
Arvid Butting

Systematic Composition
of Language Components
in MontiCore

Aachener Informatik-Berichte,
Software Engineering
Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

Systematic Composition of
Language Components in MontiCore

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Arvid Butting, M.Sc. RWTH
aus Willich

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe
Professor Jeff Gray

Tag der mündlichen Prüfung: 12.07.2022

[But23] A. Butting:
Systematic Composition of Language Components in MontiCore.
Aachener Informatik-Berichte, Software Engineering, Band 53, ISBN 978-3-8440-8936-3, Shaker Verlag, Februar 2023.
www.se-rwth.de/publications/

Eidesstattliche Erklärung

I, Arvid Butting

erklärt hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen
sind und selbstständig, als Ergebnis der eigenen originären Forschung, generiert wurden.

Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser
Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde
stets die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene
Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in: [BEH+20, BEK+18a,
BEK+18b, BEK+19, BMSN21, BW21]

Abstract

In model-driven development (MDD), models are central software engineering arti-
facts. MDD is applied to various domains such as avionics, law, mechanical engineering,
or robotics, in which the domain engineers are not always software engineers. To this end,
modelers should specify models in a notation close to the application domain, which is
achieved by employing domain-specific modeling languages (DSMLs). In complex mod-
ern software applications, different aspects of an application are modeled with numerous
integrated models. The models conform to heterogeneous, integrated DSMLs that can
assure consistency between the models of an application.

Ad-hoc development of DSMLs is a time-consuming and error-prone process. Sys-
tematic and “off-the-shelf” black-box reuse of DSMLs or parts of it supports engineering
DSMLs faster and more reliably. In black-box reuse, unlike reuse via clone-and-own,
the reused parts remain unchanged and do not result in co-existing clones. Such reuse
requires language engineers to be able to integrate DSMLs through different forms of
language composition. Current approaches for engineering DSMLs often rely on generic
language infrastructure, which complicates compatibility checks between the infrastruc-
tures of languages that are to be composed. Approaches for modularization of DSMLs
typically focus on the conceptual parts of a language rather than on their realizations.

This thesis describes an approach for realizing modular language components that
can be composed via their symbol tables to realize language product lines with the lan-
guage workbench MontiCore. The proposed language components identify the entirety of
source code artifacts that realize a DSML. The DSMLs rely on kind-typed symbol tables
that assure language compatibility during language composition. Language composition
via symbol tables is lightweight because language infrastructures are only loosely coupled.
An approach for persisting symbol tables further decouples language infrastructures from
another and increases the performance for type and consistency checking between mod-
els that conform to different DSMLs. With the approach for language product lines,
language components can be composed systematically and undesired compositions can
be avoided. Typed and persisted symbol tables, language components, and language
product lines as presented in this thesis aim to realize DSML engineering in the large.

Kurzfassung

In der modellgetriebenen Softwareentwicklung (MDD) sind Modelle die zentralen Ent-
wicklungsartefakte. MDD wird in verschiedenen Domänen wie Luftfahrt, Recht, Maschi-
nenbau oder Robotik angewendet, in denen die Domänenexperten nicht immer auch
Softwareentwickler sind. Daher sollten Modellierer die Modelle in einer Notation spe-
zifizieren, die nah an der Anwendungsdomäne liegt. Dies wird durch die Nutzung von
domänenspezifischen Modellierungssprachen (DSMLs) erreicht. In komplexen modernen
Softwareanwendungen werden verschiedene Aspekte in zahlreichen integrierten Modellen
dargestellt. Diese Modelle sind konform zu heterogenen, integrierten DSMLs, welche die
Konsistenz der Modelle einer Applikation sicherstellen können.

Die Ad-hoc-Entwicklung von DSMLs ist ein zeitintensiver und fehleranfälliger Prozess.
Systematische und standardmäßige Black-Box-Wiederverwendung von DSMLs oder Tei-
len von diesen unterstützt deren schnellere und zuverlässigere Entwicklung. Bei der
Black-Box-Wiederverwendung werden im Gegensatz zur Wiederverwendung über Clone-
and-Own die wiederverwendeten Anteile unverändert übernommen und führen nicht zu
nebeneinander existierenden Klonen. Derartige Wiederverwendung setzt voraus, dass
Sprachentwickler DSMLs durch verschiedene Formen der Sprachkomposition integrieren
können. Bestehende Ansätze zur Entwicklung von DSMLs basieren oft auf generischer
Sprachinfrastruktur, wodurch Kompatibilitätsprüfungen zwischen den Infrastrukturen
von zu komponierenden Sprachen kompliziert sind. Ansätze für die Modularisierung
von DSMLs fokussieren typischerweise die konzeptuellen Teile einer Sprache anstelle der
Realisierung.

Diese Arbeit beschreibt einen Ansatz zur Realisierung von modularen Sprachkompo-
nenten, die über ihre Symboltabellen komponiert werden können, um so Sprachprodukt-
linien in der Language Workbench MontiCore umsetzen zu können. Die vorgestellten
Sprachkomponenten identifizieren die Gesamtheit der Quellcodeartefakte die eine DSML
realisieren. Die DSMLs basieren auf durch Kinds getypte Symboltabellen, welche die
Sprachkompatibilität während der Sprachkomposition sicherstellen. Die Komposition
von Sprachen über Symboltabellen ist leichtgewichtig, weil die Sprachinfrastrukturen so
nur lose gekoppelt werden. Ein Ansatz für die Persistenz von Symboltabellen entkop-
pelt die Sprachinfrastrukturen noch weiter voneinander und verbessert die Performanz
für Typ- und Konsistenzprüfungen zwischen Modellen die zu unterschiedlichen DSMLs
konform sind. Mit dem Ansatz für Sprachproduktlinien können Sprachkomponenten sys-
tematisch komponiert und unerwünschte Kompositionen vermieden werden. Die in dieser
Arbeit vorgestellten getypten und persistierten Symboltabellen, Sprachkomponenten und
Sprachproduktlinien zielen darauf ab, Sprachentwicklung im Großen umzusetzen.

Danksagung

Mein erster Dank gilt dem Erstgutachter dieser Arbeit, Prof. Dr. Bernhard Rumpe,
welcher mich über meine gesamte Zeit am Lehrstuhl unterstützt und motiviert hat.
Vielen Dank für das gute Feedback und die spannenden Diskussionen, sowie dafür dass
ich für diese Arbeit – aber auch abseits dieser Arbeit – viele interessante Projekte und
Themen bearbeiten durfte. Weiterhin bedanke ich mich bei Prof. Dr. Jeff Gray für
die Übernahme der Rolle des Zweitgutachters sowie bei Prof. Dr. Erika Ábrahám
und bei Prof. Dr. Ir. Dr. h.c. Joost-Pieter Katoen, welche die Prüfungskomission
vervollständigen.

Für die stets gute Zusammenarbeit möchte ich mich bei meinen sämtlichen aktuellen
und ehemaligen Kolleginnen und Kollegen bedanken. Ohne eure Unterstützung in den
unterschiedlichen Phasen meiner Zeit am Lehrstuhl wäre mir das Erstellen dieser Arbeit
deutlich schwerer gefallen und hätte mir deutlich weniger Freude bereitet. Besonders
bedanken möchte ich mich bei Kai Adam, Daoud Ali, Vincent Bertram, Marita Breuer,
Lennart Bucher, Joel Charles, Imke Nachmann, Niklas Dienstknecht, Robert Eiker-
mann, Arkadii Gerasimov, Dr. Timo Greifenberg, Sylvia Gunder, Malte Heithoff, Stef-
fen Hillemacher, Dr. Katrin Hölldobler, Nico Jansen, Dr. Oliver Kautz, Jörg Christian
Kirchhof, Dr. Evgeny Kusmenko, Achim Lindt, Dr. Markus Look, Matthias Mark-
thaler, Joshua Mingers, Sonja Müßigbrodt, Dr. Judith Michael, Dr. Pedram Mir Seyed
Nazari, Lukas Netz, Jerome Pfeiffer, Mathias Pfeiffer, Nina Pichler, Manuel Pützer, Deni
Raco, David Schmalzing, Dr. Christoph Schulze, Brian Sinkovec, Sebastian Stüber, Si-
mon Varga, Galina Volkova, Louis Wachtmeister, Dr. Michael von Wenckstern und
Jun.-Prof. Dr. Andreas Wortmann.

Für das Lesen von Abschnitten dieser Arbeit bedanke ich mich ganz herzlich bei
Andreas, Christian, David, Evgeny, Imke, Jerome, Judith, Katrin, Lukas, Malte, Nico,
Oliver, Sebastian, Simon und Steffen.

Ich bedanke mich bei meiner gesamten Familie für die Unterstützung während des
Studiums, des Schreibens dieser Arbeit und der Prüfungsvorbereitung. Besonders be-
danken möchte ich mich bei meinen Eltern Silke und Peer, die mir das Informatikstudium
ermöglicht haben.

Zu guter Letzt bedanke ich mich ganz herzlich bei meiner Frau Sina: Du hast mich
während der Anfertigung der Arbeit nicht nur durchweg unterstützt und motiviert, son-
dern auch verständnisvoll auf viel gemeinsame Zeit, insbesondere an den Wochenenden,
verzichtet. Darüber hinaus bin ich überglücklich, dass du unseren Sohn Jano zur Welt
gebracht hast.

