Java classes, a generated symbol table consisting of references to the
symbols as file artefacts, and code generation functionalities. The realisation of language
component models in MontiCore has been extensively discussed in [But23] and is out of
scope of this thesis.

4.2.3 Forms of Language Composition in MontiCore

MontiCore supports language composition via language inheritance, extension, embed-
ding, and aggregation [HKR21, But23] for integrating models or their constituents which
is briefly discussed in this part of the thesis.

Language Inheritance

Concepts. Language inheritance in MontiCore follows grammar inheritance which means
a language inherits from another language, if the grammar of the language inherits from
that language. The grammar can reuse, extend, and override the nonterminals either
by reusing the start rule of the inherited language or as a novel grammar rule. The
mechanism in MontiCore is to separate the compositional parts of a language infrastruc-
ture into interfaces to avoid the problem of multiple inheritance in Java, which is the
underlying GPL for MontiCore. For other parts of the language infrastructure, such as
context conditions, MontiCore generates the respective context conditions interface for
the nonterminals, meaning the classes implemented for the context conditions from the
inherited language will be reused in the inheriting language.

Realisation. To realise language inheritance, MontiCore inherits the existing constructs
such as the abstract and concrete syntax, the well-formedness rules, and the generated
language infrastructure. The inheriting language can also override any existing produc-
tions and also exchange the start rule, thereby fostering reuse and extension.

Language Extension

Concepts. In language extension, a language adds novel parts to any reused language
which are termed conservative [HKR21], meaning models belonging to the original lan-
guage is still valid in the extended language.
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Realisation. Extension of a nonterminal in MontiCore adds novel right-hand sides to
a given grammar rule. This means language extension is achieved when the inheriting
language reuses the start rule of an inherited language. An example of a conserva-

01 | grammar RegUseCase extends UseCaseDSML {
02 start UCDiagram;
03
04 DependantUseCase extends UseCase =
05 "case" Name "requires" reqg:Name@UseCase ";";
06|}
N1
01 | usecasediagram StoreUseCases {
02 case Browse_Goods;
03 case Buy_Goods;
04 case Refund requires Buy_Goods; é\added
051} relation

Figure 4.5: MontiCore grammars for an extended UseCaseDSML to enable additional
relations between particular use cases. Figure adapted from [BGJ23].

tive extension is shown in Figure 4.5 (top). The grammar ReqUseCase extends the
UseCaseDSML and the starting nonterminals remain unchanged (1. 2). A specific use
case (1. 4f.) extends the original use case thereby introducing an extended use case. In
Figure 4.5 (bottom), a model that conforms to the extended language is shown that
represents simple use cases for a store. Here production rules are defined, such as in
(1. 4), that describes a Refund use case for which the Buy_Goods use case must also
be part of the transaction.

Language Embedding

Concepts. Language embedding describes that a language E'm is embedded into a host
language Ho without the need for languages to be aware of each other’s constructs. This
is possible in textual language workbenches, such as MontiCore, via a novel grammar
that inherits from both the Em and Ho grammars. The integration of the syntax of
the two languages is done at a point, where one or more nonterminals of the language
Ho are overridden, extended, or newly implemented with novel syntax. In this form of
composition, the context conditions of the two languages are directly unified.

Realisation. In MontiCore, the realisation of language embedding is done using a com-
mon, unifying grammar, where multiple grammars are extended such that language
definitions are jointly available. As an example, this is illustrated by integrating use
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cases into the ActorDSML. Here, the definitions of the use cases remain unchanged and
they are used similarly when embedded in the ActorDSML. To further establish any
relations between the two languages’ components, a relationship that allows actors to
refer to use cases in a similar way to tasks is created as illustrated in Figure 4.6. The
interfaces created as part of this mechanism serve as the predefined hook points to foster
extension as well as embedding.

01| grammar ActorUC extends ActorDSML, UseCaseDSML {

02 start RoleDiagram;

03

04 UseCase implements RDElement;

05

06 ActorUCRel implements RDElement =

07 actor:Name@Actor "->" usecase:Name@UseCase ";" ;
N~

01| rolediagram Store {

02 actor Customer;

03 actor Employee;

04 standard ActorDSML

05 task SellProduct; .

06 constituents

07 Customer -> SellProduct;

08

09 case Browse_Goods;

10| case Buy Goods; embedded use cases

11| case Refund; as role diagram element

12

13 Employee —> Buy_Goods; added

141} “~— relation

Figure 4.6: Embedding the UseCaseDSML into the ActorDSML, allowing relations be-
tween actors and use cases. Figure adapted from [BGJ*23].

Language Aggregation

Concepts. MontiCore differentiates language aggregation from the other forms of com-
position by not requiring integration of models of the languages into a single artefact.
This means, there the coupling between the involved languages is only done via sym-
bol exchange which allows modellers to refer to the model elements of the aggregated
language using their names and the models remain independent.

Realisation. Language aggregation in MontiCore is achieved using the symbol table that
stores unique identifiable elements resolved ultimately using their qualified names. A
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shared grammar is used to achieve language aggregation wherein all models share the
same symbol kinds and symbol table structure. A unifying grammar is used, alterna-

< putTaskSymbolDeSer ("UseCaseSymbol") \

01| import StoreUseCases; 01| usecasediagram StoreUseCases {
02| rolediagram Store { 02 case BrowseGoods;

03 actor Customer; 03 case

04 actor Employee; 04 case/Refund;

05 05|}

06 task SellProduct;

07

08 Customer -> SellProduct; adapted

09 Employee —-> Buy; use case

10| }

symbol

Figure 4.7: Adapting use cases as tasks by aggregating the UseCaseDSML and the Ac-
torDSML. Figure adapted from [BGJ*23].

tively, where artefacts of models remain independent but is part of a common language
definition with the symbol kinds integrated for both the languages. However, models
may refer to other models of languages using defined associations. Such associations are
defined on the composed language and allow providing the required relations between
the languages being reused. Therefore in practice, this form of composition normally
requires a certain level of knowledge of the individual languages such that a language
engineer defines at which extension point an association must be established. In contrast
to language embedding, language aggregation ensures that model elements only refer to
other model elements at the specified extension point and is otherwise unaware of any
other references or interfaces. Resolvers to derive symbols from the symbol table are
used to interpret the symbols without a unifying grammar. Symbol tables of models are
also persisted in files which require a certain kind of deserialisation of each symbol kind
individually. Figure 4.7 show how the ActorDSML and UseCaseDSML are aggregated
using symbol tables by adapting use case symbols to task symbols. This is achieved
using deserialisers in MontiCore that load a symbol table into memory and translates
the symbol kind such as with the provided putTaskSymbolDeSer () method. In this
way, the models remain in their individual artefacts and are only referred to using their
names, while a link from the actor Employee to the use case Buy is established in terms
of a shared context.
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4.3 Concepts of Language Components in MagicDraw

This section builds upon the concepts of modular language components described in the
textual space of MontiCore and analyses their applicability in the graphical space of the
MagicDraw ecosystem. In particular, modularity refers to the self-contained units that
are distributable across various technological spaces, for example, as archive artefacts.
In this regard, building blocks that are developed for a DSML are designed and used
by language engineers independently but provide the necessary interfaces for their func-
tionalities. Therefore, this chapter discusses in length the notions of modular language
components to finally deduce a generalisable definition.

4.3.1 Requirements for Language Components

Certain requirements for language components in graphical DSML engineering must
be met to support the flexible reuse of a (potentially incomplete) DSML definition to
achieve modularity. Achieving reusability of language components [VV10], and there-
fore of the DSML and its building blocks, is crucial in understanding the concepts for
providing a family of similar DSMLs that are composed using language composition
techniques [EGR12, HLMSN™15]. This is particularly helpful in building a library of
DSMLs and their components [BEH'20] that further eliminate designing versions of a
language from scratch every time.

In this regard, MagicDraw provides a wide range of customisations and mechanisms
(Section 3.4), helping language engineers define modular software artefacts that are
reused as-is or in an enhanced format. This means that language components include
artefacts of the (potentially incomplete) DSML definition. Here, we must note that in
comparison to textual language workbenches such as MontiCore, the problem of am-
biguous grammars is eliminated [BEK'19] as the language itself is not defined through
a context-free grammar, which could introduce ambiguities such as with nonterminal
name clashes [But23]. The likelihood of clashes between graphical language elements in
MagicDraw belonging to different DSML building blocks is increased when such graph-
ical language elements are assigned identical names. In MagicDraw, different language
profiles contain identical named language elements, as the language element name reso-
lution is done through a combination of the language profile and the stereotype definition
name discussed in Section 3.4.1. However, MagicDraw also provides an in-built mecha-
nism to prevent language engineers from defining language elements with the exact same
name within the same profile, further reducing the likelihood of such clashes in different
DSML building blocks. In addition, graphical artefacts that are exclusive to MagicDraw
and are not considered part of language development, such as comments, notes, and text
boxes, are also considered separately from language composition techniques, but they
belong in the individual language components. Finally, the need for language compo-
nents arise from integrating aspects of good user experience (Chapter 6) and techniques
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for providing methods, recommendations, and guidance to users (Chapter 7), directly
within a DSML building block.

4.3.2 Properties of Language Components

In theory, composing languages is not a property of languages. It only implies that any
two languages are capable of being composed with a novel syntax and semantics that are
valid for the composed language [EGR12]. The distinction here is that the composition
of languages is a property of language definitions, which means that two language com-
ponents work together without needing any modifications towards a mutual goal. This
means a language component is itself used in the composition of a variant of a previously
developed independent language. Therefore, it is important that language components
are precisely defined. To easily compose new languages or versions of languages, such
language components must be flexible to allow modifications and extensions such that
languages are composed without being completely rewritten. To this end, a language
component must provide sufficient hook points that act as interfaces for other language
components. This is achieved using a syntactic interface that provides the necessary
connections to the syntax, variables, names, or a technical interface that allows the
connection of the behaviour of two or more language components.

Certain forms of language composition work differently [EGR12, Rum13], as we also
discuss them later in this chapter. Language inheritance and language extension are con-
sidered import mechanisms, meaning a composed language is well aware of the DSML
constructs of the parent language, but not the other way round [VV10]. In the case of
language extension, any extensions to a parent language must be conservative (or safe)
so that the off-chance that a language engineer exploit and incorrectly modify inherited
classes are avoided [HKR21]. In language embedding, a language E'm is embedded into
a host language Ho without any prior knowledge of either languages. In the case of
language aggregation, a loose form of conceptual coupling exists between two languages,
wherein generally no new language infrastructure needs to be generated [But23] or at
least one language needs to be modified to achieve language composition [GJRR22b].
Therefore, language composition is not only concerned with the graphical concrete syn-
tax, but also to other parts of the language infrastructure such as abstract syntax, context
conditions, and so on. In all scenarios, the actual language composition is performed
when all the language components have been generated and are available to be used in
a composition.

4.4 Parts of a Language Component in MagicDraw

This section describes the parts of a language component, specifically, the definition
of a language component along with the realisation of a language component in the
MagicDraw ecosystem.
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4.4.1 Definition of the Language Component

To further understand how DSMLs and their building blocks are composed, the following
definition of a language component in MagicDraw [BGJ123] is used throughout the
remainder of this thesis:

Definition 7 (Language component in MagicDraw). A language component in Magic-
Draw is a reusable unit consisting of artefacts that, entirely or in part, encapsulates a
(potentially incomplete) graphical language definition. A graphical language definition in
MagicDraw consists of the abstract syntax, the graphical concrete syntax, well-formedness
rules (context conditions), and the semantics of a software language.

A language component in MagicDraw, therefore, contains all the artefacts that are
part of the complete graphical language definition or parts of the graphical language
definition. This is further illustrated using an example in Section 4.1. All the software
artefacts that are generated and belong to a language component are stored as files in a
file system directory which is part of the MagicDraw compiled source code. These arte-
facts primarily consists of a language profile and its stereotype definitions (Section 3.4.1),
as well as customised files necessary to represent the syntax and semantics of the lan-
guage. These artefacts are then bundled together into the final DSML plugin that is
installed for use in any instance of MagicDraw. The abstract syntax in MagicDraw is
described using UML class diagrams (UML CDs), the graphical concrete syntax is de-
scribed using language elements based on UML stereotypes, and the context conditions
that check the well-formedness of a DSML’s model is realised using Java classes.

In addition to these conventional artefacts, the tool MagicDraw itself is considered a
language component. This is because the tool is an integrated development environment
(IDE), meaning its has editor capabilities that support language development, and is
comprised of a set of artefacts needed to define a language. These editing capabilities
of MagicDraw help language engineers in describing not only the language definition,
but also aspects related to user experience design, or custom guidance and methods for
industrial DSML users in domains such as energy, healthcare, I'T, and digital industries,
to assist them in their modelling [MAGD™16, TK05|. For simplicity, we sometimes refer
to language components as components in the remainder of the thesis.

4.4.2 Realisation of Language Components

Chapter 3 described MagicDraw’s ability to provide editor capabilities to develop lan-
guages with sufficient customisations. This means a DSML in MagicDraw is composed
for a specific domain using a very specific set of artefacts, as part of a language com-
ponent. Further, by using the Open Java API [NeuO6], custom plugins in MagicDraw
enhance the DSML to support complex constructs that are generally not possible using
the default MagicDraw capabilities. Figure 4.8 illustrates the artefacts that are archived
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together into a single plugin file. A language component consists of the artefacts listed
under “files (Directory)” in the figure. The language components are then composed
together into the final DSML plugin file. The DSML is made available to the users as

MagicDraw Plugin Archive File
| files (Directory)

A DSML Profile File

A Project Template File

A Perspectives File

Custom Plugins (Archived Files)
| An XML Descriptor File

Figure 4.8: A MagicDraw DSML archived plugin file structure consisting of the artefacts
that belong to individual language components.

soon as the plugin file is installed in a MagicDraw instance, and is ready for use at
tool start-up. The following elaborates the concepts of industrial DSML engineering in
MagicDraw in respect to the language components introduced in Section 3.4.

DSML Profile. The DSML profile of a MagicDraw plugin generally contains all the
necessary artefacts required to complete a language definition. An example of an arte-
fact in terms of language element contained within the DSML profile is identified as a
stereotype, and configured with customisation properties, as well as relations that help in
defining the behaviour of a language element. Figure 4.2 shows an example of a DSML
that is used for modelling use cases. The customizationTarget property for an
element specifies the configured stereotype. The hiddenOwnedTypes property for the
element specifies which stereotypes (and their metaclasses) are hidden from display, such
that no elements specific to that metaclass are created. Further, the language definition
contains artefacts that allow the configuration of tables, diagrams, and matrices. These
DSML elements are exported and stored as XML files in the DSML plugin. Validation
rules are set on DSML elements and are located under the activeValidationSuite, for
checking errors during design of models. These rules are configured as Java classes and
the corresponding class files are also bundled together in the DSML.

Project Template. A project template in MagicDraw consists of a customised model
representing the starting point in designing models using the DSML. It consists of a
set of artefacts that are created by language engineers as part of the DSML and are
instantiated when new modelling project is created by a user. In the case of MagicDraw,
these predefined models are created directly on the graphical modelling canvas. This
is particularly helpful designing complex systems as the users of such DSMLs may not
be familiar with all the language concepts and such models avoid designing parts of the
model always from scratch. The project template is itself also generated as a MagicDraw
.mdzip file consisting of all the artefacts that belong to this component.
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Perspectives. MagicDraw offers a large number of functionalities, such as diagram
toolbars and context menu items, to assist users in their modelling. Perspectives in
MagicDraw contain a set of artefacts in the form of .umd files. Internally, these are
XML files storing information on which DSML constructs or tool functionalities are
displayed for a specific user. Each part of the DSML, its building blocks, or the tool is
adjusted by specifying exactly how a novice or an advanced user of the DSML should
be able to see.

Custom Plugins. Modelling capabilities of MagicDraw and the DSML are enhanced
using custom plugins. Such plugins consist of artefacts such as compiled Java files,
packaged jar files, and any additional dependent files that must be used to enhance the
DSML. For example, a validation plugin checks the DSML constructs against rules that
cannot be simply performed directly by the tool. Other plugins, such as those that are
capable of enhancing the look and feel of DSML elements during design time, consist of
artefacts such as scalable vector image files or .jpeg files.

XML Descriptor File. The descriptor file contains the references to all the other arte-
facts that are described for the DSML constructs and helps in extracting and installing
them to MagicDraw. In practice, the descriptor file itself is considered an artefact, and
is bundled together with the final DSML plugin.

4.5 Forms of Language Composition in MagicDraw

MagicDraw supports language composition [EGR12, BMR22, Rum13, BEH20] using
the concepts of:
e language inheritance,

e language extension,
e language embedding, and

e language aggregation.

All of these forms of language composition rely on the composition of the artefacts of
the language components into a single composed language.

4.5.1 Language Inheritance

Concepts. Inheritance relationship concepts defined in OOP are reused in general to
graphical languages that are developed and maintained in MagicDraw. Language inher-
itance in MagicDraw is realised using the concepts of inheritance between the language
elements defined in a metamodel. This means that a language inherits from one or more
languages in the case when the components of a composed language inherently inherits
from the individual languages. To this end, in MagicDraw, inheritance is realised at
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the level of the individual classes, that are represented using the graphical notations of
generalisation and specialisation via UML stereotypes. For representing domain-specific
elements, this is also possible via customised UML stereotypes. One or more superclasses
are therefore reused and extended to another subclass. In this way, the attributes, meth-
ods, and features of those superclasses are also naturally reused. Further, MagicDraw
provides the functionalities to naturally compose the well-formedness rules in the form
of Java context condition classes that are checked against the inherited language el-
ements and are reused in the composed language. Therefore, multiple inheritance is
achieved through those classes that implement an interface for providing the necessary
inheritance.

Realisation. A language in MagicDraw is created by composing the artefacts of the
individual language components, e.g., the stereotypes. Figure 4.2 shows a Magic-
Draw metamodel that illustrates the inheritance of language components for the Use-
CaseDSML. In this example, the specific classifiers of a UseCase is defined, namely the
MyFirstUseCase and MySecondUseCase stereotypes. These classifiers naturally in-
herit the properties of the UseCase classifier, therefore all relevant configurations are
automatically propagated through the inheritance chain. This means any new attributes
configured for the inherited stereotype with a same name as the base language elements
are internally distinguished using identifiers that are unique. This helps in eliminating
problems of multiple inheritance [BEH'20]. To illustrate this as an example, if an in-
stance of the MySecondUseCase is newly configured with an attribute attributel,
then attributel of MySecondUseCase is configured via the Properties tab of the
Specification window in MagicDraw. The difference to configuring attributel belong-
ing to an instance of UseCase is by the configuration of the same in the Tags section
under the Specification window of the model element in MagicDraw. As discussed pre-
viously, the well-formedness rules in the form of context conditions for the UseCase
stereotype are valid on all the instances of the specific classifiers, in this example, the
MyFirstUseCase and MySecondUseCase stereotypes.

4.5.2 Language Extension

Concepts. Language extension is a specific form of language inheritance [BHH'17,
BEK'19, HKR21, But23]. The principle concept in language extension is that a lan-
guage extends another language. The language extension in itself has little meaning
because of its dependence to the base language. This is primarily because the extension
always requires adding novel parts to a base language that is being reused. This base
language is reused without any modifications, which ensures that any subsequent exten-
sions in MagicDraw remain safe, meaning the models of the base language continue to
be valid in the extended language with the added novel parts. We therefore say that
the extended language is a conservative extension [HKR21] of the base language since
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the models in the base language also conform to the extended language. This means
that there exists a rather strict form of coupling between the two languages, the base
and the extended, giving it the primary characteristic for this form of language com-
position. Further, the remainder of the language infrastructure does not contain any
distinct characteristics between a language composed via inheritance or via extension.
For example, if a language component restricted the use of certain constructs in the base
language, such as relationships on language elements, they continue to be automatically
restricted in the extended language (elaborated previously in Section 4.1). Such kinds of
language restrictions ensure that the restrictions imposed on the constructs of the base
language hold for the extended language as well. Any well-formedness rules, i.e., context
conditions, continue to naturally compose in the extended language.

Profile Diagram 3 DSL Composition [ @ Language Extension ])
[ UseCaseDSML Metamodel
«stereotype»
MySecondUseCase R e
[UseCase] UseCaseActoTA.ssoclatlon
[Association]
«Customization» XN
«stereotype» UseCaseActorAssociation
MyExtendedSecondUseCase «Customization»
[UseCase] customizationTarget = «>UseCaseActorAssociation
hideMetatype = true
«Customization» % typesForSource =
MyExtendedSecondUseCase «>»UseCase
«Customization» <«>Actor
allowedRelationships = <>UseCaseActorAssociation typesForTarget =
customizationTarget = «>MyExtendedSecondUseCase «>UseCase
«>Actor

Figure 4.9: An example of the MySecondUseCase being extended and customised to
MyExtendedSecondUseCase with an association dependency
UseCaseActorAssociation between a UseCase and an Actor. Figure

adapted from [BGJ*23].

Realisation. An example for configuring a language extension on a language component
for the UseCaseDSML is shown in Figure 4.9. The MyExtendedSecondUseCase lan-
guage element extends the MySecondUseCase element using a MagicDraw generalisa-
tion. This means the specialised MyExtendedSecondUseCase element automatically
inherits the same stereotype metaclass configured for the MySecondUseCase, which is
the UseCase metaclass. In principle however, the classifier for the MyExtendedSec—
ondUseCase can be modified during the composition, although this could lead to un-
desired errors during modelling. In this example, the MyExtendedSecondUseCase
element is configured additionally with a UseCaseActorAssociation as part of the
allowed relationship, which is an association relation between a UseCase and an Actor,
as seen on the right side of the image. Such an extension demonstrates how additional
constructs of a language are composed without any modifications to the base language.
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It must be noted that since MySecondUseCase stereotype disallows all kinds of rela-
tionships (Figure 4.2), the UseCaseActorAssociation relationship element is also
inherently disallowed for any instance of the MyExtendedSecondUseCase stereotype.
If this novel association would have been configured on the MyFirstUseCase element,
then the association between instances of MyFirstUseCase and Actor would have
been allowed. In the extending language, instantiation of MyFirstUseCase is still
possible. A benefit of under-specifying the configuration of these language elements is
that it allows for easily configuring relations in variants and instances of the constructs
of the UseCaseDSML. However, language engineers may choose to restrict language ele-
ments in other scenarios to prevent undesired language functionalities further along the
inheritance chain making this form of inheritance non-conservative. It would however be
beneficial to only configure specific types of relations, instead of completely restricting all
kinds of relationships, as allowing such a mechanism gives language engineers more flex-
ibility in developing versions of a DSMLs easily, rather than completely changing many
parts of the language infrastructure. Well-formedness rules for MySecondUseCase con-
tinue to be valid and apply naturally to the MyExtendedSecondUseCase element and
new rules are defined as novel parts for the MyExtendedSecondUseCase.

4.5.3 Language Embedding

Concepts. While language inheritance and extension are based on the idea of reusing a
single language for creating a new language, language embedding works on a principle
that uses at least two languages. In this form of composition, one language is reused as
the host language (Ho), whereas the other language is reused as an embedded language
(Em). In doing so, a language, and therefore all of its constructs, are completely en-
capsulated into the host language Ho. Language engineers achieve this in MagicDraw
by introducing a novel syntax called integration glue, which acts similar to an API and
is used for communicating between specific constructs of the host language Ho and the
embedded language E'm. This allows any underlying connections and relations between
language elements in E'm to be interfaced directly with the constructs of Ho. In lan-
guage embedding, the host language Ho is introduced with the novel syntax, while both
of the languages, Ho and Em, are reused as-is. In MagicDraw, language embedding
is realised using an in-built tooling property setting called showProperties WhenNotAp-
pliedLimited ByElementType, which is defined as an attribute on the novel stereotype
part of a host language’s construct. When this attribute is initialised, the corresponding
language element that is configured on this attribute, is embedded into the host language
Ho. This means that the novel stereotype, or syntax, inherits both the host language
Ho and the embedded language E'm constructs, and the language element configured
by the specified tooling property described above simply acts as the interface to glue
both languages. As this novel syntax is configured, the metaclass is automatically con-
figured as one or more of the classifiers that are inherited from both the host and the
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embedded language element metaclasses. Here, we must note that inconsistencies be-
tween the classifiers occur due to the inherent redundancy in UML [EB04, LEM02]. To
avoid this problem, language engineers must carefully select the final classifier for the
novel syntax. Using these concepts, truly modular language composition is achieved, as
only the necessary and generated implementations from both the host and embedded
language infrastructures are completely reused. As with other forms of composition, the
other parts of the language infrastructure compose naturally. However, if required new
language infrastructure, such as new well-formedness rules or further extensions may be

Vi RN Lieala] AR
defined-that-is atéi;}ubauw O t1reCont

C [ t:d language: )
Profile Diagram 3 DSL Composition | Language Erﬁ)eddlng ])

| UseCaseDSML Metamodel

«stereotype» «stereotypex
UseCase Task
[UseCase] [Class]
{} T
«stereotype» «stereotype»
UseCaseTask GeneralTask
[Class, UseCase] [Class]
attributes attributes
-UseCaseGeneralTaskGlue : String -lsUseCaseAGeneralTask : String
«Customization» =N

UseCaseTask
«Customization»
customizationTarget = «>UseCaseTask
showPropertiesWhenNotApplied = true
showPropertiesWhenNotAppliedLimitedByElementType = «>UseCase

attributes
«placeOnPaletteProperty»-UseCaseTasklInstance{place = "Class Diagram"}

Figure 4.10: Embedding the ActorDSML into the UseCaseDSML via an integration glue
(UseCaseTask) in MagicDraw. The UseCaseTask stereotype is the novel
syntax specifying the UseCaseGeneralTaskGlue attribute as the in-
tegration glue on the UseCase. The ActorDSML is embedded through
the integration glue attribute of the UseCaseTask stereotype into the
UseCaseDSML using MagicDraw’s showProperties WhenNotApplied Limited-
ByElement Type property. Figure adapted from [BGJ123].

Realisation. The realisation of the configuration of a novel syntax for the composed
language that embeds the ActorDSML into the UseCaseDSML is shown in Figure 4.10.
The example illustrates the complete reuse of the UseCaseDSML and the ActorDSML.
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In MagicDraw, these are set as read-only projects, meaning both languages are reused
as-is without any further modifications. In this example, the UseCaseTask is the
new stereotype that is created by a language engineer which ultimately inherits from the
UseCase stereotype belonging to the UseCaseDSML host language and the Task stereo-
type belonging to the ActorDSML embedding language. Because of this inheritance, the
UseCaseTask consists of both the metaclasses defined previously for the UseCase and
GeneralTask, hence Task, stereotypes. In this situation, the UseCaseTask is either
instantiated with a UseCase or a Class classifier. As the GeneralTask stereotype
is a specialisation of a general Task it automatically inherits all the properties of the
Task stereotype. The integration glue earlier mentioned is the
UseCaseGeneralTaskGlue attribute part of the UseCaseTask stereotype and is
configured to the UseCase stereotype using the property setting showProperties When-
NotAppliedLimited ByFElementType for this novel syntax. By setting this attribute value,
UseCase is now aware of the constructs of the ActorDSML enabling embedding. Con-
versely, the ITsUseCaseAGeneralTask attribute on the GeneralTask is not config-
ured to the UseCaseDSML, meaning constructs from both languages are unaware of each
other and it cannot act as an integration glue. Therefore, for a UseCaseDSML to access
the constructs of the ActorDSML, the integration glue is a necessity.
package 3 DSL Composition Models [ Language Embedding ])

: : «Task»
«Actor» .
«Performs» T1: A customer walks to the bank to withdraw money.
Custlomer_ —_ = = >

|
|
|
| «UseCase»
«Performs» «UseCaseTask»
| Withdraw

{UseCaseGeneralTaskGlue = "Yes"}
Documentation = "A customer must be able to
withdraw money from their account.”

Figure 4.11: A MagicDraw model showing language embedding using an integration
glue. The attribute UseCaseGeneralTaskGlue acts as the integration
glue between the ActorDSML and the UseCaseDSML. As the integration
glue is set to “Yes”, Withdraw is configured both with a UseCase and the
UseCaseTask stereotype, therefore embedding the ActorDSML into the
UseCaseDSML, allowing a Customer to now configure an outgoing Per-
forms relationship to Withdraw. Figure adapted from [BGJ*23].
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To illustrate this with an example model, Figure 4.11 shows model elements from
both the languages: Customer (Actor), T1 (Task), and Withdraw (UseCase). At
the start, a Customer is only allowed to perform 771 and the Withdraw is configured
only as a UseCase. This means, the Withdraw is unaware of the model elements Cus-
tomer or T1, apart from being modelled on the same UML CD. As the user continues
modelling, they realise that the description of the Withdraw is simple to be considered
a task. The user therefore initialises the UseCaseGeneralTaskGlue attribute for the
Withdraw to a value, e.g., “Yes”. With this setting, the UseCaseTask is automatically
added to the Withdraw meaning the constructs of the ActorDSML is now embedded
into the UseCaseDSML, and the Withdraw is configured both as a use case and a task.
As discussed previously, the integration glue (UseCaseGeneralTaskGlue) has cre-
ated the interface required such that the user now further sets an outgoing Performs
relationship from the Customer to the Withdraw, which was not possible without the
setting of the integration glue. This is shown in the figure with the respective relation-
ships configured. The integration glue therefore ensures the Customer performs both
T1 and Withdraw, without which the languages remain completely aware of each other.
The well-formedness rules for the UseCaseDSML and the ActorDSML continue to re-
main valid independently, while adding new language infrastructure does not modify the
individual languages.

4.5.4 Language Aggregation

Concepts. In contrast to language inheritance and language extension, and similar to
language embedding, language aggregation is a form of composition which reuses at
least two languages. Here, the respective models of the individual languages continue
to remain in their own artefacts. While this separation holds overall, the models in
MagicDraw may refer to other models belonging to other languages using association
relationships. These associations are defined on the composed language so as to provide
the necessary connections between the reused languages. This means that in practice,
language aggregation requires a certain level of know-how between the individual lan-
guages. This know-how is configured by language engineers at different extension points,
which denotes the location in a language where the association is being established. In
general, associations implies that one language component (or a part of it) are con-
nected to another language component (or a part of it). In language aggregation, the
configurations are only such that the model elements refer to other model elements only
at these specific extension points, and apart from these references, the existence of any
other constructs, references, or interfaces remain unknown to either languages. A central
benefit of language aggregation is that it requires no new language infrastructure to be
generated. The individual languages are only connected via the extension points, that
are associations between language components consisting of language elements. Similar
to the other forms of composition, other parts of the language infrastructure, such as

80



4.5 FORMS OF LANGUAGE COMPOSITION IN MAGICDRAW

the well-formedness rules, also naturally compose. A loose form of conceptual coupling
between the languages is established when such extension points are created for all the
languages under consideration.

Realisation. The configuration needed to achieve language aggregation in MagicDraw
is shown in Figure 4.12. The ActorDSML and the UseCaseDSML, along with all their
constructs, are reused in their entirety. To realise language aggregation in MagicDraw, a
UML dependency is created as a novel syntax. In doing so, the language components in
each language remain decoupled and are reused as-is without any modifications. There-
fore, the ActorDSML and the UseCaseDSML are read-only projects in MagicDraw and
the models for each language remain in their respective individual artefacts. In this
example, the TaskBelongsTo UseCase dependency is created as a novel syntax in the

TaTeqate TETAge COME . This is possi-

composed la gliage

«stereotype»
TaskBelongsToUseCase
[Association]

«Customization» 2N
CustomizationForTaskBelongsToUseCase

«Customization»
customizationTarget = «<>TaskBelongsToUseCase
hideMetatype = true
typesForSource = «>Task
typesForTarget = «>UseCase

Figure 4.12: An example of the configuration for language composition using language
aggregation in MagicDraw. The TaskBelongsToUseCase association is a
novel syntax in the AggregatedDSML. The typesForSource and typesForT-
arget property configurations in the customisation of the novel syntax spec-
ifies the direction of the dependency between the models of the ActorDSML
and the UseCaseDSML. In this configuration, the association is configured
to exist from a Task to a UseCase model element. Similar to language
embedding, both the base languages are completely reused unchanged in
language aggregation. Figure adapted from [BGJ*23].

ble as a dependency is implied by an association. For this association, the customisation
properties typesForSource is set to the source language element, while the typesForT-
arget is set to the target, or the destination, language element. In this example, the
source is configured to the Task and the target is configured to the UseCase (defined
previously in Figure 4.10). In doing so, an outgoing dependency is only be initialised
in the direction from an instance of a Task to an instance of a UseCase. A loose
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form of coupling is established between the languages, using bi-directionality, when both
the source and target properties of the customisations are set to both the Task and
the UseCase stereotypes. Constructs without any restrictions will then be known to
either language. Further, this kind of configuration is done on the initial definition of
the languages, which means the language engineer is aware of both the languages and
accordingly configures the aggregation.

To illustrate this with an example model, Figure 4.13 shows model elements that were
described earlier in Figure 4.11 for a Customer (Actor), T1 (Task), and a Withdraw
(UseCase). Once again, initially, a Customer is only allowed to perform 71 and the

Withdraw is Pnnﬁg11r9d nn]y as a UseCase T)nring mndpﬂin& the user decides that
package 3 DSL Composition Models [ Language Aggregation ]/[

; ): «Task»

«Actor» «Performs» _|T1: A customer walks to the bank to withdraw money.
Customer — — — — >

AggregatedDSML Model

|
I «TaskBelongsToUseCase»

«UseCase»
Withdraw
Documentation = "A customer must be able to
withdraw money from their account.”

Figure 4.13: An example of a MagicDraw model using aggregation through association,
TaskBelongsToUseCase, between the task T1 and the use case Withdraw.
T1 and Withdraw are models in their individual DSMLs but modelled here
on a common diagram. When the dependency is not set, Withdraw is
completely unaware of either the Customer or T1. In this example, the
direct dependency is only configured between 71 and Withdraw. Figure
adapted from [BGJ*23].

there could exist a list of tasks that belong to a single use case. Using the already
configured TaskBelongsToUseCase association, the user creates the necessary outgoing
relation from 771 to Withdraw. This association creates the required aggregation be-
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tween the ActorDSML and the UseCaseDSML. Now, as the Customer has a Performs
dependency to T1, there exists no direct relation between the Customer and Withdraw.
However, as the TaskBelongsToUseCase is already configured between 71 and With-
draw, the element Withdraw now traces back to the Customer using the set of relations
recorded between these model elements and derives the link between the two languages.
In order to directly relate Customer and Withdraw, a new association must be created
in the composed language, without which the languages are completely unaware of each
other. Thus, when the languages remain unchanged, the models in Figure 4.13 exist
independently. The well-formedness rules for the UseCaseDSML and the ActorDSML
continue to remain valid independently, and new language infrastructure are created as
desired.

4.6 Unified Concepts for Language Components in MagicDraw
and MontiCore

In this chapter, we have so far discussed in detail the definitions of language components
in the MagicDraw and MontiCore ecosystems that belong to the graphical and textual
modelling spaces respectively. While, these exist independent of each other, describing
cross-cutting concerns that enable a seamless unification of these language components is
crucial in fostering wider adoption of such composition mechanisms and is interoperable
irrespective of any technological space, modelling tool, or language workbench. As ob-
served from the definitions, language components are principally quite similar in nature,
therefore the concerns are to address reusing these definitions, both in syntax and in
semantics. To this end, the main difference observed in the definition of language com-
ponents is the specific format of the software artefacts. MontiCore primarily focusses on
grammar files to generate artefacts for a DSML, while in MagicDraw, the language and
its components are defined directly on the modelling tool and the file system artefacts
that are later bundled into a single plugin file.

4.6.1 Mutual Definition of a Language Component

In general, a language component consists of reusable units, in the form of software arte-
facts, that encapsulate a language definition, either wholly or partially. These software
artefacts could be, but not limited to, either grammar or java files in MontiCore to define
textual languages, or as files in a file system directory in MagicDraw to define graphical
languages. To this end, we use the definition of a language component independent of
a technological space described earlier in Def. 2 as the mutual definition of a language
component.

This mutual definition, therefore, does not differentiate between the software artefacts
that belong to different technological spaces. The definition considers realising software
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artefacts in general as part of the language definition, and is persisted as files, including
any generated source code, in a file system directory. The definition of a language is
typically facilitated with additional artefacts or applications, such as the modelling tool
or language workbench itself, and therefore they are also considered parts of a language
component. Mutual notions for language composition using such language components
must also be considered for unifying the concepts across various technological space.

4.6.2 Mutual Notions of Language Composition

Based on the language composition techniques discussed so far in this chapter (cf. Sec-
tion 4.5 and Section 4.2), mutual notions of such composition techniques are described.

Both language inheritance and language extension mechanisms rely on inheritance
concepts that are used widely in the OOP world, and are therefore quite closely related.
Reuse, extension, and overriding for all language components consisting of software arte-
facts such as language elements in a language definition must be supported by language
inheritance. This includes nonterminals in a textual DSML and stereotypes in a graph-
ical DSML. In language extension, a composed language must add novel parts to a
language being reused. The models of the original language, with language inheritance,
may not necessarily be valid in the resulting language, but continue to remain valid in
the original language. In contrast to language inheritance, language extension conserves
the properties of the inheritance mechanism, meaning only new, optional constituents
are added as part of an extension mechanism, hence the notion of conservation extension.

Language inheritance and language extension reuses a single language. However, lan-
guage embedding reuses at least two languages, a host Ho language and another language
Em to be embedded. An extension of the involved language forms the basis for language
embedding. This is usually achieved with an integration glue, that is a novel syntax in-
troduced in the composed language, which inherits and extends the syntax of both Ho
and Em languages. Normally, the language E'm is embedded directly into Ho at some
predefined extension points that allows the constructs of the embedded language Em
to be visible to the host language Ho. This is also referred to as the integration glue.
These extension points are normally configured as part of Ho’s specification that pro-
vides the extension for the constituents of Em. This means language embedding realises
and implements extension points within the overall composition mechanism.

Language aggregation is similar to language embedding in the sense that it also reuses
at least two languages to compose a new language. In this form of composition, the
models continue to remain in their individual artefacts. In theory, the languages are
reused completely, however certain modifications could be made to one of the existing
languages in a way that one of the languages refer to the constructs of the other lan-
guage. In this scenario, a reconfiguration and regeneration of the infrastructure for one
of the languages is required. Therefore, a reference must exist between the languages, for
example, via a symbol names for textual DSMLs or via association relations in graph-
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ical DSMLs. Such references establishes the necessary interface between the accessible
constructs of the respective languages. This leads to languages exhibiting a rather loose
form of conceptual coupling.

Properties. For individual languages to be bundled as part of a library of languages, it
is important for language components of such languages to be reusable. Building such
a library of languages is beneficial as it provides the opportunities to develop complex
versions of languages based on extensions and adaptations, hence being flexible. Some
forms of language composition describes building language components with extension
points that as interfaces to refer to the constructs of other languages. A logical grouping
of individual language components ensures that similar language components are reused
in a language definition. Further, the realization of language components must be under-
specified by language engineers, wherever possible, such that they avoid problems of
language restriction later on during language extensions.

4.7 Discussion

This chapter describes the notions of language components and their compositions in
the MagicDraw and the MontiCore ecosystems. However, to define and implement such
composition techniques that are independent of technological spaces is a complex under-
taking. While this chapter aims to provide a rather unified notion of language compo-
sition, the implementation may not necessarily be the “go-to” solution. Therefore, the
concepts described in this section provide a kind of guidance for further work on lan-
guage components and composition techniques for current and future tools and language
workbenches, including those that support a mix of textual and graphical modelling. To
this end, it is important for language engineers to be aware of the various concepts and
realisation techniques that are required to compose languages or versions of languages.

To avoid problems of maintaining and reusing large software artefacts, language engi-
neers are encouraged to design solutions that make use of modularity techniques. There-
fore, there is a large interest in the SLE and CBSE communities to introduce reuse
through modularity for existing and upcoming software solutions. Software components
within these software consist of interfaces that provide the required interaction of the
component to its environment [BHPT98]. The approach presented in this chapter does
not promulgate explicit interface or interface providers for language components as they
are generally considered an overhead in maintenance and evolution. This is because such
interfaces require anticipating extension points that may not necessarily lead to better
reusability of language components. The implementation of such interfaces is also a chal-
lenge as it could introduce undesired inconsistencies from the interface to the respective
software components. This is because without a substantial knowledge of the workings
of a language component, it is hard for language engineers to reuse language components
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based on its properties. Therefore, this chapter discusses the composition of languages
by introducing novel syntax and reusing mechanisms of extensions. To design languages
without needing to know the internals of a language, their language components must
be underspecified so that future extensions are possible. This kind of a black-box devel-
opment helps language engineers in designing language components that are beneficial
in being independently reused for developing complex versions of languages.

Language components typically consist of software artefacts that are generated and
stored in specific file formats in different technological spaces. These artefacts are gen-
erated as part of the compiled source code during the definition of a DSML or could
simply be a grammar file that is parsed to generate the language infrastructure such as
an AST. The modelling tool or the language workbench is itself considered a language
component, as it contributes to the language definition. However, they may be indepen-
dent of consideration to the concepts of language composition. In all the discussed forms
of language composition, at least one language is reused. While language inheritance
and extension reuses one language, language embedding and aggregation reuses at least
two languages. A central property of all forms of composition described in this chapter
is that they foster the reusability of independent language components.

The concepts described in this chapter sets the foundation for describing language
composition aspects in a hybrid modelling environment that uses a combination of tex-
tual and graphical representations, such as with projectional editing. MontiCore, a
textual language workbench, is used to derive proof-of-concepts (PoCs) for a variety of
domains such as with cyber-physical system (CPS) [ZPK'11, KRRvW17], automotive
industry [HRRW12, KKR19], and Internet-of-Things (IoT) [KMR*20, BDJ*22]. The
concepts and results have been actively used in many successful industrial projects, an
overview of which is found at the end of this thesis. Similarly, MagicDraw has been used
to design graphical DSMLs for many industrial scenarios and is widely used for practical
modelling by practitioners. Mutually defining language composition aspects between
these two technological tools and spaces creates an in-depth complement of research in
academia and their applications in the industry. These aspects are described in a way
that they are generally applicable to any modelling tool or language workbench that
supports language development.

Principally, the language components do not differentiate between the artefacts that
belong to their individual technological space. These software artefacts are realised as
files in a file system directory, which are generated as part of the compiled source code.
In the sense of mutually describing the notions of language composition, language inher-
itance reuses a single language while providing the necessary concepts to reuse, extend,
and override language elements. Novel parts are added to a language infrastructure to
achieve language extension. The valid models continue to exist in their respective origi-
nal artefacts. In language embedding, at least two languages are reused, but are glued
together at a single point in the host language that embeds another language. This kind
of integration glue is necessary to extend the host language with the visible constructs
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of the embedded language. This is achieved using unifying grammars in MontiCore,
or using a novel integration glue with inheritance and extensions in MagicDraw. Lan-
guage aggregation generally requires modifications on one of the multiple languages being
reused, but it requires language engineers to reconfigure and regenerate the existing lan-
guage infrastructure for a reference to be established. Symbol tables in MontiCore and
association relations in MagicDraw are used to technically realise language aggregation
in the textual and graphical spaces respectively.

To create a library of languages, it is important to engineer reusable language com-
ponents. Therefore, these language components must not be strictly specified, to avoid
restrictions on developing new language constructs, such as by disallowing relationships
for a language element where the extensions for this element can no longer configure
any further relations. The examples of UseCaseDSML and ActorDSML demonstrate
the applicability and implementation of the concepts described in this chapter. Vari-
ous methodologies to realise these concepts exist in the literature as described in the
next section, however describing unified concepts of language composition from the tex-
tual and graphical modelling spaces serves as an important step in further developing
component-based independent language composition techniques in the large.

Threats to Validity Certain threats to validity for these mutual notions must be consid-
ered for independent language composition to ensure the concepts are free from system-
atic errors or biases. This section details the concepts of language components using two
actively maintained, advanced, and OMG standard-compliant ecosystems. MontiCore
has been developed in academia for engineering textual DSMLs and has been used in
the industry as well [HKR21]. On the other hand, MagicDraw is a popular commercial
graphical modelling tool that supports UML and SysML standards, also has support
for other frameworks and tools such as SysML, UAF, SoaML, and Enterprise Archi-
tect in the form of plugins [Mag20]. Therefore, the implementation details presented in
this chapter are considered tool-specific or vendor-locked as they are presented in the
technological space of MagicDraw and MontiCore.

Compositional reusable language design has been discussed in the literature indepen-
dently in MontiCore [BEH"20] and MagicDraw [GKR*21]. Often various workbenches
and tools do not provide a similar set of modelling functionalities thereby making the
realisation of this study difficult in those ecosystems. Although the example languages of
UseCaseDSML and ActorDSML are not complex, they cover the distinct language com-
position concepts described in this chapter. Further, these DSMLs, or parts of them,
are commonly used in real-world projects as well [TG15] as they are based on UML
and SysML constructs. While both of these languages are constructed independently
and represent distinct domains, the composition of both shows how they offer integrated
modelling techniques. It should also be noted that in very complex scenarios, all the in-
dividual language components may not be completely reusable, therefore a large portion
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of the language infrastructure may be unused. While this chapter does not explicitly
consider projectional editing, the threat can be ignored as projectional editing mostly
combines the textual and graphical concepts described in this chapter. Some of the prac-
tical implementations already detail the research of language components and building
blocks such as in the SpesML MBSE project [GJRR22b].

4.8 Related Work

To maintain and evolve complex software and systems, reusable units that capture sys-
tem details are investigated in related approaches. Omne such modular approach for
MBSE in complex heterogeneous systems is discussed in [HKRT09]. Aspects of compo-
sitional modelling for interactive systems is discussed in [BR0O7, RW18]. When describing
a DSML, their software components, the corresponding artefacts, and the models must
consider compositional approaches [TAB™21, BEH"20]. Many of the approaches present
in the literature are described in the textual space [BHRW21, BPRW20, HRW18]. Cer-
tain forms of language composition have been widely discussed in the modelling com-
munity [EGR12, VV10]. While language related patterns have been studied [Spi01,
MHSO05], there is a general lack of identifying which language components are related
to which patterns. Language implementations are reused and combined to create new
DSMLs [SvdBV18, Vall0]. However, such concepts of reuse introduces challenges in how
the language is specified and how restrictions on certain forms of language composition
are beneficial in globalising DSMLs [CCF 15, CBCR15]. This chapter presents compre-
hensive mechanisms of language composition in the graphical and textual technological
spaces for language engineers to develop reusable language components.

This chapter presents a single definition for a language component valid across different
technological spaces. This is important as language component definitions are almost
exclusively present in the textual modelling space [But23, BEK™19, HLMSN*15]. In this
space, the systematic engineering of languages as well as its implementation in practice
is part of related approaches [SRVK10, KRV06, MCGDL12]. Similarly, a systematic
development of graphical DSMLs in industrial scenarios has been studied [GJRR22b].
Modularising the compositional concepts with the JetBrains Meta Programming System
(MPS) in the projectional editing space has also been researched [Voell|. The integration
of a textual syntax inside a graphical modelling tool is discussed in [DJRS22, Seil4], but
they are hard to develop and maintain and only provide a loose relation to the concepts
described in this chapter. One example is embedding the eclipse modelling framework
(EMF), based on textual editors, and the eclipse graphical modelling framework (GMF),
for developing graphical editors based on EMF as well as tree-based editors generated
within the EMF [Sch08]. Model transformations that provide a textual and graphical
notation have also been proposed [MSA 115, EvdB10], that illustrate the transformation
of language concepts during design time. In contrast, the concepts described in this
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chapter can be interchangeably used in the textual and graphical spaces. Further, a
model can be projected in a combination of textual and graphical spaces [Voel0], which
is desired if true modularity of language components needs to be achieved.

Language composition mechanisms described by [EGR12] in the textual technological
space serves as the key related work for this chapter. Their described mechanisms are:
“language extension, language restriction, language unification, self-extension, and ex-
tension composition”. Similar to the concepts presented in this chapter, their notion of
“language extension” also requires the reuse of a base language completely unchanged.
This kind of composition also subsumes language restrictions prohibiting the use of
certain language constructs. Their notion of “language unification” fits our notion of
language aggregation, with two completely independent languages are reused unchanged
with the introduction of a glue code. However, our notion of language embedding in-
troduces an integration glue for embedding one language completely unchanged into
another language at predefined extension points, thus relating somewhat to their idea
of “self-extension”. The notions of “extension composition” described in their work is
supported by both MontiCore and MagicDraw through incremental extensions. One im-
portant distinction to their work is that the notions of language composition presented
in this chapter is primarily extended to the graphical technological space. A conceptual
framework for language composition in the graphical technological space would thereby
foster the modular development of reusable language components.

Graphical modelling tools such as IBM Engineering Systems Design Rhapsody [IBM23],
Enterprise Architect [Ent23], and MetaEdit+ [TR03] support language development con-
cepts needed for reusing language components [Kha09, Ozk19]. On the other hand,
textual language workbenches such as MontiCore [HKR21], Spoofax [KV10], EMF-
Text [HIKT09], and Xtext [EV06] support textual modelling and have also been studied
for modular language development [EvdSVT13]. In the context of language components
presented in this thesis, the primary tools considered are MagicDraw and MontiCore.

In pattern-based modelling [DJR22, BGAL10], the formalisation of a pattern to pro-
vide compositional aspects by analysing conflicts is discussed. Certain templates to
map concepts with their metamodels in model transformations discuss reusability of
models [SCGL11]. Multi-level modelling paradigms [LGC14] help separate the concerns
of modelling by segregating the various stages of modelling for complex language de-
velopment. Language composition in textual modelling is achieved using a kind-typed
symbol management infrastructure [BMR22] for identifying symbols, while the reusabil-
ity of graphical language components in industrial DSMLs has been briefly discussed in
the literature [GKR™21].
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Chapter 5

Exchange of Language Constructs between
Modelling Tools

This chapter discusses enabling the composition of a DSML and its constructs between
different modelling environments. Interchanging DSML constructs between modelling
tools or language workbenches is imperative in ensuring domain-specific constructs such
as language components, consisting of reusable software artefacts, are reused as-is across
modelling tools and language workbenches that support modelling in the textual, graph-
ical, or projectional technological spaces. By defining such an exchange, individual units
of the DSML, including components belonging to the DSML building blocks or the entire
DSML building block itself, are reused as-is across technological spaces. This means lan-
guage engineers and DSML users benefit from a single domain-specific modelling solution
across different modelling environments without the need for building similar language
constructs from scratch every time. Some results of this chapter have been published in
[GBJ24]. Therefore, passages from the paper may have been quoted verbatim in this
chapter.

As domain concepts increasingly grow in complexity, there is also a growing need for
the simultaneous exchange of domain-specific information between various stakeholders
across modelling projects. Since such stakeholders often use a variety of modelling tools,
it is necessary to provide techniques to develop reusable DSMLs. Further, stakehold-
ers continue to use the same modelling tools relevant to develop and use their DSMLs.
Therefore, there is little thought for generalising these domain-specific concepts across
modelling tools or language workbenches. In Chapter 4, the composition of languages
in the textual space of MontiCore and the graphical space of MagicDraw was discussed.
This was demonstrated by writing grammars for textual languages in MontiCore and by
defining stereotypes in the graphical language profile of MagicDraw. To further extend
and validate these concepts of language components and their composition, it is neces-
sary to describe these concepts in other modelling environments. As this thesis is aimed
at primarily providing the means to engineer graphical DSMLs in industrial contexts,
this chapter therefore extends the concepts of language design described so far to another
commercial graphical modelling tool, Enterprise Architect (EA). Precisely, this chapter
describes a bidirectional exchange mechanism between EA and MagicDraw, two com-
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mercially established modelling tools by exchanging DSML constructs, that serves as the
basis for generalising DSML exchange between different modelling tools. This mechanism
allows individually created DSML components to be seamlessly exchanged, thereby fos-
tering tool interoperability. As DSMLs represent domain-specific characteristics within
a single area, the proposed mechanism evaluates the applicability of exchanging DSMLs
and their constructs by extracting and translating these characteristics across modelling
tools. This is demonstrated using a simple case study. To achieve this, DSML artefacts
from a modelling environment are transformed into formats that are subsumed under
the language definitions in the other modelling environment. Later in this chapter, we
discuss how this mechanism is able to extend to established modelling frameworks and
language workbenches other than EA and MagicDraw.

The use of models in designing complex systems help various stakeholders in under-
standing possible solutions through abstractions [Sel03]. Thus, stakeholders of mod-
elling projects must consider the entire software or systems product lifecycle to deal
with the rising challenges in such multi and inter-disciplinary projects. Various mod-
elling tools and frameworks, such as MagicDraw [Mag20], Rational Rhapsody [IBM23],
and EA [Ent23] are therefore used to engineer various parts of a model within each
modelling project [OWHT21]. Today, the exchange of DSML constructs between such
proprietary modelling tools, like MagicDraw and EA, is still challenging, especially for
small and medium businesses. These modelling tools have also been used in the sys-
tems engineering community and are well established. Further, the need for exchanging
DSML constructs has also been discussed in real world industrial projects [BCCT10].
The mechanism described in this chapter allows DSML artefacts to be exchanged be-
tween modelling tools, where the language definition is transformed into a format that
is reused by the other tool. A benefit of using this mechanism is that all stakeholders
equally take advantage of the availability and interchange of the DSML and its constructs
across various modelling tools, projects, and even across all stakeholders in an organi-
sation. To realise the implementation of this mechanism, a GPL, such as Java code is
used, that enhances the existing and default functionalities of the respective modelling
tools. Language engineers utilise this mechanism to foster the development of DSMLs
across different modelling environments. In the following sub-sections, methods against
the mentioned modelling tools of MagicDraw and EA is described. A demonstration
of how this approach is applied to modelling tools needing a similar DSML exchange
is also discussed. To summarise, this chapter presents tool interoperability and consis-
tent DSML development viewpoints between all kinds of language engineers, novice or
advanced, and across inter-disciplinary modelling projects.

The interoperability of DSML constructs requires a generic set of bridges to be es-
tablished between different tools. Such bridges must ensure that both metadata and
behaviour interchange leads to tool and language evolution such that stakeholders work
on different viewpoints in a collaborative manner. Metamodels, i.e., the internal schema
of the language or the tool, must not be assumed to be conforming to a fixed metamodel
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such as with UML metamodels. Instead, considerations must be made for representing
domain-specific constructs with different metamodels [BCC*10]. Thus, manipulating
different metamodels in a way that they are correctly interpreted in a different mod-
elling environment is imperative for a bi-directional exchange mechanism to work in a
consistent manner. In the following, Section 5.1 describes the DSML specification for
EA and MagicDraw modelling tools before we discuss a general concept for a DSML ex-
change between modelling tools in Section 5.2. Section 5.3 discusses the implementation
of the exchange mechanism. Section 5.4 demonstrates the applicability of the approach.
Section 5.6 discusses the approach and Section 5.7 explains related work.

5.1 DSML Specification in Enterprise Architect and
MagicDraw

This section describes the DSML specifications of EA and MagicDraw that are used for
demonstrating the exchange of DSMLs and their constructs.

5.1.1 Defining a DSML in Enterprise Architect

In the modelling tool EA, a DSML is realised using model-driven generation (MDG) tech-
nologies that encapsulate a logical collection of resources such as UML profiles [Mod23b].
In the remainder of this chapter, we refer to MDG technologies that is specific to EA
and represents an individual modelling notation. A DSML in EA is realised through
extensions to the UML profiles for representing the domain-specific elements and its
interconnections. Thus the underlying metamodel inherits all the necessary elements
required for the desired application domain. The metamodel also shows the necessary
relationships in correlation with the actual real world elements. The creation of these
metamodels is out of scope of this thesis, and so the focus is on the implementation of a
DSML using the MDG technology in EA. EA’s modelling functionalities are extended
to allow domain-specific concepts using the MDG technology’s profile capabilities, that
allows for the creation of a set of model constructs. The extension is achieved using the
following three main profiles:

e UML Profile: The UML Profile for a DSML consists of the relevant domain-specific
elements and their respective UML metaclasses and relationships. The stereotypes
are attached to the elements and their associated tagged values allows the element
attributes to be configured either as a set or enumerations.

e Diagram Profile: The Diagram Profile for a DSML allows for the creation of specific
types of diagrams in EA. Here, the diagram represents a DSML diagram, extended
from a UML diagram, that is mapped onto the EA toolbox. This ensures that each
diagram only allows models to be created with a certain set of elements that are
relevant in describing the constructs of the domain.
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e Toolbox Profile: As part of the Toolbox Profile, all UML elements are logically
grouped together to ensure consistency among different elements. According to the
modelling situation, only a particular group of elements are therefore displayed for
modelling. Here, there is a distinction between the grouping of the elements and
their relationships that distinguishes between logically separate elements. In this
profile, all the elements not part of the UML Profile are selected, including the
DSML elements.

Apart from these profiles, additional information are also stored in the MDG file.
Certain model elements are visualised graphically using relevant images or additional
attributes. Since this information is not part of the UML Profile, they are additionally
extracted from the respective elements and stored in the MDG file in an XML format.
The individual parts of the MDG file is then combined and stored in a single exportable
file, that includes the UML Profile, the Diagram Profile, and the Toolbox Profile as well
as all the additional information. The creation of such an exportable file allows the DSML
constructs to be exchanged with other instances of the tool as well as being deployed to
other stakeholders, and therefore even to other modelling tools or frameworks.

Finally, the exportable file is located within the MDG Technologies folder of the current
EA instance, and follows the structure described in Figure 5.1. Any other DSMLs or their
constructs that have been referenced are stored in the same folder for provisioning and
final deployment. Versioning of such DSMLs is achieved by maintaining different folders
each containing different DSML versions. This includes constructs that implement the
Zachman framework [Zac03] for providing a formal and structured way of defining an
enterprise. This ensures that all the information related to the DSML is loaded directly
in EA during tool start-up and no further configurations are needed. Any diagrams part
of the DSML that consist of the model elements are directly added using EA’s context
menu.

5.1.2 Defining a DSML in MagicDraw

Similar to EA, MagicDraw is also primarily based on UML and provides customisations
such as extensions for modelling with SysML. Previously in Chapter 3, we discussed
how MagicDraw also provides a extensive list of customisation possibilities so that the
modelling goals of DSML users are achieved through an enhanced modelling experience.
Such customisations are used to create modular and reusable units of DSML building
blocks, which is important in achieving interoperability of DSMLs and their constructs.
To this end, MagicDraw offers various possibilities to customise a language that allows
for the creation of language component artefacts. One such example of an artefact is
a language element which is eventually referred to as a stereotype in MagicDraw and
corresponds to the same in EA. For each individual stereotype, a set of rules are con-
figured that defines its semantic behaviour in a domain context. These customisation
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Figure 5.1: An EA DSML plugin hierarchy with the different artefacts.

rules, therefore, allow language engineers to integrate various facets of language devel-
opment using Java Open API, from automation to creation of functionalities that is not
supported by MagicDraw out-of-the-box.

In comparison to EA, the following extension mechanisms are used to ensure language
artefacts are created in a similar fashion contained within XML files thereby allowing
easy export of the DSML and its constructs to other modelling tools. Model templates
are a way to automatically create predefined models in MagicDraw that is instantiated
during design time. Additional information that help display tool and DSML function-
alities are configured as perspectives in MagicDraw. Further, the combination of UML
and domain-specific diagrams are typically bundled in a single file that is used across
other MagicDraw instances. The language profile, that consists of the definition of the
language, and its additional information is exported as an XML file, which is then reused
across other projects and is therefore reused in other modelling tools as well. Similar to
EA’s mechanism, the language artefacts are loaded in-memory to ensure that during tool
start-up, the DSML and its constructs is readily accessible to modellers. The structure
of this archive file was described earlier in Figure 4.8.

5.2 Concept for a DSML Exchange Mechanism

We discussed the capabilities of both tools to show how language engineers design DSMLs
in graphical modelling tools as well as set the precedent for discussing how the customisa-
tion capabilities of such tools be utilised to derive a generic concept for the transformation
of DSMLs between them.

Figure 5.2 shows the general concept for interchanging DSML elements between two
modelling tools. The concept is described in a way it is independent of the modelling
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Figure 5.2: The general concept for interchanging DSML elements between two mod-
elling tools. Figure adapted from [GBJ*24].

tools. However, modelling tools must be capable of providing the functionalities that
allow the different parts of the concept to work. In the figure, the concept details
both the export and import processes from one modelling tool to another. First, a
language engineer working in the modelling environment of modelling tool A creates a
plugin that is able to extract the specification and properties of language elements of a
particular language into an XML file. Next, a language engineer working in the modelling
environment of modelling tool B creates a plugin that is able to parse the XML file that
was created in modelling tool A. The XML file must be defined in a generic way so that
both plugins in modelling tools A and B are able to use the same import and export
mechanisms, i.e., through a GPL code to parse the language elements. This fosters the
general reuse of similar logic in the import and export of XML files. Then, the DSML
elements are identified and mapped into their respective UML metaclasses. Finally, this
plugin in B creates the mapped DSML elements and their relationships. This process
allows a complete language in modelling tool A to be mapped and defined in another
modelling tool B. In detail, the following steps are required for exchanging a DSML
across modelling tools.

Tool Plugins. Modelling tools come with a predefined set of functionalities. They
are also extensible such that functionalities be added or modified using customisations
that are possible using plugins or add-ins. In the described concept, plugins for both
the modelling tools A and B are developed by language engineers. The extension of the
modelling tools allow customisations such as adding a new GUI or writing custom code in
any GPL for enhancing its default functionalities. A’s plugin extracts language elements
and their properties, such as symbols, relations, and even layout information into an
XML formatted file. The plugin is written in GPL code, such as Java, that performs
the extraction and subsequent export of the language elements through various APIs
exposed by the modelling tools. B’s plugin must be able to perform an import of the
XML file and further provide capabilities to parse, map, and create the DSML elements.

Common File Format. The XML file extracted in the previous step serves as the
common file structure that is parsed by B’s plugin and consists of both UML as well
as DSML constructs. This common file structure that is defined by the language en-
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gineers is beneficial in ensuring consistency between different versions of a DSML and
for ensuring the same structure is used for importing and exporting language elements
in both modelling tools A and B. In essence, this XML file consists of a set of nodes
and attributes that convey information about the various elements of a DSML and is
considered a kind of a meta-metamodel [SRVK10]. The file contains only the necessary
information needed to build a DSML profile in B, and must disregard any tool-specific
information. Thus, both A and B’s plugin need not be modified frequently once it is
configured to parse the XML file.

Mapping of UML Metaclasses. In the following step, B’s plugin goes through the
language elements exported from A and maps the individual elements to its appropri-
ate UML metaclass. In profile-based tools such as EA or MagicDraw, the underlying
metaclass of every DSML element is a UML metaclass. While this assumption holds
primarily for UML-profile based tools, the mapping of DSML elements to its respective
metaclasses must be performed to avoid the loss of metadata information for the DSML
elements from A. An example is to map a product in a product line to a UML class
metaclass, such that the metaclass of a product stereotype is configurable as an object.

Create the DSML Profile. In the final step, the mapped data needs to be translated
into elements of a DSML. This is either achieved by designing a UML profile consisting
of DSML elements or is configured using files in a file system directory. B’s plugin utilises
B’s API capabilities to automatically create elements and their properties directly on a
profile in B using GPL code. B must also provide sufficient APIs that allows the creation
of language elements automatically. The DSML, therefore, consists of the language
profiles, elements, and their relationships that were exported from A to B.

5.3 Implementation of the DSML Exchange Mechanism

To describe the implementation of the concept of DSML exchange in the previous section,
a series of steps is performed between MagicDraw and EA. In particular, individual
plugins are created in both the modelling tools that allow metamodel information to be
transformed from one format to another. This information is exchanged using standard
file formats such as XML. In the following, we examine how constructs of a DSML are
imported and exported between the two modelling tools. The implementation serves as
a basis for an exchange mechanism that is reused across other modelling tools.

5.3.1 Add-in for Enterprise Architect

To successfully import and export constructs of a DSML we reuse and extend the
functionalities of the add-in for EA, called Reference Architecture Model Industry 4.0
(RAMI 4.0) Toolbox [BNL21]. The RAMI 4.0 Toolbox supports engineering complex
production systems for a number of industrial domains. The RAMI 4.0 framework
[ZMVS16] describes various domain-specific concepts relevant to a particular domain,
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the Industry 4.0, and therefore the RAMI 4.0 Toolbox is capable of modelling both
domain-specific and UML constructs. This toolbox is subsequently reused for importing
as well as exporting domain-specific constructs such that the information that is gener-
ated is also reusable across different modelling tools that support standard file format
exchange mechanisms such as XML imports and exports.

The export of domain-specific information from EA is done using the XML file format.
The XML file is generated from the MDG technology file by implementing a custom
GPL code. This XML file stores all the relevant data within a single file that is reused in
other instances of EA and across other modelling tools that allows the import of XML
data. On the other hand, the import of domain-specific constructs that are not exported
from EA, back into EA, using the RAMI 4.0 Toolbox is not a straightforward import
process. Here, the data needs to be extracted from a similar structured XML file that
is generated from MagicDraw and that contains the language definition. As XML is
a commonly used and standard file format, defining a different file format that is only
restricted to EA and MagicDraw would hinder generalising the exchange mechanism, as
designing individual file formats for each modelling tool is cumbersome. The elements
of the language, including any additional data such as the relationships between the
elements, have to be seamlessly integrated within an MDG file that is translated by EA.

Listing 5.1 shows the common structure of an XML file that is exported from Mag-
icDraw. For simplicity, only the necessary parts of the XML is shown here. For the
import process, the information from this XML file needs to be extracted to find all
the domain-specific elements. This information is contained within the packagedElement
XML nodes. The RAMI 4.0 Toolbox add-in then iterates through the XML file and
stores all the elements extracted in-memory for processing the domain-specific informa-
tion. Additionally, the types of information that is extracted from this packagedElement
is described in Table 5.1. The first attribute, xmi:type classifies the element according to
its respective classifier. Only those packagedElement nodes that are classified with the
uml:Stereotype are considered for the actual DSML exchange, as other packagedElement
nodes do not contain domain-specific information. Within this stereotype, each name is
identified using the name attribute. The metaclass belonging to this stereotype is the
main part of the extracted element as it must be consistent for identification in other
modelling tools. While the zmi:id attribute is used to uniquely identify the element for
the import and export mechanism, the name attribute is used to reconstruct the DSML
element in the resulting DSML, which corresponds to the symbol names in the textual
space Section 4.2. This allows the attribute referentPath to be used commonly across
both EA and MagicDraw, as they are UML standards.

Apart from the attributes described, the relationships between elements must also
be considered in the correct order for export from MagicDraw’s XML file. The XML
node DSL_Customization: Customization is processed, and consists of three attributes,
the source element, the target element, and the type of relation between the elements.
For the relationship type, the customizationTarget attribute is processed, as it is used
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to refer to the actual packagedElements. To extract the source and target elements, the
attributes typesForSource and typesForTarget are parsed. This information is extracted
by the add-in to identify and connect the DSML elements within the language profile

that is being currently generated.

1 <?xml version=’1.0’ encoding=’'UTF-8'7?>
2 <xmi:XMI xmlns:uml='http://www.omg.org/spec/UML/20131001"
xmlns:xmi="http://www.omg.org/spec/XMI/20131001" >
3 <uml :Model xmi:type='uml:Model’ xmi:id=’
eee_1045467100313_135436_1" name='Model’ >

4 <packagedElement =xmi:type=’'uml:Profile’ xmi:id=’
_b54029e_1668094323094_836062_1271" name=’'
UseCaseActorTaskLanguage’ >

5 <packagedElement =xmi:type=’uml:Stereotype’ =xmi:id=’
_b54029e_1668094364465_665740_1302" name='UseCase’>
6 <ownedAttribute =xzmi:type=’'uml:Property’ xmi:id=’

visibility='private’ association=’'
_b54029e_1668094577791_302941_1382">

16 </uml :Model>
17 <DSL_Customization:Customization xmi:id=’

_b54029e_1668094598037_119985_1393" hideMetatype=’true’
typesForSource='_b54029%_1668094385264_750751_1327"
typesForTarget='_54029e_1668094497073_782354_1353" />
18 .
19 </xmi :XMI>

_b54029e_1668094577791_675126_1383" name='base_UseCase’

7 <type>

8 <xmi:Extension extender=’'MagicDraw UML 2021x’>

9 <referenceExtension referentPath=’UML Standard
Profile::UML2 Metamodel: :UseCase’ referentType=’
Class’ />

10 </xmi:Extension>

11 </type>

12 </ownedAttribute>

13 </packagedElement>

14 .« ..

15 </packagedElement>

_b54029e_1668094615937_364570_1424_application’ base_Class=’'
_b54029%e_1668094615937_364570_1424" customizationTarget='

Listing 5.1: An excerpt of an XML file detailing elements of a DSML generated in

MagicDraw consisting of use cases, actors, tasks, and their relations.

To generate and use the DSML in EA, the information that has been extracted so
far needs to be stored within the EA-MDG file. The parsed DSML elements, their
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‘ Attribute ‘ Example ‘ Goal ‘
‘ xmi:type ‘ uml:Stereotype ‘ Classifier ‘
‘ name ‘ Task ‘ Element Designation ‘
‘ referentPath ‘ ... mUML2 Metamodel:Task ‘ UML Class ‘

Table 5.1: The attributes of an XML file and their descriptions for interchanging DSML
elements between MagicDraw and EA.

metaclasses, and their relationships are stored internally into a UML Profile of the MDG
file. Any additional domain-specific information is hence captured by enhancing the
add-in to support further DSML constructs. After storing all the UML and DSML
elements in the UML Profile, the relevant elements are further logically grouped in
different toolboxes using the Toolbox Profile. A difference to note here is the distinction
between the relationships and various elements, as they are logically separated. Next,
the Diagram Profile is adapted so that the toolbox is now well integrated within the
tool, and is ready to be used on tool start-up. Currently, the exchange of images and
icons between MagicDraw and EA is not supported by default, but if required they must
be transmitted in addition to the XML file for subsequent integration. The RAMI 4.0
Toolbox offers the functionality to import images within the MDG that is individually
selected for each DSML element. To ensure consistency, if no image is selected, the UML
representation is used without any modifications.

5.3.2 Plugin for MagicDraw

MagicDraw uses an XMI standard [XMI123] that is defined by the OMG for export into an
XML file. It is a commonly defined file format that stores UML and DSML data in a way
that allows language information exchange between other instances of MagicDraw and
other modelling tools. However, a limitation of XMI is that it provides a rather limited
amount of additional information that a DSML captures. Therefore, the way in which
modelling constructs are managed in different modelling tools makes DSML information
interchange using this common XMI format challenging. Any domain-specific constructs
that are exported from EA and contains XML nodes and attributes along with EA-
specific data becomes a challenge for MagicDraw’s default import mechanisms, largely
due to the inability of MagicDraw to successfully parse such information. Consequently,
there is a need to resolve these conflicts that enable a seamless exchange of DSML and
its constructs.

As discussed previously in Section 3.4, customisations to a DSML is done using ad-
ditional MagicDraw plugins that is eventually bundled together in a single .mdzip file.
Hence, to achieve the import of a language profile from EA, we in this thesis developed a
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plugin in MagicDraw using the Open Java API that acts as the interface to import XML
information generated from EA. This plugin adds an additional context menu item to
MagicDraw’s standard import mechanism. Hence, a plugin in MagicDraw is considered
equivalent to EA’s add-in. This context menu item allows users to select the exported
XML file from EA. The plugin then parses the information from this XML file and
extracts the necessary DSML constructs. The same attributes defined in Table 5.1 is
reused in MagicDraw as well to provide a consistency between the modelling tools. UML
classifiers such as an Actor, Activity, or a relationship Association is directly translated
to their respective stereotypes in MagicDraw, while any domain-specific types needs ad-
ditional handling, such as mapping a Task to a UML class. After this information is
extracted and translated in-memory, the plugin creates a language profile to add the
necessary stereotypes and their customisations. Once the information is bundled into an
archive and installed within MagicDraw, on tool start-up users easily create their models
using these DSML constructs that were previously defined in EA.

Listing 5.2 shows the structure of an XML file that is exported from EA. The structure
when compared to Listing 5.1 indicates the common packagedElement nodes in the XML
files used for storing the DSML elements. The MagicDraw plugin uses the java.zml Java
package to parse the XML nodes, tags, and attributes. The elements of the DSML is
configured under the uml:Model and packagedElement nodes, similar to the information
that MagicDraw exports. To parse this information, the DocumentBuilderFactory class
within the java.xml package is utilised, and a set of Node and NodeList objects is used
to find the relevant elements and store them in-memory into custom objects defined in
the plugin. Then, using MagicDraw’s ProjectManager API, the DSML project, language
profile, and a UML profile diagram is created. This is required to create the domain-
specific elements, its relationships, and its customisations. Finally, the classifiers, UML
or domain-specific, for each created stereotype is automatically configured.

To avoid XML conflicts such as with domain-specific classifiers, the identification
of the most relevant metaclass for a specific xmi:type attribute must be done. As an
example, a uml: Task type is assigned the Class metaclass, because in a domain-specific
scenario, tasks are considered as activities in a UML activity diagram (UML AD) to be
the most general UML classifier. For a relationship connector, such as a uml:Association
type, the plugin automatically assigns the same classifier as the one defined within EA.
However, such associations must be configured automatically so that the association
only exists between two defined stereotypes. To achieve this, the ownedEnd nodes of
a packagedElement in the EA XML file is extracted and the source and destination
ends are looked up in the respective identifiers. These identifiers are used to configure
the typesForSource and typesForTarget customisation properties in MagicDraw that has
been discussed in previous parts of this chapter to ensure that the connectors are only
used between particular model elements during design time. A difference between the
two modelling tools is that in MagicDraw, these relations are configured outside of the
parent nodes, while in EA, they are configured within the respective nodes that include
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the DSML. As with EA, the import process in MagicDraw also specifies that images and
icons cannot be directly stored in the XML file, but needs to be transmitted independent
of the overall exchange mechanism.