Aachen, Juli 2022
Arvid Butting

Contents

1 Introduction 1
1.1 Research Question & Objectives . 3

1.2 Main Results and Structure of Thesis . 5

2 Foundations 9
2.1 Software Language Engineering . 9

2.1.1 Software Languages . 9

2.2 The MontiCore Language Workbench . 13

2.2.1 MontiCore Grammars . 15

2.2.2 Abstract Syntax Tree Data Structure 21

2.2.3 Traversing the Abstract Syntax . 23

2.2.4 Context Conditions . 25

2.2.5 Identifying Artifacts in the File System 27

2.2.6 Instantiating the Language Infrastructure 27

2.2.7 Integration of Handwritten Code 27

2.2.8 Language Composition . 29

2.3 Software Product Line Engineering . 32

2.3.1 Variability in Software and Software Product Lines 33

2.3.2 Software Reuse . 35

2.3.3 Feature Diagrams . 36

3 Method for the Systematic Composition of Language Components in Monti-
Core 41

4 Generating Kind-Typed Symbol Table Infrastructures 45
4.1 Concept of Kind-Typed Symbol Tables . 48

4.1.1 Relationships between Symbols, Scopes, and AST Nodes 49

4.1.2 Defining Names via Symbols . 50

4.1.3 Capturing Name Visibility with Scopes 51

4.1.4 Providing Access to a Model’s Symbol Table with Artifact Scopes 54

4.1.5 Bridging the Gap Between Models with Global Scopes 55

4.1.6 Using Model Elements through Names 56

4.1.7 Type Definitions and Type Expressions 58

4.1.8 Symbol Resolution . 62

xiii

4.1.9 Symbol Table Traversal . 69
4.1.10 Symbol Table Instantiation . 70

4.2 Annotating Grammars with Symbol Table Information 73
4.2.1 Indicate that a Nonterminal Defines a Symbol Kind 73
4.2.2 Indicate that a Nonterminal Spans a Scope 75
4.2.3 Indicate that a Nonterminal Uses the Name of a Symbol 76
4.2.4 Providing Symbol Kind Attributes 77
4.2.5 Providing Scope Attributes . 79

4.3 Implementation of the Typed Symbol Table Infrastructure 80
4.3.1 Implementation of Language Mills in MontiCore 81
4.3.2 Implementation of Scopes in MontiCore 82
4.3.3 Implementation of Artifact Scopes in MontiCore 90
4.3.4 Implementation of Global Scopes in MontiCore 92
4.3.5 Implementation of Symbol Resolvers in MontiCore 94
4.3.6 Customizing Symbol Resolution 95
4.3.7 Realization of Symbols in Symbol Classes 96
4.3.8 Instantiating Symbol Tables with Scopes Genitors 97
4.3.9 Instantiating Symbol Tables of Composed Languages with Scopes

Genitor Delegators . 99
4.4 Discussion . 99
4.5 Related Work . 101

5 Infrastructure for Loading and Storing Symbol Tables 105
5.1 Serialization in General . 107

5.1.1 Serialization and Deserialization 107
5.1.2 Serialization Strategies . 108
5.1.3 Serialization with Intermediate Structure 111

5.2 Concept for Symbol Table Persistence . 112
5.2.1 Overview of Symbol Table Persistence 112
5.2.2 Organization of Persisted Files . 114
5.2.3 Concept for Symbol Table Serialization and Deserialization 116

5.3 JSON Infrastructure . 123
5.3.1 JSON Abstract Syntax Model . 124
5.3.2 Serialization Infrastructure . 128
5.3.3 Deserialization Infrastructure . 130

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore 132
5.4.1 Commonalities of Symbol DeSers in the ISymbolDeSer Interface 133
5.4.2 Commonalities of Scope DeSers in the IDeSer Interface 134
5.4.3 The JsonDeSers Class . 137
5.4.4 Symbols2Json Classes for Traversing Symbol Tables 137
5.4.5 SymbolDeSer Classes with Serialization Strategies for Symbols . 140

5.4.6 ScopeDeSer Classes with Serialization Strategies for Scopes . . . 141

5.4.7 Loading and Storing Symbol Tables via the Global Scope 143

5.4.8 Integrating Loading of Symbol Tables into Symbol Resolution . . . 145

5.4.9 Supporting Storing of Symbol Tables for Model Processing 146

5.5 Customizing the Persistence of Symbol Tables in MontiCore 147

5.5.1 Providing a Serialization Strategy for a Symbol Attribute 147

5.5.2 Omitting Serialization of Symbols of a Certain Kind 148

5.5.3 Realizing Serialization of an Additional Scope Attribute 149

5.5.4 Load ASTs together with Symbol Tables 151

5.5.5 Load Symbol Tables of a Single Language Only 152

5.5.6 Load Symbols as Instances of their Subkinds 152

5.5.7 Load Symbols as Instances of their Super Kinds 153

5.6 Discussion . 153

5.7 Related Work . 154

6 Using Typed Symbol Tables for Language Composition 157
6.1 Language Inheritance in the Typed Symbol Table Infrastructure 157

6.1.1 Language Inheritance of Scopes . 157

6.1.2 Language Inheritance of Symbol Table Creation 159

6.1.3 Language Inheritance of Symbol Table Persistence 161

6.1.4 Reconfiguration via Mills . 162

6.2 Adapting between Symbol Kinds . 163

6.2.1 Concept for Symbol Adapters . 164

6.2.2 Finding Symbol Adapters during Symbol Resolution 165

6.2.3 Combination of Symbol Adapters and Symbol Persistence 167

6.3 Importing Symbols from Java with Class2MC 170

6.4 Aggregation of Languages . 173

6.4.1 Aggregation through Shared Grammar 173

6.4.2 Aggregation through Unifying Grammar 174

6.4.3 Aggregation through Resolvers . 174

6.4.4 Aggregation through Symbol Files 175

6.5 Discussion . 176

6.6 Related Work . 176

7 Language Components 179
7.1 Language Component Models . 181

7.2 MontiCore Language Component Diagrams 184

7.3 Concept for Identifying Artifacts of Language Components 186

7.3.1 Address Artifacts of a Language Component 186

7.3.2 Artifact Analysis . 187

7.3.3 Building Self-Contained Language Component Archives 188

7.4 Realization of Language Components . 190

7.4.1 The MLC Language . 190

7.4.2 Tool for Processing MLC Models 195

7.5 Discussion . 197

7.6 Related Work . 199

8 The MontiCore Feature Diagram Language Family 201
8.1 The Feature Diagram Language . 203

8.2 The Feature Configuration Languages . 207

8.3 The Feature Diagram Analysis Tool . 208

8.4 Composing Feature Models with Domain Models 209

8.4.1 Internal Feature Realizations . 210

8.4.2 Referring to Feature Realizations 211

8.4.3 Mapping to Feature Realizations 212

8.5 Discussion . 213

8.6 Related Work . 214

9 Engineering Feature-Oriented Language Product Lines with MontiCore 215
9.1 Concept of a Feature-Oriented Language Product Line 217

9.1.1 Engineering a Language Product Line 217

9.1.2 Roles Involved in Language Product Lines 219

9.1.3 Describing the Composition of Language Components 221

9.1.4 Language Variant Derivation . 224

9.2 Realizing Language Product Lines in MontiCore 226

9.2.1 The Language Product Line Language 227

9.2.2 The Composition Infrastructure . 229

9.3 Discussion . 231

9.4 Related Work . 237

10 Application-Based Evaluation 241
10.1 Application of the STI . 242

10.2 Performance of Json Infrastructure . 243

10.3 Application of Loading and Storing Symbol Tables 244

10.4 Application of Language Composition via Symbol Tables 246

10.5 Application of MontiCore Language Components 248

10.6 Application of the Feature Diagram Language Family 249

10.7 Evaluation of the LCPL . 251

11 Conclusion 253
11.1 Summary . 253

11.2 Potential for Future Work . 254

Bibliography 257

List of Figures 275

Chapter 1

Introduction

With the digitalization of various documents and processes of different domains of daily
life, more and more domain engineers are confronted with using and implementing soft-
ware. As these domain engineers are rarely software engineers, digitalization raises the
challenge of providing domain engineers with suitable software languages. The vocabu-
lary used and understood by domain engineers differs from the notation of programming
languages, which causes a conceptual gap between the problem and the implementation
domains [FR07]. Enforcing domain engineers to learn programming languages can be
avoided, e.g., with model-driven development (MDD) [VSB+13] techniques. MDD uses
models [Sta73] as central artifacts for problem descriptions and transforms such models
into software implementations.

Dedicated domain-specific modeling languages (DSMLs) can support domain engi-
neers in implementing software, as these languages typically have a reduced complexity
compared to classical, general-purpose programming languages (GPLs) and make use of
domain vocabulary [MHS05]. Domain-specific notations lead to more accuracy and bet-
ter comprehensibility compared to GPLs [BGM10, KMC12]. Furthermore, using DSMLs
instead of GPLs, such as Java or C++, reduces the accidental complexity [Bro87] for
domain experts who are language users because these are liberated from learning com-
plex concepts of GPLs. However, such domain-specific modeling [GNT+07] raises the
challenge of building tailored DSMLs for different applications fast and reliably. This
thesis combines approaches from software language engineering, component-based soft-
ware engineering, and software product line engineering to meet this challenge.