1 <?xml version="1.0" encoding="windows-1252"7?>
2 <xmi:XMI xmlns:uml="http://www.omg.org/spec/UML/20110701"
xmlns:xmi="http://www.omg.org/spec/XMI/20110701">
3 <xmi:Documentation exporter="Enterprise Architect"
exporterVersion="6.5"/>
4 <uml :Model xmi:type="uml:Model" name="EA_ Model">
5 <packagedElement =xmi:type="uml:Package" xmi:id="
EAPK_FF1CC5DB_4eb9_AFF6_12A8F389A6BE" name="Business Layer"
>
6 <packagedElement =xmi:type="uml:Actor" xmi:id="
EAID_5831D1A8_4068_A436_T7A67COFOF4ED" name="Actor"/>
7 <packagedElement xmi:type="uml:InstanceSpecification" xmi:id
="EAID_3BOEAB4A_4262_B612_3368AFB781B2" name="UseCase"/>
8 <packagedElement =xmi:type="uml:Association" xmi:id="
EAID_35FB499D_40c2_B3F1_01991CB5C999" name="Performs">
9 <memberEnd xmi:idref="
EAID_dstFB499D_40c2_B3F1_01991CB5C999"/>
10 <ownedEnd xmi:type="uml:Property" xmi:id="
EAID_dstFB499D _40c2_B3F1_01991CB5C999" association="
EAID_35FB499D_40c2_B3F1_01991CB5C999">
11 <type xmi:idref="EAID_17344233_4ca7_BB8A_AE65EC647D22"/>
12 </ownedEnd>
13 <memberEnd xmi:idref="
EAID_srcFB499D_40c2_B3F1_01991CB5C999"/>
14 <ownedEnd xmi:type="uml:Property" xmi:id="
EAID_srcFB499D_40c2_B3F1_01991CB5C999" association="
EAID_35FB499D_40c2_B3F1_01991CB5C999">
15 <type xmi:idref="EAID_5831D1A8_4068_A436_T7A67COFOF4ED" />
16 </ownedEnd>
17 </packagedElement>
18 <packagedElement xmi:type="uml:Class" xmi:id="
EAID_17344233_4ca7_BB8A_AE65EC647D22" name="Task"/>
19 </packagedElement>
20 </xmi :XMI>

Listing 5.2: An excerpt of an XML file generated in EA detailing a DSML consisting of
use cases, actors, tasks, and their relations.

In the final step of the import process, the language elements as stereotypes and
their customisations are created within a DSML profile. As soon as all the artefacts,
such as the language elements, their relations, and their customisations are created,
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they are released from in-memory to an archive .mdzip file. This also includes any
additional plugins that are referred internally by the main plugin. Further, icons, that
are stored externally as scalable vector graphic images, and model templates are added
to the language elements, such that the modellers utilise them during design time. The
.mdzip file consists of the domain-specific constructs exported from EA, and is installed
directly on the tool. The exchange mechanism therefore supports language engineers in
configuring families of similar DSML profiles across both EA and MagicDraw. As stated
in the EA description, MagicDraw provides a default export functionality for exporting
a DSML profile that is used as-is for import in EA.

5.4 Application of the DSML Exchange Mechanism

The application of the bidirectional exchange mechanism between EA and MagicDraw
is described in this section.

5.4.1 DSML for Use Cases, Tasks, and Actors

The application of this mechanism is studied using an example involving actors, tasks,
and use cases. In this example, individual use cases, actors, tasks, and their relationships
are created as part of a UCACTaskDSML in one modelling tool and is then exchanged
in the other modelling tool. To illustrate the applicability, Figure 5.3 shows all the
language elements including their properties that have been designed by a language
engineer in EA for a modelling project. This consists of the DSML elements inherited
from their respective UML metaclasses and the relation Performs between an actor and
a task. This metamodel consists of all the language components necessary to define the
UCACTaskDSML and used to model use cases, actors, tasks, and their relations. We now
use the RAMI 4.0 Toolbox add-in to generate the corresponding MDG file that stores
all the information related to this DSML. While use cases and actors are represented by
UML classes, the tasks need to be specially handled, i.e. assigned the UML metaclass
Class, since it is a domain-specific element for this example. Therefore, the XML file
generated from the EA add-in consists of the entire language definition that includes use
cases, actors, tasks, and the relations between them as is defined in the DSML configured
in EA.

Subsequently, in another modelling project the need arises to design a similar language
involving use cases, actors, tasks, and their relations, but in the MagicDraw ecosystem.
Language engineers now easily use the MagicDraw plugin designed for importing the
exported XML file from EA. The MagicDraw plugin is able to parse the XML file, ex-
tracting the domain-specific constructs of the DSML from the file and create the required
stereotypes and their customisations in MagicDraw automatically in a MagicDraw UML
profile diagram. Figure 5.4 shows the constituents of the resulting profile diagram from
this import mechanism. It consists of the various stereotypes for the use case, task, actor,
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[UCACTaskDSML EA Metamodel]

«metaclass» «metaclass»
Use Case::UseCase Class
UseCase «» Task <

«metarelationship»
{metaclass =

MagicDraw Profile:: /7
Performs} e
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// I «metaconstraint»
P {umlRole = target}
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//
Actor O Performs &)

«metaconstraint»
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«metaclass» «metaclass»
Actor::Actor Performs::Association

Figure 5.3: A UML Profile Diagram in EA consisting of the use case, task, actor, and
association DSML elements and their properties.

association, along with their configured properties. This allows the DSML constructs to
be reused completely in a different modelling tool, that belongs to a completely different
ecosystem. However, using a standard XML file, some properties of the DSML elements,
such as icons or images cannot be directly interchanged from EA to MagicDraw, but are
transmitted independent of the XML file. In a similar fashion, if the DSML consisting
of the use cases, actors, tasks, and the relations are created first in MagicDraw, then the
XML file is directly exported for import purposes into EA. On successfully importing the
DSML using the EA add-in, the DSML elements are directly stored in a MDG file and
all the elements of the DSML are logically grouped together and installed automatically
within EA for direct use on tool start-up.
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«stereotype» «stereotype»
UseCase Task
[UseCase] [Class]
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UseCase Task
«Customization» «Customization»
customizationTarget = «»UseCase customizationTarget = «»Task
«stereotype» «stereotype»
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«Customization» % «Customization» %
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«Customization» «Customization»
customizationTarget = «»Actor customizationTarget = «»Performs

typesForSource = «»Actor
typesForTarget = «=Task

Figure 5.4: A UML Profile Diagram in MagicDraw consisting of the use case, task, actor,
and association DSML elements and their properties extracted from EA.
Figure taken from [GBJ124].

5.4.2 Example Model using the Use Case, Task, and Actor DSML

Based on the example DSML described in the previous section, Figure 5.5 is a model
designed using the DSML constructs created in MagicDraw from the import of the EA
XML file. In this model, the elements of the model, namely Customer, UC1, Performs,
and T1 are designed by a user using the DSML. By default, stereotypes are automatically
configured for each of these model elements. Additionally, the user decides to modify the
already configured stereotypes manually. This gives users flexibility in using a DSML
element with a different classifier, that reflects variability in a product line engineering.

In this example, the T7 model element is automatically assigned the stereotype Task,
which is of a UML Class metaclass. In a similar way, the Customer model element
is automatically assigned the stereotype Actor, which is of a UML Actor metaclass.
The UCT model element is automatically assigned the UseCase stereotype, which is
of a UML UseCase metaclass. Finally, the Performs model element is automatically
assigned the Association stereotype, which is a UML relationship. The relation between
the Customer and T1 only allows a Performs association, as this association has been
assigned the source and target stereotypes that were exported from EA as shown in
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_______________________________________________________________________________________________________________________________|
[UCACTaskDSML MagicDraw Model | Mag icDraW Modelj

«Actor»
Customer
«UseCase»
UC1: Withdraw «Performs»
money from bank
account
«Task»

T1: Walk to bank and
w ithdraw money

Figure 5.5: An exemplary MagicDraw model using the DSML elements configured in
Figure 5.4 showing an actor performing a task for a respective use case.
Figure taken from [GBJ*24].

Listing 5.2. This example model demonstrates how the DSML and its elements that are
created in EA, exported to an XML file, and finally imported by the MagicDraw plugin
is reused as-is in MagicDraw to create the respective models. Similarly, the XML file
containing the DSML definition generated from MagicDraw is imported into EA using
the add-in specified earlier. This is shown in Figure 5.6 where the model elements UC1,
T1, Customer, and the relation Performs between the Customer and T1 is established.
This model is created using the metamodel defined earlier for the EA UML profile in
Figure 5.3. Thus, language engineers reuse domain-specific parts of a DSML in initially
incompatible modelling environments and achieve the interchange of DSML constructs
across different modelling tools.

5.4.3 Findings

Defining a common interchange method allows the exchange of DSML constructs be-
tween EA and MagicDraw. With the described example, the use of both UML and
domain-specific constructs are illustrated for both the modelling tools. To achieve the
bi-directional exchange of domain-specific constructs between two independent modelling
tools, additional steps are required. These steps include defining a common file format
for representing the constructs of the DSMLs in the respective modelling tools, the de-
velopment of additional plugins or add-ins that allows the parsing of such a common file
format, the mappings that need to be made in order for the underlying metaclasses in the
individual modelling tools to match correctly, and finally designing models that conform
to the DSMLs built from the exchange mechanism. The mapping of individual DSML
constructs shows the synergies between the two modelling environments for representing
a common language construct. Therefore, such a mechanism reduces the overall efforts
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UCACTaskDSML EA Model

O
X

Customer

UC1: Withdraw money

from bank Account

i
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i
i

T1: Walk to bank and
withdraw money

Figure 5.6: An exemplary EA model using the DSML elements configured in Figure 5.3
showing an actor performing a task for a respective use case similar to the
example described for MagicDraw in Figure 5.5.

that language engineers undertake for designing similar languages in two incompatible
modelling environments.

5.5 Reproducibility Considerations

The implementation described so far in this chapter is reproducible for arbitrary DSMLs
in the respective modelling tools. This section, therefore, aims at providing language
engineers with the necessary technical details to reproduce the exchange mechanism in
the context of EA and MagicDraw. Algorithm 1 details a pseudo-code that enables the
extraction of DSML elements from the EA XML file (Listing 5.2) and store the contents
of the file in-memory for further processing in MagicDraw to create the corresponding
DSML definition. In summary, the mechanism to import an EA file to MagicDraw
requires the availability and selection of the EA file in read-only mode, parsing of the
XML file using a XML parsing library in Java, extraction of the various nodes and
attributes of the XML file, and the assignment of the appropriate UML metaclass in
preparation for creating the DSML definition.

Algorithm 2 details a pseudo-code that is used to create a DSML profile in Magic-
Draw based on the contents that were parsed, extracted, and stored in-memory using
Algorithm 1. Here, MagicDraw’s Open Java API is used to create project and profile
instances and sessions of Java packages that allows maintaining projects, stereotypes,
and their properties. In particular, the StereotypesHelper package using the MagicDraw
Open Java API is used to create the stereotypes and assign certain properties to them.
This allows the creation of all the UML as well as the DSML constructs from EA, and
allows setting up the respective relationships between the DSML elements.
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Algorithm 1 Import an EA XML file to MagicDraw

. FAfile < select the XML file from a file import Ul
Parse FAfile using DocumentBuilderFactory (java.xml.*)
rootElement < uml:Model element of the EAfile
xmiType < xmi:type attribute of rootElement
name <— name of rootElement
while packagedElement of rootElement exists do
get zmi:type and name of packagedElement
if zmi:type = Association then
get ownedEnds of the packagedElement
get source and destination IDs

if zmi:type # UML standard then
Assign correct UML metaclass

—_

—_
e

—_ =
N =

Algorithm 2 Create a Language Profile in MagicDraw

1: Start ProjectsManager instance in MagicDraw

2: Create a project P

3: while packagedElements from Algorithm 1 exists do

4: if packagedElement # Association then

5: Create stereotypes with StereotypesHelper

6 Assign zmi:type and name to stereotypes

7: Set the customizations for this stereotype

8 Add to project P

9: Repeat step 3 for packagedElement = Association
and assign typesForSource (source) and typesForTarget
(destination) properties

In a similar fashion, Algorithm 3 outlines the pseudo-code for converting a MagicDraw
profile and embedding it into EA for the DSML definition. Here, the application was done
using C# as the GPL for the plugin to show that the implementation is not limited to a
single GPL. In this case, the information is parsed and extracted from the MagicDraw
XML file (Listing 5.1) and is directly integrated into to profile folder of EA, which is
shown in Figure 5.1, as part of the DSML definition. This algorithm describes that the
transformation of a DSML profile is performed using an independent EA plugin, the
GUTI of which is integrated with the EA modelling tool. Upon launching the GUI, the
exported XML from MagicDraw is selected and parsed for conversion. The conversion
part of the algorithm searches for all packagedElements, which essentially contain the
information about the DSML elements. The DSML Customizations store information
pertaining to the restrictions of the language and are considered during the DSML profile
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transformation at a later stage. The information extracted from packagedElements and
DSML Customizations are stored into two individual lists. The first list contains all the
DSML elements created within the MDG file and are provided to EA. The second list
contains all the restrictions to the elements created using the first list. These restrictions
include allowing only a specific relationship between two DSML elements or contains
information about the styling of the element such as its shape or colour.

Algorithm 3 Import MagicDraw XML file to EA

start the EA GUI

select MagicDraw XML file

while MagicDraw XML has XML nodes do
get packagedElement or DSMLCustomization
store elements in separate in lists

—_

for each element in packagedElements do
create MDG profile element in EA XML

for each element in DSMLCustomizations do
if customization is constraint then
find MDG profile element
add metarelationship
add metaconstraint
. store the XML file into the EA MDG folder

—_ = =
w72

5.6 Discussion

This chapter discusses a bidirectional exchange mechanism for a DSML and its constructs
specifically between the commercial modelling tools of EA and MagicDraw. Every mod-
elling tool has its own challenges in modelling complex systems and require extensive
functionalities for language development. Therefore, considerations for interlinking ad-
ditional functionalities from other modelling tools such as import or export of modelling
information is often neglected. The example used in this chapter illustrates the use of
both UML and domain-specific constructs that is generally valid in both the modelling
tools within the graphical modelling technological space. However, the exchange mech-
anism described in this chapter are also generalisable to other modelling tools to ensure
a foolproof and seamless interoperability of DSMLs. Efforts to solve this challenge have
been made by designing commonly interchangeable standards such as with XMI for-
mats. Despite such efforts, achieving true interoperability of DSML elements between
modelling tools requires additional efforts as language definitions across modelling tools
are often not equivalent. The syntax, both abstract and concrete, are also not entirely
equivalent and thus it is not possible to reuse well-formedness rules, transformations, and
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symbol tables to derive a bidirectional exchange of DSML constructs. Therefore, there
are always additional steps required in order to successfully exchange domain-specific
constructs. This means that tools must support the combined export of both domain-
specific and UML information in a standard form to better allow building versions or
families of such DSMLs. The concepts described in this chapter allow language engineers
to develop plugin mechanisms ad-hoc that are combined with a modelling tool. Such
plugins reuses XML formats to exchange UML constructs and additionally includes a de-
tailed mapping and translation of domain-specific constructs across two modelling tools.
Thus, language engineers who primarily work with UML-profile based modelling tools
and customise UML metamodels to develop DSMLs are benefited from the concepts
presented in this chapter.

While this chapter presents a bidirectional exchange mechanism, there are certain lim-
itations to the mentioned approach. The approach has been validated in two commer-
cially used modelling tools in the graphical space, that makes the study vendor-locked.
The tools used in this chapter provide APIs that allow a DSML and its elements and
relations to be exported through suitable data formats. Thus, modelling tools must be
able to provide for a mechanism to export data so that ill-defined syntax and semantics
may not be a limiting factor in the import and export process. Further, a complete
interoperability may often not be necessary for teams managing smaller projects, there-
fore a reduced import and export process that handles only specific language constructs
is often sufficient. For textual language integration [DJRS22] into graphical modelling
tools, there must be support for allowing the set of syntactic sentences as well as the vali-
dation of well-formedness in the respective contexts. Another limitation of the described
approach is that different stereotypes may not be mapped to a specific concept, that
reduces the consistency of defining language constructs across different DSML building
blocks. In this chapter, we discussed the exchange mechanism for a single DSML project,
therefore future work must take a look at establishing common definitions across mul-
tiple projects as well as DSML building blocks. The translation of methods and UXD
aspects across modelling tools have not been explicitly explored in this chapter as the
exchange mechanism focussed on specific parts of the language, its syntactic definition.
Finally, this exchange mechanism does not consider privacy and security of data across
modelling tools, as the mechanism has been defined at a metamodel level.

As systems become more complex, challenges for language engineers in exchanging
domain-specific constructs between modelling framework, ecosystems, and tools that
support language development also increase. While standard file interchange formats,
such as XMI, exist and works well for exchanging UML constructs such as with UML
models with other tools, it often does not cover all aspects of a DSML. Different mod-
elling tools generate different formats of XML files for domain-specific constructs that
eventually prevents a single effective solution of language exchange between multiple
modelling environments. Therefore, the exchange mechanism described achieves the
bidirectional exchange of DSML elements between EA and MagicDraw. Here, both
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UML as well as DSML constructs are interchanged within instances of the individual
modelling tools along with other modelling tools. Two custom Java-based application
interfaces, as EA add-in and MagicDraw plugin, are created that enable the import and
export of domain-specific information across the tools. This ensures that domain-specific
information is not lost during transfer of a DSML across other modelling projects and
various stakeholders. In addition, cross-functional teams across different organisations
reuse the same language definitions for use in different domains, thus eliminating the
need to build every part of the DSML from scratch. Although in this chapter we elab-
orate the DSML exchange mechanism process, further work is still needed to validate
the implementation across other modelling tools. One threat to validity for this study is
being in a vendor-locked scenario, since the implementation is described using two mod-
elling tools. However, any modelling tool that supports language development and the
ability to execute external GPL code such as in Java, use this mechanism. Ultimately, a
seamless DSML exchange mechanism between two commercially established modelling
tools is enabled by detailing the process needed to exchange DSML constructs between
various modelling environments that enable graphical modelling in particular.

5.7 Related Work

Solutions to designing complex systems with DSMLs often come with problems across
business lines and organisations that require a constant upkeep of such DSMLs. It is
therefore crucial to build modular and reusable DSML elements that are seamlessly inter-
changed between modelling tools without the need to make significant adjustments to the
language itself. Most other related works, focus on the transcompilation or metamodel
translation between language workbenches through symbol names [DJK*19], whereas
the concepts described in this chapter facilitates bridging the reuse of DSML constructs
across graphical modelling tools through unique element identifiers such as the xmi:id
described in Listing 5.1. However, the name attribute is used to reconstruct the corre-
sponding DSML element in the resulting DSML. Standard file formats such as with XMI
or XML [XML23, Mod23a] have emerged as solutions to address this challenge. On the
other hand, with every MBSE approach [BCL*21, CCF*15], it becomes a greater chal-
lenge to engineer [CBCR15] and exchange [HRW18] domain-specific constructs across
a variety of domains. This challenge is also extended to reusing standard file formats
that is eventually used to generate DSML elements that users model with using different
modelling tools or language workbenches [HR17, DJRS22, EVDSV ™15, Mer10].

Even with techniques that provide a common format to exchange models between
model-driven software and systems development tools, the challenges with model inter-
change still exists [Rum16]. This is partly because of different modelling tools storing the
DSML concepts such as UML or the SysML using different file formats and data struc-
tures [DJM119]. OMG, in this regard, has come up with a standard way to exchanging
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models between different tools using XMI file formats [XMI23]. However, the export
of domain-specific elements for similar models [ZNG15] requires a clear specification in
terms of the semantics of these exchange formats [GRR09, MRR11]. For example, if the
UML stereotypes are modelled with the tool MagicDraw and later exported as XML, the
elements that are exported is configured with the metaclass umi:Stereotype. In contrast,
the same model generates a UML metaclass uml:Class when it is exported from EA.

Previously in Chapter 4, we took a detailed look at how languages are composed
in language workbenches and graphical modelling tools and discussed the concepts for
extending a language through novel syntax, embedding an embedded language into a
host language, and aggregating a language by referencing to model elements using sym-
bol tables [BMR22]. The software components, its artefacts, and the models undergo
transformations [TAB*21, BEH"20] that allow a language to be inherited, extended,
embedded, or aggregated [EGR12, MCGDL12]. In contrast, the exchange mechanism
described in this chapter provides a lightweight customisation capability without the
need for providing direct interfaces between modelling tools and modifying existing lan-
guage infrastructure. Globalising DSMLs is achieved with the use of compositional
mechanisms [CBCR15], but often require additional customisations [DJRS22] in their
respective technological spaces [EvdSVT13]. Templates to map different metamodels
during model transformations [SCGL11] or multi-level modelling paradigms [LGC14]
have also been studied for reusing models across language workbenches. However, the
concepts presented in this chapter primarily studies the applicability of transforming
DSMLs across UML-profile based graphical modelling tools.

Previous work bridges the gap in different technological spaces that focus on trans-
lating languages [BJRW18, DJK 19|, providing interoperability of models and language
elements [DCL13, BBCT10], and for improving modelling language variability [GR11].
A study on model-level integration of the OCL standard library [BDO7] through pivot
models note the limitation of a common format for the library when OCL is integrated
with UML profiles for defining DSLs. In contrast, this chapter discusses DSMLs ex-
tended via UML-profile based modelling tools. A model-bus architecture [BGS05] allows
the services of different modelling tools to be connected using a functional description
metamodel by establishing concrete connections. However, implementing model trans-
formations such as with model-bus in industrial applications requires extensive efforts
for language engineers that work under rather stricter project resources [KBC*19]. Lan-
guage interoperability and model synchronisations between modelling tools is discussed
in [BCC™10] but the application of such concepts in an industrial context is still missing.
Another example that provides model exchange between stakeholders in a single project
has been evaluated with LemonTree!, but their approach considers only UML constructs
and do not consider domain-specific constructs. In another work, the interoperability
in complex adaptive enterprise systems is only partially researched [WGN16] in regards

"https://www.lieberlieber.com/lemontree/
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to domain-specific contructs. Further, solutions for extending DSLs, that are embedded
in language development tools using tagging languages [GLRR15] or tool integration
frameworks for multi-paradigm modelling [MDLV12] are present in the literature. Stud-
ies [Ozk19, Kerl4] also show that the two commercially modelling tools detailed in this
chapter, EA and MagicDraw, provide ample customisations for exchanging both UML
and DSML constructs.
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Chapter 6

Design Considerations for High-Quality
User Experience in Industrial DSMLs

In this chapter, design guidelines for improving the overall modelling experience for
industrial DSMLs is discussed. Previous chapters looked at composing DSMLs from
the viewpoint of language components and their definitions, based on the syntax and
semantics of a modelling language by reusing DSML building blocks. While, describing
modular concepts for reusing language components is important in DSML engineering,
the focus on users and their experience with using DSMLs is equally important. The
guidelines presented in this chapter are aimed for language engineers in designing state-
of-the-art DSMLs for practitioners that improves their overall user experience in their
modelling environments. Some results of this chapter have been published in [GJRR22a].
Therefore, passages from the paper may have been quoted verbatim in this chapter.

As domains become more heterogeneous and complex with constantly evolving domain
concepts, practitioners in the industry often face challenges as part of usability considera-
tions, specially for graphical DSMLs. Guidelines are still missing that language engineers
must consider to improve the overall user experience (UX) for all stakeholders involved
in a modelling project. UX is a very subjective topic as, in general, users are often
influenced by a variety of factors. Because of this vastness in topics surrounding UX,
proposing guidelines and definitions of UX is often complicated, excessively generic, and
most times tied to a specific technological space. This particular challenge is solved by
leveraging existing design principles and many standards of human-centred design. With
a combination of such designs, this chapter proposes definitions and guidelines that are
specifically suited for improving UX and user experience design (UXD) for industrial
graphical DSMLs. These important aspects of UXD are categorised, allowing language
engineers to design better and high quality graphical DSMLs. The overall aim for such
DSMLs is to invoke positive emotions among practitioners during their modelling. To
this end, the proposed UXD guidelines are detailed in way that they are rationalised in
supporting language engineers build better usable DSMLs and are more widely accepted
by practitioners.

Introducing modelling in the early stages of a project in the systems engineering
domains comes with its challenges. The overall DSML engineering requires develop-
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ing concepts, methods, along with tools that allows practitioners to effectively em-
ploy models rather than traditional documents. Accordingly, as GPLs cannot suffice
the design of system models [PB19], there is slow and constant shift towards evolv-
ing MBSE techniques [FRO7]. This is largely based on the fact that GPLs cannot
really provide complete solutions for domain-experts in contributing to solutions of their
domains. DSMLs are therefore being developed for supporting such domain-specific
abstractions [CBCR15, GKR*21], primarily in the textual, graphical, or projectional
technological spaces [DCB™15, Bet16, Tol06]. As complexities in engineering projects
increase, so does the natural complexity in developing DSMLs for such domains, which
leads to users consequently often struggling to use such DSMLs effectively.

Assisting practitioners in their modelling serves a beneficial purpose in conveying key
aspects of a domain that leads to better decisions in the engineering of their systems.
While a modelling tool is only a part of the entire lifecycle of the modelling process,
a solid foundation needs to be established in combination with an appropriate tooling
mechanism [GKR121]. This integrated aspect is especially necessary in promoting mod-
elling in small and medium enterprises whilst also considering the skill level of novice
and experienced users [Regl8]. As the complexity in designing languages, namely with
the syntax and the semantics of the language, increases [CBCR15, CGRO09], there is
also a growing need for a good UX. However, there is an assumed notion that all prac-
titioners are modelling experts and understand everything with respect to the DSML
that language engineers do not consider. This is often not true since there is often a
call for guidance for novice users who want an introduction to introduce graphical mod-
elling tools but lack the desired knowledge due to their late involvement in the projects.
Some of these challenges in graphical DSMLs consist of irregular visual notations of
standard domain aspects, endless searches through language and model elements in the
DSML, burdening users with unneeded tools and their functionalities [WHR'13], the
unavailability of predefined models, and improper documentation for various modelling
constructs.

In the literature, several definitions of UX and usability heuristics have emerged [Moo09,
Has08]. These are highly specific to the respective technological spaces and are very
generic in terms of the concepts covered under each definition. This is especially true
because UX is not only a vast topic, it is also rather subjective and therefore the taste
of users depend not only on the domains in consideration but is also heavily shaped
by the most recently observed trends in the ubiquitous software and systems domain
(Chapter 2). While UX and business logic greatly depend on each other, growing
complexities in the project means often they are not considered or are lost in trans-
lation. Therefore, no single solution exists, however industry standards, design guide-
lines [KKP*09, CMP18, Voe09], and UXD aspects needs to be considered by language
engineers during graphical DSML development. A mindset change is certainly required
to achieve this, as better UX often translates to successful modelling. Therefore, this
chapter aims to provide the necessary guidance for a more holistic modelling experience
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for practitioners in various domains by demonstrating the same in MagicDraw.

In the following, Section 6.1 discusses the definitions of UX and UXD for graphical
DSMLs in MagicDraw that is generalisable in modelling tools. Section 6.3 discusses the
human-centred design approaches by categorising them into: visual design, information
architecture, interaction design, and usability heuristics for consideration during DSML
development. The categorisation of the UXD aspects is discussed with a running example
of a feature model in MagicDraw DSML in Section 6.2 and later evaluated in Section 6.5.
Finally, we discuss the scope of the UX in modelling approaches (Section 6.4), discuss
the generalisation of the guidelines to other modelling tools (Section 6.6), and related
approaches in Section 6.7.

6.1 Defining User Experience in MagicDraw

This section defines UX and UXD in MagicDraw and is adapted from [GJRR22a]. While
the definitions have been proposed primarily in MagicDraw, they are generalisable to
other graphical DSML tools as modelling tools serve the same foundational purpose:
language development. User Experience (UX) in MagicDraw is defined as follows:

Definition 8 (User Experience in MagicDraw). User experience (UX) for graphical DSMLs
in MagicDraw is an instantaneous intuitive feeling (positive or negative) of a user (mod-
eller or practitioner) while interacting with the defined constructs of the graphical DSML
and the accompanying graphical modelling tool, MagicDraw.

In other words, UX is mainly described as an intuitive feeling, often non-rational, for
practitioners during modelling. The goal here is to describe the concepts of a DSML
such that a good UX satisfies the expectations of practitioners in relatively easy, simple
terms and impressions, while also minimising the number of clicks or interactions needed
between the modelling language and the modelling tool. The interactions are defined
as the abilities of both the systems and the users to constantly influence each other so
that the users reach their final modelling goals. A good UX also reflects the standards
described in the literature and and keeps the user satisfied and ensures users easily nav-
igate through the constructs of a DSML. Therefore, any positive feelings invoked during
these interactions with the DSML or the modelling tool almost certainly is considered
a good UX. A good UX however must not be considered synonymous with a large of
number of DSML functionalities, as often with growing DSMLs, functionalities are more
important because the development of the syntax and semantics of a DSML is often
prioritised in time and resource constrained projects. On the other hand, a bad UX
tends to invoke feelings of negativity, incomprehensibility, and confusion leaving DSML
users unsatisfied in using such DSMLs that naturally affects all involved stakeholders.
However, in reality, interacting with the current models maybe a mixture of positive and
negative feelings, therefore it is important to consider design decisions that reduce this

gap.
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Based on the broader definition of UXD described in Section 2.2.6, we extend the
UXD definition to the MagicDraw ecosystem and adapted from [GJRR22a] as follows:

Definition 9 (User Experience Design in MagicDraw). User experience design (UXD) is
any design decision taken by a language engineer during the development of a graphical
DSML in MagicDraw, that ultimately fosters a good UX for a user or a practitioner.

These design decisions that influence the usability of any DSML is realised and imple-
mented during DSML development by language engineers by involving all stakeholders
during the DSML engineering of a project. Different stakeholders means different opin-
ions which means different interpretations of UX, however, ultimately the practitioner
will use a DSML to build their models, therefore efforts must be made to ensure a satis-
fiable UX is provided to such practitioners. In this regard, design decisions must follow
the principles of human-centred design as is listed under ISO 9241-210 [ISO10] and influ-
ence the UX towards a more positive effect. This chapter describes categories for these
UXD aspects in MagicDraw and are based on certain elements of UX existing in the
literature [Garl0]. While the list of UXD aspects are non-exhaustive, it must be noted
that they provide the general foundation required for a good UX in graphical DSMLs
that is independent of the modelling environments. The design decisions provide the
benefit that they cover all aspects of a DSML for providing a good UX and are based
on requirements found in actual industrial projects.

6.2 Running Example

To illustrate the different design decisions and guidelines that help improve the UX,
we use the following running industrial example of a feature model [BEK*19] DSML
consisting of language elements, product lines, and products that has been developed
for Siemens Healthineers. The DSML has been been developed using the modelling tool
MagicDraw, therefore the concepts of UXD are described primarily in the MagicDraw
ecosystem. In this example, a feature model DSML building block is used that has also
been used in other DSMLs (Chapter 8). Figure 6.1 shows an example of a feature model
modelled by a user in MagicDraw. This feature model consists of different product
lines and products, features such as mandatory, optional, and Xor, and a custom UL
It lists the design decisions that are defined by the language engineers in the various
parts of the visible model. In the figure, the various building blocks (discussed later
in Chapter 8) that are relevant for use by the modeller are shown on the left-hand
side under project template. In doing so, the relevant models and the model elements
remain in their individual building blocks and eventually help user segregate the different
models. In the next section (Section 6.3), we discuss the categorisation of these UXD
aspects that have been annotated in the figure. In particular, different parts of the figure
are annotated with design decisions and an accompanying identifier that are referenced
throughout this chapter.

118



6.3 CATEGORISATION OF UXD IN MAGICDRAW

B
| File Edit Tools Collaborate Help |
¢ Bl + :Perspective: SHS Baukasten DSL (Beginner) v

B Containment | |49 Diagrams ‘
Containment _ MODEL
o3 & Y Q| — BROWSER (IA2)

ERE Y

o -

PERSPECTIVE (1A3)

L CUSTOM VIEW (V4)

E-[= Data
& SHS Model

i-[H) _Document Info
1[5 1UseCase Model PROJECT

B
B
5[5 2 Requrements model | TEMPLATE (ID1)
B
E

<

7[5 - Customer Feature Model
-5 4 Technical Feature Model
[&3 _Tracing
-3 4.1 Technical Features
[, 7] Feature Matrix
{1 ;] Feature Model Diagram
ge Feature Structure Map
B-% Mandatory Feature
% optional Feature 0
+ 26, Xor Feature A
[{dor Yor Feature B
-t 3r Xor Feature C
&3 4.2 Technical Variants
B}/ Relations DEFAULT NAMING
V1) & ‘fr"::‘c:‘j:’:‘ CONVENTION (ID2,
i{ 2% [Product P1
{28 |Product P2

;
»|&-B8 |5 Function Model
/" |E-[56 System Architecture Model

COLOUR (V2)

ICON

%% Zoom \ [® Documentation = [ Properties

Properbes o8 x
gement | Tags |  KNOWABILITY (U2)
@ (= ez & Standard v

B Product
Name Product P3
’

Realized Customer Variant
? Optional Feature O [SHS M

Selected Features

Yor Xor Feature C

? Optional Feature O [SHS M
Al Selected Features Yor Xor Feature C [5HS Model: T

! Mandatory Feature [SHS M
Needed Artifacts

*- Variant Matrix X

=D
Cﬂm:

Row Scope: | Technical Variants

Delete

Remove From Matrix © 8 Change Axes & Export

Column Scope:

Legend
/" select

" Select inherited

[2 4.1 Technical Features [0

LAYOUT (IA1)

|7 Optional Feature O-
|y Xor Feature C

| Yor Xor Feature A
Yo Xor Feature B

| 553 7.2 Technical Variants
B-38 Product Line

# Product P1

* Product P2

# Product P3

W W N e

. N\#| ! Mandatory Feature [-

Pl
e

armE
iQ i

Technical Features

* Variant Configuration

: Product P3

CUSTOM UI (ID4)

5] Technical Feature Model
& tory Feat

A7 Optional Feature O
= O Yor Xor Feature A
O Yor Xor Feature B
L @ y, Xor Featre C

/MODAL DIALOG (V3)

w'ﬂ"m Issues

Save

Figure 6.1: Annotations of design decisions in MagicDraw for a feature model consist-
ing of (1) product lines and products, (2) mandatory and optional features,
and (3) a UI for variant configuration. The figure shows enhanced aesthetics
of models, the structuring and organisation of model elements, the inter-
active aspects focussing on the cognitive dimensions, and the various us-
ability aspects that complement the design decisions. Figure adapted from

[GIRR22a].

6.3 Categorisation of UXD in MagicDraw

In this section, we discuss the categorisation (Figure 6.2) of the individual design deci-
sions [Tid10] for graphical DSMLs in MagicDraw. These design decisions address some of
the most important aspects that language engineers must consider in addition to building
the syntax and semantics of the language itself. Often, these UXD aspects will com-
plement the syntax or the semantics of the language, which only improves its usability.
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Each design decision is provided with a rationale that elaborates the reasoning behind
the benefits that the decision brings about. The design decisions and rationales are
based on feedback from practitioners and domain experts in various industrial projects
studied during the course of this thesis. Further, case studies in Chapter 8 detail the
implementation of these design decisions in actual modelling projects. In the following,
the design decisions are labelled with an identifier to distinguish them based on their
respective categories.

User Experience Design ‘

Visual Design ‘ ’ Information Architecture ‘ ’ Interaction Design ‘ ’ Usability Heuristics

Figure 6.2: Categories defined for the various design decisions that must be considered
for a good UX in DSMLs.

6.3.1 Visual Design

Visual designs are any design decisions that further enhance the aesthetics or the look
and feel of models and model elements and indicate ways, including visual notations, in
which they are presented to the modellers [Moo09]. They are closely linked to visual
notations that have been extensively defined and used in the software engineering world.
In the modelling sense, such design decisions directly affect the graphical concrete syntax
of the DSML. This means that, as an example, model elements are further configured
in various forms, such as icons, colours, appearance, dialogs, as well as their respective
properties such as shape, size, and opacity. While the language itself describes the
necessary graphical syntax needed for successfully model a modelling scenario, visual
designs are defined by language engineers to enhance the various language elements in
the graphical concrete syntax to effectively represent the heterogeneous domains that a
practitioner is involved in. To this end, the following visual designs, listed in Figure 6.3,
convey various DSML constructs in a more visual and appealing manner.

’ Visual Design ‘

’ Icon ‘ ’ Colour ‘ ’ Modal Dialog ‘ ’ Custom View ‘ ’ Dynamic View Plugin
Vi V2 V3 V4 V5

Figure 6.3: Visual design decisions that must be considered for a good UX in DSMLs.
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Icon (V1).

An icon is an extra graphical element that is displayed for a model element when it
is selected. These icons are configured to be displayed automatically on a graphical
modelling canvas of a modelling tool. An example of icons is shown in Figure 6.4.

E-8% Product Line
® ProductP1
® Product P2

Figure 6.4: Different icons for representing different model elements.

Rationale: Icons are beneficial in differentiating various model elements of a DSML
as they are designed to convey real-world representations of a specific abstraction that
carries some kind of meaning to a user. For example, a mandatory feature in a feature
model is represented with the icon !, while an optional feature in a feature model
is represented with the icon ? . Although it must be noted that designing icons is
considered a challenge for language engineers, as they may often not possess the relevant
design skills.

Colour (V2).

Applying a colouring scheme to a model element in a DSML enhances the appearance
of a model element through a specific colour that generally tends to invoke a reaction
from a user. An example of different colours for distinct model elements is shown in
Figure 6.5.

-3 1 UseCase Model
B~ (51 2 Requirements Model
EI 3 Customer Feature Model

Figure 6.5: Different colours used for representing different model elements.

Rationale: Colouring schemes are meant to invoke reactions from users in a positive
or negative way. For example, the usage of red colour generally tends to invoke a feeling
that something is not right with the currently observed model and that it may contain
an error or a warning. An example of this is using a red coloured question mark for
detailing some error within a package containing models £2. This leads to an increase
in the user attention for the current models [BNO7]| which subsequently differentiates it
from other model elements that are well-formed.
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Modal Dialog (V3).