Software language engineering investigates means and techniques for engineering soft-
ware languages, such as DSMLs, with language workbenches [Fow05]. The complex ap-
plications of modern software and systems engineering require expertise from a variety
of different domains. For example, the model-driven engineering of a service robotics ap-
plication requires experts, among others, in human-robot interaction, robot kinematics,
task planning, and software architectures. Experts of the different domains collaborate
and ideally use DSMLs most suitable for their domains to achieve such complex en-
deavors. To ensure the internal correctness of models and conformance towards external
requirements, the integration of the heterogeneous models of an application should be
supported by the integration of the DSMLs to which the models conform. Such forms

1

Chapter 1 Introduction

of language composition in which the models remain individual artifacts but may refer
to elements of other languages can be accomplished with symbol tables [MSN17].

Component-based software engineering helps increase the software’s reuse and thereby
also improves its quality and cost-efficiency. Software components [NR68] are loosely
coupled to their environment, such as to other software components and, hence, can
be individual units of reuse. The composition of components enables building software
from tried-and-tested components. As “software languages are software, too” [FGLP10],
the techniques of component-based software engineering can be applied to software lan-
guages. Recently, the modularization of software languages has been investigated in
a wealth of different approaches [BvdBH+15, CKM+18, DCB+15, GGdL+19, GP15,
KKCVW17, KVW13, LDC18, MGVB16]. However, the current approaches are often
tied to underlying technologies. Furthermore, most approaches require in-depth knowl-
edge about a language module to reuse it, limiting the approaches’ scalability for larger
constellations of languages.

Software product line engineering [ABKS13, CN02] investigates means to increase the
reuse among similar software products in terms of software product lines. With such
software product lines, the products can be engineered, analyzed, and evolved together.
The means of software product line engineering can be applied to the engineering process
of software languages, which yields language product lines [VCPC13, WHT+09]. Lan-
guage product lines model families of similar software languages and increase the ability
for language reuse.

Hoare noted that good programming language design requires “consolidation, not in-
novation” [Hoa73]. The reuse of tried-and-tested parts of language infrastructure and
language syntax is not only beneficial for engineering high-quality languages but is also
advantageous for language users who learn software languages faster if these rely on fa-
miliar vocabulary and concepts. An example of concepts that exist in many programming
languages are for-loops. Curly brackets are a common notation in modern languages for
enclosing blocks of statements. Besides better learnability, such common concepts and
notations foster the understandability of models and programs by people who are not
familiar with the syntax of a language.

This thesis describes means for software language engineering in the large by compos-
ing reusable language parts with the language workbench MontiCore [HKR21, KRV10].
Software languages can be encapsulated in language components to foster their reusabil-
ity. Suitable forms of language composition based on kind-typed symbol table infrastruc-
tures enable composing language components to build novel languages reliably and with
little effort. These forms of language composition integrate the software languages with-
out creating a tight coupling between the individual languages. Moreover, the thesis
explains an approach for realizing language product lines by the systematic composi-
tion of language components. This approach supports the controlled reuse of language
components and prohibits undesired forms of language component compositions.

2

1.1 Research Question & Objectives

1.1 Research Question & Objectives

Engineering languages in the large bears numerous challenges to which this thesis can
only contribute parts. The thesis focuses on techniques for engineering modular lan-
guages, enhanced forms of language composition suitable for being applied in larger
contexts, and on engineering language product lines with MontiCore. The main re-
search question of this thesis is:

How can modeling languages be composed via their symbol tables using reusable
language components and how can these language components be arranged in
variable language product lines, from which languages can be derived easily?

To answer the main research question, the thesis investigates the following five partial
research questions:

RQ1: Can a symbol table infrastructure with typed symbol kinds support language com-
position?
Symbol tables are central parts of a language infrastructure for realizing language compo-
sition. Type systems of programming languages enable constraining how typed language
elements (e.g., variables) are allowed to be used. A symbol table infrastructure whose
symbols are typed with a symbol kind may support composing languages by constraining
through a type system which elements of the languages are allowed to be used together.
An answer to this research question should either propose a method for realizing a sym-
bol table infrastructure that supports language composition through typed symbol kinds
or argue that such symbol tables do not benefit language composition.

RQ2: How can we reuse processed models of a language and of foreign languages?
Reusing processed models of a language rather than unprocessed models increases the
efficiency of language tools and, thus, enables agile development [Rum17]. Besides this,
reusing processed models of a language with the tool of another language supports novel
forms of language composition. An answer to this research question has to provide a
means to persist processed models in a representation that can be loaded by language
tools more efficiently than processing the models anew.

RQ3: How to compose languages via kind-typed symbol tables?
A language can only be separated into modules if suitable forms of language composition
exist for composing the modules to obtain the complete language. An answer to this
research question provides approaches for realizing different forms of language composi-
tion, such as language embedding, extension, or aggregation [HKR21] via typed symbol
table infrastructures.

3

Chapter 1 Introduction

RQ4: What constitutes a reusable language component?
Technically, a software language is realized by software [FGLP10], comprising a set of
interrelated source code artifacts. For reusing software languages, language engineers
must be able to precisely identify which artifacts are part of the infrastructure of a lan-
guage. An answer to this research question applies the concept of software components
to languages for supporting language engineering in the large. This requires that lan-
guage engineers can indicate which artifacts are part of a language component and which
artifacts the language component uses.

RQ5: How can a family/product line describing similar languages be modeled?
In the same way as software engineering in general, software language engineering in
the large can be supported by controlled reuse in product lines rather than cloning-and-
owning [DRB+13] variants for different, similar applications. An answer to this research
question proposes a concept for engineering language product lines that comprise indi-
vidual language features, which can be enabled or disabled. Furthermore, a process for
deriving languages as products from the product line has to be conceived.

The overall aim of this thesis is to increase the reusability of DSMLs and DSML parts.
With kind-typed symbol tables, DSMLs have an interface for language composition that
enables language composition without requiring in-depth knowledge about other parts of
the language infrastructure. Through symbol table persistence, the tools of different lan-
guages can be decoupled from one another. With well-defined language components, the
artifacts of a language can be identified and exchanged between language engineers. Fur-
thermore, undesired relations between language components that could prevent reusing
language components individually can be identified. Often, languages are only mod-
ularized based on a central artifact of the language definition, such as a context-free
grammar or a metamodel. An objective of this thesis is to enable language engineers
to modularize languages in terms of language components that contain all artifacts of a
language definition.

Language components support the engineering of languages in the large. An objective
of this thesis is to conceive a method for engineering language product lines that can
support language engineers in providing tried-and-tested constellations of language com-
ponents that can be used together. Moreover, language product lines should explicitly
model the interrelations between language components to enable automatic derivation
of languages from the product line. Furthermore, language product lines should model
negative relations between languages, i.e., to indicate that specific language components
should not be used together for a particular application. Engineering of DSMLs typically
has the challenge that language experts must be domain experts [MHS05]. Language
product lines should separate concerns between language engineering experts who de-
velop individual language components and domain experts who can compose languages
by deriving languages from the product line.

4

1.2 Main Results and Structure of Thesis

B C

A

bsym asym

A

csym

CB

RR = select A,B
Ch. 8:
Language Product Lines

Ch. 6:
Language Components

Ch. 4:
Symbol Table Persistence

Ch. 5: Language Composition

Ch. 3:
Kind-Typed Symbol Tables

Ch. 7: Feature Diagram Language Family

Figure 1.1: Structure of the thesis

1.2 Main Results and Structure of Thesis

The main results of this thesis are:

� The kind-typed symbol table infrastructure (STI) for MontiCore languages, for
which large parts can be generated from MontiCore grammars and all generated
parts can be customized with handwritten source code

� A customizable mechanism for loading and storing symbol tables in MontiCore
that is integrated into the symbol resolution [HKR21]

� A tool for importing Java types to MontiCore symbol tables

� A modeling language for describing language components and a tool for identifying
the artifacts of a language component

� An extensible feature diagram language for describing product lines that can be
integrated with application domain languages through language composition

� An approach for realizing language product lines from language components and a
semi-automated process for deriving languages from the product line by composing
language components

Some research results presented in this thesis have already been published in a similar
form before [BEH+20, BEK+18a, BEK+18b, BEK+19, BMSN21, BW21]. The thesis is
structured in a bottom-up approach: it first explains results that support engineering a

5

Chapter 1 Introduction

single language and then iteratively expands the scope until it presents results that sup-
port language engineering in the large. Each chapter has individual sections discussing
the chapter topics and relating these with similar work. An overview of the main con-
tributions of this thesis and the chapters that describe these is given in Figure 1.1.

Chapter 2 explains the foundations and terminology upon which the consecutive chap-
ters build. The foundations comprise topics from software language engineering and
topics from software product line engineering. Furthermore, the chapter introduces the
language workbench MontiCore.

Chapter 3 presents the overall method of systematic language composition for Monti-
Core language components that combines the individual approaches presented in this
thesis.