Modal dialog is a graphical control element which shows information to users that help
them make appropriate modelling decisions. For example, a modal dialog is displayed to
modellers that shows them a list of issues in a current model. They are also used to show
static documentation for a model that ensures users are informed about the currently
selected models. An example of a modal dialog showing issues in the model is shown in
Figure 6.6.

Documentation lssues

Open Issues:

Issue Element
1 This is a mandatory element! Mandatory Feature

Figure 6.6: A modal dialog listing issues.

Rationale: Modal dialogs are used to channel relevant information to a user when a
user’s immediate attention is required. This means that such dialogs often interrupts a
user’s workflow, which is counterproductive. On the other hand, delivering such infor-
mation is extremely useful in correcting various issues with the models that would be
hard to find when the models get more complex.

Custom View (V4).

A custom view is a kind of visual representation of the existing textual information of
certain models. These kinds of information could be displayed in the form of matri-
ces, tables, UML, or free-form diagrams. Such a view is directly integrated within the
modelling tool itself, thereby displaying users with a way to better visualise the textu-
ally stored model content. An advantage of such a view is that certain actions on the
models are directly performed such as establishing relationships between two different
model elements from two different DSML building blocks. An example of a custom view
displaying an impact map is shown in Figure 6.7.
% Quality Impact Map x

Delete ' Remove From Map i [5] Show Legend Depth:| 2/ R i a iR : & - iQ

Criteria
~ 4 3.1 Required Qualities as Input

1 3 Quality Model E
~[@ 3.2 System of Interest Qualities

Figure 6.7: An example of a custom view that shows an impact map.

Rationale: Custom views show textual model information visually using specific dia-
grams that internally store the model information in a particular format or data struc-
ture. Each of these diagrams serve a very particular purpose. For example, matrices are
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used for optimisation problems, such as solving linear problems of relating one model
element to another. Tables on the other hand show static model information for faster
readability across the rows and columns. Therefore, language engineers must consider
using suitable custom views based on the kind of information that is desired to be seen
as per the language definition.

Dynamic View Plugin (V5).

A dynamic view plugin in MagicDraw is a GPL, e.g., Java, based plugin that enables
dynamic filtering and display of model specific information directly on UML diagrams or
any DSML specific custom views. These plugins are used to show additional items such
as legends or annotations that help identify various parts of a model and allows filtering
the model information displayed on the diagram. An example of a dynamic view plugin
for filtering products belonging to a specific product line is shown in Figure 6.8.

@ Connections Diagram

et ol -
EAppIied View: Filter Trace - Product / Product-line ~ | Product Line ~
selection «Variant View »

Product P1
Product P2
Product P3

J |Product Line

F‘ 'U'h class System][ @ Connections Diagram ]

n] =/
==

Figure 6.8: A dynamic view plugin that filters products in a product line.

Rationale: Dynamic view plugins assist users in focussing especially on the model
information. As an example, such a plugin is used to enable or disable the power supply
unit models in a complex power system. Further, various connections or ports that exist
in the model are also filtered for display to allow the users a more focussed view of
their models. Legends and annotations are beneficial in quickly displaying and removing
model information for different custom views that are based on certain filters. They
are enabled for toggling which allows users to quickly check their models in one state
or the other. Dynamic view plugins work effectively with custom views, as such views
are specially tuned to improving the experience of a user in understanding only specific
parts of the system without the additional noise around such systems.

6.3.2 Information Architecture

Information architecture is the practice of organising and structuring the constructs of
a graphical DSML such that the overall architecture of the DSML is improved in eas-
ily finding such constructs that users immediately use [dLSPF16]. In other words, this
solves the problem of spending tedious amounts of time in searching and organising mod-
els. This is especially true in the case when heterogeneous systems grow in complexity,
which means complexity in modelling also increases. Improving the overall information
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architecture of a DSML is important because not every modeller maybe a domain expert
and even novice users must be able to model with ease. As domains evolve and more
and more concepts and functionalities are added to a DSML and the modelling tools,
there is a growing need to consistently alleviate the concerns of users as to how a DSML
is presented, how the constructs of the DSML and the functionalities of the modelling
tool is preserved, organised, and structured. To this end, we identified the following
information architecture design decisions along with stakeholders of different Siemens
projects, listed in Figure 6.9, as important decisions to organise and structure DSML
constructs in a better way.

’ Information Architecture ‘

Layout ’ Model Browser ‘ Perspective ’ Creation View

TA1 TA2 TA3 TA4

Figure 6.9: Information architecture design decisions that must be considered for a good
UX in DSMLs.

Layout (IA1).

The layout determines which model elements are positioned where according to the
context of use of a DSML and their use on custom views and domain-specific diagrams.
In general, the placing of model elements on a custom diagram may not seem substantial,
but impacts the way a modeller thinks. This is because some aspects of where notations
are configured in software engineering products have become ingrained in engineers and
are just convenient and natural to consider [Moo09]. An example of a layout involving
the positioning of input ports on the left side and output ports on the right side of
elements is shown in Figure 6.10.

:E1 [ :E2 )
[ Jin-can aut: CAN [] [ Jin:can

Figure 6.10: Layout involving the positioning of input (left side) and output (right side)
ports.

Rationale: By placing model elements on specific areas of custom views or DSML
diagrams, modellers get a better overview of the overall structure of their models in
complex modelling scenarios. For example, it is just natural to position input ports on
the left side of a model element, and the output ports to the right side of a model element
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as the general design principles in software engineering denotes inputs and outputs in the
same way. Of course, the reverse is also true and is possible in certain scenarios, therefore
language engineers must consider the requirements of the stakeholders and design such
layouts accordingly that is best suited for their modellers.

Model Browser (1A2).

A model browser in MagicDraw is a visual representation of the list of elements that
exist in the modelling tool and is beneficial in displaying the hierarchy of models and
model elements in a DSML project. In other words, a model browser is considered a
hierarchical navigation browsing mechanism that is used to manage the model data. In
MagicDraw, the model browser is configured to display models belonging to either a
single DSML project or models from different DSML building blocks at different levels
of granularity. A model browser displaying different models is shown in Figure 6.11.

T Containment | £ Diagrams
Containment
s 5w Q
E-[= Data
B- B SHS Model
-[H] _Document Info
-] 1 UseCase Model
--[5] 2 Requirements Model
-8 3 Customer Feature Model
-5 4 Technical Feature Model

BB

Figure 6.11: MagicDraw model browser shows the models in a project containment tree.

Rationale: Modelling involves working with a lot of different, yet intersecting, do-
main concepts. In this regard, navigating, finding, or arranging model elements in com-
plex DSML scenarios is often very challenging and consumes a lot of effort and time
of the modellers. A model browser is designed to solve this problem by rearranging
and providing model elements using a sound hierarchical structure that ultimately helps
in organising these individual models. A cross cutting concept is observed for model
browsers with visual designs as they are able to display models with the relevant icons
(Section 6.3.1). Further, the model browser prevents models to be mixed up during mod-
elling, by allowing common types of elements to be grouped together under a common
construct.

Perspective (I1A3).

Perspectives, as the name suggests, are used to display only those set of modelling lan-
guage constructs or modelling tool functionalities that are required by a certain kind of
user. This means novice users must be presented with lesser number of complex DSML
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constructs, while advanced users may be presented with more number of such constructs.
By having multiple perspectives, cluttering of irrelevant information is avoided. For ex-
ample, a functional view must only discuss the functional composition aspects, whereas
a deployment view must discuss only the distributed deployment of a system. Perspec-
tives are considered a kind of view and is different than custom views, where perspectives
are used to change the existing display of DSML constructs or tool functionalities. An
example of different perspectives that users see is shown in Figure 6.12.

: File Edit Tools Collaborate Help
D Ié = g .@ [H] =B - % = EPerspective: SHS Baukasten DSL (Beginner) ~

File Edit View Layout Diagrams Options Tools Analyze Collaborate 3DEXPERIENCE Window Help
Oe -8 -9 - iw =Y : Perspective: |Full Featured ~

Figure 6.12: Perspectives that show either (top) a reduced set of functionalities, or (be-
low) a detailed set of functionalities.

Rationale: Novice modellers that are not well trained or experienced with a certain
DSML often lack the know-how in how to start their modelling. Such users must not
be subject to an extensive list of domain concepts that will overwhelm them. Instead,
limited constructs of the DSML or tool functionalities help them better onboard them
in their modelling. As they get more experienced, therefore reaching advanced stages in
their modelling, the same users tend to use more advanced concepts that are present as
part of the DSML. Perspectives help such users in being presented with only relevant
concepts at different stages of their modelling. As an example, a perspective for a system
architect may be significantly different for a system modeller.

Creation View (1A4).

A creation view is an additional window, pane, or a view that shows logically grouped
language elements, UML diagrams, and custom views that are created on the model
browser. Often in large DSMLs with a large number of intersecting domain concepts,
many model elements are created to describe a certain domain. A creation view helps
organise these model elements into their respective subcategories to ensure that there
is a clear distinction between domain concepts that belong to one subsystem and those
that belong to another subsystem. As an example in Figure 6.13, only product lines and
products are created as part of a creation view.

Rationale: DSML elements that are part of the same logical group must ideally not be
part of other logical groups. This is necessary to prevent inconsistencies in structuring
and organising the constructs of a DSML as it often leads to disorder and mixing of do-
main concepts from different subsystems. One such example is that the model elements
and custom views of the functional and non-functional requirements must only exclu-
sively be part of a logical grouping that involves a requirements specification, meaning
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[=RE=15.2 Technical Variants

B Create Element: Ee; rch

Elements *
ﬂ Product Line

= Product

Figure 6.13: An example of a creation view for product lines and products.

a DSML building block for modelling requirements in a project must consist of creation
views that contain the concepts specific for requirements only, and not feature models
for example.

6.3.3 Interaction Design

Interaction designs are design decisions that assist users in interacting effectively with the
constructs of a graphical DSML with a focus on the cognitive aspects [Nie94, BBC101].
These cognitive dimensions are aimed at a kind of analysis for discussing the charac-
teristics of a system and for providing a rather lightweight approach in improving the
overall usability of a system on a design level without considering all the syntactical de-
tails of a DSML. These designs subsume characteristics such as auto-completing model
names, automatically instantiating models in a DSML project, and transforming models
into other formalisms [KMST09]. Therefore, largely these design decisions focus on the
behaviour of the DSML constructs and not the actual implementation of DSML. To
this end, we identified the following information architecture design decisions along with
stakeholders of different Siemens projects, listed in Figure 6.14, as important decisions
in achieving better cognitive support for modellers.

Interaction Design ‘

Project Template ‘ ’ Default Naming Convention ‘ ’ Model Transformation ‘ ’ Custom GUI

ID1 ID2 ID3 ID4

Figure 6.14: Interaction design decisions that must be considered for a good UX in
DSMLs.

Project Template (ID1).

A project template is a customised predefined DSML project pattern that is configured
at the start of a new DSML project thereby serving as a starting point for a modeller.
Such a kind of automatic instantiation of a project template with predefined model

127



CHAPTER 6 DESIGN CONSIDERATIONS FOR HICH-QUALITY USER EXPERIENCE IN
INDUSTRIAL DSMLS

elements allow users to easily understand its conformity with the overall architecture
of the domain in consideration. As it allows a predefined set of models to be created,
information architecture designs such as layout of models, perspectives, and creation
views are configured as part of this start up configuration. An example of a predefined
project pattern for Siemens Healthineers DSML is shown in Figure 6.15.
5B SHS Model

=1 1 Stakeholder Model

2 UseCase Model

53 2 Quality Model

B2 4 customer Feature Model

B 5 Technical Feature Model

B3 6 Function Model

<1 7 Architecture Model

Introduction

Figure 6.15: A predefined project pattern containing models for the Siemens Healthineers
DSML.

Rationale: At the start of every DSML project there is often an uncertainty for mod-
ellers in how to create a robust, well-organised model that represents effectively a domain.
Such modellers may also lack a kind of know-how on how to simply start in their mod-
elling, meaning which domain concepts to generally consider. Therefore these project
templates allow users to automatically instantiate a model, thereby making the effort
needed to create a model for this domain a bit simpler. One example is an automatic cre-
ation of a basic traffic light model with the states and the transitions already configured
for the respective state machine [GKR*21].

Default Naming Convention (1D2).

Configuring a default naming convention within a DSML allows default names or num-
bers to be automatically assigned to the respective model elements. Such an automatic
naming convention is used to automatically complete the naming of a model element
based on the name convention that was configured during the DSML development. An
example when default naming conventions are used for product lines and products is
shown in Figure 6.16.
- 2% Product Line 1
2% Product P1

- 28 Product P2
= Product P3

Figure 6.16: Names and identifiers are assigned automatically to product lines and prod-
ucts.

Rationale: Assigning relevant domain specific names, labels, or numbering model ele-

ments along with their names helps distinguish between various model elements. This is
particularly beneficial for preventing naming conflicts, that are also detected by context
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conditions, but simply is an overhead. For many complex systems, the non configura-
tion of such naming convention cascades further down the chain and ultimately adds
unnecessary times needed to debug the system or the models. For example, configuring
a mandatory feature as “Mandatory Feature x”, with x being a combination of the cur-
rent model name and an automatic incremental number, allows not only an automatic
completion of the name, but also a naming convention that is relevant to the domain of
feature models.

Model Transformation (ID3).

A model transformation is described as a transformation of a model into another formal-
ism [HRW15]. As requirements for different systems and software aspects change, the
corresponding models for such systems must also change according to certain kinds of
refactoring, evolution, and refinement. Model transformations allow model-based evo-
lution, model refinements preserve the existing models but adds various informational
details, and refactoring improves the overall architecture of the models while still pre-
serving its behaviours. An example for transforming a model element port into another
metaclass is shown in Figure 6.17.

=R 33
.4
P ‘B out: CAM Select Target Metaclass:
=1k g2
% in: CAN General
== Asset Port MC

* Cable End

W= Cable Shield

Figure 6.17: Transformation example of a model element through new metaclass selec-
tion.

Rationale: Model transformations are beneficial in continuously evolving models in a
system. This means it is important to understand the semantic differences between the
refactoring steps. Further, as modelling tools constantly adapt to newer technologies, a
more sound transformation method is needed to transform the concepts of a model into
other formalisms during design time. One such example of transforming a model from
an optional feature to a mandatory feature in a feature model based on certain changed
requirements.

Custom Graphical User Interface (ID4).

A custom GUI is programmed using a combination of frontend frameworks, such as Java
Swing, and a GPL that is supported by the modelling tool. These GUIs is used to access
model elements and also used to edit properties of specific model elements of a DSML.
Such GUISs help configure and enhance functionalities that are not directly usable on the
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modelling tool. A modal dialog, for example, is configured using a GUI. Designing such
a GUI is also beneficial in retrieving current model information which is discussed as part
of a recommendations engine in Chapter 7. An example a custom GUI for configuring a
product line is shown in Figure 6.18.

22 Variant Configuration : Product Line 1 x

Eﬁ Expand All Search:

9 Technical Feature Model
| Mandatory Feature

Figure 6.18: A custom GUI for product line configuration.

Rationale: Modelling tools may or may not provide all functionalities to every kind of
user. This hinders modellers in using certain tool functionalities that would be necessary
for them in achieving a specific modelling scenario. A custom GUI enhances the existing
functionalities of a modelling tool such that the capabilities are greatly enhanced. An
example of a custom GUI could be to design a configuration window in a model which
allows various features in a feature model to be selected or deselected.

6.3.4 Usability Heuristics

While visual designs, information architecture, and interaction designs discussed design
decisions in detail, usability heuristics are described in a way that is provides the nec-
essary guidelines for language engineers to consider when developing graphical DSMLs,
so that it is ultimately the modellers who are benefited in their modelling. These us-
ability heuristics are defined in a way it gives modellers a greater sense of effectiveness
and satisfaction in using their DSMLs [PRBCZ17, PZBdBC18|. This means a good UX
of a DSML is generally also dependent on good usability heuristics in a specified con-
text of use. It must be noted here that while these usability heuristics are not strictly
considered design decisions, they naturally complement the design decisions that were
earlier described. Today, many graphical modelling tools have an underlying API that
help support additional functionalities of a DSML, and therefore describing usability
taxonomy attributes parallel to UX studies in APIs [MRAR20] is considered important.
While many such usability heuristics are considered in general for modelling languages,
we consider the following “ilities”, listed in Figure 6.19, and based on the taxonomy pro-
posed by [ARVGMRMBO09]. Based on various discussions between language engineers,
practitioners, and domain experts on different Siemens projects, we have focussed on
the following usability heuristics, as we believe these cover the main aspects of general
usability in relation to graphical modelling.
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’ Usability Heuristics ‘

Knowability (Clarity) | | Knowability (Helpfulness) ’Operabﬂity‘ Robustness | | Safety
U1l U2 U3 U4 Us

Figure 6.19: Usability heuristics that must be considered for a good UX in DSMLs.

Knowability (Clarity) (U1).

Knowability is a usability heuristics that language engineers must consider to make
the constructs of the DSML self-explanatory and easy to understand. In other words,
disambiguation between various constructs in a single domain must be avoided.

Rationale: Clarity is a quality of a DSML that makes it easy to understand and
comprehend. This is often a challenge modellers face during modelling complex scenarios
either because the tool is inadequate or the DSML has not been configured in a way
that it easily describes the domain-specific concepts. Therefore, a clarity in terms of
model names, model types, structure of the models, logical grouping of such common
model elements, easily comprehensible modelling constructs, position of the models on
a graphical modelling canvas, and the ability to design model elements for a specific
purpose, is crucial to improving the readability of a DSML.

Knowability (Helpfulness) (U2).

The helpfulness of a DSML is to describe the DSML constructs in a way that it is able to
provide helpful annotations, documentations, and descriptions of model elements such
that users have an overview of the DSML constructs. It would also be helpful to identify
which elements have evolved beyond the point of use and must be considered deprecated
elements.

Rationale: The lack of documentation and description of models and model elements
within a DSML leads to a reduce in productivity for modellers as they have to often search
through handbooks and other training materials that contain such model information.
Such users find it tedious to comprehend the meaning and usage of DSML constructs
by themselves. Therefore, providing ample documentation for models with sufficient
examples for how they are used reduces the effort that is needed to model extremely
complex modelling scenarios and restricts different kinds of mistakes during modelling.

Operability (U3).

Operability ensures that the graphical DSMLs provide the desired domain-specific func-
tionalities and that DSML engineering must ensure that mechanisms for DSML con-
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structs to be reusable, extensible, and composable, such as with DSML building blocks,
are provided.

Rationale: Modellers must be presented with constructs that are not only relevant
to their domains, but also is capable of performing all the desired functionalities of the
DSML. This means model elements must be universally recognisable and reusable either
through visual designs, or through other means such as language composition that help
support model transformations.

Robustness (U4).

A graphical DSML must be foolproof, meaning the DSML in combination with the mod-
elling tool it is built in, must not contain any inconsistencies such as bugs, errors, or
vulnerabilities that could potentially compromise the system or its subsystems. There-
fore, robustness is a property of both the DSML and the accompanying modelling tool.

Rationale: DSMLs must be subject to thorough checks after it has been engineered
to detect for any runtime errors. This ensures that the DSML does not encounter any
significant errors that hinders the usage of the DSML. The constructs of the DSML
must be error free and checked for potential vulnerability leaks.

Safety (U5).

This heuristic defines that the graphical DSML must not actually compromise the data
or the assets that belong to a user. It is important the the DSML is considered safe and
that there is no violation of protection rights or any kind of legal issues.

Rationale: The data belonging to a user must not be directly or indirectly exposed
to third-party entities. This means that the licenses must be up to date, legal actions
are already taken care of during deployment of DSMLs, and the personal information of
users and their data protected according to their local governments.

6.4 Scope of UXD

The list of design decisions and usability heuristics described in Section 6.3 is certainly
not exhaustive but aids in describing a good UX for a DSML. There must be flexi-
bility in consideration for new design decisions that language engineers must consider
to enhance their DSMLs. This is because UX is consistently changing based on user’s
opinions and the overall topic of UXD is very wide and covers many scenarios. Ad-
ditionally, combining quality management standards such as ISO standards along with
the ergonomics of human-system interaction and usability considerations provides best
practices to develop better graphical DSMLs. Often projects follow a very tight develop-
ment schedule so most of the focus is on developing the DSML and its functional aspects
such as its syntax. There is often constraints in resources and budget that introduces
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trade-offs that language engineers must carefully consider. This means while considera-
tion is made for modifying the aesthetics of a modelling language, design decisions that
improve the general usability of graphical DSMLs must be considered. The following
three questions must be answered closely by language engineers and project stakeholders
during graphical DSML development to address usability concerns:

e UXD-Q1: Can a specific design decision satisfy a user’s modelling needs and help
them reach their goals?

e UXD-Q2: Does a design decision cause any potential disputes between the DSML
constructs and with the functionalities of the modelling tool in consideration?

e UXD-Q3: Can the design decision be considered for a particular domain aspect, is
non-subjective, and is related to a domain system or subsystem?

These answers help language engineers understand the extend to which design decisions
must be considered to aid in a better UX and are described in more detail with a specific
industrial example in Section 6.2. Often it is a mindset change that language engineers
must undergo, for thinking more like a user is beneficial in designing DSMLs that users
will base their successful models on. In general, those design decisions that are not
relevant to a domain, compromises the quality of a DSML, and is not aligned with all
stakeholders must not be considered for implementation in a DSML.

6.5 Evaluation of the Industrial Example

This section illustrates the implications of the described design decisions and guidelines
using the industrial example of a feature model [BEK*19] DSML described in Section 6.2.
The enhancing capabilities of MagicDraw through customisations allow design decisions
such as icon (V1), colour (V2), default name (ID2), and creation views (IA4) to be
directly integrated into the language definition, meaning it directly affects the concrete
syntax. The MagicDraw Open Java API is used to configure the modal dialogs (V3) and
the custom views (V4) are configured using the customisations provided by MagicDraw.
The interaction designs (Section 6.3.3) and the information architecture (Section 6.3.2)
designs are also directly configured using MagicDraw’s settings. To this end, various
plugins are created for a DSML such as the dynamic view plugin (V5) that is also
programmed using Java. These plugins are also capable of transforming models (ID3)
into other formalisms. Finally, a custom GUI (ID4) is programmed using Java Swing
and is incorporated as part of the feature model DSML.

We show the substructures of Figure 6.1 and evaluate the example in this section.
Figure 6.20 shows the model browser (IA2) as a functionality that MagicDraw provides
by default. The model browser is responsible for hierarchically organising and struc-
turing the feature model DSML constructs so that a modeller easily navigates through
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Figure 6.20: A part of the feature model showing design decisions such as icons, colours,
default naming convention, project template, and a model browser.

the various models and find their respective models. The project template is the prede-
fined feature model that is automatically created (ID1) within the model browser upon
instantiation of a new feature model project. As the relevant models remain in their
individual building blocks, this takes a step in addressing question UXD-Q1. In this
predefined project template, a default naming scheme (ID2) is configured which auto-
matically assigns names and numbers to the different models, such as “2 Requirements
Model” and “4 Technical Feature Model”. This is beneficial specially because modellers
may often forget to assign relevant naming identifiers. Further, they are also guided in
a way to create models sequentially (U1) to avoid immediate conflicts with other DSML
parts. The individual models are also configured with appropriate icons (V1) and colours
(V2) for different features in the feature model to provide the necessary distinction to
other models. Language engineers must consider designing appropriate icons and colours
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to such model elements so that it better represents their domains. As an example, here
the “Product Line” 5= shows four blue cubes whereas the “Product P1” (product) =
shows only one blue cube and three white cubes, thereby differentiating between a prod-
uct line and a product. In a similar way, the design differences between the icons of
different feature types, such as mandatory feature (with an exclamation mark) ! and
an optional feature (with a question mark) ? shows the distinction between these fea-
tures in a feature model. The designs for the icons must be designed similar to existing
feature models that are currently in use that fully support product line engineering such
as pure::variant [Beu08] for consistency. As such icons may not be known to modellers,
the models themselves must also be accompanied with sufficient documentation (U2)
shown in Figure 6.21.

531 Zoom | [3) Documentation [T7] Properties

Properties > %
Bement | Tags | KNOWABILITY (U2)
W (@ 2oz ® Standard

B Product
Name Product P3
Moocmenision |

Realized Customer Variant
7 Optional Feature O
Yor Xor Feature C
7 Optional Feature O
All Selected Features Yor Xor Feature C

| Mandatory Feature

Selected Features

Needed Artifacts
Figure 6.21: Properties of a product showing documentation and the related features.

A perspective (IA3) for a beginner in this DSML (SHS Baukasten) was shown in Fig-
ure 6.1. This can be later changed to advanced if the current user is more knowledgeable
in modelling with the DSMLs and needs more functionalities for modelling complex sce-
narios. Here, language engineers appropriately configure the functionalities to restrict or
allow modelling constructs or MagicDraw functionalities for different kinds of users. In
the example, since a beginner perspective is chosen, only certain basic toolbar options in
MagicDraw is made visible to the user. Advanced perspective users configure function-
alities such as cloud collaboration for migrating projects, validating advanced context
conditions, and performing a merge of two different projects. These perspectives avoid
creating any conflicts between the feature model DSML constructs or the existing Mag-
icDraw functionalities by separating the concerns of the tool and the concepts provided
by the DSML, thereby taking a step towards addressing UXD-Q2.

As part of a custom view (V4), a variant matrix is displayed in Figure 6.22. This shows
the various product lines and products and its relations to the corresponding features
that were configured. Here, a matrix definition allows the support for an architecture de-
sign (IA1), which shows the layouts and the positioning of the various technical variants
(rows of the matrix) and technical features (columns of the matrix). The legend infor-
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Figure 6.22: Custom view and layout of the feature model.

mation indicates the description of the relations between the variants and the features
and is configured using the dynamic view plugin (V5). By default, this is not possible
in MagicDraw since custom views such as matrices and tables do not allow information

pertaining to legends.

The configured variant matrix is also interactive, meaning users

immediately select an empty cell and configure a relationship, or select an existing rela-
tion on a cell and quickly remove it. As the matrix is configured for SPLE and it enables
concepts for feature modelling, it therefore takes a step in addressing UXD-Q3.
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Figure 6.23: Custom GUI and a modal dialog for product line configuration.

Figure 6.23 shows a dedicated variant configuration GUI (ID4) that is displayed to
users allowing them to select the proper configuration for their product lines and prod-
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ucts. Depending on user selection, relations between the variants and the features are
automatically adjusted. Further, the GUI is configured to allow the collapsing and ex-
panding of the various features on this custom GUI, and also includes a search bar to
quickly search features when the model gets complex or the list of features are very long.
A modal dialog (V3) consisting of the tabs for documentation and issues is directly in-
tegrated on the variant configuration (ID4) for listing additional information about the
variants or the selected features or a combination of both. The usability heuristics are
not specifically displayed on the figure but is an integral part of the DSML. They en-
sure that the DSML constructs remain self-explanatory (U1) through relevant an helpful
documentation or notes (U2). Finally, language engineers must consider validation and
verification of the entire DSML such as checking the Java code for the dynamic view
plugins that they ensure robustness (U4) and safety (U5) of the DSML, the modelling
tool, and also the data and assets of the modellers.

Connections Diagram X
EREE AR By R | P é é i - E-E - 0Q
éAppIied View: |Filter Trace - Product / Preduct-line ~ | Product Line ~
Selection «Variant View s
lg | &, B85 class Eystem[ Connections Diagram ] Product / Product-line View
Tools Not included
g % z TE1 ’;g D Potential
- CAN # Placeholder
. Ty ] CAN
Connections ld} ‘ hldi D Open
: : :PWR
== Electronics Connection ] ' Il - PWR E Excluded
== Optical Connection
P c cti SysArch Elements
ower Connection
— Mechonical w “E2 ’;g [ sssembly

SEEDLT (= Teh) [ chemical Element
== Chemical Connection e [ Electronics Element
== Software Connection - PWR [P Mechanical Element

. B soft Element
== Customn Connection ﬁ E:t wa:i\deman
ernal Actor
== (Cpoling Connection = -1 [ External System
== Signal Connection /

" SysArch Ports
Mappings =] :Iedrunics Fort
1o SW-HW Port Mapping \\\x = F Port

'OWer Fo
" Deployed on = Mechanical Port
" Transferred on = Chemical Port
4 Variation Constraint I Software Port
/ Pass through I Cooling Port

- I Optical Port
Isolations Im custom Port
@ Isolation T Hole Port
== |solation Connection
[ Cemmen

Figure 6.24: An example of a custom view (V4) with a dynamic view plugin (V5), for
filtering product lines and products. Element E2 is marked as potential,
meaning it is optional for products, but undecided on the current product
line. Element E3 is marked as excluded with a red cross, hence the respective
connections are greyed out. Figure taken from [GJRR22a].

Figure 6.24 shows an example of a custom view (V4) for a feature model product
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line that is integrated with the dynamic view plugin (V5). In this view, the “Variant
View” allows a user to configure various system elements, ports, connections, and their
mappings. The structuring of the model elements (IA1) inside this view is configured
by language engineers. This means that the placement and layout of the input ports
from the left side of the view to the elements in the middle of the view is preconfigured,
to provide a better first impression of the system or the subsystem. However, this is
not a strict restriction and during design time, modellers are free to move around and
restructure the model elements according to their modelling needs. The applied view in
this case is changed dynamically upon selection of a product line or product for a feature
model at the top of the diagram. In this example, selecting the product line means the
respective “Connections Diagram” (V4) is updated with the appropriate elements which
shows the electronic element E1 is positioned (IA1) with the use of a custom GUI (ID4).
This means the electronics (green) and power (orange) connections to E1 (V2) is also
made visible to the product line. The element E2 is marked as potential as it may be
later configured for a product in the product line, therefore the element is greyed out.
The element E3 is marked as excluded (greyed (V2) and marked with a red cross (V1))
such that it cannot be included in any subsequent products in the product line. This
kind of configuration is helpful when a low cost variant of a product with a fewer number
of features are required to be built.
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Figure 6.25: An example of a model transformation (ID3) for refactoring an optional
feature to a mandatory feature. Figure taken from [GJRR22a).

Refactoring of models, shown in Figure 6.25, by modifying the underlying stereotype
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of a model leads to a way of model transformations (ID3). To support such refactoring
a modal dialog (V3) is created by language engineers. The figure shows such kind of
a model transformation for refactoring an already defined optional feature in a feature
model to a mandatory feature by selecting its appropriate target metaclass. The example
shows that a model transformation is achieved during design time, however extra care
must be taken by language engineers and the modellers so that the risk of losing incom-
patible properties during such transformations is minimised, meaning a DSML must not
ideally allow refactoring a mandatory feature to a product, as their usage is completely
different. Such risks are informed to users using an additional modal dialog (V3) when
a model transformation is performed.
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Figure 6.26: An example illustrating the creation view (IA4) where the creation of a
model element inside a Technical Features package allows only a mandatory,
or, Xor, or an optional feature to be created. Figure taken from [GJRR22a].

Figure 6.26 shows an example of a creation view (IA4) that lists the elements that
are created as part of a feature model, namely mandatory, optional, or, and Xor. This
view presents modellers with a logically grouped and restricted set of features based
on the configuration of a DSML. As shown in the figure, the four defined features are
only created under the “4.1 Technical Features” package and is not permitted to be
created inside any other package. Therefore, creating such features in the “4.2 Technical
Variants” package is not allowed. Similarly, only products and product lines (variants)
are created under the “4.2 Technical Variants” package and not inside a “4.1 Technical
Features” package. This prevents any disorder and mix of elements and allows separating
the concerns of individual subsystems and their domain concepts. Here, a default naming
scheme (ID2) is also used to automatically assign names and labels to features such as
“EE1” or “EE2”, or for variants such as “Product A” or “Product B”. In reality, however, it
is recommended to automatically assign domain appropriate names, such as “Collimator
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v1”, “Collimator v2”, and so on. This serves as a guide to modellers in developing features
or variants in a sequential order with the flexibility to modifying the names later during
modelling.

6.6 Discussion

This chapter presented definitions for describing a good UX and UXD aspects that
language engineers must consider for developing graphical DSMLs. A categorised list of
design decisions was detailed for improving the overall UX for practitioners. There exists
many development techniques for building DSMLs but often there is little consideration
for integrating good UX aspects. As such DSMLs get more complex and harder to use,
providing a combination of a methodology along with a modelling tool greatly benefits
a user. To this extent, a good UX is integrated by involving all key stakeholders for a
DSML project. Here, a kind of an iterative feedback and communication loop must be
set up such that modellers, domain experts, software and systems architects, as well as
language engineers easily understand all aspects of the specific domain.

Language engineers primarily develop DSMLs and are not experts in UX or even
software development. This means they often need to go through additional trainings to
get more knowledge of these technologies. However, design decisions that are ultimately
taken by language engineers often result in improving the UX since they talk often
with the stakeholders. By categorising the design decisions, language engineers that
possess different skill sets could achieve a separation of concerns in improving DSMLs.
Visual designs help improve the look and feel of the models. Models must be designed
to be aesthetically similar to their real world counterparts so that they could easily be
understood. Therefore, icons, colours, modal dialogs, and custom views are configured to
make the models feel closer to real world abstractions. Information architecture designs
help in organising and structuring the constructs of a DSML in a way that improves
their findability. Interaction designs assist users in making effective interactions with
the constructs of the DSML with a special focus on the cognitive aspects. These design
decisions not only assist practitioners in building models from scratch but also provides
them with a kind of guidance that is necessary especially for novice modellers. Usability
heuristics are guidelines that help language engineers in developing graphical DSMLs
for improving the satisfaction of use for DSML users. For these heuristics, the most
important taxonomy attributes to consider are knowability (clarity and helpfulness),
operability, robustness, and safety of the data of users.

The design decisions presented in this chapter are configured using the customisation
capabilities MagicDraw offers, hence the choice of tool. The constructs of the DSML are
created as per the requirements of the stakeholders for the projects and the language
components earlier discussed (Chapter 4) are easily created and bundled in the DSMLs.
Additional enhancements that are not offered by MagicDraw are achieved by deploying
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various plugins written in Java. The components are brought together to compose into a
single DSML which is used by practitioners. A large variety of design decisions are there-
fore created that serve various purposes to improve the UX for a DSML. As building
blocks represent heterogeneous aspects of various application domains, language compo-
nents and their design decisions foster a high level of reusability for various constructs
of a DSML.

While the design guidelines have been presented mainly for industrial graphical DSMLs,
they naturally apply to all kinds of graphical DSMLs, including in research. The chap-
ter focusses specially on industrial languages as they have a greater need for providing
good UX to practitioners. The categories of design decisions discussed in this chapter
are essential for practical applications such as in the industry while DSMLs in research
mostly represent PoCs. To this end, the presented guidelines are rather suitable in in-
dustrial contexts. While specific guidelines for textual DSMLs, such as defining custom
GUI for generating ASTs from textual grammars is possible, it needs more research.
These guidelines are also applicable to other graphical modelling frameworks as they all
support graphical DSML development.

Describing a single source of truth for improving the UX is challenging as UX is a
relatively subjective topic and practitioners often have a mixed understanding of their
domain representations. Research in UX often exceeds traditionally used usability heuris-
tics which is a reason why UX experts often struggle to assign behaviour to DSML
constructs. Some proposed definitions of UX are reused for graphical DSMLs but it is
too generic or restricted to a specific modelling tool. It is therefore aimed through this
thesis that discussion for improving UX in graphical DSMLs will certainly gather more
traction in the modelling community. Language engineers must work hand in hand with
UX experts along with all the other stakeholders to better describe a DSML. They
must also be considered for training in the area of UX for better development of graph-
ical DSMLs. The list of design decisions are certainly not meant to be exhaustive, but
simply provide a starting point for consideration to effectively apply UX techniques in
graphical modelling. Therefore, research for other modelling tools is considered a future
work. This would certain avoid risks introduced in this chapter as being vendor-locked
to a MagicDraw implementation. While the design decisions elaborated in this chapter
are seemingly particular to MagicDraw, describing them at different abstraction levels as
well as with MagicDraw specific terminology helps categorise them into commonalities
that must be considered in other modelling tools. Further, such research helps shape,
refine, and improve design guidelines that are constantly changing in the ever adapting
modelling community. The scope of UX and UXD aspects must be considered by lan-
guage engineers to probe the trade-offs in relation to project resources and costs. A key
benefit in developing and researching industrial DSMLs is that guidelines are proposed
and adjusted according to current needs. This chapter therefore presents a first reference
point in fostering discussions towards defining better UXD aspects for industrial DSMLs
that is ultimately independent of any graphical modelling tool.
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6.7 Related Work

Usability driven development of DSLs [BAG18, BNS21] has focussed on evaluating us-
ability [PZBdBC18] during a DSL development process to solve usability challenges,
but lacks an overall implementation in complex industrial scenarios. The guidelines
presented in this chapter is a result of work along with researchers over the years on
a variety of industrial domains. General design guidelines for DSLs and DSMLs ex-
ist [KKP*09, BDH94, Fral3], but they apply mostly to DSLs whereas the guidelines
presented in this chapter focus on industrial graphical DSMLs intended for practitioners.
All stages in a DSML development lifecycle is generally not considered during experi-
mental usability evaluations [KTKO09]. However, the guidelines presented in this chapter
explicitly mentions that language engineers must involve all relevant stakeholders of a
project early on to avoid any dissatisfaction later on (also described previously in Fig-
ure 3.4). Other techniques such as collaboration and crowdsourcing for designing graph-
ical notations of DSLs have been proposed [BCCIM17, IC16], which permits a greater
flexibility and subjectivity as it is aimed to a large group of users for validating and ac-
cepting DSLs. The description of the interaction designs in this chapter are based loosely
on the cognitive dimensions of the notations framework (CDF) [Gre89, BBCT01]. This
allows integrating various cognitive aspects such as hidden dependencies, diffuseness,
and wviscosity. The principles of human-centred design defined in ISO 9241-210 [ISO10]
is broadly relevant to any graphical DSML development process, and evaluations against
usability using these approaches has also been studied [PRBCZ17]. The chapter presents
certain DSML usability heuristics that are proposed by [MRAR20] which are applica-
ble and important in industrial DSMLs. [ABC*17] discuss the various challenges and a
general direction in which UX for model-driven engineering approaches is headed, but do
not discuss specifics in relation to the general usability and improving UX in industrial
graphical DSMLs that is presented in this thesis.
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Chapter 7

Model-Aware Recommendations for
Industrial DSML Users

In this chapter, the integration of a DSML, and its building blocks, with methods that
assist users in their modelling to further improve UX for DSML practitioners is dis-
cussed. Previous chapters elaborated composing DSMLs from the viewpoint of language
components and their definitions, with a focus on the syntax and the semantics of a
modelling language. This chapter presents concepts that details the necessary missing
links between a language and the methods that enable users to take the next step in
their modelling. The concepts presented in this chapter build on the UX guidelines that
were proposed in Chapter 6. As models grow in complexity, practitioners using DSMLs
encounter numerous challenges with the lack of effective methods, guidance, and support
needed to improve their modelling situation. As languages are built with the sole purpose
of providing domain-specific constructs to design models, providing a rather static source
of information often leads to endless hunt for modelling information that is relevant to
users. This is because a combination of a modelling language along with methods to
effectively use the language in a single modelling environment is missing. This chapter
therefore provides several methods, that range from providing general training material
for the models, frequently encountered problems and their solutions in that domain, ac-
tively recommending users to consider the next steps in their modelling, and providing
prescriptive process models that improve the overall modelling situation of these users.
A set of dynamically changing recommendations is presented to users assisted by con-
figurable general rules that are checked against the current and past models related to
the DSML. Some results of this chapter have been published in [GJRR23|. Therefore,
passages from the paper may have been quoted verbatim in this chapter.

The goal of a DSML is to move away from traditional documents to an intensive use
of models. To solve this challenge, MBSE techniques have been constantly applied over
the years both in the academia and the industry [FR07]. While GPLs are not suited to
solving domain-specific aspects for systems modelling [PB19, CBCR15], they are used for
developing a more complete DSML definition. This is achieved by introducing context
conditions written in GPLs such as Java that check the well-formedness of the language.
DSMLs are heterogeneously designed and be represented in either a textual, graphical,
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or a projectional form [DCB*15, Bet16, Cam14]. Within each such technological space,
there exists challenges in how to effectively use the DSML with the provided language
workbench or a modelling tool that is suited to both novice and advanced users. There-
fore, providing guidance and support to such users is necessary for them to achieve their
modelling goals.

In this chapter, Section 7.1 discusses the motivation for developing a guidance infras-
tructure before Section 7.2 takes a look at the requirements for such a recommendation
system. Section 7.3 provides an architectural overview of the integration infrastructure
needed to provide various methods to support users. Section 7.4 discusses the implemen-
tation of the methodology using MagicDraw and various techniques required to illustrate
model-aware recommendations checked against configurable general rules. Section 7.5
describes the applicability of the implementation using a real industrial use case example
of a function context model designed by Siemens Healthineers that models functions re-
lated to an X-ray collimator. Finally, Section 7.6 discusses the overall infrastructure and
implementation benefits and limitations, while Section 7.7 discusses related approaches.

7.1 Motivation

As discussed previously in this thesis, modelling helps in making key decisions at vari-
ous stages of a software or systems engineering process. DSMLs must be designed in a
way that it represents important parts of the domain in consideration. Therefore, the
language engineering process must consider both the definition of a complete modelling
language as well as methods and concepts that assist users for using the constructs of
such a DSML. This is especially important in an industrial environment, as the integra-
tion of a DSML, method, and an appropriate tooling support leads to better modelling
experience for users [GKR*21]. Small and medium enterprises are often faced with re-
source constraints [Regl8], for which an integrated guidance mechanism is particularly
helpful. Providing such a modelling direction to users help them create not only effec-
tive models, but also allow language engineers to develop complex DSMLs with more
variability [CGR09]. While guides and documents do exist in some form, such as hand-
books or large sets of documents, they are often quickly outdated and do not consider
modelling aspects that are very quickly changing in the complex world of modelling.
This is true for novice users who often lack the know-how to model with the provided
DSML when they are introduced to the modelling language or the corresponding tooling
environment. Some of the challenges of methods that guide users in their modelling are:

1. providing a sufficient level of overview that describes a brief summary of the cur-
rently designed models;

2. providing training material of various modelling constructs that includes extensive
and relevant documentation [Hon13];
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3. displaying frequently asked questions by modellers in the recent past for providing
quick solutions to model-specific questions;

4. suggesting useful advice in the form of recommendations, such as a model diagram
or a model element [ARKS19]; and

5. identifying and suggesting various tasks, activities, or processes using process mod-
els that are useful in describing a particular course of action for modelling a specific
scenario [Fral0] to enhance a modeller’s experience.

Mechanisms to deploy concepts and methods that run in tandem with a DSML have
been proposed in previous studies [NFT10, Roql6]. However, they are either specific
to a technological space, or simply too generic to be adapted to other environments. It
is also very challenging, and nearly impossible, that language engineers consider every
single aspect of a modelling language, that includes rules, standards, or guidelines for a
DSML as they often prioritise implementing the syntax and semantics for the DSML. It
would therefore be more beneficial if users are actively assisted directly in their modelling
environment, rather than search for the corresponding information in a passive source of
information. This chapter provides a framework detailing the capture of such methods,
and how active model-aware recommendations are made to users. It builds on the
concept that the integration of a DSML and a method along with a modelling tool are
necessary to alleviate users in a more holistic modelling experience for various domains.

7.2 Requirements for the Recommendation System

To define a recommendation system that captures different methods for providing active
model-aware suggestions and techniques to DSML users, language engineers must first
define requirements for such a system. In particular, such a recommendation system must
be able to provide detailed descriptions of the various models that have been developed.
These descriptions must include brief summaries, statements, and any information that is
often described in guides, documents, or operator manuals in detail. A recommendation
system must be able to collect this information and summarise the descriptions into a
concise text that is helpful for DSML users and therefore requires aspects of location,
components, and infrastructural details to be initially defined by language engineers.
The recommendation system proposed in this chapter supports the following kinds of
requirements:

1. The recommender system must (not) be deployed at a specific location in the
industrial modelling environment,

2. A location requires that a certain number of components belonging to the recom-
mender system be deployed there,
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3. A component requires a certain set of (sub-) components potentially exist in a
similar location,

4. Two or more distinct components may not necessarily be deployed at the same
infrastructure level,

5. An infrastructure level requires that a certain set of components logically belong
to serve a particular purpose for the recommendation system.

By defining these requirements, language engineers can eliminate the need to explic-
itly express requirements that apply to individual parts of the modelling environment,
but rather define requirements that apply to the overall modelling environment. This
means by deploying the recommendation system at a particular location, language engi-
neers can reduce the efforts needed to develop and maintain different components. The
recommendation system can be suitably deployed immediately at a specific location of
the modelling environment if it fulfils these requirements. On the contrary, if the re-
quirements cannot be fulfilled, language engineers must propose a set of modifications
that help in the deployment of the recommendation system through, e.g., relaxation of
requirements, addition of further components, or infrastructure levels.

These requirements enable language engineer to provide a recommendation system
that includes providing ample training material pertaining to models that ensures users
do not have to move away from their modelling environments for fetching specific model
information. Such training materials could also reside at specific locations in the mod-
elling environment, therefore the language engineer can deploy code to generate informa-
tion that is generated via large-language models (LLMs) [BKK™23] such as generative
pre-trained transformers (GPTs). The decision to provide such information is ultimately
left to the language engineers and the stakeholders of the DSML projects. A rule engine
must be embedded as a component in the recommendation system that provides for mod-
els to be checked against various rules for generation specific recommendations. These
rules are defined by language engineers and the stakeholders of the respective DSML
projects. Such rules are configured and deployed at specific locations in the infrastruc-
ture levels to ensure that rule checks are not completely disjointed from the overall
recommendation system. The process of identifying these requirements involved the
discussion of various DSML stakeholders in different industrial projects across Siemens,
discussed later in Chapter 8. These stakeholders include language engineers who develop
the DSML and its building blocks, domain experts in their respective domains such as
healthcare, and practitioners with varying levels of experience in modelling from 3-15
years. Further, as these projects involved research discussions to provide state-of-the-art
recommendation system, we intensively discussed these requirements with researchers
from the academia as well. Overall, these requirements ensure that the technical de-
ployment can either be immediately deployed, or need certain modifications that do not
deviate drastically from the modelling environments.
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7.3 Architectural Overview of a Recommendation System

This section describes the overall high-level architectural view of the infrastructure built
to realise the concepts of providing methods and recommendations to DSML users. Here,
an overview of the software architecture of the infrastructure, the MagicDraw plugin, and
the corresponding database configuration used for supporting the plugin are discussed.

7.3.1 Infrastructure Overview

The classical three-tiered architecture [ABM96] used to demonstrate the applicability of
providing user-centric model-aware recommendations for users is shown in Figure 7.1.
Users interact directly with the presentation tier that consists of the GUI. This is also
known as the communication layer, as the user is able to interact with the relevant
information that is displayed back to them. The GUI (described earlier in the UX
guidelines as the ID4 interaction design in Section 6.3.3) is implemented using a simple
Java Swing interface that is developed to gather and display information from the tiers
below this communication layer. The tier below the presentation tier contains the logic
that is needed to collect and process the information from the GUI and it makes the
corresponding requests to the data tier using a set of general and customisable rules.
The data that is processed and calculated is returned back as recommendations and
methods for a particular model data that is incoming from the GUI. The lowest tier
of the architecture is the data tier, where all the information and its relevant links are
stored and managed. Training materials, documentation, and specific recommendation
related to the models are stored in this data tier. The application described in this
chapter communicates between the logic tier and the data tier using API calls. To store
the data related to the recommendation application, a MongoDB [BGBV16] database
is used. MongoDB is a NoSQL database that stores data in the form of JavaScript Ob-
ject Notation (JSON) documents [PRS*16], does not require a schema, is distributed,
and therefore provides the desired scalability, availability, and reliability of the stored
data [MPHH10]. This database is configured to be stored either locally or is configured
in a remote server, meaning language engineers effectively manage the stored data and
metadata without making any significant changes to a DSML itself. The overall archi-
tecture of the infrastructure is presented in a way that the GUI, or the presentation tier
cannot directly invoke or communicate with the MongoDB data tier.

7.3.2 Presentation and Logic Tier

Previously in Section 3.4, we took a look at the capabilities that MagicDraw provides for
enhancing the capabilities of a DSML with the introduction of customisations on various
DSML constructs. While modelling workbenches, by default, provide an extensive set of
model-aware validation rules [EvdSV 13|, they do not provide DSML-centric recommen-
dations detailed in this chapter. A reason is the nature of DSMLs being highly tailored
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Figure 7.1: The three-tiered architecture for generating model-aware recommendations
for users. The presentation tier is the Ul created using Java Swing, the logic
tier is where the business logic and the set of rules are configured using Java
code, and the data tier is the database where the data related to the user-
centric recommendations is stored and managed in a MongoDB database.
Figure taken from [GJRR23].

for a specific domain where a particular modelling scenario cannot be predetermined at
a general-purpose level. In the presentation tier, the MagicDraw’s Open Java API is
used to develop additional functionalities in the form of customisation capabilities, to
provide model-aware information at various stages of the current modelling situation of
the users. As part of this integration infrastructure, a MagicDraw DSML plugin file
is created that is archived into a single .zip file and is installed on a MagicDraw in-
stance. This archived file consists of internal plugin files that provide the additional
functionalities for a DSML. The customised GUI that is created to enable model-aware
recommendations for users is present as part of one of the described plugin files. In
this application, a WindowBuilder Eclipse plugin [RWC11] additionally helps in easily
designing GUI parts as it is an easy-to-use bi-directional Java GUI designer, and the
plugin development also happens in the same IDE. Here, the plugin is configured with
Java code that sends a request to the data tier through this logic tier, and retrieves
the relevant recommendation data from a database using the corresponding API calls.
Recommendation data include information that:
1. provides an overview of the currently designed models;

2. provides training material including ample documentation of models [Hon13];

3. displays frequently encountered past questions and their solutions by modellers ;
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4. provides specific but useful advise for a model diagram or a model element [ARKS19];
and

5. lists tasks, activities, or processes describing a course of action to model a particular
scenario [Fral0] for enhancing a modeller’s experience.

The logic tier validates all the recommendation rules using the Java code that is
configured within the plugin. In the logic tier, the MagicDraw plugin first identifies the
currently open model diagram and its models. Then the plugin automatically connects
to the database and checks rules against the model information. Once the information
is retrieved from the database, the plugin processes it and beautifies it for display at
the presentation tier. As a final step, the components of the Ul are populated with this
recommendations information.

7.3.3 Database Configuration

The data tier is configured to store and manage data using a MongoDB NoSQL database.
This helps the overall infrastructure in allowing unstructured data to be highly available
at all times, as it does not depend on the connection of tables, as compared to SQL
databases. The high availability of data fosters scalability such that the database grows
to large sizes without compromising the request and retrieval processes. This is par-
ticularly beneficial when the respective models grow more complex in nature, meaning
the data and the corresponding recommendations also grow more complex and larger in
size. The data is organised in the MongoDB database using document stores that stores
data as documents, in the form of JSON documents. By storing documents in a JSON
format, serialisation and deserialisation of these JSON documents into Java objects is
done at application runtime in the logic tier. In this way, any language engineer sepa-
rates the concerns of the actual logic with the data being managed and creates the Java
classes based on the defined JSON document formats. The preconfigured MongoDB is
referred to as database in the remainder of this thesis. If a database entry needs to be
changed then it is easily modifiable and without any significant changes to the database
configuration. This database is configured to run locally on a machine containing the
same environment for the tool and the DSML, but the overall hosting of the database
on an external server is considered more effectively manageable.

Structure.

The database is configured in a way that it consists of different collections storing dif-
ferent kinds of information that is relevant to the modelling situation. Every collection
consists of a set of fields containing specific values. Each collection also is integrated
with a tags field consisting of a list of keywords assigned to a specific model or a set of
models that are designed using a DSML. These tags are used to identify the models for
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which a recommendation is made. This means a high level of consistency is maintained
between a DSML and the database, as only the tag values in the relevant database must
be updated. As an example, a tag containing a list of values such as “Collimator-V1” and
“Collimator-V2” refer to the same DSML element “Collimator” in variants of a DSML.
Table 7.1 lists down the most relevant collections and their respective fields configured
in the database. As an example, DSML information that is stored externally in the form

Collection ‘ Fields ‘ Description
. . Stores a list of DSML diagram
. diagramName: String
elementsInDiagram dineramElements: Arra elements that are created as part
& ' Y| of a DSML diagram.
f ly ask i
question: String Stores FequenF y as ed.questlons
faqgs solution: Strin and their possible solutions for a
' & DSML model or model element.
Stores internal and external webpage
hvperlinks title: String links to training material, and links
P link: String to videos for a DSML model or
model element.
. 1
processName: String Stores prescrlptlv'e process models
processModels . and processes as images encoded
data: Base64 String .
in base64 format.
. elementName: String Stores recommendations for a DSML
recommendations . .
recommendation: String | model or model element.
rule: String Stores preconﬁgured ru%es
rules recommendation: Strin and their recommendations for
' & | DSML models or model elements.
textFromDocs docName: String Stores documentation related to a
docDescription: String DSML model or model element.

Table 7.1: A list of MongoDB collections and fields we manage, to store training materi-
als, links, recommendations, documentation, and process models for the mod-
els and model elements designed with the DSML. Table taken from [GJRR23].

of training documents or handbooks such as in Microsoft Word documents are tagged
with the relevant model name or a name that identifies a model from the DSML. To
load the information from these Microsoft Word documents, first the necessary content is
extracted from the document, a collection textFromDocs in the database is created with
the fields docName, storing the name of the Microsoft Word document, and a docDe-
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scription, storing the contents of this Microsoft Word document. Another example of
a collection is where data related to training videos is stored. These are stored under
as links in the hyperlinks collection, which consists of a title field, that stores the video
title, and a link field, that stores the hyperlink for the training video. Similarly, the fags
collection stores a list of frequently or commonly asked questions and lists down some
of the solutions to those questions. The data in the database collections are maintained
by domain experts since they suggest and provide changes necessary for the contents of
the database, and language engineers are responsible for the functioning of the infras-
tructure. The information stored in these database collections provide domain-specific
training materials, including training videos, general documentation that is extracted
from handbooks or guides, process models and their relevant processes for the current
models, frequently asked questions, and model-aware recommendations that help users
understand and improve their current modelling situation. Building this dataset has
been an agile process with information collected across a variety of domains and for
specific topics within each of those domains. Each DSML project can, in theory, have
a dedicated database that serves the purpose of providing domain-specific information
which is not easily searchable and available otherwise.

7.4 Realisation of User-Centric Modelling Recommendations

To assist users in their modelling and provide them with hints and suggestions, the
logic tier of the application must be aware of the currently modelled situation of a user.
It must then perform a relevant search query to the database and check against a set
of configured general rules to return any recommendations that exist in the database.
Such a model awareness is used to characterise the kind of model currently developed
and it also provides the necessary assumptions about the modelling situation for those
modelling constructs. The MagicDraw plugin GUI described so far is built in Java Swing
and the presentation of the user-centric model-aware recommendations is separated into
three distinct parts. The GUI is responsible to observe the current model, analyse the
state of the model, and provide recommendations for constructs, but not limited to,
such as DSML diagrams, matrices, tables, and model elements that are part of such
diagrams. The first part displays a general overview of the currently opened diagrams
that is presented in a rather static data which is stored in the database. The second part
of the plugin provides dynamically updating recommendations that are either specific to
the entire diagram or only certain configured elements of the diagram. The third, and
final part, of the GUI displays a set of prescriptive process models that are shown based
on the individual models of the DSML diagram. Figure 7.2 shows an example of the Ul
with the Overview, Recommendations, and Process Models tabs shown to the user.
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User-Centric Modelling Recommendations g H

W: Recommendations Process Models

This tab provides general training material, documentation, links, and ~

references for the currently displayed diagram.

Selected Diagram: HC Function Context Diagram

The Function Context contains a Function Context Diagram and a System
Function element.

This Function Context Diagram provides an external view of the entire
collimator system on a functional level as well as its environment.
Interactions with the environment, represented by Actors, Environmental
Effects, Sources, Sinks, and the External Functions can be shown.

These elements are defined within the External Elements package:

# Actors represent human actors and their functional interactions.

# Sources/Sinks represent specific functions that do not have to
be developed but are needed to understand the functional
aspects of the system.

# Environmental Effects can be used to represent any
environmental aspects e.g. temperature, light, and so on.

Links:
https://wiki.siemens.com/pages/viewpage.action?pageld =274
Training Videos:

https://www.youtube.com/watch?v=Ec7P0OJ1VeAQ .
< >

Figure 7.2: An example of the methods and recommendations on a MagicDraw UI with
the Overview, Recommendations, and Process Models tabs. This figure shows
a general overview for an open model diagram and provides the relevant
training material, and hyperlinks that redirect to further documents or videos
related to the function model. Figure taken from [GJRR23].

7.4.1 Part I: Overview

As part of the first tab that the user sees on the GUI of the plugin when they open a model
diagram in MagicDraw is the Overview tab. As indicated by the name, this tab provides
a complete overview of the currently opened diagram that is stored in the database
in the form of documentation, guides, or handbook materials. The implementation of
the Overview tab covers customised DSML diagrams, such as a feature model diagram
supporting feature models, as well as any UML diagrams, such as a class diagram,
sequence diagram, activity diagram, or a state machine diagram. The logic tier is able
to process and identify the type of the diagram and sends the relevant query request to
the concerned database collection. The request performs a text search on the tags field
by comparing the values of the tags to the type of diagram. To illustrate this with an
example, a search query includes the request where the type of diagram is a “Feature
Model Diagram”. The corresponding searches are made in the database collection to
check if the keywords “Feature Model” and “Feature Model Diagram” are present. If
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there is a match, the JSON documents are returned from this database collection. These
JSON documents are then processed by the logic tier, beautified into a HTML format,
and finally sent to the presentation tier for display to the users. The following sections
of the Owerview tab are populated on the GUI:

General Overview.

This is the first section of the Owverview tab that displays static model-specific infor-
mation relevant for the currently opened diagram. The GUI displays a description of
the diagram that is stored in the textFromDocs database collection as either training
material, guide, or content from a relevant DSML handbook. Here, the HTML format
helps in styling the data to make the display more presentable with icons, colours, item
lists, and so on, so that it invokes positive reactions from the users.

Links.

The second section displays various links to internal organization webpages or even
external websites that could potentially detail further information about the currently
opened diagram in the form of hyperlinks. The list of hyperlinks are stored in the
hyperlinks database collection and is retrieved by the logic tier. The hyperlinks are
further configured with Java MouseListeners [Jav23] that enables redirection to a browser
showing the relevant webpage upon mouse click.

Training Videos.

The third section of the Overview tab display various links to videos that contain train-
ing material relevant for the currently opened diagram. The logic tier is responsible
for extracting information from the hyperlinks database collection that are marked as
training videos. It is common in the industry to build complex DSMLs with intersecting
domain concepts, therefore the creation of training videos to support the DSML con-
cepts helps both novice and expert users. These training videos are mostly created once
the DSML projects have been completed and deployed to the practitioners modelling
environment, therefore there is a need to refer back to these videos once newer videos or
updated videos are released by language engineers and /or domain experts. Such frequent
updates to those training videos ensure that users are able to see the most up-to-date
videos and that their links do not expire after a few months of DSML deployment.

Frequently Asked Questions.

The final section of the Overview tab displays a list of commonly and frequently asked
questions by practitioners that are aided with viable solutions for the currently opened
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diagram. Language engineers and modelling experts are often asked about specific mod-
elling techniques and methods by practitioners, such as how to build a specific model or
the usage of constructs of a DSML. These kinds of questions are collected over years of
continuous DSML development for various projects and have been asked to domain ex-
perts. Such questions and their accompanying solutions are added into the fags database
collection and is shown to the practitioners in this section. This is either updated man-
ually by a domain expert or also automatically queried from a wiki page. An advantage
of storing such information in the database is that when solutions to these problems
are modified or updated according to the latest modelling information, the necessary
updates to endless pages of documentation is not required.

7.4.2 Part ll: Recommendations

As part of the second tab that the user sees on the GUI of the plugin when they open a
model diagram in MagicDraw is the Recommendations tab. In this tab, recommendations
for the currently opened diagram that are based on certain configured general rules are
displayed. While the recommendations are stored in the database and continuously
updated, they are often displayed in a dynamic way on the GUI, as the current state
of the models in the model diagram are continuously changing based on the modelling
situation of users. The recommendations displayed in this tab are stored and managed
in the database in the recommendations collection, while the rules collection stores
the preconfigured rules based on which a specific recommendation is provided to the
user. The recommendations provided as part of the application for the currently opened
diagram are either for the individual model elements that are visible on the diagram, or a
combination of multiple model elements that are currently part of the diagram. Similar
to the Overview tab, the logic tier is able to identify the type of the diagram and performs
the respective text query search on the tags fields for the collections identified by the
preconfigured general rules. The JSON documents containing the recommendations,
that are retrieved from the database, are also processed by the logic tier and beautified
into an HTML format for finally displaying it to the users on the GUI.

Preconfigured General Rules.

The recommendations that are displayed as part of the Recommendations tab are pro-
vided by checking against a set of preconfigured general rules that are present in the
database collections and validated by the logic tier. As part of the infrastructure, a sim-
ple rules engine [Fow10] is developed that is then eventually bundled together in the final
DSML plugin archive file. This simple rules engine is developed within the MagicDraw
plugin and the rules are eventually stored and managed in the rules database collection.
A rule typically evaluates a particular condition, such as by using a logical or a rela-
tional operator. Other rules analyse the model diagram and provide recommendations
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based on the state of the model elements. In the remainder of this section, each rule
is discussed supported with a rationale that provides the necessary reasoning as to why
this rule is required, and in addition, discussing the benefits of the individual rules. In
the tool, each rule is then checked against the currently opened diagram, such that the
plugin is able to identify the kind of models being currently used within the respective
model diagram. In the following, the general rules for any kind of DSML diagram is
discussed.

Rule 1 (R1): Provide specific recommendations for model elements that are listed as
part of the legend items but missing as part of the model elements that are displayed on
the currently opened diagram.

Rationale: Often, language engineers design model diagrams (UML or domain-specific)
that are accompanied with legend items that list a set of model elements used to describe
different styles and also logically group symbols within a diagram. Legend items are
model elements used to define different styles and visually group symbols in a diagram
for better model element visualisations. The reasoning to include such a rule is that
as legend items often make for a good indicator of the visible and missing elements
in a model diagram, it is beneficial in identifying which parts of the model diagram,
specifically the model elements, are missing.

Rule 2 (R2): Provide general recommendations for model elements that are listed as
part of the diagram elements toolbar but missing as part of model elements that are
displayed on the currently opened diagram.

Rationale: The diagram elements toolbar in MagicDraw is configurable to an extent that
it lists down the model elements that are created as part of the currently opened model
diagram. They assist users in easily designing model elements on a model diagram.
Often, users forget to utilise the full set of DSML functionalities that are offered in the
modelling environment, and choose to model only a few elements based on their current
modelling know-how. This rule encourages users to further verify if the models from the
DSML that they are currently using are sufficient for their modelling situation or they
need additional functionalities to better represent their modelling needs.

Rule 3 (R3): Provide recommendations for model elements that are currently visible on
the currently opened diagram.

Rationale: Each domain consists of a wide variety of information based on feedback
from users, domain experts, and modellers over the kind of specific values that a model
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element must consist of and any specific properties that must be configured for a model
element. Collecting, storing, and managing a dataset of such recommendations for such
model elements is important in addressing issues related to guidance and suggesting
users a way in their modelling. As users employ newer models and update their existing
models, the recommendations changes accordingly, and is therefore dependent on the
context of the system.

Rule 4 (R4): Provide specific recommendations for a model element or a linked model
element that is based on logical conditions and relational operators over potentially
several model elements in the currently opened diagram.

Rationale: This rule ensures recommendations are provided for a single model element
on a diagram that are based on relational operators and logical conditions. Relational
conditions such as <, >, <=, >=, ==, and != are checked against the value of the
model elements. An example of a simple relational condition is that if a model element
is configured to be of type energy, and the value is set to electrical, then a specific rec-
ommendation such as suggesting a recommended energy value in kilowatt-hours (kWh)
is provided. In addition to relational operators, logical operations are also performed
on a combination of model elements on the diagram. Logical conditions such as AND,
OR, and NOT are therefore checked against a combination of model elements. Here,
an example of a logical condition could be to check if a data sink exist in the diagram,
but not a data source, meaning a specific recommendation related to the source-sink
combination is provided.

Model-Aware Recommendations.

The Recommendations tab of the GUI shows recommendations and suggestions for guid-
ing users in their modelling. These recommendations are a result of retrieving the cor-
responding data from the relevant database collections and are checked against the pre-
configured general rules. The active and dynamically changing recommendations are
a result of the analysis of the current models part of the active DSML project and is
populated into two sections of this tab.

In the first section, recommendations that are specific to the currently opened DSML
diagram are displayed to users. This is a result of the logic tier first analysing the cur-
rently open diagram, checking the type of the diagram, then checking the rules that are
configured for this diagram, and finally retrieving a list of recommendations from the
configured database collections. This means that any changes that the plugin detects
during an active modelling situation are also analysed and considered and the recom-
mendations are therefore accordingly adjusted and displayed to the users. Essentially,
the application is therefore aware of the model constructs and provides the necessary
recommendations that are based on the modelling stage that the user is currently in.
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A primary advantage of providing recommendations to only the visible parts of the di-
agram is that the recommendations targets the user-centric view of a certain aspect in
a larger system. For viewing recommendations for other parts of the system, a user
would navigate to the respective model diagrams. Constructs that may never be used
may also be recommended, for providing a more complete view of the current models in
the system. A list of non-exhaustive recommendations that are specific to the currently
open DSML diagram are listed as follows:

e The tab displays the missing parts of the diagram that includes model elements
and other non-functional aspects such as legend items that describe the model
elements.

e The tab suggests users to configure a certain model element, or a combination of
multiple model elements, in the model diagram. For example, a function model
must contain at least one function.

e The tab specifies which constructs of the model diagram or the corresponding
models must be either modified or adapted. For example, a function’s name in a
function model must be unique.

e The tab also specifies and suggest any layout changes that are necessary for certain
elements that are part of the diagram. For example, typically input ports must be
positioned on the left side of a function.

The second section of the Recommendations tab displays recommendations that are
specific to the model elements and are visible on the DSML diagram. The application
analyses the model elements that have already been configured as part of the model
diagram and provides dynamically changing recommendations that are based on the
model element’s properties or values. A non-exhaustive list of recommendations that are
provided to users for the individual model elements configured in the DSML diagram is
as follows:

e The tab asks users to configure or set particular properties for a given model
element. For example, a function name must be meaningful and not simply “func-
tionl”.

e The tab recommends users to check the type or kind of a model element and also
suggests any additional information that maybe related to the respective type of
model element. For example, a function must be type checked in a function model.

e The tab display recommendations for setting specific values for a certain model
element that are based on historical feedback from other users or domain experts.
For example, a function for calculating the energy of an electrical device must
recommend a certain value in kWh.

157



CHAPTER 7 MODEL-AWARE RECOMMENDATIONS FOR INDUSTRIAL DSML USERS

e The recommendations also include asking users to check the Overview tab of the
GUI to access training material, handbook information, or general guides that are
specific to the model element.

7.4.3 Part lll: Process Models

The Process Models is the third and final tab of the GUI that the user is shown as part of
the MagicDraw plugin on opening of a DSML diagram. In this tab, a list of prescriptive
process models in the form of activity diagrams are displayed. These process models are
relevant to the currently opened diagram and describe the necessary processes, tasks, and
activities that may be performed by the DSML user on the diagram and its constructs to
progress in the desired modelling for this particular DSML diagram. The process models
also details and inform users the current state of the modelling for these constructs of the
diagram, as the logic tier checks the models of the currently opened diagram against any
preconfigured rules. The processModels database collection stores and manages process
models and the various processes as images, in a base64 encoded format [Jos06] which
corresponds to the DSML diagram and is queried against the relevant tags. Here, a
base64 encoding for the images is chosen, as the information stored in the database is
mostly in text format and the size of the images are generally less than 10 MB. As part
of displaying the process models on the GUI, the logic tier performs a search based on
the type of diagram to the tags in the processModels database collection and retrieves
a list of processes and process models. Here, the data is stored in the insertion order,
therefore is also retrieved by default in the same order. The logic tier then transforms
the information into a series of graphics using Java 2D™ API by decoding the base64
data. It then paints the graphics into specific colours according to any rules that are
configured against this diagram, and prints a sequence of created 2D graphics as process
models for display on the tab. This serves a primary benefit in the application as the
logic tier adjusts the graphics according to the analysis of the current diagram and
adjusts the process models if there are any subsequent changes based on preconfigured
rules. These changes result in beautifying the process models by applying styles such
as colours and icons. The styling options also help users identify easily which processes,
tasks, or activities of the process models are complete, and marks the remainder as
incomplete, thus improving the overall UX of the modelling situation.

7.5 Industrial Example

Motivation.

In this section, we take a look at the applicability of the infrastructure presented so far
in this chapter in a real world context. Siemens Healthineers have continuously adopted
MBSE techniques for modelling various modelling aspects related to medical devices,
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requirements definition, product line engineering, and product structure modelling that
involves bill of materials. They have used methods and tools to support their modellers
in developing complex models. Further, some of the MBSE concepts have also been
applied to DSMLs that are applicable in defining functional, logical, and technical views,
for example, in the SPES [BBK*21] methodology. This is done to achieve truly modular
separation and reuse of model elements based on various modelling artefacts. Here, an
example of a model used to describe the aspects of function modelling in a system is
discussed in more detail.

Problem Statement.

The example discussed in this section is based on the following medical case. In this
case, a patient is brought into a medical clinic with a suspected leg fracture. Once
the patient is admitted to the clinic, the treating clinician suggests a 2D X-ray of the
patient’s leg to diagnose the severity of the fracture. The clinician forwards the patient
to the radiology department of the clinic or another hospital that has X-ray diagnostic
infrastructure. As soon as the patient arrives in the radiology department, the patient is
taken to the respective X-ray room by a medical technical assistant (MTA). Before the
start of the diagnosis, the MTA has prepared the X-ray system and added the patient
details already into their X-ray diagnosis database system. To successfully complete the
diagnosis, the MTA positions the leg of the patient on the X-ray apparatus and starts
the X-ray procedure. Finally, the 2D digital radiograph of the patient’s leg is generated
and stored in the system for further diagnosis.

Model.

To model an X-ray system, many physical elements in a technical view and their in-
terfaces need to be set up. A detailed description of the Siemens Healthineers DSML
used for modelling these elements is described later in Section 8.1. For now, let us just
consider that a DSML supports modelling of elements belonging to a function model do-
main such as functional context, functions, actors, and other functional parts described
earlier in Section 2.3.2. A very specific element of the X-ray system is the collimator,
which is responsible for collimating the radiation beam from the X-ray machine onto the
patient’s leg. In a modelling sense, this part is further decomposed into a set of functions
that needs to be performed so that the overall collimator works effectively.

Figure 7.3 shows a part of the example of a collimator described as a function context
model, in the functional view, that has been modelled in MagicDraw. This figure shows
a model browser (IA2) that DSML users use to model their system aspects based on the
individual building blocks of the DSML.

In Figure 7.4, the left part of the figure shows the toolbar options that are used to
model various functional aspects, such as setting up external connections between the
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Figure 7.3: A part of the model example of an X-ray collimator function context diagram
designed using the Siemens Healthineers DSML that shows the model browser
(IA2) tree on the left consisting of the DSML constructs including the various
building blocks of the DSML. Figure adapted from [GJRR23].

physical elements. The right part of the figure contains the actual function context model
that provides the external functional view of the entire collimator, along with the various
interactions such as actors, environmental effects, and other external functions that must
be modelled to fully understand the collimator system. The model diagram describes
the various decomposed parts of the collimator. The central part of the function context
model shows the primary function, i.e., the collimator itself, that receives (Rx) inputs and
transmits (Tx) certain outputs from smaller subsystems such as the collimator controller,
or a power supply source, or additional physical apparatus that may be connected to the
patient’s leg. Actors, namely the MTA and the patient, are also modelled as part of the
diagram as they perform certain interactions with the collimator. The input and output
ports are configured with the respective functional signals listed in the legend items on
the bottom left, with the colours of the ports signifying the type of functional signals.
These legend items represent various input and outputs of the functional elements such
as green for a human-machine interface, yellow for energy, blue for materials, and so on.
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Figure 7.4: A model example of an X-ray collimator function context diagram designed
using the Siemens Healthineers DSML that shows (1) the diagram toolbar in
the left with configurable model elements such as external connections, and
(2) the main function context model on the right that consists of the various
functions, actors, sources, signals, their connections, and other functional
DSML constructs. Figure adapted from [GJRR23].

Methods and Recommendations.

In order to build the collimator, various functions must be set up by the user by per-
forming a sequence of steps. It is easier for a user equipped with knowledge of modelling
X-ray system to model the parts of a collimator. However, novice modellers need initial
guidance in starting their collimator modelling journey. Similarly, advanced modellers
require the use of advanced functionalities for encountering more complex scenarios later
during modelling. Such modellers often spend huge amounts of time and resources to
endlessly search through passive information sources such as training materials, books,
handbooks, or tutorials which are often overly generic. Therefore, the guidance infras-
tructure defined in this chapter provides users of all kinds with methods, concepts, and
recommendations directly on the MagicDraw DSML itself which alleviates some colli-
mator modelling concerns and encourages them to think in a specific direction or in a
novel way.
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The GUI consist of the Overview, the Recommendations, and the Process Models
tabs. As described previously, Figure 7.2 displayed a general overview of the currently
opened function context diagram. Information that is specific to this diagram is shown
in this tab, but also general overview pertaining to the entire system are also shown
here. A corresponding dataset consisting of domain-specific recommendations such as
for medical devices like X-rays, or more specifically a collimator, are used that provides
the necessary overview to individual modellers and their modelling needs. In the first
part of the Overview tab, the logic tier analyses the type of the diagram, and retrieves
a static documentation from the database that is related to this function context. Next,
any additional hyperlinks are displayed as navigable links that ultimately redirects a user
to a more relevant training material that could potentially describe in detail information
about the function context, or just general interactions with the system interfaces. Here,
links to training videos or videos that generally outline a method of modelling or the
system under consideration, such as the collimator and its functions, are also listed so
that the users easily navigate to the respective information.

Figure 7.5 shows information as part of the Owerview tab and consists of a list of
frequently asked questions and their possible solutions that may be of help to modellers.
These are commonly asked questions to language engineers and domain-experts by mod-
ellers and practitioners who often use the DSMLs and also consist of domain-specific
questions such as “What is a Collimator?”, or how to specifically model a function in a
specific scenario. The information listed here is retrieved from the database that con-
tains the list of question with respect to the function model, collimator, or a sequence of
methodical steps that users follow during a function context modelling. The figure shows
that the displayed information is model-aware, meaning for the collimator example, a
specific question related to a collimator is displayed.