Chapter 4 describes the STI that enables realizing type-safe cross-references of model
elements within a single model and between models conforming to a single language.

Chapter 5 extends the STI described in Chapter 4 by the ability to load and store
symbol tables to symbol table files. This increases the efficiency of language tools and
prepares languages with a novel kind of interface for language composition.

Chapter 6 describes how different forms of language composition can be achieved with
the STI and stored symbol table files.

Chapter 7 explains the MontiCore language component (MLC) language to describe
which artifacts a language component comprises and a tool for investigating allowed and
illegal relationships to other language components. Furthermore, the chapter introduces
language component diagrams that enable visual representations of language compo-
nents. Figure 1.1 uses the speech bubble icons that identify a language component.

Chapter 8 describes the MontiCore feature diagram language family and explains how
its individual languages can be customized to realize different forms of product lines with
the underlying language composition techniques of MontiCore with the STI.

Chapter 9 explains how the feature diagram language family and the MLC language can
be combined to describe product lines of MontiCore languages. Language product lines
support language engineering in the large, among other things, because undesired lan-
guage compositions can be forbidden through the feature model and systematic reuse of
language components in product lines reduces cloning-and-owning of common language
parts.

Chapter 10 describes the evaluation of individual approaches presented in this thesis.

6

1.2 Main Results and Structure of Thesis

Chapter 11 summarizes the thesis results and describes how the results contribute an-
swers to the research questions. The thesis concludes with an outlook on potential for
future work.

7

Chapter 2

Foundations

This chapter defines basic terms, techniques, tools, and languages upon which the re-
maining chapters of the thesis build. Some of these notions belong to the field of software
language engineering and are explained in Section 2.1. Large parts of the thesis use and
extend the language workbench MontiCore, which is introduced in Section 2.2. Other
notions relevant for the thesis belong to the field of software product line engineering
and are introduced in Section 2.3.

2.1 Software Language Engineering

Software language engineering (SLE) is a sub-discipline of software engineering that aims
at conceiving means and methods to support the development of software languages
throughout their entire life cycle. This section explains basic properties of software lan-
guages and introduces essential features of the language workbench MontiCore [HKR21],
which is a tool for building languages.

2.1.1 Software Languages

Software languages are artificial languages supposed to be both readable by developers
and processable by machines. In MDD, the models typically conform to dedicated mod-
eling languages, which form a particular group of software languages. SLE distinguishes
general-purpose languages (GPLs) and domain-specific languages (DSLs) [Fow05]. GPLs
enable language users to describe any computable problem in various application do-
mains. Typical examples are programming languages [Mac99] such as Java or C. How-
ever, GPLs also exist within modeling languages. For instance, the unified modeling
language (UML) [Rum16] is a general-purpose modeling language that can be employed
for modeling aspects of various domains [BGM10].

DSLs, on the other hand, are specific to a particular domain and enable formulating
problems of the domain with the vocabulary of this domain. Such specialized languages
are typically limited in their expressiveness and are not necessarily Turing-complete.
Instead, DSLs often have a concise syntax with limited complexity. Typical examples
for DSLs are the hypertext markup language (HTML) in the domain of structured

9

Chapter 2 Foundations

documents or the structured query language (SQL) for the purpose of specifying queries
for database management systems.

DSMLs are modeling languages for which the models are primarily intended to be
used in certain domains only. Such models usually rely on terminology tied to specific
domains rather than domain-agnostic formulations. As the remainder of this thesis
mainly involves SLE in the context of DSMLs, we also refer to DSMLs as languages.

Definition of the Software Languages

Borrowed from formal language theory, a language can be defined as a“set of all linguistic
utterances,” where a linguistic utterance is, e.g., a word, a sentence, or a conversation
being part of the language [Kle08]. In the remainder of this thesis, we use the terms
word and sentence interchangeably for linguistic utterances of a language. As the thesis
lies in the context of MDD, it also uses the term model for a word of the language. For
software language engineering, it is helpful to define a software language more precisely.

According to Harel & Rumpe [HR04], a software language definition consists of (1)
the language’s syntax or notation, which is a possibly infinite set of words that are legal
in the language, (2) a semantic domain, and (3) a semantic mapping that gives each
sentence of a language a meaning by mapping it to the semantic domain. The semantic
domain is typically formally grounded and based on a mathematical theory such as, for
example, FOCUS [BS01]. Together, semantic domain and semantic mapping form the
semantics of a language.

An alternative definition for software languages by the GEMOC initiative [CBCR15]
separates the syntax of a language into the concrete syntax and the abstract syntax.
While the concrete syntax describes the appearance or presentation of a language, such
as, in terms of the keywords or order of statements, the abstract syntax captures the
essential parts of the language structure. According to the GEMOC definition, each
language further has static and dynamic semantics. The “static semantics” [CBCR15]
or context conditions in the form of Boolean predicates indicate the well-formedness of
sentences of the language. According to the definition of Harel & Rumpe, the syntax of
languages considers only well-formed models as legal words of the language. However,
the definition by the GEMOC initiative allows ill-formed models as part of the language.
Instead, the language’s static semantics [CBCR15] checks the well-formedness of models
is a separate part of the language according to the GEMOC initiative. The “dynamic
semantics” of the GEMOC software language definition corresponds with the semantics
in the definition of Harel & Rumpe. The latter definition, however, describes semantics
more precisely as a tuple of semantic mapping and semantic domain. Moreover, the term
dynamic semantics can be misleading for languages in which models cannot directly be
executed. In the remainder of this thesis, we rely on the following definition that is
based on the language definition by Harel & Rumpe but separates between concrete and
abstract syntax according to the GEMOC definition:

10

2.1 Software Language Engineering

L
e
x
in

g

Parse M2M

M
2
T

1.5 + 2 * 3
1.5

+

2

*

3 1.5

+

3 3

1.5+2*3

input

token
stream

abstract syntax tree
(AST)

transformed
AST

output

Compile
result =

add(3,3,1.5);

Figure 2.1: Example for the steps involved in compiling a model

Definition 1 (Software Language). A software language definition consists of

� the concrete syntax that can be, for instance, textual or graphical, and reflects the
set of all sentences of the language,

� the abstract syntax, i.e., essential concepts and structure of the sentences,

� a semantic domain, and

� the semantic mapping that gives each sentence of a language a meaning by mapping
it to the semantic domain.

Software languages can be realized in a variety of technological spaces. The tech-
nological space determines whether the concrete syntax of a language is textual or
graphical. Textual and graphical languages have individual advantages and disadvan-
tages [GKR+07]. Textual languages usually employ context-free grammars for the de-
scription of the concrete syntax. The concrete syntax of graphical languages can be,
e.g., box-and-line based, tabular, or tree-based [CFJ+16]. Textual languages are usually
editable with any text editor, while graphical languages are edited via dedicated model
editors. Projectional editors [VSBK14] enable editing a model’s abstract syntax through
different forms of concrete syntaxes. The abstract syntax of a language can be specified
through context-free grammars, such as in the language workbenches MontiCore [KRV07]
or Xtext [Bet16]. Alternatively, the abstract syntax can be specified through a meta-
model, which is a “model of a (user) model” [AK03]. EMF Ecore [SBMP08] is a common
meta-language to define metamodels. The semantics [HR04] of a language is either deno-
tational, operational, or axiomatic [CBCR15]. Operational realizations can be conceived
through code generators, pretty printers, or interpreters.

11

Chapter 2 Foundations

Structure of a Compiler

Textual languages are typically processed with a compiler [ALSU07] that translates a
source program/model into an executable representation (i.e., machine code or a pro-
gram of a programming language). In the following, we refer to the input of a compiler,
which can be either in the form of a file or a String containing the content of a file, as
a model. The process of compiling a model comprises several steps that are visualized
by the example in Figure 2.1. The example input model is the expression "1.5+2*3".
In the first step, the model is split into a stream of tokens by a lexer in a process called
lexical analysis.

A token is an abstract syntax element realized as a pair consisting of the token name
that identifies the token and an optional value. The example contains tokens for (floating
point) numbers and operators. The tokens for numbers have the name number and the
respective value of the number as their value. For operators, the concrete operator can
be either the value of a token with the name operator. Alternatively, the operators
can be realized as tokens with different names (such as, a token plus) and without a
variable value. A parser translates the token stream into an abstract syntax tree.

An abstract syntax tree (AST) is a data structure that reflects the structure of the
model in terms of a tree. The AST contains all information required for performing
further analysis and transformations of a model. Other information in a model, such as
comments, white space characters, or syntactic sugar, may not be contained in the AST.
Sometimes, the AST is also referred to as a parse tree because it results from parsing.
In the remainder of the thesis, we often do not need to distinguish between lexing and
parsing and use the term parsing for the entire process from input model to AST.

In a subsequent process, compilers realize transformations on the AST. We distinguish
between model-to-model transformations (M2M) [MVG06] that have a model as the
result of the transformation and model-to-text transformations (M2T) [KT08] that result
in a sequence of characters (i.e., text). M2M transformations can be used to simplify
the AST structure, introduce additional relationships between AST nodes, or translate
the nodes of an AST into an AST of another language.