The second tab of the GUI is the Recommendations tab and is shown in Figure 7.6.
Here, examples of dynamic and model-aware recommendations are displayed for the pro-
vided function context diagram, that is based on the current state of the models, their
properties, and the analysis of the various linked parts of the models. The tab is split
into two sections, the first section provides recommendations that are specific to the colli-
mator function context diagram, while the second section provides recommendations for
the specific model elements of the collimator function context as described earlier in this
chapter. The first recommendation in the figure lists model elements that are currently
not part of the visible function context diagram. These elements are the functional signal
material, the sink, and an environmental effect. Here, for this recommendation the rule
R1 is followed, where the logic tier checks the currently listed model items in the diagram
and compares it to the legend items, the functional context elements, and the functional
signals. Providing this recommendation is beneficial in informing users that perhaps a
part of the function context is not yet considered, for example, a sink that stores the final
2D digital radiograph. The rule R2 is checked for any missing elements that are present
as part of the diagram toolbar, but is not listed, as the external connection element is
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Recommendations Process Models

Frequently Asked Questions: ~

What is a Function Model?

The Function Model is specific to the HC DSL. It allows users to define
the function of a product or system.

The Function Model describes the system from a purely functional
perspective (i.e. the system as it can be observed from the outside). It
leaves out technical architectural details and focuses on the functionality
of the system and how the different functions relate to each other.

How to model a Function Model?

# Step 1: Create your Functions in the Function Library.

# Step 2: Define In/Out Types and assign them to the Ports.

# Step 3: Model the Functional Context of your system.

# Step 4 Model the system functions in the Functional Context.

# Step 5: Decompose functions in the Function Context Diagram.

@ Step 6: Describe the Functional Behavior of your system.

# Step 7: Allocate Functions to existing requirements and features
(see Use Case and Feature Model).

‘What is a Collimator?

The purpose of the collimator is to collimate exactly the radiation beam
emerging from the X-ray tube assembly onto the size of the object to be
displayed.

< >

Figure 7.5: An example of providing frequently asked questions in the Overview tab for
the collimator function context diagram. These questions are stored in the
database, and have been collected over the years as the most asked questions
to either language engineers, or to domain-experts by the modellers. These
questions are associated with the use of the DSML constructs, on how to
model specific scenarios with the DSML, or general domain-specific topics.
Figure taken from [GJRR23].

already part of the function context model. The following recommendation listed in the
figure is based on the analysis of the function context diagram and is checked against
the logical rule R4. Here, the rule condition stored in the database as “Source NOT
Sink” is checked against, which validates if a source exists in the diagram, but not a
sink. This rule is configured in the database as part of historical models that gener-
ally configure both a source and a sink for a functional context. The second section of
Recommendations tab checks the rule R3 and lists recommendations that are specific
to the visible model elements in the function context diagram. The third recommenda-
tion of the Recommendations tab displays the information that although a power supply
source configured in the diagram and is set to an electrical energy, an accompanying
measurement value for this energy source is not yet assigned. Based on historical data
for power supply configurations in similar models, a recommended measurement value is
also indicated. Such a measurement value is either be populated by a domain expert or is
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Overview Recommendations  Process Models

Diagram Recommendations

Recommendation:
The following model elements seems to be missing from diagram:

@ Material
& Sink
@ Environmental Effect

Have you considered using these elements? Please see the Overview
tab for more information about these elements.

Recommendation:
Only a Sowrce (SuppiPower)is configured for this diagram. Please
check if 3 Sinkis also required.

Diagram Elements Recommendations

Recommendation for SupplyPower (Type: Source)
The SuppiPoweris configured as ElectnicalPower.
Please specify the measurement in Watts (recommended 150 Waits).

Recommendation for Collimator (Type: Function)

The colimator function reguires specifications for both functional and
non-functional requirements (such as LED brightness, ambient
operating conditions, and so on).

Please see the UseCase Model in the HC DSL to define and integrate
these requirements.

Recommendation for MTA (Type: Actor)
Actor MTA is unclear for this diagram. Did you mean Medical Technical
Assistant?

Figure 7.6: The Recommendations tab of the Ul showing sample recommendations for
the collimator function context diagram. The tab provides recommendations
for the (1) collimator function context diagram such as which elements, or
combination of elements, are missing from the diagram, and (2) specific model
elements such as actors, functions, sources, and other DSML constructs.
Figure taken from [GJRR23].

extracted from an automatic analysis algorithm [KSK*19]. As soon as the measurement
value for this electrical power supply source is initialised, the recommendation would be
automatically removed from the list of recommendations on this tab. Finally, the fourth
and fifth recommendations are displayed by checking against rules R4 and are based on
the relational conditions. For example, the fifth recommendation is stored as a R4 rule
with the rule condition “Actor == MTA”.

To illustrate the model-awareness of the proposed recommendation system, the func-
tional context model example is enriched by adding a sink, by setting the measurement
value of the supply power to 150 watts, and by renaming the actor MTA as Medical
Assistant as shown in Figure 7.7. The patient data sink consists of the data inputs with
type information from the data outputs provided by the central collimator.

Figure 7.8 shows the updated recommendations after adding a missing element (sink),
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Figure 7.7: The function context diagram is enriched with a sink and a measurement
value for the power supply.

Process Models

Diagram Recommendations

Recommendation:
The following model elements seems to be missing from diagram:

® Material
# Environmental Effect

Have you considered using these elements? Please see the Overview tab
for more information about these elements.

Diagram Elements Recommendations

Recommendation for PatientData (Type: Sink)
Data consists of Information. Have you set the format of this data?

Recommendation for Collimator (Type: Function)

The colimator function requires specifications for both functional and
non-functional requirements (such as LED brightness, ambient operating
condtions, and so on).

Please see the UseCase Model in the HC DSL to define and integrate
these requirements.

Figure 7.8: The Recommendations tab showing the updated recommendations for the
enriched collimator function context diagram.

updating the power supply measurement value, and by renaming the actor MTA. The
recommendation system therefore removed the sink from the list of missing elements
(R1), and added a diagram element specific recommendation by checking rule R3. This
rule identified the patient data as a sink with an information type as an input. A
recommendation has been suggested here to the user for checking if the data formats
have been set correctly. This shows during modelling how the recommendations are able
to change based on the models, thereby demonstrating its model-awareness.

Figure 7.9 displays the Process Models tab in the GUI that shows the various process
models attached to this function context diagram. The figure details two process models
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Overview Recommendations

Identify the various Create the functions in

Create the external
connections to the
respective functions.

Define the property for
each function as internal
or external.

\ m|

.—) functions of the system ——>- the structural view of the
in consideration. Function Model.

drag the functions to this

~

Open the Function
Context Diagram and

diagram.

/

Process Model: Create Functions in a Function Context Diagram

@ — crecetetuncions. ——  Createtneactors. | ——

Create the connections. €«———

Create the sink and
SOUrce.

Create the signals

Create the
environmental effects

Process Model: Current Stage in the Function Context Diagram

W

Figure 7.9: The Process Models tab of the Ul shows process models that are generated
and displayed for the various processes, tasks, or activities for the collima-
tor function context diagram. The process models: (top) details processes
needed to create functions using the DSML, and (bottom) displays the cur-
rent state of the collimator and which processes are completed, partially
complete, or incomplete. Figure taken from [GJRR23].

that are generated from a list of processes retrieved from a query to the database. In
the first process model, a series of methodical steps is described that is needed to create
functions in a function context model diagram. Here, some of the information may
overlap with the information shown in the Ouerview tab, but the processes are actively
checked against the currently opened diagram, any rules attached for this model diagram,
and are finally beautified with styling options that differentiate the various processes and
its current state. As an example, the solid green processes indicate that the process is
complete, the fading blue process indicates that the process is ongoing, while the white
processes indicate that no efforts have been made for fulfilling this process. Here, Java’s
2D graphics is employed to generate the process models, as well as integrated with legend
items that identifies the various processes, and are preconfigured with the legend items
“Completed”, “Partially Completed”, and “Incomplete”. In the second process model,
the current state of the function context diagram is displayed. This means all the model
elements in the function context are identified and analysed against any preconfigured
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rules. An appropriate rule R4 is checked against, for example, if two actors are created
in the model diagram, then the process “Create the actors.” is considered complete.
As we only have a source configured for the example model, the corresponding process
in the process model is marked as “Partially Completed”, which encourages users to
double-check their models. Since an environmental effect is missing from the collimator
functions example, this is displayed in the corresponding process as “Incomplete”.

7.6 Discussion

The language guidance infrastructure and its concepts presented in this chapter allows
language engineers to think and implement DSMLs in a way that it provides effective
guidance mechanisms for model-specific methods, techniques, and recommendations.
The evaluation of the language guidance infrastructure was carried out by practition-
ers and researchers in software and systems modelling who reasoned that an integrated
DSML infrastructure must provide dynamic model-aware data for the ever growing mod-
els and that a guidance infrastructure must be active and synchronised with the ongoing
modelling work. It is therefore important for stakeholders of a domain to understand
which specific processes, activities, or tasks are viable and necessary to be performed
for a more holistic modelling experience. Earlier, such guides for users were provided to
users in the form of lengthy documents, handbooks, tutorials, and user manuals that are
not only cumbersome to read through, but also lacks in providing up-to-date knowledge
for the domain in consideration. It is often that users have to tediously search through
endless pages of such static documents, therefore reducing the overall productivity of
users, and not being able to fully utilise the functionalities offered by the DSML and
the corresponding modelling tool that it has been built on. Further, such documents
do not often detail information that is based on the current modelling situation of the
user. By providing recommendations based on predefined general rules, language engi-
neers more easily integrate methods within the DSML itself. This chapter shows the
example of such a guidance infrastructure implemented in the MagicDraw modelling
tool as an additional GUI that provides additional customisations possibilities, and pro-
vides model-specific training material, suggestions, and processes that are tailored to the
current modelling situation.

So far the literature does not specify a technique that integrates such a methodol-
ogy described in this chapter within an industrial DSML combined with an appropriate
modelling tool. Reusability aspects are generally not considered since project, time, and
resource constraints are often limited and integrating such methods is often does not have
more priority than defining a good DSML. It is imperative that data is collected from
domain experts and practitioners to integrate within a DSML for continuous support.
The example of Siemens Healthineers is not the only project that use such a guidance
infrastructure. Because each business unit solves different domain challenges, even in the
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medical industry, recommendations that are specific to the domain must be provided to
modellers. While context conditions are used to validate the well-formedness of a model,
it would essentially not tell us much about the semantics in terms of the meaning and
behaviour of the models. While context conditions, in the form of validation rules, in
the DSMLs generate warnings or errors, they provide a stricter constraint to the syn-
tax. Methods and recommendations provide a more complete and positive outlook that
considers the current state of the models and gives users more confidence to effectively
model using a DSML.

To solve the above challenges, a three tiered architecture consisting of a presentation
tier (GUI), a logic tier (logic and rules), and a data tier (NoSQL database) is developed.
The GUI provides information to users regarding a general overview of the currently
open DSML diagram, hyperlinks for redirection to different sources of domain-specific
information including webpages and videos, frequently asked questions in that domain,
active recommendations for a DSML diagram and its elements, and providing a set of
process models that demonstrate the various processes performed or missing from the
diagram. In each domain, a corresponding dataset is used that consists of a set of con-
figurable general rules providing active domain-specific information that is based on the
current state and context of the models of the users. While there is an effort to build
such an infrastructure, its cost is neglected when compared to the tool MagicDraw itself.
In all, a Java developer familiar with the MagicDraw Open API can build this infras-
tructure within a month, and the setup can be easily reproduced. The rules and their
recommendations are adjusted frequently to include more complex modelling scenarios,
which means that the DSML itself does not require constant updates. An ongoing work
to provide actions directly within the infrastructure is currently underway, for example,
assigning measurement values to a model, or defining complex rules that validates a link
between different model elements to allow navigability between such recommendations.
Further work on making processes within a process model navigable is also underway,
while there are also efforts to provide modelling predictions with machine learning algo-
rithms or with natural language processing techniques.

To identify concrete recommendations, efforts were first made to understand user needs
and define a concrete example. This included focus groups, modelling community dis-
cussions, interviews, and surveys in different DSML projects within Siemens. A scaled
down example of the Siemens Healthineers was chosen as the example to identify such
concrete recommendations in the healthcare domain. This example is also evaluated
later in detail in Section 7.5. Different models within this example project were evalu-
ated by understanding how practitioners develop such models over a period of time. The
focus was to understand how a combination of models work in a project, how the rela-
tions between such models are designed, and what kinds of support methods could have
been provided to ease the design process. Then, different kinds of rules were identified
and a data set was created for hosting the different rules and recommendations related
to these rules. Language engineers then developed a GUI that is able to display these
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recommendations directly on the modelling tool, MagicDraw. Further, existing hand-
books, training materials, and wiki pages were sourced through to enhance the data set.
Finally, workflows and activities regarding the models in development were identified
and added to this expandable data set.

The validity of the concepts presented in this chapter is the extent to which the overall
mechanism is free from systematic errors or bias. MagicDraw, Rational Rhapsody, or
Enterprise Architect do not represent all available tools for building DSMLs. Describing
the study using MagicDraw introduces a vendor-locked scenario. Other solutions include
providing recommendations directly within the context of the system, however it often
leads to overload of information shown to users when the models are very complex and
such recommendations would restrict their modelling. While context conditions detect
and report errors directly in the system context, these are more critical than just pro-
viding methods and guidance to users for visible parts of a DSML diagram. The tiered
architecture enables separation of concerns, meaning the data tier is completely devel-
oped independent of a modelling tool. The reliance on external data sources provides
a more general and tool-agnostic solution for the recommendation infrastructure. Up-
dating such data sources externally is conceptually described in a straightforward and
intuitive way for non-experts, while changes to DSML is often a time-consuming process
for language engineers. Here, recommendations are based on historical data but users are
also encouraged to think in a novel way by providing a general overview of the diagram
and its accompanying system. A caveat for implementing this methodology is that the
modelling tool must expose APIs that retrieves model information including its config-
ured properties. While the data can be rather limited, domain experts can work with
language engineers to populate the databases more effectively. It must also be noted
that language engineers may often lack software development skills like programming in
Java, and there is a natural inclination to focus on the syntax of a DSML.

An example of a real-world industrial function context is used. The example describes
the functions of a collimator in an X-ray system modelled by experts at Siemens Health-
ineers. The example provides ample model information for providing general training
overview, suggestions to specific parts of a collimator, recommendations to the function
context model, and also an overview of the processes involved for modelling an X-ray
collimator and its missing parts. It was observed that for the X-ray collimator function
context example, around 12 rules and their recommendations were configured. Other
model diagrams, such as a structural view of the function model also contain a similar
number of rules. As the recommendations are only calculated only for the currently
open diagrams, scalability issues were not observed. This also means that users are not
burdened with a plethora of recommendations. Further, language engineers also only
configure a simple rules engine. Defining process models for a model diagram is rather
intuitive for language engineers as they identify the different parts of a DSML that are
modelled during design time. The study is based on the assumption that, as of writing
this thesis, there is no existence of another reference implementation that provides ef-
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fective modelling methods and recommendations. The presented infrastructure uplifts
the modelling experience of users and results in a more positive approach to modelling.
Therefore, there is a need to tightly integrate aspects for a more complete DSML infras-
tructure that is closely dependent on the current modelling situation of users. This is a
result that both novice and advanced users better understand the modelling constructs
and eventually confidently model their domain aspects. Therefore this chapter describes
a good starting point towards improving the state of industrial DSMLs and is more
active, aware, and in sync with the modelling situation of users.

7.7 Related Work

In order to successfully implement this reference guidance infrastructure, a deeper knowl-
edge of domain-specific aspects must be considered in relation to the DSMLs and their
constructs. Various environments supporting computer-aided method engineering meth-
ods [GLBT86, NRO8| are present in the literature, but they are mostly concentrated
on providing generic methods and little consideration to domain-specific aspects are
made [Hon13]. MBSE methods such as MagicGrid exists [AM18] but the kind of meth-
ods it provides is overly generic and challenging to implement in the form of an in-
dependent guidance infrastructure. More recently, commercial content providers have
designed recommender systems that not only gathers and understands the preference of
users, but also provide dynamic recommendations [NFT*10, NKBK12]. In the method-
ology described in this chapter, there is no storage of preferences of users, but rather
historical data related to a particular domain is stored and managed in an external
database, from which recommendations are generated for the current models of users.
Algorithms such as nearest-neighbour approach [Sip16] or mutually reinforcing meth-
ods [WXU16] are used to classify recommendations, but their use is rather extensive,
and the implementation of the rules described in this chapter is using a simple rule engine
in Java [Fow10] that is directly integrated in the modelling tool. Service oriented archi-
tecture for linking MBSE tools to services has also been studied [ABNT08] as they offer
a composition of smaller services. Research on context-aware methods have been dis-
cussed [HGMB13, LEN*14], but they are not primarily used in modelling domain-specific
constructs, and do not either provide and methods or recommendations to users. Process
models that are process-aware along with their verification exist [KKR122, CCGT08],
but it does not consider the current understanding of the models and does not provide a
more holistic view of the current modelling scenario. The database configurations listed
in this chapter are designed to be specific to each DSML project, and therefore in com-
parison to larger domain-specific textual databases [SKOK17], only a simple document
retrieval configuration is adequate.
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Case Studies

This chapter presents three distinct case studies in a real industrial context. Farlier
chapters described a systematic engineering of industrial DSMLs by separating the con-
cerns of defining interoperable language components, looking at ways to improve the UX
and the usability of DSMLs, as well as providing guidance and methods to modellers for
successfully deploying, evolving, and using such DSMLs. While individual chapters pre-
sented their own examples and case studies in industrial contexts, this chapter presents
a combined perspective for end-to-end DSML solutions in the healthcare industry (Sec-
tion 8.1), digital industry (Section 8.2), and an application in a public funded project,
SpesML (Section 8.3). Table 8.1 shows the listing of the case studies that use the differ-
ent results from the individual chapters in this thesis. Chapter 5 described an exchange
mechanism between modelling tools and the application of its concepts was described
using a rather small DSML involving use cases, actors, tasks, and their relationship.
Thus, those concepts are not specifically referenced in the case studies described in this
chapter. The case studies detailed in this chapter use the results from the chapters
mentioned in the table and described in the MagicDraw ecosystem.

‘ Number ‘ Case Study ‘ Chapters Referenced ‘
1 Siemens Healthineers (SHS) Chapter 3, Chapter 4, Chapter 6
Chapter 7
. . . Chapter 3, Chapter 4, Chapter 6
2 Siemens Digital Industries (DI) Chapter 7
‘ 3 ‘ SpesML ‘ Chapter 3, Chapter 4, Chapter 6 ‘

Table 8.1: Table listing the case studies that use the results from the respective chapters.
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8.1 Case Study 1: Siemens Healthineers (SHS)

8.1.1 Motivation

The healthcare division of Siemens AG is known as Siemens Healthineers (SHS) and is
at the time of writing this thesis owned 75% by Siemens. X-ray products, magnetic res-
onance imaging (MRI) devices, computed tomography (CT) machines, molecular imag-
ing, and molecular diagostic solutions are some of the products that SHS offers. The
technology department at SHS has strived for moving towards a digital transformation
of their products while ensuring better methods and techniques for SHS products and
their lifecycles. As a result, domain experts and modellers in SHS have continuously
embraced MBSE methods that achieve modelling of various medical devices, defining re-
quirements for their products, achieving efficient SPLE, and ensuring consistency across
various parts within their complex systems. Some of these MBSE concepts have also
been applied to DSMLs that define functional, logical, and technical views, for example,
in the SPES [BBK*21, GJRR22b] methodology. Previous chapters in this thesis there-
fore proposed systematic engineering approaches to encourage SHS domain experts and
modellers in using DSMLs that are modularly built and support reuse of language and
their artefacts.

8.1.2 SHS DSML, its Building Blocks, and the Models

- B SHS Model B
. E _Document Info El

-3 1 UseCase Model
Bl I _Tracing

4 Customer Feature Model
5 Technical Feature Model

[T:'a _Tracing
= 5.1 Technical Features

HE’ - E]’ E’

; - B3 UseCases ; £2 5.2 Technical Variants
& & 2 Requirements Model & B3 6 Function Model
:; _Tracing lea _Tracing

- E3 Requirements -Fg 6.1 Library

E| e I} C!uallty Model -0 6.2 solutions

7 System Architecture Model
EZI 3'| Qualities as Input Package e _lracing

5 - B3 2.2 Sol Qualities Package B-Lg 7.1 Library

EI 4 Customer Feature Model - & 7.2 Solutions

Figure 8.1: The models of an SHS DSML that are created automatically when a new
project is instantiated in MagicDraw.

To realise the modelling journey for SHS, a set of DSML building blocks were created
or reused (partially or fully). Each of these DSML building blocks is aimed at modelling
a certain aspect of the the software and system architecture for a particular domain
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(Def. 5). Figure 8.1 details the models that are created automatically for representing
individual aspects of the healthcare domain configured by language engineers as DSML
building blocks. The collection of all the six main DSML building blocks is collectively
referred to as the SHS DSML. In the following, we examine these DSML building blocks,
the various elements that are modelled with them, their visual representations, and their
applicability in the healthcare domain.

UseCase Model. This DSML building block allows modellers to describe the intended
functionality of a system. In particular, this is achieved by modelling use cases, the
various actors (human or system), the involved activities, their interactions, and asso-
ciations as shown in Figure 8.2. Additionally, modellers also create use case diagrams

to visualise the created models and their relationships on a custom MagicDraw diagram
(Section 6.3.1).

:'_)j. Human Actor :
& System Actor UseCase Diagram
LD UseCase - 1| UseCase Table

Figure 8.2: (Left) Model elements and (right) custom views that are created using the
use case DSML building block.

An example of a model using the use case DSML building block is shown as part of
a use case diagram in Figure 8.3. Here, two human actors (MedicalAssistant, Patient),
one system actor (IT'), are associated to the Diagnose Patient use case. The Medical
System is modelled as the system of interest, therefore all the use cases must exist within
this system and are listed under the UseCase Table that is shown in Figure 8.4.

Medical System

Medical As s i;\ta:t\_\_\‘\

Diagnos e Patient

I

Patient

Figure 8.3: A model involving two human actors, a system actor, and a use case in a
system of interest.
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"™ UseCase Table %
:Pp i = Add New == Add Existing.. = Delete
Criteria

Scope (optional): | UseCase Packagel

# ‘ 4 Name Documentation

This use case is meant for
diagnosing a patient.

1  Diagnose Patient

Figure 8.4: A table listing the use cases in a system of interest, the Medical System.

Requirements Model. This DSML building block allows modellers to define require-
ments for their modelling projects. In this building block, both the functional and the
non-functional requirements are modelled and these requirements are associated to model
elements in other DSMLs building blocks (Figure 8.5). For example, if a requirement
is associated to a use case, then it is visually displayed using a custom matrix. The
requirements model was briefly discussed in Section 3.5.

Tkew Functional Requirement ™ Requirement Table
g Non-functional Requirement - "] RequirementsToUseCase Matrix

Figure 8.5: (Left) Model elements and (right) custom views that are created using the
requirements DSML building block.

Figure 8.6 shows an example of data related to the requirements displayed in the
requirement table. The figure shows both the functional and non-functional requirements
as part of the same table, so that modellers have a quick overview of the different
requirements. In addition, properties such as documentation, identifiers, and status of
the requirement are also set directly on this table.

= Requirement Table *

[EE : = Add New == Add Existing... Delete Remove From Table
# ‘ 2 Name Documentation Requirement ID Status
. Security of patient must
1 @ MFR1 - Security be identified M1 Changed NFR
Patient must be
2 [Rea) REQ1 - Registration |registered to the R1 Verified

Hospital IT System

% Patient data must be
3 rea, REQZ - Reports stored as repors. R2 New

Figure 8.6: An example of the requirement table listing the various functional and non-
functional requirements.
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Figure 8.7 shows an example of the relations of the various requirements to the use
cases we saw earlier in the use case model. The relation, RelatedToUseCase, has been
configured for the Diagnose Patient use case and the REQI requirement. Such a matrix
is configured and filtered to display only specific model information, such as only the
mapping of functional requirements to a specific system of interest.

"+, RequirementsToUseCase |
Legend El
@ H
/" RelatedToUseCase =
o
% 4
T 3
30
@
Y o
2 o
|
E} 51 Requirements Model 1
L NFR1 - Security
i [aeq| REQ1 - Registration |1 /
L rea REQ2 - Reports

Figure 8.7: A matrix showing the relations between requirements and use cases.

Quality Model. This DSML building block allows modellers to define the guaranteed
and required qualities of a system. Figure 8.8 shows the different required qualities
that have been configured for the adjustment of a collimator and the examination table.
Additionally, modellers establish and define the relevant matching dependencies that
exist between the required qualities and the guaranteed qualities. Tables that list the
different qualities and matrices that show the relations of the requirements to the use
cases are also configured.

E}EZI 3.2 Required Qualities Package

i B-E3 Collimator Requirements

b S Collimator Adjustment

- B3 Examination Table

-- ,? Relations

e Adjust Examination Table
% RQs Table

: H L.
- E3 2.2 Guaranteed Qualities Package -~ Ei Guaranteed Qualities Table
T H - - -y
i F GQs Table i Required Qualities Table
B- [Cfl Examination Table i " | RequiredQualityToUseCase Matrix

Figure 8.8: (Left) Model elements and (right) custom views such as quality table and
matrices that are created using the quality DSML building block.

Figure 8.9 shows an example of required qualities listed in the quality table. In this
example, the link to the use case models have been established by referring to the actors

175



CHAPTER & CASE STUDIES

Medical Assistant and Patient. Further, in the description, a detailed summary of the
respective required quality is mentioned. Different qualities are grouped into individually
created quality packages, thereby separating the concerns of the qualities based on the
different systems of interest.

" RQs Table x
R : = Add New == Add Existing.. T Delete 55 Remove From Table %3 =

# Mame Description Actors

—

B E3 Examination Table

The medical assistant &4 Medical Assistant
must unlock the patient (25 Patient
examination table to

operate in longitudinal

and/or transversal

directions.

2 £0 Adjust Examination Table

3 | B (3 Collimator Reguirements

The medical assistant (:5 Medical Assistant
must adjust the
1 £ Collimator Adjustment collimator to properly
collimate the Xray
beams.

Figure 8.9: A table listing the required qualities, its descriptions, and the links to the
actors from the use case model.

"+, RequiredQualityToUseCase... X
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£ E3 2.2 Required Qualites Package 1
£} B3 collimator Requirements
Pk ﬁb Collimator Adjustment
B} B3 Examination Table 1
ﬁb Adjust Examination Table 1 /

Figure 8.10: A matrix showing the relations between required qualities and use cases.
Figure 8.10 shows a matrix that displays the relations configured between the re-

quired qualities and the use cases. In this figure, the Adjust Examination Table quality
is mapped to the Diagnose Patient use case through an AssignedQuality relation. The
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matrix is configured to include both the required and guaranteed qualities. Other ma-
trices are defined to refer to the other DSML building blocks.

Feature Model. This DSML building block allows modellers to define points of variabil-
ity and commonalities in a system to be modelled by using features such as mandatory
features, optional features, or features, and alternative features (Section 2.3.1). Fig-
ure 8.11 lists features that are part of a collimator system that was described earlier in
Section 7.5. The Collimator RX control (receive) and Collimator TX control (transfer)
are mandatory sub-features of the Collimator Controls feature that must be selected as
part of any product or product line that configures this feature. The Steering is an Or
feature, meaning at least one of these Or features must be selected as part of a product
or product line configuration. The alternative sub-features Down and Up as part of the
Xray Scatter Control feature ensures that either of these sub-features are selected during
product or product line configuration.

BE—E 6.1 Technical Features
&-* Collimator Features
=i : .
&%  Collimator Controls B £2 6.2 Technical Variants

@-*  Collimator RX control = a )
- -/ Relations

-*1Collimator TX contral - . .
o a Variant Matrix

: Uy Steering P - i
B9 Xray Scatter Control Feature Matrix B- &% Collimator
% Down Feature Model Diagram ® Collimator v1

’f@r Up B85 Feature Structure Map - Collimator v2

Figure 8.11: (Left) Feature model elements, (centre) custom views, and (right) variant
configurations created using the feature model DSML building block.

Figure 8.12 shows a feature structure map that represents the structure of the features
and shows the relations between the elements of the entire model. This tree based hierar-
chy helps users envision features of their system and understand the various connections
between the different features and the sub-features. The icons help identify the type of
the feature more easily, therefore, they are essential in fostering a good UX.

Legend
Child Features

» | Collimator RX control

» . Collimator Controls & = ! Collimator TX control
- .
Collimator Features & Or Steering
= Yor Down
~7 Xray Scatter Control & r
= Yor Up

Figure 8.12: A feature structure map showing the hierarchy of the features.
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Figure 8.13 shows a matrix representing the configured relations between the features
and the requirements they realise. The relation is directly configured on the matrix
and specific features are selected to realise a specific requirement. In this figure, all the
features of the collimator realise the requirement needed for adjusting the collimator.

D FeatureToRequirement Mat... X

Legend El
o :

/RealizesRequirement 8 E‘ E
£ 3 Ez S
5338 %
< 3 c £
T o« S E
= § w3
T & £l
& E 5 @
= T 3
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[32 6.1 Technical Features [Technical Feature Model]
B 1 collimator Features

& 1 collimator Controls

! collimator RX control

! collimator TX control

: O Steering

B 7 Xray Scatter Control

Yor Down

Yor Up

\.\\ \\ \\\ @ ﬁb Collimator Adjustme--

e S e e S S S =
e S e e S S S =

Figure 8.13: A matrix showing the relations between required qualities and use cases.

Figure 8.14 shows a feature model diagram showing the relations between the Xray
Scatter Control features. In this figure, the optional feature Xray Scatter Control consists
of two Xor features Down and Up. While both Down and Up are required for the Xray
Scatter Control feature, the relation between the Xor features are in conflict, as only
one of these features are chosen when the Xray Scatter Control feature is configured.

Feature Relations l—bx:b
r

+—+ Conflicts Down

=+ Requires -
a Xray Scatter Control

Yor
Up
Figure 8.14: A feature model showing relations between an optional and Xor features.

Further, the DSML building block also defines the relations such as requires or ex-
cludes, from either a customer point of view or from a technical point of view. Based on
the variability, feature models (Def. 3) are also used to define a product line configura-
tion that specifies which features are part of a product or a product line. Previously in
Figure 8.11, an example of a collimator as the product line was shown, and the different
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versions of the collimator were configured as products. Thereby, Collimator vi can be
configured with a selection of both the Collimator Controls (mandatory feature) and
the Xray Scatter Control (optional feature), whereas the Collimator v2 can be config-
ured only with the Collimator Controls mandatory feature. This is later demonstrated
through a variant configuration GUI in Figure 8.29. To further distinguish between a
customer and a technical feature model, the SHS DSML describes both of these concepts
as individual building blocks but primarily based on the same feature model concepts
and reuse of most language components.

Function Model. This DSML building block allows modellers to define functions for
a system in a way that it describes how a system is observable from the outside (Sec-
tion 2.3.2). The functions are hierarchically decomposed into sub-functions that per-
form smaller tasks and are associated with elements in the overall system’s architecture.
Function models (Def. 4) describe a system from a purely functional perspective, and
the DSML building block is configured to provide a library of functions, with its inputs,
outputs, and external elements such as environmental effects, sinks, and sources, and
provide different views to model various parts of the system.

Figure 8.15 shows a library of functions including the defined input and output ports.
The Position Patient and Generate Report function consists of two input ports TablePo-
sitionRequest and SystemPositionRequest, and one output port PatientInformation. The
TablePositionRequest and SystemPositionRequest are configured with an HMI parent in-
put type, whereas the PatientInformation is configured with the Signal parent output
type. The above mentioned model elements are configured with the types defined in the
lower part of the figure under the In/Out Types package. The parent input and output
types of these types are listed under Figure 8.16. Thus, domain-specific elements are
created from these generalised set of inputs and outputs.

= B3 5.1.1 Functions
. B-E3 Position Patient and Generate Report
B- . Relations
B- 3 Position Patient and Generate Report
fﬂ -TablePositionRequest : 5H5 Mode
fﬂ -SystemPositionRequest : SHS Moc
E -Patientinformation : SHS Maodel:F
B E3 5.1.2 In/Out Types
E}Ea Position Patient and System
L Patientinformation
-\ SystemPosition
{L SystemPositionReguest
o {h TablePosition
{L TablePositionRequest

Figure 8.15: Functions and input/output types created for the function model.
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& Energy
o (e HMI
."J'i Material
- 'k Signal

Figure 8.16: Input and output types that are created using the function model DSML
building block.

Figure 8.17 lists the various matrices, relation maps, and tracings that are made to
other DSML building blocks. As an example, relations from different functions to specific
use cases, requirements, or qualities are configured through these matrices. They are
generally configured under specific folders to logically group the different matrices that
exist within the function model.

E} [ea _Tracing
i i~ 1. to UseCase Model
[e3 2. to Requirements Model
B FunctionToRequirement Matrix
[e 3. to Quality Model
B FunctionToGuaranteedQuality Matrix

Figure 8.17: The matrices created to refer to models of other DSML building blocks.

An example of a matrix that establishes the relations between the functions in a
function model to the requirements are shown in Figure 8.18. Here, the Position Patient
and Generate Report function realises the functional requirement REQ2 - Reports and
the non-functional requirement NFR1 - Security.

B FunctionToRequirement Ma... x

T N Delete Remove From Matrix : B Change
Legend E=...
/RealizesRequirement |

4 | 5
= =
s £5 ¢
5 &2 g
$ o oo
Ef @ &
R
R =
oo O O
@ [T w w
¥ Z @ @«
el
& (3 "8
E B8 7 Function Model 1 1
=! g 5.2.1.2 Structural View [Solutions::Views]
fx GeneratePatientReport
£} B Position Patient and Generate Report [Library::Functions] 1 1
Lok osition Patientand Genera epor
fx Position Patientand Generate Report 2

Figure 8.18: A matrix establishing relations between functions and requirements.

Figure 8.19 shows the different views that are configured as part of the function model.
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In particular, the context view describes the overall context of the entire system or a part
of the system. The structural view describes how the different functions are organised
throughout the system. This is achieved through a function connections diagram that
shows the different functions and their internal connections. The behavioural view de-
scribes the function interaction scenarios between the actors and the functions through
messages. These interaction diagrams are fundamentally UML interaction diagrams, but
adjusted to the domain-specific needs.

&8 5.2 Solutions
B B 5.2.1 Views

£ 5.2.1.1 Context View

| B fg+) Context Generate Patient Report

B §g) 5.2.1.2 Structural View

B-% GeneratePatientReport

& &3 5.2.1.3 Behavioural View

B B® Function Interaction Scenarios
- B® System Blackbox
- TST Generate Patient Report

Figure 8.19: The context, structural, and behavioural views for the function model.

_J_,-""’ Function Context Diagram x l

i e 2 RIS

: Medical Assistant

Figure 8.20: The context showing the actors and the function as observed from outside.

In a context view, a function context diagram is configured with the model elements
that shows how the systems looks to the outside world. Figure 8.20 shows the two actors
Medical Assistant and Patient and how they are associated through function flows to
the GeneratePatientReport function. The inputs to the function are provided by the
Medical Assistant and the output of the function is provided to the Patient. A more
detailed look at the function is shown in the structural view of the function context in
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[ GeneratePatientReport X
€ > it @0 F AT RS SE s e HIE

class GeneratePatientReport [ GeneratePatientReport ]J

TablePosition : TablePosition

o

MSysle mPosition : SystemPosition

PatientReport : Patientinformation

Figure 8.21: The structural view for decomposing a system into sub-functions.

Figure 8.21. Here, the input ports and their connection flows to the inner functions are
configured. Further sub-functions are configured for the Position Patient and Generate
Report function. This is particularly beneficial as functions must be decomposed into
smaller functions to effectively design a system of interest. Structural views are therefore
aimed at providing the entire decomposition of the system into smaller functions.

J ['H] Generate Patient Report X l

| - Medical Assistant | | : GeneratePatientReport | | : Patient |

interaction Generate Patient Report[ @ Generate Patient Report ]J

:Medical Assistant Adjust Examination Table | : Patient
Report Generated !

Table Adjusted

Generate Report

Figure 8.22: An interaction diagram for the function model.

The function interaction diagram in Figure 8.22 depicts the behavioural view of the
system. Here, the interactions between the actors and the functions are shown in a
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sequence diagram through different lifelines. For example, a Medical Assistant first sends
a function message to the GeneratePatientReport function to Adjust Examination Table.
Upon receiving a reply Table Adjusted, the Medical Assistant then sends a Generate
Report message back. Once the internal functions in GeneratePatientReport completes
the processing of the patient information, the function forwards the Report Generated
message to the Patient, thereby signalling the end of the interaction of these elements.

Architecture Model. This DSML building block allows modellers to define the physical
decomposition of a system using various system elements such as assemblies, electronics,
mechanical, chemical, as well as software elements (Figure 8.23). Additionally, each of
these elements are configured with cables, connectors, ports, or voltage configurations
and allows modellers to set the scope of the entire system architecture using decisions,
risks, standards, patents, and other quality standards.