The last step that a compiler performs while processing an input program is always a
model-to-text transformation. M2T transformations can be realized with code generators
or pretty printers. A code generator typically relies on code templates [CH03, Sch12]. A
template is a document that contains free text elements and elements that are directives
for a template processor. A template processor reads a template, replaces the directives
with information conceived, e.g., from the AST of a model, and prints the resulting text
to a (generated) file. A pretty printer traverses the AST nodes one after another and
translates each AST node into a piece of text. The result is a concatenation of these
texts. As an alternative to an M2T transformation with a code generator, it is also
possible to use an interpreter that assigns meaning to model/program parts instead of
translating these into an executable representation. In this case, however, the language-

12

2.2 The MontiCore Language Workbench

Model

AST

Infrastructure

Language

Grammar

Parser

Infrastructure

instantiates

reads

reads

Analyses and

Transformations

conforms to

generates Visitor

Infrastructure

traverses

Symbol Table

Infrastructure

traverses

operate on

operate on

use

Code Generator

Infrastructure

e.g., context
conditions

Runtime

Environment

provides

use

Figure 2.2: Overview of MontiCore’s language engineering infrastructure

processing tool should not be referred to as a compiler since it does not translate the
input program.

2.2 The MontiCore Language Workbench

Language workbenches [Fow05] are tools that support the development of software lan-
guages. MontiCore [GKR+08, HKR21] is a language workbench for the development of
textual, external DSMLs. At its core, MontiCore uses MontiCore grammars (MCGs)
that serve as integrated descriptions for a language’s concrete and abstract syntax.
MontiCore grammars are context-free grammars in a notation based on the extended
Backus-Naur form (EBNF) [ALSU07] enriched with concepts from object-oriented pro-
gramming. From such MontiCore grammars, MontiCore generates language processing
tooling such as, a parser, an abstract syntax data structure, and a visitor infrastructure
for traversing the abstract syntax data structure. The generation of the parser relies
on ANTLR [Par13]. Figure 2.2 displays an overview of the core concepts of MontiCore.
A parser contained in the generated parser infrastructure reads models that conform to
the language and instantiates the AST that is part of the language’s generated AST
infrastructure. Besides the AST, the symbol table infrastructure is part of the abstract
syntax and enables realizing symbolic links between name usages and name definitions.
This is the basis for implementing type checks. MontiCore generates a visitor infrastruc-
ture that is capable of traversing both AST and symbol tables. All generated language
infrastructure parts rely on a runtime environment that MontiCore provides for each
language.

Context-free grammars are not powerful enough for certain restrictions, such as, the
well-formedness of models. To check the well-formedness of processed models, Monti-
Core supports the definition of well-formedness rules. These are realized as Java classes

13

Chapter 2 Foundations

Model Processing

Context Condition

Checking

Symbol Table

Creation

Context Condition

Checking

Log Error

has

error?

has

error?

has error?

[yes]

[yes]

[yes]

[no]

[no]

[no]

AST

AST +

Symbol

Table

Model

AD

further treatment, e.g.,

code generation,

analyses,%

Parsing activity
diagram

Figure 2.3: Example for the activities involved in processing a model with MontiCore

and referred to as context conditions (or short, CoCos). Each context condition is
implemented against an element of the abstract syntax data structure. A context condi-
tion checker checks the context conditions with the visitor infrastructure that traverses
the corresponding abstract syntax. Further analyses and transformations can be real-
ized with the visitor infrastructure as well. MontiCore supports template-based code
generation and contains a code generation framework based on the template engine
FreeMarker [For13]. However, MontiCore supports transformations into other models
instead of code generation as well [Höl18].

Processing a model with a language infrastructure generated by MontiCore involves
several activities depicted as a UML activity diagram (AD) [www21e] in Figure 2.3.
While most parts of the infrastructure for processing a model are generated from the
language’s grammar, the orchestration of the processes within a language tool that pro-
cesses models has to be implemented manually. The first activity is parsing, which reads
a model from a passed String or a passed file and instantiates the AST data structure.
If the parsing process yields errors, these are logged, and any further steps of model
processing are usually omitted. If the model is successfully parsed, the language tool
can use the AST to realize context condition checks that operate on the AST and do not
require the symbol table. For example, a context condition that checks certain naming
conventions for a language element can be realized without the symbol table. If none of
the context conditions is violated, the tool instantiates the symbol table from the AST.
After the symbol table is instantiated, the context conditions that operate on the symbol
table can be checked. Context conditions that rely on the symbol table typically check
type correctness, referential integrity, or uniqueness of names. Since only some forms of
context conditions can be checked without the symbol table, it is possible to check all

14

2.2 The MontiCore Language Workbench

context conditions after the symbol table has been instantiated. However, symbol table
instantiation for ill-formed models can be avoided if the models have been identified as
ill-formed through context conditions checked before the symbol table is instantiated.
Afterward, the abstract syntax can be the basis for analyses and transformations.

We sometimes refer to the infrastructure that realizes the parsing process and well-
formedness checking as the language’s frontend. Language users typically utilize the
frontend of a MontiCore language through a language(-processing) tool that is realized
as a command-line interface (CLI) tool. Optionally, additional tools for a language, such
as tools integrated with a build system or tools that perform certain analyses or trans-
formations, may co-exist with the language’s CLI tool. The following sections describe
the parts of the MontiCore infrastructure that are most relevant for the remainder of
this thesis in more detail.

2.2.1 MontiCore Grammars

MontiCore grammars [HKR21] are context-free grammars [HMU01], i.e., comprise non-
terminals, terminals, a start nonterminal, and a set of grammar rules. For brevity, we
refer to MontiCore grammars as grammars in the remainder of this thesis if the context
is clear. The syntax of MontiCore grammars is based upon EBNF but also borrows
elements from object-oriented programming. For instance, similar to Java types, Monti-
Core grammars may be located in a package indicated by a package declaration at the
beginning of a grammar, and a grammar may import other grammar artifacts. More-
over, MontiCore grammars distinguish different forms of grammar rules that influence
the parsing and the AST data structure. The main part of each MontiCore grammar
begins with the keyword grammar followed by the name of the grammar. A grammar
may extend one or more other grammars and, through this, reuse all grammar rules of
the extended grammar(s). This is explained in more detail in Section 2.2.8. The body
of the grammar follows the grammar’s name and potential references to inherited gram-
mars and is enclosed in curly brackets. The grammar body contains grammar rules that
comprise a left-hand side and a right-hand side, separated by an equal sign "=". Similar
to statements in Java, grammar rules in MontiCore end with a semicolon.

Nonterminal names used in grammar rules must start with an uppercase letter, and
quotation marks enclose terminal names. The left-hand side of grammar rules in context-
free grammars must contain a single nonterminal only. We denote this as the nonterminal
defined by this grammar rule. On the right-hand side, grammars can contain both
nonterminals and terminals. These can be either arranged as alternatives, indicated by
"|", or as concatenations, indicated by whitespace. Nonterminals and terminals can be
arranged in blocks enclosed by round brackets. Each nonterminal, terminal, or block
may be marked as optional with a consecutive question mark "?" or may be iterated.
The grammar syntax indicates non-empty iterations with a consecutive plus "+" and
other iterations through a Kleene star "*".

15

Chapter 2 Foundations

01
02
03
04
05
06
07
08

grammar Automata extends de.monticore.MCBasics {

Automaton = "automaton" Name "{" (State | Transition)* "}" ;

State = ["initial"]? "state" Name ";" ;

Transition = from:Name "-" input:Name ">" to:Name ";" ;
}

MCG

MontiCore
grammar

Figure 2.4: MontiCore grammar for an automata language

An example of a grammar is depicted in Figure 2.4. The example grammar describes
the syntax for an automata language with states, transitions, and inputs that trigger
the transitions. The grammar has the name Automata and extends a MontiCore gram-
mar with the name de.monticore.MCBasics that is part of MontiCore’s integrated
language component library [BEH+20]. This grammar defines several tokens and non-
terminals, such as the nonterminal Name. The Name nonterminal defines the syntax of
identifiers in usual programming languages. A name must start with a letter, followed by
any other letters, numbers, and separator characters such as underscores but no whites-
pace characters. In l. 3, the Automata grammar defines the nonterminal Automaton
with a grammar rule. The concrete syntax of an automaton begins with the keyword
automaton, followed by the name of an automaton and its body enclosed by curly
brackets. The body may contain states and transitions in an arbitrary order but may
also be empty.

By default, terminals in MontiCore are not part of the abstract syntax as their content
does not provide any information relevant to the abstract syntax. However, terminals
in MontiCore can be enclosed by square brackets. This causes the terminal to occur
in the abstract syntax, which is helpful, for reflecting the presence or absence of an
optional keyword in the AST. For instance, a language that employs modifiers as part
of a nonterminal for variable declarations can realize the modifiers as terminals relevant
to the abstract syntax. In the abstract syntax, the information which modifiers are
present in a model is relevant for further steps such as code generation. In the automata
grammar in Figure 2.4, states are individual nonterminals defined through the rule in
l. 5. A state may be marked as an initial state with the optional keyword initial that
is marked relevant to the abstract syntax. Each state further has the keyword state,
followed by the name of the state and a semicolon.

To distinguish different occurrences of the same nonterminal on the right-hand side
of a grammar rule, nonterminals may optionally be given a distinctive name. We refer
to such nonterminals as named nonterminals. A named nonterminal begins with the
distinctive name that usually starts with a lowercase letter, followed by a double colon
and the nonterminal name. In the automata grammar in Figure 2.4, transitions are
represented via an individual nonterminal defined by the rule in l. 7. Transitions have

16

2.2 The MontiCore Language Workbench

01

02

03

04

05

06

07

08

09

10

grammar AltAutomata extends de.monticore.MCBasics {

Automaton = "automaton" Name "{" AutElement* "}" ;

interface AutElement;

State implements AutElement = ["initial"]? "state" Name ";" ;

Transition implements AutElement = from:Name "-" input:Name ">" to:Name ";" ;

}

MCG

Figure 2.5: MontiCore grammar for an automata language with interface nonterminals

three names: the name that syntactically appears first is the name of the source state
and, hence, is named from. The consecutive name refers to the input of the transition
and the third name identifies the target state of the transition.

Grammar rules can extend other grammar rules. If a grammar rule A extends a
grammar rule B, the right-hand side of B is automatically considered an alternative to
the right-hand side of A by the parser. Any usage of the nonterminal B on the right-
hand side of another grammar rule may be derived by the parser with the nonterminal A.
The grammar rules described above are the usual rules of context-free grammars. They
translate into class types in the AST, which is explained in more detail in the section
about the AST data structure. These rules, hence, are also referred to as class rules.
Besides class rules, MontiCore grammars may use several kinds of special grammar rules.

An interface rule defines an interface nonterminal. It begins with the keyword inter-
face, followed by the name of the nonterminal. Instead of a class rule that defines a
class type in the abstract syntax, an interface rule is translated into an interface type in
the abstract syntax. Class rules can implement one or more interface rules, and inter-
face rules can extend other interface rules. An interface nonterminal may be used on the
right-hand side of any class or interface rule. The effect of using an interface nonterminal
on the right-hand side of a grammar rule for the parser can be described by a transfor-
mation that would remove the interface rule and accepts the same concrete syntax: an
interface nonterminal can be replaced by a class nonterminal with an alternative over
all nonterminals that extend or implement the interface nonterminal on its right-hand
side. This would, however, result in a different AST data structure. An interface rule
may omit a right-hand side because interface rules per se do not provide syntax elements
relevant to the generated parser.

However, an interface rule may also have a right-hand side that contains (cardinalized)
nonterminals. The effect of this is that the interface rule prescribes the presence of
these nonterminals in the right-hand side of each rule that implements the interface
nonterminal. The order of the nonterminals may change in implementing rules, but the
cardinality has to match. Furthermore, implementing rules may use any nonterminals

17

Chapter 2 Foundations

and terminals beyond the ones prescribed by the interface rule. With this behavior,
interface rules can act as extension points of a grammar that prescribe certain elements
of their implementations and, thus, can prevent undesired forms of implementations. At
the same time, the information about elements that every implementation contains can
be leveraged to check some well-formedness properties of the nonterminal without being
aware of the exact implementations. Upon a violation of the prescribed elements, the
MontiCore generator produces an error.

An alternative variant of the grammar in Figure 2.4 that accepts the same concrete
syntax is depicted in Figure 2.5. This variant employs an interface nonterminal (cf. l. 5)
AutElement for the elements of an automaton (l. 3) instead of an alternative of the
State and Transition nonterminals. The interface nonterminal can be used on the
right-hand side of the rule for the nonterminal Automaton in the same way as any class
nonterminal. The nonterminals State and Transition implement the AutElement
interface nonterminal as depicted in ll. 7-9.

A MontiCore grammar may define at most one start rule that indicates the start non-
terminal of a grammar. The start nonterminal, however, must be defined in a separate
grammar rule. A start rule begins with the keyword start, followed by the name of
the start nonterminal and is terminated with a semicolon. A start rule must not have
a right-hand side. If a grammar does not have an explicit start rule, the nonterminal
defined by the first rule of a grammar is used as start nonterminal.

MontiCore grammars may further contain AST rules that begin with the keyword
astrule. An AST rule is specific to a nonterminal and defines members of the AST
node type generated from the nonterminal. To do so, the right-hand side of an AST rule
may contain nonterminals that are translated into attributes in the corresponding AST
node type and method declarations that are translated into methods of the AST node
type. AST rules do not have any effect on the parser.

MontiCore enables language engineers to use further kinds of grammar rules that are,
however, not directly relevant for the remainder of this thesis. These include grammar
rules of the following kinds:

Lexer rules begin with the keyword token and contain regular expressions for defining
token classes. The generated lexer and parser internally use these token classes. Further
lexer rules can define parts of a token with the keyword fragment token. These can
be used on the right-hand side of token rules and, among other things, increase the
readability of complex regular expressions.

Abstract rules begin with the keyword abstract. Like interface rules, abstract rules
can be used to indicate an extension point. The parser does not distinguish abstract and
interface nonterminals, but interface nonterminals are translated into interface types
in the abstract syntax, and the nonterminals defined by abstract rules are translated
into abstract AST types. The allowed forms of inheritance for abstract rules follow
the allowed forms of inheritance for abstract Java classes. For instance, a class rule in

18

2.2 The MontiCore Language Workbench

01

02

03

04

05

06

07

08

09

10

automaton H2O {

initial state liquid;

state gaseous;

state solid;

liquid -evaporate> gaseous;

gaseous -condense> liquid;

liquid -freeze> solid;

solid -melt> liquid;

}

Automata

textual and graphical
concrete syntax

of an automata model

liquid

gaseous

solid

evaporate

condense

freeze

melt

Automata

Figure 2.6: Example model conforming to the automata language

MontiCore may extend at most one abstract rule, and an interface rule must not extend
an abstract rule.

External rules begin with the keyword external and indicate a mandatory extension
point that other grammars must fill. Other grammars may provide an implementation
for the external rule by extending the external nonterminal. Contrary to abstract and
interface rules, external rules must not contain a right-hand side. Hence, they cannot
prescribe elements of the right-hand side of rules that provide an implementation.

Enumeration rules begin with the keyword enum and describe enumerations as an al-
ternative over terminals on the right-hand side of the grammar rule. In the abstract
syntax, enumeration rules are translated to enumeration types.

Besides different kinds of grammar rules, the body of a MontiCore grammar may
contain grammar directives and grammar concepts. Grammar directives and concepts
configure the generation of parser and lexer and, hence, the parsing process for certain
special cases. For instance, the grammar directive nokeyword enables using a keyword
as a variable name without causing clashes in the underlying token classes [HKR21].

An example of a model H2O that conforms to the automata language is depicted
on the left side of Figure 2.6. As the grammars for the automata language depicted
in Figure 2.4 and Figure 2.5 define the same concrete syntax, the H2O model conforms
to both languages. The model describes the aggregation states of water and the most
relevant transition between these. The right side of the figure displays a graphical
representation of the textual model depicted on the left side of the figure. The textual
model begins with the keyword automaton followed by the name of the automaton and
an opening curly bracket to indicate the beginning of the automaton’s body (l. 1). In
ll. 2-4, the model contains definitions of the three states liquid, gaseous, and solid
where liquid is marked as the initial state. The automaton has four transitions in ll. 6-
9 that connect the three states. Each transition begins with the name of the source state,
followed by a textual representation of an arrow containing the name of the transition
input and the name of the target state of the transition.

19

Chapter 2 Foundations

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

component grammar BaseADL extends de.monticore.types.MCBasicTypes {

ComponentDef = "component" Name "{" CmpElement* "}" ;

interface CmpElement;

Port implements CmpElement = "port" dir:["in"|"out"] portType:Name Name ";" ;

SubComponent implements CmpElement = "component" type:Name Name? ";" ;

Connector implements CmpElement = "connect" src:MCQualifiedName
"->" trgt:MCQualifiedName ";" ;

interface IBehavior extends CmpElement;
}

MCG

Figure 2.7: Component grammar for a basic architecture description language

A grammar may be left incomplete intentionally. A grammar is incomplete if it con-
tains interface, abstract, or external rules for which no realization is available in the
grammar or any inherited grammars. For instance, an interface nonterminal has to be
implemented by at least one class rule. An incomplete grammar is also referred to as
a component grammar and is indicated with the keyword component before the key-
word grammar. For component grammars, MontiCore does not generate a parser. If
a grammar is incomplete but not marked as component grammar, MontiCore produces
an error. A component grammar may be completed by another grammar that extends
the component grammar and provides all required implementations and realizations for
interface, abstract, and external rules.

The BaseADL grammar depicted in Figure 2.7 is an example of a component grammar.
The grammar describes the syntax of a simple component & connector architecture
description language (ADL) [MT00]. The syntax is strongly inspired by the syntax of
the MontiArc ADL [BKRW17]. It is marked with the keyword component and reuses
the grammar de.monticore.types.MCBasicTypes from MontiCore’s integrated
language component library [BEH+20] (l. 1). Each model of the BaseADL grammar
is a component with a name and a body enclosed by curly brackets (l. 3). The body
contains different elements that are realized by the interface nonterminal CmpElement.
Ports (l. 7) are component elements that represent directed and typed endpoints of
message-based communication between different components.