7.1.1 Types
- & 7.1.1.1 Voltages )
i~ [Bg 7.1.1.2 Port Types B-q 7.2.1 Scope
2 7.1.1.3 Raw Cables " 33 7.2.1.1 Decisions
 lgg 7.1.1.4 Connector Types Bl-Lg 7.2.1.2 Risks
g 7.1.1.5 Connection Types Et-[g 7.2.1.3 Standards
7.1.2 Elements E-Lg 7.2.1.4 Patents
-4 Assembly B8 7.2.1.5 ISO/IEC 25010 Qualities
- Chemical Element B-lg 7.2.2 Views
- Electronics Element Bt-ew 7.2.2.1 Context View
- Mechanical Element E-§& 7.2.2.2 Structural View
... ¥ Software Element B-4@¥ 7.2.2.3 Behavioral View

Figure 8.23: (Left) Model elements, and (right) architectural decisions, standards, risks,
patents, ISO product qualities, and views that are defined by a modeller
using the architecture model DSML building block.

Similar to the decomposition in function models, the architecture model allows visu-
alisation through different views such as context, behavioural, and structural. Further,
references to the feature models, such as defining a product line of architecture ele-
ments as features is also allowed through variability configurations. Figure 8.24 lists
the electronic elements on the left along with the respective mechanical, power, optical,
or software ports. The model elements are grouped together logically into their respec-
tive packages. Further, the possibility to configure ports according to the respective port
types is possible. This allows language engineers to define validation rules in MagicDraw
that check if same typed ports are connected through a port connection. This means
that an output from a power port cannot be connected to an input of a software port.
On the right, different quality criteria defined as part of ISO/IEC 25010 [HSBAC17]
are modelled and attached to different model elements in the architectural model. This
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allows modellers and domain experts to quickly validate if the respective model elements
meet the quality criteria.

E}--Em 6.2.1.5 ISO/IEC 25010 Qualities

=8 6.1.2 Elements - sag Product Quality Model
L E 1/O Devices 8% Product Quality Relation Map
- Display Bt &¥ Compatibility

6 Functional suitability
-4 Maintainability
;3 Performance efficiency

- ¥ Keyboard
B Mouse

E‘ Power Supply i[53 Portability

¢ @ PowerSupply B s Reliabilty

E} Eﬂ Sub-System - . Security
- Connections Diagram -\ Usability

= EFH Quality In Use Model
:--[5%5 Quality in Use Relation Map
I Context coverage

= SystemPower
- f8 Information :

I T

f_h Display : o " Effectiveness

‘_I:I Key: @' Efficiency

= Mouse : B Freedom from risk
Yl Table: B-(2) Satisfaction

Figure 8.24: (Left) Defining I/O devices, power supply, and the decomposition of the sub-
system, and (right) ISO/IEC 25010 qualities for this architectural model.

Context Diagram X

R .
: Patient Room : Medical System m
Table : E Table :
Key :
| N
/ Mouse :
. . : Patient
: Medical Assistant ]
_[] Display :
: Power Supply Information : E
Pow er : E D Pow er :
el

Figure 8.25: An architectural context diagram described for the architectural model.

Views such as context, structural, and behavioural follow the similar layout as de-
scribed for the function model. In Figure 8.25, an architectural context diagram is
depicted that shows how the different architectural elements are connected to the other
elements. In particular, elements such as Patient Room defines table, that is used in

184



8.1 CASE STuDY 1: SIEMENS HEALTHINEERS (SHS)

the entire system of interest. The power supplied through a Power Supply allows the
operation of I/O devices and the generation of information within the Medical System.
The associations of the actors, Medical Assistant and Patient, to the Medical System is
also defined in this context diagram.

Connections Diagram X
> iR il O b -

class System][ [ Connections Diagram ])

: Sub-System m
Table :
—1 -
— Table :
:PowerSupply [
DPOW er: System: [} | systemPower :
Display : -
DPow er: iSpay D . . .
Display : =
Keyboard : |:| g
: E
Key : =
Mouse : |:| 1 g
o LD Mouse : ﬁ
: Dis play Fé
Inf tion
2spey - B nfoffation : ey
. :]Display: DisplayQut : El—f\fYL

Key : : Keyboard ’.:_fé
:]_I_’:lKey: KeyboardPow er : |:|

KeyOut - E—r\l—

e
:Mouse ’.:_?g
Mouse : MousePow er : |:|
MouseQut : E

Figure 8.26: An architecture structural diagram described for the architectural model.

Figure 8.26 shows an architectural connections diagram that shows the structural view
of the architectural model. This view shows the decomposition of the various model
elements described in the context view and presents the models in a more detailed and
structured manner. For example, the power supply is configured on a PowerSupply
electronics element that provides further power to the Display, Keyboard, Mouse, and
the Sub-System. Similarly, other I/O devices also connect to the sub-system through
various port types. The output of the sub-system is a software port that provides the
final generated report to the patient in the form of Information.
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System Blackbox *
2o s e

- Medical Assistant - Medical System : Patient

interaction System Blackbox [ System Blackbox ])

@] :Medical System @)
(i — (6

:Medical Assistant |
! 1: Send Inputs : !

: Patient

2: Recewe OK

3: Request Information

|4 Generated Informatiop.

Figure 8.27: An architectural interaction diagram described for the architectural model.

Similar to the function interaction diagram, Figure 8.27 describes the architectural
interaction diagram in the form of sequence diagram with different lifelines. Here, the
system and the actors are the architectural elements, where the exchange of messages
between the actors and the system occurs. This behavioural view allows the definition of
interaction diagrams as well as state machines that help associate different interactions
and activities to different states that the system could reside in.

Language Components

Chapter 4 discussed defining the language components and composing languages using
the example of modelling use cases, actors, and their activities. Language components
from these DSMLs were reused and extended to define the language of the UseCase
building block described in this chapter. To compose a use case DSML building block, the
previously defined DSMLs (Section 4.1) were composed together by way of embedding
the ActorDSML into the UseCaseDSML (Section 4.5.3). This means that a modeller uses
the UseCase Model in the SHS DSML to create models of use cases and their actors.
However, previously the languages were created stand-alone, meaning they were not
associated with any other domain concepts. In Figure 8.1, the introduction of _Tracing
packages in different DSML building blocks and configuration of various dependencies to
other DSML building blocks allow modellers to easily associate model elements across
various aspects of a domain. This fosters separation of domain concerns, reusability, and
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modularity of different domain concepts as these building blocks are now easily reused
for other DSML projects without significant modifications to the language definition.
Previously, Figure 8.1 showed the separation of a feature model for realising features
for customers and technical scenarios. Both of the defined DSML building blocks along
with their language components are fundamentally similar, therefore only one DSML

building block are reused as-is to foster modularity.

Changes in the identifiers, e.g.,

name of the model elements, of the respective building blocks ensure the separation of
customer concerns of feature model in comparison to the technical features of a system.

Feature Metamodel
«stereotype» «stereotype»
Variant Reference Variant
[Bement] [Element]
«stereotype» ::I «stereotype» 4]
Technical Product Line Technical Product
[Class] [Class]
«Customization» 2N «Customization» 2N

Technical Product Line

Technical Product

«Customization»
abbreviation = "Technical Product Line"
allowedRelationships =
<>Exclude
«>Select
/ Concretize
/ RealizesCustomerVariant
category = "Elements"
customizationTarget = &% Technical Product Line
hiddenOwnedTypes = E4Element
hideMetatype = true
possibleOwners =
F2Technical Variant Package
i% Technical Product Line
\I Technical Feature Trash Bin
representationText = "Product Line"
suggestedOwnedDiagrams = "HC Variant Model
Diagram", "HC Variant Matrix"
suggestedOwnedTypes =
2% Technical Product Line

! Technical Product

«Customization»

abbreviation = "Technical Product”
allowedRelationships =

Concretize
<>Exclude
<>Select
<<>>Open
/ RealizesCustomerVariant
category = "Elements"
customizationTarget = = Technical Product
hiddenOwnedTypes = E4Element
hideMetatype = true
possibleOwners =
C2Technical Variant Package
%/ Technical Product Line
I/ Technical Feature Trash Bin
representationText = "Product”
suggestedOwnedDiagrams = "Relation Map Diagram",
"Dependency Matrix", "HC Variant Model Diagram”, "HC
Variant Matrix"

attributes
«derivedPropertySpecification»-selectedFeatures
«derivedPropertySpecification»-Needed Artifacts
«derivedPropertySpecification»-All Selected Features
«derivedPropertySpecification»-Realized Customers

attributes
«derivedPropertySpecification»-selectedFeatures
«derivedPropertySpecification»-Needed Artifacts
«derivedPropertySpecification»-All Selected Features
«derivedPropertySpecification»-Realized Customers

Figure 8.28: The MagicDraw metamodel for the product line and product language
elements in a feature model DSML building block. Figure taken from

[GJRR22a).

Figure 8.28 shows the configuration of a (technical) product line or product using

187



CHAPTER & CASE STUDIES

the customisation capabilities of MagicDraw. Here, the stereotypes that are attached
to the product line or product is enhanced by providing property configurations that
ensures the behaviour of these elements in the SHS DSML. In this example, a product
line owns (suggestedOwnedTypes) both another product line or a product, while a
product has no such specification, therefore only exists under the possibleOwners.
These definitions of the elements are located inside a language profile (Section 3.4.1)
that constitute one of the language components (Chapter 4) of the DSML building
block. Similarly, the features of the feature model are also defined in a language profile
and customised accordingly such that all the properties of the individual features in a
feature model (Def. 3) are met.

UXD Considerations

The examples presented so far in this case study discuss the definition of the SHS DSML
as well as some of the model elements that are created from the individual DSML building
blocks. Previously, UXD aspects were discussed in Chapter 6 detail using a real industrial
example of feature models that was built using the SHS DSML. Figure 8.29 shows the
variant configuration GUI of Collimator v1 using icons (V1), colours (V2), modal dialog
(V3) detailing documentation and issues, and layout (IA1) on a custom GUI (ID4).

| * Variant Configuration : Collimator v1‘ I1D4 X
B2 Collapse All Expand All Search: ‘ IA1

51 Technical Feature Model
=] ! Collimator Features
=] ! Collimator Controls V1, V2
i O ! Collimator RX contro
O ! collimator TX contro
[J o Steering
é 7 Xray Scatter Contro
O ¥%r Down
O r Up

Documentation Issues |V3

Open Issues:

Issue Element

15 This is a mandatory element! ! Collimator RX control
I This is a mandatory element! ! Collimator TX control
15 Not all Mandatory elements set! ! Collimator Controls

15, None of the Alternative elements selected, please select one Alternative! 7 Xray Scatter Control

Save Close

Figure 8.29: The variant configuration custom GUI for a product line which shows the
different selectable features as well as documentation and issues for the
current selection.

Figure 8.30 shows a feature model diagram (V4) that describes dynamic view plugin
(V5) for filtering information, layout (IA1) for positioning the model elements, model
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browser (IA2) for navigating model elements, perspective (IA3) that limit the set of
functionalities, creation view (IA4) for quick creation of model elements, project template
(ID1), and default assigned names to model elements (ID2). The example shown in the
figure is based on the model elements that were shown earlier in this chapter as part of
the feature model DSML building block for the collimator case study.

PR Containment | &€ Diagrams ‘ Feature Model Diagram X ‘ V4
(o} 4 e [ =
=54 3¢y Q O -
P L= Selection I
=& [%;echnlcal Feature Model | D1 ~ Rl g - T;::R:::; i) Technical Feature Elements
_Tracing ]
E-[2 6.1 Technical Features Tools ' H Za:daulurg F:eature
4 - &z > 7 Optional Feature
B-*%  Collimator Features F L = Yo, Xor Feature
B}-.7 Relati Collimator TX control r
¢ Relations Features 1A4 I o Or Feature
&-¥  Collimator Controls T Mandatory Feat -
. @% Collimator RX control . VFE& | Collimator Controls > 1 += Conficts
. @% Collimator TX control ? Optional Feature = = Requires V5
: Y . A1 Collimator RX control
Uy Steering Yor Xor Feature
[ - -Requires : SHS Model:T¢ O OrFeature | — — ——————————~—
- = -Requires : SHS Model:T
i
E-%  Xray Scatter Control Feature Relations Yor
.7 Relations ++ Conflicts ’) Down
: H
;g,, Down D2 =+ Requires Xray Scatter Control
B U
: Yor P - e _ General %
i~ = -Requires : SHS Model:Tt plor
i = -Requires : SHS Model:T¢ - Up

Figure 8.30: An example of a feature model showing different UXD aspects.

User-Centric Recommendations

Using a custom GUI (ID4), certain methods, guides, and recommendations are made for
a feature model that is shown in Figure 8.30. These recommendations are based on the
DSML guidance infrastructure concepts described in Chapter 7.

Figure 8.31 shows the overview tab for the feature model described in Figure 8.30.
Here, a general overview of the feature model is provided, along with hyperlinks and
training videos. Frequently asked questions contain information that have been previ-
ously asked by domain experts or modellers, thereby allowing such a guidance infrastruc-
ture to be directly integrated in the DSML itself. Each individual DSML building block
would have their own guidance and recommendations information therefore language
engineers also build the dataset according to their domain knowledge.

Figure 8.32 shows recommendations for specific elements on the feature model dia-
gram. Here, recommendations such as specific properties of a feature are suggested to
modellers. These recommendations can, therefore, change based on the current mod-
elling situation, and be updated in real time. The recommendations are hence considered
active and in sync with the models, and are considered model-aware.

Figure 8.33 shows a process model for the feature model diagram. Here, various pro-
cesses are described such that the modeller is aware of their current state of modelling,
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Recommendations Process Models

This tab provides general training material, documentation, links, and
references for the currently displayed diagram.

Selected Diagram: HC Feature Model Diagram

Feature Models are simple models that capture both variability and
commaonalities. They are well suited for being understood by a wide
range of stakeholders and may improve understanding, scoping, planing,
and also tracing tasks.

Links:

https://wiki.siemens.com/pages/viewpage.action?pageld=19:

Training Videos:

https://myvideo.siemens.com/media/Feature+Modelling+DSL

Frequently Asked Questions:

How to model a Feature Model?

@ Step 1: Define Technical Features and their relations to each
other

# Step 2. Define Technical Variants

# Step 3: Configure Technical Variants selecting their Technical
Features

@ Step 4 Map Technical Features and Variants to Customer
Features and Variants

M Ctan & Allnrata Ranuiramante tn Tarhniral Fastirac

Figure 8.31: The overview tab showing the documentation, hyperlinks, training videos,
and commonly asked questions about the feature model in Figure 8.30.

Diagram Elements Recommendations

Recommendation for Mandatory Feature (Type: Mandatory
Technical Feature)

This describes a feature that must be selected.

We suggest setting Constraints for this feature. This can be defined in
the property of this feature.

Recommendation for Optional Feature (Type: Optional Technical
Feature)

This describes a feature that may or may not be selected.

We suggest declaring the Binding Time as 450ms. This can be defined in
the property of this feature.

Figure 8.32: The recommendations for specific elements on the feature model diagram.
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Overview Recommendations Process Models

-

. . Create the mandatory c Create any additional 5 Create the products
features. features. and product lines.

L

Create the _reali?_atinn Create th.e feature . Aftach the featu_res with
mappings. relations. the product lines.

Completed

[[] Patialy Completed

\ O ireamphese

Process Model: Create features in a Feature Model

Figure 8.33: A process model for the feature model described in Figure 8.30 showing the
different processes that a modeller must consider.

and can accordingly design their models. By providing a comprehensive guidance in-
frastructure, language engineers support modellers in effective modelling for every single
domain aspect and update information frequently without the need to constantly update
the DSML building blocks or the language components.

8.1.3 Discussion

Individual chapters in this thesis have looked at specific examples in an industrial con-
text. The evaluation of this case study was performed by a group of language engineers,
domain-experts, and modellers at Siemens Healthineers, Siemens AG, and researchers at
RWTH Aachen University. The focus group involved project members with 8-15 years of
experience in software and systems modelling to understand the current challenges faced
in the healthcare domain. The participants considered the development of an active
and in sync infrastructure to be valuable in providing continuous support for all kinds of
modellers. This was primarily due to the fact that current solutions only rather provide a
plain technical view of the entire language engineering infrastructure. The development
of such an infrastructure is not only valuable in providing methodological guidance, but
also fosters the modular development of language components in order to continuously
evolve the DSML in the ongoing modelling projects. Further, such a complete infras-
tructure implements aspects of being aware of the current state of the models, whether
they are context-sensitive or evolve dynamically as DSMLs become more complex. Data
from previously designed Siemens Healthineers projects was reused, that were the ba-
sis for the examples provided in this thesis. Often, the participants collectively worked
together during the course of this project, to develop certain functionalities of the cus-
tom GUI, as well as to configure various business rules and recommendations for the
guidance infrastructure. Prior to the guidance infrastructure presented in this thesis,
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the practitioners used to navigate through pages of static training data, that included
books, handbooks, tutorials, and overly generic technical documents, as no alternative
solutions to provide a complete guidance infrastructure had been set up. As a result,
language engineers often struggled in order to effectively represent domain concepts, and
to use techniques for reusing and modularising commonly used domain constructs. This
case study aimed at providing insights to language engineers into the development of
DSML building blocks in a real industrial context as well as combine the aspects of de-
veloping reusable and modular language components, integrated guidance infrastructure,
and better UX considerations in order for a domain expert or a modeller to successfully
model their systems.

8.2 Case Study 2: Siemens Digital Industries (D)

8.2.1 Motivation

Combining the real world of automation with its equivalent digital counterparts in the
information technology world allows industries to make better decisions and bring about
an accelerated change in fostering a digital enterprise. The Siemens Digital Industry (DI)
is a division of Siemens AG that makes such a decisive contribution for automation and
digitisation such that customers drive their digital transformation much more effectively.
To understand the digital journey better, specific teams within DI collect, understand,
and eventually use large datasets in domains such as Industrial Internet of Things (IToT),
supply chain disruptions, and digital twin approaches. A strong and interlinked value
chain is possible using optimisation techniques that extends from the design of product
and production, through manufacture, to finally use and recycling. Innovations, new
business models, and better documented architectures are therefore necessary for adding
value to all partners in an ecosystem, be it a completely software-driven ecosystem, or
an ecosystem with both system and software aspects. DI, therefore, uses an architec-
ture documentation template to model their software and system architectures for their
SINAMICS' and SINUMERIK? control systems.

8.2.2 DI DSML, its Building Blocks, and the Models

To realise the modelling journey for DI and be able to document architectures, a set
of DSML building blocks were created or reused (partially or fully). The template of
arc42 [SSZM19] is used for architecture documentation by DI. Each arc42 template
section represents a DSML building block built in MagicDraw for modelling the specifics
of a certain part in the architecture documentation. Figure 8.34 details the models that

"https://www.siemens.com/global/en/products/drives/sinamics.html
?https://www.siemens.com/de/de/produkte/automatisierung/systeme/cnc—
sinumerik.html
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are created automatically and instantiated during MagicDraw tool start up for each
individual template section for the arc42 architecture documentation template. The
collection of all the thirteen DSML building blocks is collectively referred to as the DI
DSML or the arc42 DSML.

&[5 arcd2 Architecture Model
- P _Attached Files
- |[H] _Document Info
O _Images
B~ B# 1 Intreduction and Goals
-- £ 2 Architectural Constraints
B~ B3 2 System Scope and Context
-- [ 4 Solution Strategy
- B2 5 Building Block View
. B[ 5.1 SW Building Block View
© B-[E 5.2 HW Building Block View
B 38 6 Runtime View
Bi- £ 7 Deployment View
-- [ 2 Cross-cutting Concepts
-- [§3 2 Architectural Decisions
ﬁ |0 Cuality Requirements
B~ @ 11 Risks and Technical Debts
- B3 12 Glossary
= Feature Model
--E_Cunfiguratiun
B1- 2 Features
- £2 Variants

Figure 8.34: The models of a DI DSML created automatically representing the arc42
template concepts.

Introduction and Goals. This DSML building block allows practitioners to create
mandatory or optional functional requirements, stakeholders involved in the system, and
the various quality goals for the architecture. Figure 8.35 lists the various models that
are created as part of the introduction and the quality goals. These models also include
custom MagicDraw diagrams (Section 6.3.1) that help visualising more effectively the
this part of the arc42 template.

Constraints. This DSML building block allows practitioners to model the technical
and organisational constraints in regard to their system design decisions.

System Scope and Context. This DSML building block allows practitioners to delimit
a system from all of its users and systems, while differentiating between the business
context such as domain specific inputs and outputs with the technical context such as
protocols or accompanying hardware.
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Stakeholders Table

= Fu.nctianal Ré uirements Table = . L2
- [red] ]1-1 Mandato?}r Requirement ) Quaht_f GDE'E TE|::I|E ) D EKtEFr‘IEﬂ Jﬂ.ctﬂr
- &0 -1 Optional Requirement ' R C-1 Geall - Stakeholder

Figure 8.35: (Left) Requirements, (centre) quality goals, and (right) stakeholders that
are created using the introduction and goals DSML building block.

Solution Strategy. This DSML building block allows practitioners to model technology
decisions, architectural patterns, guidelines to achieving key quality goals, and any other
relevant organisational decisions.

Building Block View. This DSML building block allows practitioners to decompose a
system into different architecture modules, architecture components, classes, interfaces,
packages, frameworks, and so on, while also allowing the modelling of their relations. The
building block view itself is different from the term DSML building block used throughout
this thesis, as the view strictly refers to the reusable units of the hardware and software
architectural views. Figure 8.36 shows the software and hardware architectural views
and the different parts along with the ports that are created for each subsystem.

Elfﬂ 5.1 5W Building Block View =6 5.2 HW Building Block View

B B _SW Port Types B Bg _HW Port Types

= i SW System B8 HW System
-] SW Building Blocks Table i HW Building Blocks Table
SW Systern Diagram HW System Diagram
-- [nP Software Part t 3 Hardware Part
= 1 SW Port: - 0 HW Port :
B (2] Hyperlinks B3 [€] Hyperlinks

Figure 8.36: Models of (left) software system parts and (right) hardware system parts
that are created using the architectural building block view.

Runtime View. This DSML building block allows practitioners to provide additional
information regarding the behaviour and interaction of various parts of the system for
the views defined in the building block view. These include execution of use cases,
interactions at critical external interfaces, and error or exception scenarios.

Deployment View. This DSML building block allows practitioners to describe the
technical infrastructure of the system, and the mapping of the software parts to the
corresponding hardware infrastructure, which introduces cross-cutting concepts.

Crosscutting Concepts. This DSML building block allows practitioners to model those
aspects of the system that cut across the different sections of the arc42 template. They
include domain models, architectural patterns, and other concepts that are tied to a
variety of hardware and software system parts.
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Architectural Decisions. This DSML building block allows practitioners to model
those architectural decisions that prefer one solution over the other and includes ra-
tionales describing why a certain decision was preferred over the other. This helps
stakeholders in comprehending the architectural design decisions that were taken during
the architecture of a system.

Quality Requirements. This DSML building block allows practitioners to model vari-
ous quality requirements that are associated with a specific standard such as the ISO/TEC
25010 quality models [HSBAC17]. These quality requirements complement the quality
goals that are defined using the introductions and goals DSML building block.

Risks and Technical Debts. This DSML building block allows practitioners to model
a set of identified technical risks or any technical debts that are also ordered by priority.
An overall risk analysis and measurement planning is always critical to any architecture
that needs to be designed.

Glossary. This DSML building block allows practitioners to define domain and tech-
nical terms and their definitions that allows stakeholders to describe their system.

Feature Model. This DSML building block is reused completely from the SHS DSML
and allows various features, products, and product lines to be associated and configured
with certain hardware and software system parts that are defined using the arc42 tem-
plate building blocks. While a feature model is not part of the arc42 template, DI often
work with variants of system definitions to better describe their architectures, there-
fore composing the arc4d2 DSML along with the feature model DSML building block
provides the necessary logical connection in defining variability in software and system
architectures.

Language Components

Chapter 4 discussed defining the language components and composing languages using
the example of modelling use cases, actors, and their activities. Further, the previous case
study (Section 8.1) extensively discussed the definition and usage of the various DSMLs
and its building blocks. For the DI DSML, many such language components were either
reused entirely, extended, or modified to implement the arc42 template definition. The
requirements and the stakeholder language components were partially reused, modified,
and composed from the SHS DSML building blocks of use case model and requirements
model (Figure 8.2 and Figure 8.5). In the SHS DSML practitioners could also model
the non-functional requirements, but in the arc42 DSML practitioners model only the
mandatory or optional functional requirements. By fostering modularity of language
components it is easier for language engineers to define new DSMLs by reusing such
concepts.

The software and hardware system definition such as mechanical assemblies or elec-
tronics, as well as the software elements are configured using the arc42 architectural
building block view. This is analogous to the definition of the architectural model de-
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fined in the SHS DSML (Figure 8.23). Here, various elements are defined and then be
associated with a feature model in order to define a product, a product line, or vari-
ants of the same (Figure 8.11). Therefore, the arc42 building block view allows various
features, products, and product lines to be associated and configured with various hard-
ware and software system parts. The quality requirements for the DI DSML reuses the
language components that were already defined in the architectural model of the SHS
DSML (Figure 8.24 right), for example, the ISO/IEC 25010 quality models. While not
all language components from the SHS DSML are reused entirely, many are reused re-
ducing the time taken for building the DI DSML from scratch as well as reducing errors
and inconsistencies in different projects reusing similar domain concepts.
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Figure 8.37: The language definition for creating the hardware system in an architectural
business or technical context using the customisations of MagicDraw for a
system scope and context DSML building block.
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Figure 8.37 shows the configuration of an arc42 hardware system language element
where relations to the feature model exist as part of the related product line. Rela-
tionships and possible owners define the behaviour of a hardware system and certain
references allows cross cutting concepts to other model constructs such as relations to
any architectural design decisions that were taken for this hardware system.

UXD Considerations
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Figure 8.38: An example of an arc42 business context diagram in MagicDraw for an
HTML sanity checker [SSZM19].

To illustrate the aspects of UXD that were considered in the arc42 DSML, let us take a
look at an example of an arc42 business context diagram (V4) created in MagicDraw for
a HTML sanity checker example [SSZM19] using the system scope and context DSML
building block. Figure 8.38 shows the models used in an HTML sanity checker including
various actors, software system parts, and external elements that are connected via
software ports. Figure 8.36 defines these additionally parts using the arc42 architectural
building block view. There UXD considerations for default naming scheme (ID2), project
template (ID1), perspectives (IA3), and general usability heuristics were considered. In
Figure 8.38, icons (V1), colours (V2), layout (IA1), and dynamic view plugin (V5) for
filtering information are described that further show how UX is strongly considered to
improve the overall experience of practitioners.

197

MagicDraw, 1-1 D:\Rohit\MagicDraw\Projects\Thesis Case Study\CS2 DI\arc42 Example HTML.mdzi



CHAPTER & CASE STUDIES

User-Centric Recommendations

The implementation of the guidance infrastructure that provides documentation, meth-
ods, and guides to a practitioner is achieved by using a custom GUI (ID4). This in-
frastructure (described in Chapter 7) allows language engineers to build an integrated
mechanism directly within the MagicDraw tooling environment that allows modellers of
the arc42 template to be guided appropriately.

Selected Diagram: arc42 Business Context Diagram

System scope and context - as the name suggests - delimits your system
(i.e. your scope) from all its communication partners (neighboring
systems and users, i.e. the context of your system). It thereby specifies the
external interfaces.

If necessary, differentiate the business context (domain specific inputs
and outputs) from the technical context (channels, protocols, hardware).

Risk: Because of remote network operations, this HTML sanity check is
time intensive and might produce incorrect results due to network and
latency issues.

Figure 8.39: The overview tab consisting of documentation and risks related to the
HTML sanity checker.

Figure 8.39 shows the overview tab of the HTML sanity checker example (Figure 8.38)
that describes firstly a generic documentation for the system scope and context, such as
the business and technical contexts, and also lists any additional information, hyperlinks,
videos, and commonly asked questions such as if there are any risks involved in an
HTML sanity checker. This kind of information is populated directly in the database
that are easily configured and maintained by language engineers. Language engineers
therefore build the appropriate dataset for providing arc42 specific recommendations to
the modeller.

Diagram Elements Recommendations

Recommendation for User (Type: External Actor Use)
User documents software with a toolchain that generates HTML. A user
should ensure that links within this HTML are valid.

Figure 8.40: The recommendations for a specific actor in the business context of an
HTML sanity checker.

Figure 8.40 shows recommendations for specific model elements on the business context
diagram for an HTML sanity checker. Here, an example is provided for an actor, for
which a specific recommendation is generated and displayed. In the HTML sanity checker

198



8.3 CASE STUDY 3: SPESML

example (Figure 8.38), two actors were modelled, a user and a build system. However,
only the recommendation for a user was provided here, as the dataset does not contain
any specific recommendation for a build system, but it is easily added to the dataset
depending on the specific models designed by a modeller. The recommendations are
considered model-aware as the recommendations plugin identifies the various models in
the current business context diagram, checks it against the pre-configured business rules
in the database, and provides the active and in sync guidance to arc42 modellers.

8.2.3 Discussion

Similar to the evaluation of the SHS DSML, the evaluation of the arc42 DSML was
performed by language engineers and software architects at Siemens AG, with the Tech-
nology research group and the Digital Industries (DI) group. This focus group consisted
of project members with 8-12 years of experience in software architecture as well as soft-
ware and systems modelling. The primary aim of DI was to use the arc42 template to
build their own architecture documentation. The concepts of the arc42 DSML building
blocks were provided by the arc42 template [SSZM19] and implemented in MagicDraw
by the language engineers. Examples and datasets were configured to validate the dif-
ferent language aspects as part of the arc42 DSML. While not all concepts of the arc42
template were provided in the first version, the DSML and its building blocks were ex-
panded in functionality as and when more requirements from DI were needed. Thus, it
is also simple to introduce guidance and recommendations as and when new concepts
are added to the arc42 DSML. By reusing many language components from the SHS
DSML, language engineers were able to easily compose the arc42 DSML parts, as com-
mon concepts such as feature models, requirements, actors, or quality standards could
be easily reused. Finally, better UX considerations meant that DI modellers and soft-
ware architects were able to better comprehend and use the arc42 DSML with increased
confidence.

8.3 Case Study 3: SpesML

8.3.1 Motivation

The public funded projects SPES [PHAB12] and its following project SPES_XT (SPES
Extended) [PBDH16] have been previously developed to provide the necessary foun-
dations for a comprehensive methodological toolkit in MBSE and model-based develop-
ment. This methodological foundation helps advance the development of automated (and
rather complex) embedded systems and provides a relevant direction to modellers in var-
ious systems such as software intensive CPS. In general, the SPES methodology is based
on the scientific foundation of consistency and semantic coherence called FOCUS [BS12].
The SPES methodology is based on the following three principles [BBK21]:
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1. the design process must consider interfaces consistently;

2. the interface behaviour and the description of systems and their subsystems must
be at different levels of granularity; and

3. the models must be defined based on a variety of cross-sectional topics and analysis
options.

To this extent, in the SpesML project, a SysML workbench for the SPES method has
been developed for by providing a customised SysML profile using the concepts of DSML
building blocks and implemented in the modelling tool, MagicDraw.
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Figure 8.41: An overview of the four basic SPES viewpoints at different levels of granu-
larity. Figure taken from [GJRR22b] and adapted from [BBK*21].

In general, SPES defines a system model in terms of a conceptual model that de-
scribes a system, its decomposed parts, and its properties. Therefore, SPES defines an
MBSE artefact model based on the concepts of the standard ISO-42010 [ISO11] that
assumes a System under Development (SuD) has an architecture and provides for vari-
ous functions in the system. To achieve this, different viewpoints are considered in the
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development process, that separates the concerns of different stakeholders for managing
different artefacts of the system. To separate the concerns, the four basic viewpoints
are considered at different levels of granularity: requirements, functional, logical, and
technical (Figure 8.41). The requirements viewpoint forms the system requirement en-
gineering activities. The functional viewpoint describes a set of system functionalities.
The logical viewpoint describes the decomposition of the system functions in a logical
manner. The technical viewpoint combines software and hardware aspects that are re-
lated to the SuD and how the system is realised. Some parts of this section have been
published in a paper [GJRR22b]. Therefore, some passages from the paper may have
been quoted verbatim in this section.

8.3.2 SpesML DSML, its Building Blocks, and the Models

To realise the SpesML project, a set of DSML building blocks were created that represent
each of the SPES viewpoints. These individual DSML building blocks (Figure 8.42)
separate the concerns of the SPES methodology and provides the necessary language
infrastructure for the requirements, functional, logical, and technical viewpoints.

[Requirements Viewpoint] [Functional Viewpoint] [ Logical Viewpoint ] [Technical Viewpoint]

TOOI-SpeCiﬁC composed of
Implementation SpesML DSML
Level
conforms to
Usage Models

Level 3%2

Figure 8.42: A conceptual model describing the different viewpoints as DSML building
blocks. Figure adapted from [GJRR22b].

Figure 8.43 details the models that are created automatically during SpesML project
creation in MagicDraw. The collection of the four DSML building blocks is collectively
referred to as the SpesML DSML.

Requirements Viewpoint. This DSML building block allows practitioners to model
and manage requirements for the SuD. Since requirements are generally used to model
the necessities of the system, the DSML building block is similar to the one used in
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Figure 8.43: The models of a SpesML. DSML that are created automatically when
a new SpesML project is instantiated in MagicDraw. Figure adapted
from [GJRR22b].

the SHS DSML. This means various language components were reused, extended, or
modified from the SHS Requirements Model DSML building block or the DI Quality
Requirements DSML building block allowing language engineers to more easily build
the language infrastructure for defining various kinds of requirements such as capability
requirements, functional requirements, or quality requirements for this SPES viewpoint.

Functional Viewpoint. This DSML building block allows practitioners to define func-
tions, their sub-functions, and its properties for the SuD in order to describe the set of
system functionalities as it is observed from outside the system. Language components
that include functions, actors, and their contexts are reused from the SHS Function
Model DSML building block. The UXD aspects are modified by the language engi-
neers to adapt the language components to the newly composed models for the SPES
functional viewpoint.

Logical Viewpoint. This DSML building block allows practitioners to decompose their
SuD into various logical components for realising the behaviour specified in the functional
viewpoint and independent of any technical realisation. Accordingly, certain language
components from the functional viewpoint DSML building block are reused and adapted
to the SPES logical viewpoint. Modellers also describe the logical context of the SuD,
meaning a custom UML component diagram that specifies the different parts that lie
within the system and those that lie outside the system.

Technical Viewpoint. This DSML building block allows practitioners to model those
parts of the system that describes the platform specific components. This means that
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the technical viewpoint describes a way to transition from platform independent logical
views to a platform specific technical view. Therefore, hardware and software elements
such as mechanical, electronics, or software parts are modelled along with the technical
interfaces. Thus, language components from the SHS Architecture Model DSML building
block are reused to compose the different elements and its types in the technical viewpoint
DSML building block.
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Figure 8.44: The language definition for creating a SPES logical component. Figure
adapted from [GJRR22b].

Chapter 4 discussed defining language components and composing languages. Previous
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case studies (Section 8.1 and Section 8.2) discussed the definition and usage of the various
DSMLs and its building blocks. For SpesML, many such language components were
either reused entirely, extended, or adapted to fit the SPES methodology. For example,
requirements, functions, actors, and context belonging to the different viewpoints were
partially reused, modified, and composed from the SHS and the arc42 DSML building
blocks. In the SHS DSML, practitioners could model other requirements such as non-
functional requirements, or environmental effects for functions, but in the SpesML DSML
such language components were not used. By fostering a modular approach to building
language components, language engineers easily compose new DSMLs and their building
blocks. An example of a SpesML logical component definition in MagicDraw is seen in
Figure 8.44 where the element itself is configured with a UML class metaclass, but
inherits the block stereotype from a SysML profile, thereby customising the logical
component to work similar to a SysML block element [HT06].

UXD Considerations

To illustrate the aspects of UXD for the SpesML DSML, let us take a look at an example
of a window lifter system that is primarily used in industrial vehicles. Figure 8.45 shows a
context diagram (V4) designed using the SpesML logical viewpoint. Here, various UXD
considerations such as icons (V1), colours (V2), layout (IA1), and dynamic view plugin
(V5) is shown. A reduced set of diagram toolbar options (IA3) allows practitioners to
only create connectors between ports. A project template (ID1) is shown in Figure 8.43
that only allows practitioners to create the required packages first before creating the
models using the different DSML building blocks.

Logical Context X

S5} 2 dn iR-iB-B-iQ
Selection SpesML Logical Internal Component Diagram Logical Cnntexl[ Logical Context ]J
Iy |8 B8 . Logical Elements V5
V.
Tools 4 [E] Logical Compenent

[E] Logical Compenent [External]

g F ight :
& F an sun : HeatSource [C] light : Brightnessinterface & Logical Actor
SpesML Logical Intemal Co... heat : Temperaturelpterface
+© Connector 143

[ Common A1

E4 Note -

ab< Text Box - someBrightness : ~Brightnessinterface system : WindowlLifterSystem

B Anchor someTemperature : ~Temperatureinterface th mount : ~Mount

1} Constraint - exampleUserCommand : ~WindowCommandinterface

74

# Containment -
,-': Abstraction -
o someCommand : Windowommandinterface
" Dependency
@ Image From File - driver : User
& Diagram Overview Vi
E=] Legend

Figure 8.45: An example model of a window lifter system shown in the context of the
logical viewpoint. Figure taken from [GJRR22b].
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Figure 8.46 shows an additional creation view (IA4) where model elements are created
from the predefined groups of either packages or elements. This is possible with the
customisation of MagicDraw and to prevent any inconsistencies in the structure and
organisation of model elements with the DSMLs. General usability heuristics were also
considered to foster a good UX for practitioners.
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Figure 8.46: A creation view for creating logical viewpoint elements. Figure taken
from [GJRR22b].

8.3.3 Discussion

The SPES methodology has been realised by modellers in the past but a reference imple-
mentation with a modelling tool and a concrete modelling language had been missing.
Further, since the methodology describes different viewpoints, this separation of concerns
are implemented in a way that the individual language components are developed in a
modular, reusable way. By creating a UML and SysML based workbench for SPES in
MagicDraw, we see the benefits of a good modelling experience by integrating language
components, methods, and UXD aspects for practitioners. While this case study did not
look particularly at user-centric recommendations, this was due to the fact that the real-
isation of the SpesML project was a rather PoC implementation and not yet developed
for an actual business use case. The SPES artefacts were decomposed into smaller units,
making the reuse and the extension of previously built language components and DSML
building blocks more suitable. The SpesML project was carried out by a consortium
of researchers and practitioners from a number of academic institutions and organisa-
tions, so the scope of the case study is limited to certain language components and UXD
aspects for the implementation workbench in MagicDraw. By reusing many language
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components and extending or adapting them to the necessities of the SPES methodology,
language engineers could much more easily compose parts of the SPES implementation
workbench such as requirements, functional aspects, behavioural logical contexts, and
technical aspects such as modelling hardware or software elements. This case study,
therefore, explored the systematic engineering of a DSML for a language-agnostic MBSE
methodology and discussed the bridging of various heterogeneous domains by creating
reusable units for fostering modularity in systems engineering.
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Chapter 9
Conclusions

This thesis explored various techniques to foster language engineering primarily in the
industrial context and to reduce the gap between the problem space and the solution
space [FRO7]. The results of the concepts presented in this thesis serve as a basis for
engineering higher quality industrial DSMLs that encompasses methods to reuse parts of
the language infrastructure and to consider design aspects for improving the modelling
experience for practitioners and domain experts alike. Language engineers should be
equipped with the state-of-the-art methods and techniques for developing DSMLs that
promote the reusability of common language parts in the form of language components,
describes exchange mechanisms for the interoperability of DSMLs and their parts, and
to implement concepts of intelligently assisting practitioners directly in their respective
modelling environments. To this end, research efforts must be undertaken continuously
to improve methods for the language engineering processes for language engineers and
to ameliorate the modelling experience of users. This chapter first summarises the main
results of the thesis and how it answers the research questions presented in Chapter 1 in
Section 9.1. Section 9.2 then discusses the potential for further work that arose during
the course of this thesis.

9.1 Summary

This thesis presents a systematic approach for engineering modular and reusable DSMLs
and its parts in an industrial context. Language components and their composition into
heterogeneous DSMLs have been described in detail in this thesis along with methods
and guidelines to improve the overall UX for domain modellers. The main results and
the answers to the research questions are summarised in the following:

Systematic Engineering of Industrial DSMLs Chapter 3 presents a systematic approach
to engineering industrial DSMLs using the concepts of reusable DSML building blocks.
These DSML building blocks are individual units of a DSML that concern either a specific
aspect of a single or a variety of domains and consist of language components, method
support, and UX infrastructure. As industrial DSMLs often comprise intersecting con-
cepts, providing a set of such DSML building blocks are reused across different modelling
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projects to build heterogeneous DSMLs. The research question RQ1 (“How can language
engineers systematically develop reusable building blocks for a language?”) is therefore
sufficiently answered with the concepts described in Chapter 3 and through its applica-
bility described via case studies in Chapter 8. The reuse of such DSML building blocks
across different modelling projects help develop versions or families of languages without
the need to rebuild common parts of a language from scratch. An overview of the activi-
ties further details the development and usage journey of industrial DSMLs (Figure 3.4)
for language engineers, modellers, and domain experts, whose roles are described in Sec-
tion 3.3. Further, individual parts of a DSML building block are described in Chapter 4
(language components), Chapter 6 (user experience), and Chapter 7 (methods).

Language Components Chapter 4 provides the definitions, requirements, and proper-
ties of language components in the form of software artefacts that eventually compose
to form the central part of the individual DSML building blocks and subsequently het-
erogeneous DSMLs. Further, language composition techniques introduced in the same
chapter detailed how versions or family of languages are developed using the concepts of
language inheritance, extension, embedding, and aggregation in the technological spaces
of MagicDraw and MontiCore. This chapter also discusses mutual notions of language
components and their composition that is valid across the two technological spaces of
textual and graphical DSMLs for providing a modular and reusable approach to language
engineering. The definition and realisation of language components in MagicDraw as well
as providing unified concepts of language components in both MagicDraw and MontiCore
answers the research question RQ2 (“ What constitutes a reusable language component?”),
whereas the different forms of language composition discussed in the chapter answers the
research question RQ3 (“What different forms of language composition can be applied to
foster the better development of heterogeneous DSMLs?”).

Interoperability of DSMLs Chapter 5 describes an exchange mechanism that allows
language engineers to use the common constructs of a DSML across different mod-
elling environments. To achieve this interoperability of DSML constructs, the chapter
described the conceptual and technical implementation of interchanging language com-
ponents from one modelling tool to another. In this thesis, MagicDraw and Enterprise
Architect were the two modelling environments chosen to conduct the experiment for
enabling the DSML exchange mechanism, as they are mature and commercial modelling
tools with sufficient flexibility for providing customised solutions that complement the
technical language definition. Individual add-ons to the respective modelling tools were
created using GPL code in Java to achieve the import and export of UML constructs
as well as domain-specific constructs using a common exchange file formatted in XML.
The mechanism described in this thesis are, in a similar conceptual manner, extended
to other modelling environments that provide the basic foundations for language devel-
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opment, and even across the technological spaces, as was explored as part of mutual
notions of language components in Chapter 4. The bidirectional exchange mechanism
detailed in this thesis, therefore, sufficiently answers the research question RQ4 (“How
can we achieve the interoperability of DSML constructs between multiple modelling envi-
ronments?”), and discusses the necessary concepts to further extend the mechanism to
other modelling tools as well.

User Experience Chapter 6 presents the definitions, concepts, and guidelines for lan-
guage engineers to develop DSMLs that enrich the modelling experience for practitioners.
The reusability of language parts focusses on promoting a more modular approach to
DSML development at the language level. However, there often is a lack of guidelines
and design decisions that language engineers should consider to elevate the usability of
DSMLs at model level. This thesis motivates why a good UX is necessary for modellers
that fosters ease of use not just through visually appealing designs but also through
organised and structured model views as well as with a strong focus on the cognitive
aspects. The guidelines, design decisions, and usability heuristics presented in this the-
sis is further categorised into notions and functionalities based on industry standards
that language engineers should consider. Generally, design decisions that are relevant
to a particular domain improves the overall quality of a DSML, and is aligned with all
the involved key stakeholders that must be considered as part of the complete language
infrastructure. The presented (non-exhaustive) design guidelines therefore serve as a ref-
erence to language engineers in practically developing better DSMLs in the industry and
answers the research question RQ5 (“How can language engineers develop better DSMLs
that improves the overall modelling experience for users?”).

Model-Aware Recommendations Chapter 7 describes a methodology for developing a
customisable recommendation tool directly on the modelling environment itself. The
tool, built using a combination of configurable business rules, a NoSQL database for
data storage, and GPL Java code for the implementation including the GUI, combines
aspects of integrating a complete language infrastructure to assist modellers without the
need to scour through endless pages of static sources of information such as handbooks
or tutorials, that are often outdated as newer functionalities are introduced for a DSML.
This thesis details a complete end-to-end solution for actively assisting modellers that
provides recommendations, methods, and suggestions based on the current modelling
scenario. To complement an answer to RQ5, such methods not only provides the nec-
essary direction to modellers but also allows them to think about their models more
actively. A guidance infrastructure that is tightly integrated with the technical defini-
tion of the language allows practitioners to further understand specific activities, tasks,
or processes for their current models. As described in this thesis, language engineers
easily configure and reconfigure rules without the need to constantly update a DSML it-
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self, such that the overhead costs for deploying such an active and synchronised solution
is significantly reduced. The recommendations that are made available through various
datasets are easily updated as each individual DSML building block, that represents
certain aspects of a single domain, are configured particularly with the help of domain
experts. The development of such a model-aware recommendation framework for as-
sisting practitioners in their modelling thus answers the research question RQ6 (“How
can we establish a modelling methodology for providing integrated recommendations and
guidance to modellers that considers their active modelling situation?”).

The individual chapters, the main results summarised in this chapter, and the case
studies (Chapter 8) all contribute to the main research question and the partial research
questions introduced in Chapter 1. To systematically engineer industrial DSMLs is a
challenge, and this thesis presents concepts and methods that language engineers should
consider to eventually develop better DSMLs that often comprise of intersecting and
heterogeneous domain concepts in the industrial contexts.

9.2 Potential for Further Work

This thesis explores the systematic engineering of industrial DSMLs primarily in the
MagicDraw ecosystem. The answers to the partial research questions introduced in
Chapter 1 are realised through the use of the commercial modelling tool, MagicDraw.
The engineering of DSMLs in the large is a huge effort and consist of a number of stake-
holders in any industrial DSML project. To this extent, a number of further questions
and alternative solutions arose during the course of this thesis.

Language Workbenches and Tools The concepts presented in this thesis primarily
consider MagicDraw as the choice of tool for the realisation and implementation of the
DSML building blocks and its parts. However, it must be noted that other graphical
modelling tools such as MetaEdit+ [Tol06], Enterprise Architect [Ent23], and Rational
Rhapsody [IBM23] also possess similar technical capabilities for language development.
Therefore, further exploration of the concepts related to language components and DSML
interoperability presented in this thesis with different commercial modelling tools provide
additional advantages and disadvantages of the overall industrial DSML engineering
process. Even though certain language workbenches such as MontiCore [HKR21], MPS
[VV10], Spoofax [WKV14], and Melange [DCB*15] provide the necessary means for
language composition and customisations, there is a need to further explore reusability
of similar domain concepts. The presented forms of language composition can further be
explored in other language workbenches that support language development such that
the true modularisation of language components can be achieved independent of any
language workbench or modelling tool.
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Technological Spaces Defining language components that are valid in different techno-
logical spaces is challenging and this thesis attempts to provide a solution for developing
such modular and reusable language components. In the textual space, MontiCore was
explored as part of defining language components [Worl9], while MagicDraw was ex-
plored for the same in the graphical space. However, the concepts presented in this
thesis detail primarily these two technological spaces, and do not represent completely
the entire technological spectrum for modelling languages. For example, the projec-
tional space [Cam14, RPKK20] is still relatively unexplored in respect to defining lan-
guage composition techniques as well as for providing variants of products and product
lines [SBW22]. While language composition has been applied with MPS [VV10], further
investigation is required as to whether reusable language components can be tailored in a
similar way as described in this thesis. Therefore, to provide a more holistic engineering
approach to combining textual, graphical, and projectional spaces, further research is
needed [EvdSV'13].

Design Considerations for High-Quality User Experience in DSMLs The design guide-
lines and design decisions, presented specifically in Chapter 6, are presented mainly for
industrial graphical DSMLs. Such guidelines can also naturally apply to other kinds of
graphical DSMLs, such as those in research. DSMLs are a specialised form of DSLs where
each model is designed in a particular language with model transformation possibilities
that potentially make the model valid in other modelling languages. Best practices for
engineering DSL generally exist [BAG18, Voe09], but there is still a gap to the best
practices for DSMLs that should be further studied [KKPT09]. Specific guidelines, such
as defining a custom Ul for generating ASTs from a textual grammar, could also be
considered for non-graphical DSMLs but needs more research. UX is a vastly subjective
topic, therefore providing a single source of truth for such guidelines is not easy. Fur-
ther efforts must be made to close the gap and the understanding between researchers
and practitioners to better represent the domains in consideration. The list of design
decisions described in this thesis are certainly non-exhaustive, meaning further research
can lead to additional design decisions and usability aspects that can be considered for a
good UX and those that are independent of any modelling tool or language workbench.

Intelligent MDE Although the recommendation framework presented in this thesis can
be considered part of artificial intelligence (AI) due to the broad definition of AI [BFG11],
deeper knowledge, processes, and introducing machine learning (ML) techniques should
be explored [PAC18]. This can ensure that active model-aware recommendations can
not only consist of information from static sources such as handbooks or tutorials, but
also be made available through the use of more intelligent systems such as by provid-
ing a more precise prediction based on historical domain data. For example, the use of
OpenATl’s ChatGPT [Ope23] can provide instantaneous answers to questions arising dur-
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ing modelling, and newer techniques can also provide such recommendations by acting
on behalf of the role specified by a practitioner. The role of ChatGPT in understand-
ing, analysing, and improving the intelligence of the models in a system can possibly
help language engineers understand better the various development processes in software
modelling [CGR23]. Further work to provide actions directly within the presented guid-
ance infrastructure is required that can effectively assign measurement values to models,
define complex rules between models, and provide navigability between models and their
recommendations. Further, making processes and their process models navigable in such
a guidance infrastructure to provide fine tuned and deeper analysis methods based on
the current modelling scenario of practitioners is also essential in fostering the usability
of industrial DSMLs.
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Related Work from the SE Group, RWTH Aachen

The following section gives an overview of related work done at the SE Group, RWTH Aachen.
More details can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The
work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods
for innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [RumO4c]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question of
how digital and organizational techniques help to cope with the physical distance of developers
and [RRSW17] addresses how to teach agile modeling.

Modeling will increasingly be used in development projects if the benefits become evident
early, e.g with executable UML [Rumo02] and tests [Rum03]. In [GKR+06], for example, we
concentrate on the integration of models and ordinary programming code. In [Rumll, Rum12]
and [Rum16, Rum17], the UML/P, a variant of the UML especially designed for programming,
refactoring, and evolution is defined.

The language workbench MontiCore [GKR+06, GKR+08, HKR21] is used to realize the UM-
L/P [Sch12]. Links to further research, e.g., include a general discussion of how to manage and
evolve models [LRSS10], a precise definition for model composition as well as model languages
[HKRA409], and refactoring in various modeling and programming languages [PR03]. To better
understand the effect of an agile evolving design, we discuss the need for semantic differencing
in [MRR10].

In [FHRO8] we describe a set of general requirements for model quality. Finally, [KRVO06]
discusses the additional roles and activities necessary in a DSL-based software development
project. In [CEG+14] we discuss how to improve the reliability of adaptivity through models
at runtime, which will allow developers to delay design decisions to runtime adaptation. In
[KMA+16] we have also introduced a classification of ways to reuse modeled software components.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, the size, and the number of artifacts developed and used
during a project together with their complex relationships is not trivial [BGRW17].

To keep track of relevant structures, artifacts, and their relations in order to be able, e.g., to
evolve or adapt models and their implementing code, the artifact model [GHR17, Grel9] was
introduced. [BGRW18] and [HJK+21] explain its applicability in systems engineering based on
MDSE projects and [BHR+-18] applies a variant of the artifact model to evolutionary develop-
ment, especially for CPS.
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An artifact model is a meta-data structure that explains which kinds of artifacts, namely code
files, models, requirements files, etc. exist and how these artifacts are related to each other.
The artifact model, therefore, covers the wide range of human activities during the development
down to fully automated, repeatable build scripts. The artifact model can be used to optimize
parallelization during the development and building, but also to identify deviations of the real
architecture and dependencies from the desired, idealistic architecture, for cost estimations, for
requirements and bug tracing, etc. Results can be measured using metrics or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19].
We have developed a compositional technique to integrate neural networks into larger software
architectures [KRRW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks.

For analysis of MLOps in an agile development, a software 2.0 artifact model distinguishing
different kinds of artifacts is given in [AKK+21].

According to [MRR11g] the semantic difference between two models are the elements contained
in the semantics of the one model that are not elements in the semantics of the other model.
A smart semantic differencing operator is an automatic procedure for computing diff witnesses
for two given models. Such operators have been defined for Activity Diagrams [MRR11d], Class
Diagrams [MRR11b], Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven
Component and Connector Architectures [BKRW17, BKRW19]. We also developed a modeling
language-independent method for determining syntactic changes that are responsible for the
existence of semantic differences [KR18a].

We apply logic, knowledge representation, and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests, or find counterexamples using a theorem
prover. We have defined a core theory in [BKR~+20], which is based on the core concepts of Broy’s
Focus theory [RR11, BRO7], and applied it to challenges in intelligent flight control systems and
assistance systems for air or road traffic management [KRRS19, KMP+21, HRR12].

Intelligent testing strategies have been applied to automotive software engineering [EJK+19,
DGH+19, KMS+18], or more generally in systems engineering [DGH+18]. These methods are
realized for a variant of SysML Activity Diagrams (ADs) and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11, KLPR12] and city quarters [GLPR15] to optimize operational
efficiency and prevent unneeded COq emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rumll, Ruml6] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible
generator for the UML/P, [Hab16] for MontiArc is used in domains such as cars or robotics
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[HRR12], and [AMN+20a] for enterprise information systems based on the MontiCore language
workbench [KRV10, GKR+06, GKR+08, HKR21].

In [KRV06], we discuss additional roles necessary in a model-based software development
project. [GKR+06, GHK+15, GHK+15a] discuss mechanisms to keep generated and handwrit-
ten code separated. In [Weil2, HRW15, Hoel8], we demonstrate how to systematically derive a
transformation language in concrete syntax and, e.g., in [HHR+15, AHRW17]| we have applied
this technique successfully for several UML sub-languages and DSLs.

[HNRW16] presents how to generate extensible and statically type-safe visitors. In [NRR16],
we propose the use of symbols for ensuring the validity of generated source code. [GMR+416]
discusses product lines of template-based code generators. We also developed an approach for
engineering reusable language components [HLN+15, HLN+15a].

To understand the implications of executability for UML, we discuss the needs and the advan-
tages of executable modeling with UML in agile projects in [Rum04c], how to apply UML for
testing in [Rum03], and the advantages and perils of using modeling languages for programming
in [Rum02].

Unified Modeling Language (UML) & the UML-P Tool

Starting with the early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML /P variant, which is described in the books [Rum16,
Rum17] and is implemented in [Sch12].

Semantic variation points of the UML are discussed in [GR11]. We discuss formal semantics for
UML [BHP+98] and describe UML semantics using the “System Model” [BCGRO09], [BCGR09a),
[BCRO7b] and [BCROT7a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGRO8]. A precisely defined semantics for variations is applied when checking
variants of class diagrams [MRR11e] and object diagrams [MRR11c] or the consistency of both
kinds of diagrams [MRR11f]. We also apply these concepts to activity diagrams [MRR11a] which
allows us to check for semantic differences in activity diagrams [MRR11d]. The basic semantics
for ADs and their semantic variation points are given in [GRR10].

We also discuss how to ensure and identify model quality [FHR08], how models, views, and
the system under development correlate to each other [BGH+98b], and how to use modeling in
agile development projects [Rum04c|, [Rum03] and [Rum02].

The question of how to adapt and extend the UML is discussed in [PFR02] describing product
line annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99a], [FEL+98] and [SRVK10].

The UML-P tool was conceptually defined in [Rum16, Rum17, Rum12, Rum11], got the first
realization in [Sch12], and is extended in various ways, such as logically or physically distributed
computation [BKRW17a]. Based on a detailed examination [JPR+22], insights are also trans-
ferred to the SysML 2.

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use than
general-purpose programming languages but need appropriate tooling. The MontiCore language
workbench [GKR+06, KRV10, Kral0, GKR+08, HKR21] allows the specification of an integrated
abstract and concrete syntax format [KRV07b, HKR21] for easy development. New languages
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and tools can be defined in modular forms [KRV08, GKR+07, Voell, HLN+15, HLN+15a,
HRW18, BEK+18b, BEK+19, Sch12] and can, thus, easily be reused. We discuss the roles in
software development using domain specific languages already in [KRV06] and elaborate on the
engineering aspect of DSL development in [CFJ+16].

[Weil2, HRW15, Hoel8] present an approach that allows the creation of transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GRI11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses, and model evolution
have been discussed in [LRSS10] and [SRVK10]. [BJRW18] describes a mapping bridge between
both. DSL quality in [FHRO8], instructions for defining views [GHK+07] and [PFR02], guidelines
to define DSLs [KKP+09], and Eclipse-based tooling for DSLs [KRV07a] complete the collection.

A broader discussion on the global integration of DSMLs is given in [CBCR15] as part of
[CCF+15al, and [TAB+21] discusses the compositionality of analysis techniques for models.

The MontiCore language workbench has been successfully applied to a larger number of do-
mains, resulting in a variety of languages documented, e.g., in [AHRW17, BEH+20, BHR+21,
BPR+20, HHR+15, HIRW20, HMR+19, HRR12, PBI+16, RRW15] and Ph.D. theses like [Ber10,
Grel9, Hab16, Her19, Kus21, Lool7, Pinl4, Plo18, Reil6, Rot17, Sch12, Worl6].

Software Language Engineering

For a systematic definition of languages using a composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15a]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRVO07b, Kral0, KRV10, HR17, HKR21, HRW18, BPR+20, BEK+19].

In [SRVK10] we discuss the possibilities and the challenges of using metamodels for language
definition. Modular composition, however, is a core concept to reuse language components like
in MontiCore for the frontend [Voell, Naz17, KRV08, HLN+15, HLN+15a, HNRW16, HKR21,
BEK+18b, BEK+19] and the backend [RRRW15b, NRR16, GMR+16, HKR21, BEK+18b,
BBC+18]. In [GHK+15, GHK+15a], we discuss the integration of handwritten and generated
object-oriented code. [KRV10] describes the roles in software development using domain specific
languages.

Language derivation is to our belief a promising technique to develop new languages for a
specific purpose, e.g., model transformation, that relies on existing basic languages [HRW18].

How to automatically derive such a transformation language using a concrete syntax of the
base language is described in [HRW15, Weil2] and successfully applied to various DSLs.

We also applied the language derivation technique to tagging languages that decorate a base
language [GLRR15] and delta languages [HHK+15, HHK+13] that are derived from base lan-
guages to be able to constructively describe differences between model variants usable to build
feature sets.

The derivation of internal DSLs from grammars is discussed in [BDL+18] and a translation of
grammars to accurate metamodels in [BJRW18].
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Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services.

We use streams, statemachines, and components [BR07] as well as expressive forms of com-
position and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete tooling
infrastructure called MontiArc [HRR10, HRR12] for architecture design and extensions for states
[RRW13c, BKRW17a, RRW14a, Worl6]. In [RRW13], we introduce a code generation framework
for MontiArc. [RRRW15b] describes how the language is composed of individual sublanguages.

MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11]
and evolution on deltas [HRRS12]. Other extensions are concerned with modeling cloud architec-
tures [PR13], security in [HHR~+15], and the robotics domain [AHRW17, AHRW17b]. Extension
mechanisms for MontiArc are generally discussed in [BHH+17].

[GHK+07] and [GHK+08] close the gap between the requirements and the logical architecture
and [GKPROS8] extends it to model variants.

[MRR14b] provides a precise technique for verifying the consistency of architectural views
[Rin14, MRR13] against a complete architecture to increase reusability. We discuss the synthesis
problem for these views in [MRR14a]. An experience report [MRRW16] and a methodological
embedding [DGH+19] complete the core approach.

Extensions for co-evolution of architecture are discussed in [MMR10], for powerful analyses
of software architecture behavior evolution provided in [BKRW19], techniques for understand-
ing semantic differences presented in [BKRW17], and modeling techniques to describe dynamic
architectures shown in [HRR98, HKR+16, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09, TAB+21] motivate the basic mechanisms for modularity and compositionality for
modeling. The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically
grounded in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to
the language workbench MontiCore [KRV10, HKR21] that can even be used to develop mod-
eling tools in a compositional form [HKR21, HLN+15, HLN+15a, HNRW16, NRR16, HRW18,
BEK+18b, BEK+19, BPR+20, KRV07b]. A set of DSL design guidelines incorporates reuse
through this form of composition [KKP+09].

[Voell] examines the composition of context conditions respectively the underlying infrastruc-
ture of the symbol table. Modular editor generation is discussed in [KRVO07a]. [RRRW15b]
applies compositionality to robotics control.

[CBCR15] (published in [CCF+15al]) summarizes our approach to composition and remaining
challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information, we have developed the concept of tagging languages in
[GLRR15, MRRW16]. It allows the description of additional information for model elements in
separated documents, facilitates reuse, and allows typing tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision, and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by
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using mathematical theory in [RKB95, BHP498] and [GKR96, KRB96, RK96]. An extended
version especially suited for the UML is given in [GRR09], [BCGR09a] and in [BCGRO09] its
rationale is discussed. [BCRO7a, BCRO7b] contain detailed versions that are applied to class
diagrams in [CGRO8] or sequence diagrams in [BGH+98a).

To better understand the effect of an evolved design, detection of semantic differencing, as
opposed to pure syntactical differences, is needed [MRR10]. [MRR11d, MRR11a] encode a part
of the semantics to handle semantic differences of activity diagrams. [MRR11f, MRR11f] compare
class and object diagrams with regard to their semantics. And [BKRW17] compares component
and connector architectures similar to SysML’ block definition diagrams.

In [BRO7, RR11], a precise mathematical model for distributed systems based on black-box
behaviors of components is defined and accompanied by automata in [Rum96]. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of exemplary object interaction, today called sequence diagram. [BGH+98b] discusses
the relationships between a system, a view, and a complete model in the context of the UML.

[GR11] and [CGRO09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these to class and object diagrams in
[MRRI11f{] as well as activity diagrams in [GRR10].

[Rum12] defines the semantics in a variety of code and test case generation, refactoring,
and evolution techniques. [LRSS10] discusses the evolution and related issues in greater de-
tail. [RW18] discusses an elaborated theory for the modeling of underspecification, hierarchical
composition, and refinement that can be practically applied to the development of CPS.

A first encoding of these theories in the Isabelle verification tool is defined in [BKR+-20].

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code, they are not initially
correct and need to be changed, evolved, and maintained over time. Model transformation is
therefore essential to effectively deal with models [CFJ+16].

Many concrete model transformation problems are discussed: evolution [LRSS10, MMR10,
Rum04c, MRR10], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20], synthe-
sis [MRR14a], refactoring [Rum12, PR03], translating models from one language into another
[MRR1le, Ruml2], systematic model transformation language development [Weil2, HRW15,
Hoel8, HHR+15], repair of failed model evolution [KR18a].

[RumO04c| describes how comprehensible sets of such transformations support software develop-
ment and maintenance [LRSS10], technologies for evolving models within a language and across
languages, and mapping architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97| and refining pipe-and-filter architectures is explained
in [PR99]. This has e.g. been applied for robotics in [AHRW17, AHRW17b].

Refactorings of models are important for model driven engineering as discussed in [PR01, PR03,
Ruml2]. [HRRS11, HRR+11, HRRS12] encode these in constructive Delta transformations,
which are defined in derivable Delta languages [HHK+13].

Translation between languages, e.g., from class diagrams into Alloy [MRR11e] allows for com-
paring class diagrams on a semantic level. Similarly, semantic differences of evolved activity
diagrams are identified via techniques from [MRR11d] and for Simulink models in [RSW+15].
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Variability and Software Product Lines (SPL)

Products often exist in various variants, for example, cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08, GKPROS] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12].

Delta modeling is a bottom up technique starting with a small, but complete base variant.
Features are additive, but also can modify the core. A set of commonly applicable deltas
configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRRS11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe special
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK+13, HHK+15] and [HRW15] describe an approach to systematically
derive delta languages.

We also apply variability modeling languages to describe syntactic and semantic variation
points, e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we spec-
ified a systematic way to define variants of modeling languages [CGR09], leverage features for
their compositional reuse [BEK+18b, BEK+19], and applied it as a semantic language refinement
on Statecharts in [GR11].

Digital Twins and Digital Shadows in Engineering and Production

The digital transformation of production changes the life cycle of the design, the production, and
the use of products [BDJ+22]. To support this transformation, we can use Digital Twins (DTs)
and Digital Shadows (DSs). In [DMR+20] we define: A digital twin of a system consists of a
set of models of the system, a set of digital shadows, and provides a set of services to use the
data and models purposefully with respect to the original system.”

We have investigated how to synthesize self-adaptive DT architectures with model-driven meth-
ods [BBD+21a] and have applied it e.g. on a digital twin for injection molding [BDH+20]. In
[BDR+21] we investigate the economic implications of digital twin services.

Digital twins also need user interaction and visualization, why we have extended the infrastruc-
ture by generating DT cockpits [DMR+20]. To support the DevOps approach in DT engineering,
we have created a generator for low-code development platforms for digital twins [DHM+22] and
sophisticated tool chains to generate process-aware digital twin cockpits that also include con-
densed forms of event logs [BMR+22].

[BBD+21b] describes a conceptual model for digital shadows covering the purpose, relevant
assets, data, and metadata as well as connections to engineering models. These can be used
during the runtime of a DT, e.g. when using process prediction services within DTs [BHK+21].

Integration challenges for digital twin systems-of-systems [MPRW22] include, e.g., the hori-
zontal integration of digital twin parts, the composition of DTs for different perspectives, or how
to handle different lifecycle representations of the original system.

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12, BBR20] are complex, distributed systems that control
physical entities. In [RW18], we discuss how an elaborated theory can be practically applied to
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the development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12, KRRW17], autonomous driving [BR12b, KKR19], and digital twin develop-
ment [BDH+20] to processes and tools to improve the development as well as the product itself
[BBRO7].

In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest to European avionics [ZPK+11]. Optimized [KRS+18a] and domain specific
code generation [AHRW17b], and the extension to product lines of CPS [RSW+15, KRR+16,
RRS+16] are key for CPS.

A component and connector architecture description language (ADL) suitable for the specific
challenges in robotics is discussed in [RRW13c, RRW14a, Worl6, RRSW17, Wor21]. In [RRW12],
we use this language for describing requirements and in [RRW13], we describe a code generation
framework for this language. Monitoring for smart and energy efficient buildings is developed as
an Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition of contribut-
ing to systems engineering in automotive [FND+98] and [GHK+08a], which culminated in a new
comprehensive model-driven development process for automotive software [KMS+18, DGH+19].
We leveraged SysML to enable the integrated flow from requirements to implementation to in-
tegration.

To facilitate the modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for production engineering based on these con-
cepts [BKL+18] and addressed to bridge the gap between functions and the physical product
architecture by modeling mechanical functional architectures in SysML [DRW+20]. For that
purpose, we also did a detailed examination of the upcoming SysML 2.0 standard [JPR+22]
and examined how to extend the SPES/CrEST methodology for a systems engineering approach
[BBR20].

Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20], and have proposed model-driven architectures for DT cockpit
engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09a, BCGR09], (2) understanding the
refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18] of statema-
chines, and (3) applying statemachines for modeling systems.
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In [Rum96, RW18] constructive transformation rules for refining automata behavior are given
and proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded
in the composition and behavioral specification concepts of Focus [GKR96, BRO7].

We apply these techniques, e.g., in MontiArcAutomaton [RRW13, RRW14a, RRW13, RW1§],
in a robot task modeling language [THR+13], and in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behavior (2) based on information from previously stored and real-time monitored
structural context and behavior data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include
DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20, MRZ21] or UML/P based languages [MNRV19]. [MM15] describes
a process of how languages for assistive systems can be created. MontiGem [AMN+20a] is used
as the underlying generator technology.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered privacy-
driven systems in the IoT domain in combination with process mining systems [MKM+19],
differential privacy on event logs of handling and treatment of patients at a hospital [MKB+19],
the mark-up of online manuals for devices [SM18a] and websites [SM20], and solutions for privacy-
aware environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view of the system design allows to track who does what, when, why, where, and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modeling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires the composition and the interaction of diverse distributed
software modules. This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers the broad propagation of robotics applica-
tions.

The MontiArcAutomaton language [RRW12, RRW14a] extends the ADL MontiArc and inte-
grates various implemented behavior modeling languages using MontiCore [RRW13c, RRRW15b,
HKR21] that perfectly fit robotic architectural modeling,.

The iserveU modeling framework describes domains, actors, goals, and tasks of service robotics
applications [ABH+16, ABH+17] with declarative models. Goals and tasks are translated into
models of the planning domain definition language (PDDL) and then solved [ABK+17]. Thus,
domain experts focus on describing the domain and its properties only.

The LightRocks [THR+13, BRS+15] framework allows robotics experts and laymen to model
robotic assembly tasks. In [AHRW17, AHRW17b], we define a modular architecture model-
ing method for translating architecture models into modules compatible with different robotics
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middleware platforms.
Many of the concepts in robotics were derived from automotive software [BBR0O7, BR12b].

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment, and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed, and tested. A consistent requirement
management connecting requirements with features in all development phases for the automotive
domain is described in [GRJA12].

The conceptual gap between requirements and the logical architecture of a car is closed in
[GHK+07, GHK+08]. A methodical embedding of the resulting function nets and their quality
assurance using automated testing is given in the SMaRDT method [DGH+19, KMS+18].

[HKM+13] describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses
the means to extract a well-defined Software Product Line from a set of copy and paste variants.

Potential variants of components in product lines can be identified using similarity analysis
of interfaces [KRR+16], or execute tests to identify similar behavior [RRS+16]. [RSW-+15]
describes an approach to using model checking techniques to identify behavioral differences of
Simulink models. In [KKR19], we model dynamic reconfiguration of architectures applied to
cooperating vehicles.

Quality assurance, especially of safety-related functions, is a highly important task. In the
Carolo project [BR12b, BR12], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic
speedup in the development and the evolution of autonomous car functionality, and thus enables
us to develop software in an agile way [BR12b].

[MMR10] gives an overview of the state-of-the-art in development and evolution on a more
general level by considering any kind of critical system that relies on architectural descriptions.

MontiSim simulates autonomous and cooperative driving behavior [GKR~+17] for testing vari-
ous forms of errors as well as spatial distance [FIK+18, KKRZ19]. As tooling infrastructure, the
SSELab storage, versioning, and management services [HKR12] are essential for many projects.

Internet of Things, Industry 4.0 & the MontiThings Tool

The Internet of Things (IoT) requires the development of increasingly complex distributed
systems. The MontiThings ecosystem [KRS+22] provides an end-to-end solution to model-
ing, deploying [KKR+22], and analyzing [KMR21] failure-tolerant [KRS+22] IoT systems and
connecting them to synthesized digital twins [KMR~+20]. We have investigated how model-
driven methods can support the development of privacy-aware [ELR+17, HHK+14] cloud sys-
tems [PR13], distributed systems security [HHR+15], privacy-aware process mining [MKM+19],
and distributed robotics applications [RRRW15b].

In the course of Industry 4.0, we have also turned our attention to mechanical or electrical ap-
plications [DRW+20]. We identified the digital representation, integration, and (re-)configuration
of automation systems as primary Industry 4.0 concerns [WCB17]. Using a multi-level modeling
framework, we support machine as a service approaches [BKL+18].
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Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO5 emis-
sions are important challenges. Thus, energy management in buildings as well as in neighbor-
hoods becomes equally important to efficiently use the generated energy. Within several research
projects, we developed methodologies and solutions for integrating heterogeneous systems at dif-
ferent scales.

During the design phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12,
KPR12] is used for the technical specification of building services already.

We adapted the well-known concept of statemachines to be able to describe different states
of a facility and validate it against the monitored values [FLP+11b]. We show how our data
model, the constraint rules, and the evaluation approach to compare sensor data can be applied
[KLPR12].

Cloud Computing and Services

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality, and new ap-
plication domains. It promises to enable new business models, facilitate web-based innovations,
and increase the efficiency and cost-effectiveness of web development [KRR14].

Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15a], Big
Data, Apps, and Service Ecosystems bring attention to aspects like responsiveness, privacy, and
open platforms. Regardless of the application domain, developers of such systems need robust
methods and efficient, easy-to-use languages and tools [KRS12].

We tackle these challenges by perusing a model-based, generative approach [PR13]. At the
core of this approach are different modeling languages that describe different aspects of a cloud-
based system in a concise and technology-agnostic way. Software architecture and infrastructure
models describe the system and its physical distribution on a large scale.

We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the
Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and our development
platforms. New services, e.g., for collecting data from temperature sensors, cars, etc. are now
easily developed and deployed, e.g., in production or Internet-of-Things environments.

Security aspects and architectures of cloud services for the digital me in a privacy-aware envi-
ronment are addressed in [ELR+17].

Model-Driven Engineering of Information Systems & the MontiGem Tool

Information Systems provide information to different user groups as the main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HKR21], we
developed several generators for such data-centric information systems.

MontiGem [AMN+20a] is a specific generator framework for data-centric business applica-
tions that uses standard models from UML/P optionally extended by GUI description models
as sources [GMN+20]. While the standard semantics of these modeling languages remains un-
touched, the generator produces a lot of additional functionality around these models. The
generator is designed flexible, modular, and incremental, handwritten and generated code pieces
are well integrated [GHK+15a, NRR15a], tagging of existing models is possible [GLRR15], e.g.,
for the definition of roles and rights or for testing [DGH+18].
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We are using MontiGem for financial management [GHK+20, ANV+18], for creating digital
twin cockpits [DMR+20], and various industrial projects. MontiGem makes it easier to create
low-code development platforms for digital twins [DHM+22]. When using additional DSLs, we
can develop assistive systems providing user support based on goal models [MRV20], privacy-
preserving information systems using privacy models and purpose trees [MNRV19], and process-
aware digital twin cockpits using BPMN models [BMR+22].

We have also developed an architecture of cloud services for the digital me in a privacy-aware

environment [ELR+17] and a method for retrofitting generative aspects into existing applications
[DGM+21].
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