Moreover, components may be composed of subcomponents (l. 9), which are instances
of other components with a type and, optionally, a given name. Connectors (ll. 11-12)
may also be part of a component and realize communication channels between a source
and a target port. To identify these ports, the grammar uses qualified names, i.e., names
that comprise dot-separated name parts. The syntax for such qualified names is reused
from the grammar MCBasicTypes. The interface nonterminal IBehavior describes

20

2.2 The MontiCore Language Workbench

AST-CDASTAutomaton «interface»

ASTAutElement

ASTState ASTTransition

String name

*

boolean initial

String name

String from

String input

String to

class diagram of
abstract syntax

Figure 2.8: AST data structure of the automata language

the internal component behavior and is also a CmpElement. The BaseADL does not
provide an implementation for the interface nonterminal and, hence, must be marked as
component grammar. Other languages can provide syntax for describing the behavior
of a component [BHH+17]. For further information about the MontiCore grammar
language, we refer to the technical report of MontiCore [HKR21].

2.2.2 Abstract Syntax Tree Data Structure

The AST data structure in MontiCore is defined through a language’s grammar. For
each nonterminal defined in a grammar, MontiCore generates a corresponding element
of the AST data structure that equals the nonterminal’s name with the prefix "AST".
The host language of MontiCore languages is Java and, hence, the AST data structure
is generated in terms of Java types.

MontiCore generates AST classes for each class nonterminal, AST interfaces for each
interface nonterminal, and AST enumerations for each enumeration nonterminal. The
nonterminals on the right-hand side of a class rule are translated into attributes of the
AST. The type of such an attribute is the AST type of the corresponding nonterminal
and the name of the attribute equals the name of a named nonterminal. If a nonterminal
has no distinctive name, MontiCore uses the nonterminal name by default, starting with
a lowercase letter. Terminals marked as relevant for the abstract syntax through enclosed
square brackets are translated into attributes of the type boolean. The attribute name
is derived from the terminal.

Depending on the (non)terminal cardinalities, the type of the attributes is gener-
ated differently: instead of the original attribute type as described before, optional
(non)terminals are translated into attributes of the Java type Optional with the generic
type argument of the original type. Similarly, iterated (non)terminals are translated into
attributes of the Java type List with the generic type argument of the original type. If
a nonterminal is optional because it appears only in some out of different alternatives,
it is handled the same way as nonterminals marked with an optional cardinality. If a
nonterminal occurs multiple times in the right-hand side of a grammar rule without a
distinctive name or with an equal distinctive name, it is handled in the same way as an
iterated nonterminal.

21

Chapter 2 Foundations

AST-CD

ASTAutomaton
«interface»

ASTAutomataNode

ASTCNode
«interface»

ASTNode

MontiCore
runtime

generated
language-
specific

language-
agnostic

contain methods with
default implementations

contain attribute
access + manipulation

Figure 2.9: Relationships between AST node types

Some nonterminals are translated into built-in data types of Java. For instance, the
nonterminal Name is translated into an attribute of the Java type String. For each
attribute of an AST type, MontiCore generates accessor and mutator methods, including
getter and setter methods. For optional and iterated types, methods that delegate
to common methods of the Java types List and Optional are generated. These
include a method for adding an element to a list attribute and a method for checking
the presence of an optional attribute. If a grammar rule extends or implements other
rules, the relationship is translated into corresponding inheritance relationships between
the abstract syntax types.

An example of the AST data structure of the automata language as defined by the
grammar in Figure 2.5 is depicted as a UML class diagram (CD) [Rum16, www21e]
in Figure 2.8. The AST class ASTAutomaton has an attribute for the name of the
automaton and a list of elements of the interface type ASTAutElement. The classes
ASTState and ASTTransition implement the interface ASTAutElement. The class
ASTState has an attribute of the type boolean that indicates whether the name is an
initial state and a String attribute for the state’s name. The class ASTTransition
has three attributes of the type String that indicate the name of the source state, the
transition’s input, and the target state.

In addition to the AST types generated for each nonterminal, MontiCore generates
an interface that all AST types of a language implement. This interface supports the
traversal of the abstract syntax with visitors. MontiCore has a runtime environment
that contains common Java types that all languages can use. This runtime environment
contains an interface ASTNode and a class ASTCNode. The interface ASTNode contains
the signatures of methods that are common to all AST node types. The class ASTCNode
implements the interface ASTNode and provides method implementations that are not
specific to any type of AST node, such as the source position of an AST node within a
model. Each AST interface generated for a MontiCore language implements the interface
ASTNode, and each generated AST class extends the class ASTCNode. The relationships
between these types are depicted in Figure 2.9. Furthermore, MontiCore generates a

22

2.2 The MontiCore Language Workbench

handle(ASTState n)

traverse(ASTState n)

*

«interface»

AutomataTraverser

0..1

«interface»

AutomataHandler

visit(ASTState n)

endVisit(ASTState n)

«interface»

AutomataVisitor

handle(ASTState n)

traverse(ASTState n)

visit(ASTState n)

endVisit(ASTState n)

add4Automata(AutomataVisitor v)

setAutomataHandler(AutomataHandler h)

AutomataTraverserImpl
AST-CD

Figure 2.10: Interfaces and classes that form the visitor infrastructure for traversing the
abstract syntax of the automata language

builder class [GHJV95] for each AST node class. The generated parser uses the builders
to instantiate the AST node classes while parsing a model.

2.2.3 Traversing the Abstract Syntax

The AST data structure of a language can be traversed with the visitor infrastructure
that MontiCore generates for each language. The visitor infrastructure is based on
the visitor pattern [GHJV95] and realizes a depth-first traversal of ASTs. The visitor
infrastructure is integrated with the AST data structure through double dispatching,
where each AST class or interface has an accept method that calls a handle method
in the visitor infrastructure. The handle methods trigger the traversal of the AST
structure. MontiCore supports both pre-order and post-order traversals [ALSU07], where
the pre-order traversal is realized through visit methods of a visitor, and the post-
order traversal is realized through endVisit methods. The traverse methods carry
out the traversal of the contained substructures of an AST node.

Other than usual for implementations of tree structures, the AST nodes of MontiCore
do not have getChildren methods that offer uniform access to all children of the node
in the tree at once. Instead, each type of the contained structure can be addressed
by its concrete type because the AST node types are generated from the grammar. In
the example of the automata language, an automaton has two lists: one for contained
states and another one for contained transitions. Both are traversed with the traverse
method for the type ASTAutomaton.

The interfaces and classes of the visitor infrastructure for the automata language are
depicted as a class diagram in Figure 2.10. The infrastructure comprises a visitor inter-
face, a handler interface, a traverser interface, and a traverser implementation class. The
visitor interface, such as AutomataVisitor, contains visit and endVisit methods
for each AST class or interface defined in a grammar. For brevity, the example depicts
only the methods for the type ASTState. The methods are hook point methods that
have an empty body. Language engineers can implement the visitor interface and realize
analyses or transformations that operate on the abstract syntax, such as context con-

23

Chapter 2 Foundations

h2o:ASTAutomaton

AST-OD

liquid:ASTState solid:ASTState

object diagram of
abstract syntax

handle(ASTState n){

visit(n);

traverse(n);

endVisit(n);

}

visit endVisit

traverse

visit endVisit

traverse

visit endVisit

traverse

Figure 2.11: Example for the order of traversal of an AST enacted by visitor

ditions or pretty printers. These can provide implementations for the visit method,
the endVisit method, or both. A visitor implementation can operate on a single or
multiple AST types of the languages.

The traverser of a language is the entry point for the traversal of the abstract syntax
with the visitor infrastructure. It manages a list of visitor interfaces and realizes Monti-
Core’s default traversal of the AST. Upon each occurrence of a particular AST node type
in the AST, the corresponding visit and endVisit methods of visitor implementa-
tions are called. To do so, the visit and endVisit methods of the traverser delegate
to the respective visit and endVisit methods of the visitor implementations.

The traverser of a language consists of the traverser interface, which contains meth-
ods with default implementations for the visit, endVisit, handle, and traverse
methods. Furthermore, it defines the signatures of methods that manipulate the visitors
and handlers of a traverser. The actual realization of the attributes must be located
in the traverser class because Java does not allow interfaces to have attributes. The
traverser is split into an interface and a class to reuse the traverser interface during
language composition.

The default traversal strategy of a visitor can be adjusted by implementing the handler
interface of a language and overriding the contained handle or traverse methods.
The default traversal strategy is depicted by the example of an excerpt of the automata
model H2O in Figure 2.11. The left side of the figure displays a simplified form of the
implementation of the handle method by the sample of the type ASTState. The im-
plementation calls the visit method first, proceeds to traverse any substructures with
the method traverse, and finally calls the endVisit method. The right side of the
figure displays a UML object diagram (OD) [Rum16, www21e] with an excerpt of the
AST for the model. The traversal of the model’s AST is initiated by invoking the method
h2o.accept(v), where v is the visitor. First, the visit method of the automaton is
called, followed by the traversal of its internal structure. The traversal initially encoun-
ters the state liquid, for which the visit method for the type ASTState is called. As
states do not have any contained structures, the traversal for states does not perform any
actions by default. Afterward, the endVisit method for the state liquid is called,

24

2.2 The MontiCore Language Workbench

AST-CD

AutomataCoCoChecker

* «interface»

AutomataVisitor

«interface»

AutomataTraverser

«interface»

AutomataASTStateCoCo

check(ASTState s)

visit(ASTState s)

addCoCo(AutomataASTStateCoCo c)

addChecker(AutomataCoCoChecker c)

checkAll(ASTAutomataNode n)

1

Figure 2.12: Generated language infrastructure for context conditions

and the traversal of the automaton continues with the traversal of further states, such
as the state solid. After all parts of the automaton have been visited, the endVisit
method of the automaton is called and the traversal terminates. Since the AST is a tree,
the traversal always terminates.

2.2.4 Context Conditions

MontiCore languages can investigate the well-formedness of models with the help of
context condition checks implemented as Java classes. To support the engineering of
context conditions, MontiCore generates a context condition checker for each language.
The context condition checker manages context condition classes and evaluates all of
these against the AST by utilizing the language’s generated visitor infrastructure. Fur-
thermore, MontiCore generates a context condition interface for each class or interface
nonterminal of the language. Context condition classes are realized as handwritten
classes that implement this interface. By implementing the interface, a context condi-
tion can be checked with the generated context condition checker.

Figure 2.12 depicts the generated classes that are most relevant for the realization
of context conditions by the example of the automata language. The generated con-
text condition classes begin with the name of the language’s grammar, followed by the
AST type of the nonterminal for which the context condition is realized and the suf-
fix CoCo. For the nonterminal State, the generated context condition class is called
AutomataASTStateCoCo. Each context condition interface defines the signature of
a check method with the AST type of the context condition as a method argument.
Context condition classes can implement the context condition interface and provide
an implementation for this method to realize the context condition check. The context
condition interface extends the visitor interface of the language to be able to traverse
the AST. It overrides the visit method of the corresponding AST type with a default
implementation that delegates to the check method.

The context condition checker class has the name AutomataCoCoChecker and con-
tains addCoCo methods for adding context condition classes that implement any of

25

Chapter 2 Foundations

01

02

03

04

05

06

07

08

09

10

11

12

public class HasInitialState implements AutomataASTAutomatonCoCo {

public void check(ASTAutomaton n) {

boolean hasInitialState = n.getStateList().stream()

.filter(state -> state.isInitial())

.findAny().isPresent();

if (!hasInitialState) {

Log.error("The automaton '" + n.getName() + "' has no initial state!");

}

}

}

Java

Figure 2.13: Context condition checking that an automaton has at least one initial state

the generated context condition interfaces. Furthermore, the checker has a method
addChecker for adding all context conditions of a foreign context condition checker
at once. The method checkAll can be invoked with a passed AST node to check all
context conditions added to the checker. To enable checking arbitrary parts of an AST
of a model, the method has the language-specific AST node interface as argument. In-
ternally, the checker class uses the language’s traverser to manage the context conditions
as visitors and enact the traversal of the AST.

Context conditions check well-formedness constraints not reflected by the grammar.
The reasons for checking a property via a context condition can be manifold: context-
free grammars, in general, cannot express certain forms of well-formedness, such as the
uniqueness of names. Language engineers may also decide to check a property with a
context condition instead of checking the property through a refined grammar to provide
dedicated, detailed error messages if the context condition check fails. Other properties
might be captured through the grammar but are instead realized as context condition to
simplify the grammar structure or the AST data structure generated from the grammar.
In the example of the automata language, initial states and other states are realized by
the same nonterminal. Automata may contain an arbitrary number of states. Hence,
a context condition has to ensure that at least one state is marked as an initial state.
The context condition class HasInitialState depicted in Figure 2.13 implements the
context condition interface for the Automaton nonterminal of the automata language
described by the grammar in Figure 2.4. It further implements the check method
defined in the interface. The implementation first checks whether the list of states of the
automaton contains at least one state marked as an initial state and stores the result
to a Boolean variable. If the variable’s value is false, the method logs an error with a
helpful error message using MontiCore’s Log class [HKR21].

26

2.2 The MontiCore Language Workbench

2.2.5 Identifying Artifacts in the File System

The symbol management infrastructure of MontiCore [MSN17] is capable of loading
models from the content of (model) files with a model loader. To do so, all directories
of an application that may contain models have to be indicated in the model path.
The concept of a model path is similar to the class path in Java [www21b]. A model
path contains model path entries where each entry identifies a directory that contains
models. Alike the package structure of Java classes, models in MontiCore can optionally
be located within packages where a package is reified by a corresponding folder structure
in the file system. Both the class path entries in Java and the entries of a model path
are locations excluding the folder structures that reify the packages. The Java class
ModelPath in the runtime environment of MontiCore realizes the model path.

Model paths are used for resolving references between model elements that are located
in different models. The behavior of loading models is replaced by the results of this
thesis with the behavior of loading symbol tables as described in Chapter 5. Despite
the name that implies that the path entries identify directories containing models, the
technical realization is not limited to model artifacts. Hence, the model path can be
reused for identifying path entries that contain stored symbol tables.

2.2.6 Instantiating the Language Infrastructure

MontiCore uses builders [GHJV95] for instantiating the AST nodes. Therefore, the
MontiCore generator synthesizes individual builder classes, e.g., for each AST class in
addition to the AST class itself. To instantiate the builder classes, MontiCore employs
a language mill. A language mill is a Java class generated for each MontiCore language.
The mill has methods for obtaining all builders of a language, including the builders
of the AST nodes. Furthermore, language mills hold instances of several classes of the
language infrastructure that are realized as singletons. Language mills are a central
place for reconfiguring the language infrastructure. To this effect, language mills have
methods to exchange the singleton instances and replace each individual builder of a
language. Such reconfigurations are utilized for realizing language composition.

2.2.7 Integration of Handwritten Code

Handwritten source code artifacts and artifacts generated by a code generator can be
integrated with different mechanisms [GHK+15]. MontiCore employs a unique mech-
anism for customizing generated artifacts with handwritten ones, which is the TOP
mechanism [HKR21].

MontiCore distinguishes directories that contain handwritten artifacts from other di-
rectories that contain generated artifacts. Although the actual directories are freely
configurable, we refer to a directory containing handwritten artifacts as a source direc-
tory and a directory containing generated artifacts as a target directory. Any generated

27

Chapter 2 Foundations

generate

generate

aut-lng
src
Automata.mc4

ASTState.java

aut-lng
src
Automata.mc4

target
aut-lng

ASTState.java

target
aut-lng

ASTStateTOP.java

code generation
without
and with

a handwritten
class ASTState

should extend the class ASTStateTOP

Figure 2.14: The TOP mechanism for integrating handwritten source code artifacts with
generated artifacts

class or interface in a target directory can be extended with a handwritten class or inter-
face that customizes the generated type. To utilize the TOP mechanism, a handwritten
artifact has to have the same name as the generated artifact that it customizes. Fur-
thermore, the handwritten artifact must be located at the same relative location from a
source directory as the generated artifact from a target directory.

If such a handwritten artifact exists, the generator that is parametrized with the
location of the source and target directories generates an artifact with the suffix TOP.
The name of the Java type located in this artifact also is suffixed with TOP. Afterward,
the Java type defined in the handwritten artifact can extend the type defined in the
generated artifact. Through this, any methods may be overridden and redefined.

Figure 2.14 depicts an example of the TOP mechanism. The top left box depicts the
artifact of the grammar for the automata language, which is located in a source directory
src. After executing the code generator, MontiCore produces, among others, an artifact
containing the Java class ASTState, which is located in the target directory. This
is depicted in the top right box. The bottom left box depicts the source directory with
a handwritten class ASTState. If the code generator is executed again, it produces a
class ASTStateTOP. The handwritten class ASTState can now extend the generated
class ASTStateTOP.

A significant advantage of the TOP mechanism is that generated code, which refers to
the artifact that is adjusted with handwritten code does not have to be modified. The
name of the initially generated artifact and the artifact with the handwritten adjustments
are equal. Hence, the generated code that initially referred to the generated artifact refers
to the handwritten artifact after applying the TOP mechanism. The majority of classes
and interfaces of the language infrastructure generated by MontiCore are adjustable with
the TOP mechanism.

28

2.2 The MontiCore Language Workbench

language extension language embedding language aggregation

Figure 2.15: ASTs in the different forms of language composition

2.2.8 Language Composition

In software engineering, the decomposition of software into components or modules in-
creases the software reusability. Composing languages [EGR12] is quintessential for
enabling efficient reuse of software languages or parts of their infrastructures. With lan-
guage composition techniques, languages can be made extensible and customizable for
various applications [BHH+17].

The techniques to compose languages largely depend on the technological space in
which the languages are realized. For instance, textual languages that employ context-
free grammars for the definition of syntax require different forms of language composition
than languages that employ metamodels for the definition of abstract syntax.

The composition of textual languages should cover both the integration of the language
grammars and the integration of the entire language infrastructure such as AST nodes,
well-formedness checks, and code generators. This especially includes any handwritten
adjustments to generated parts of the language infrastructure. MontiCore supports four
different kinds of language composition mechanisms that are presented in the following.
The four kinds are language inheritance, language extension, language embedding, and
language aggregation. All forms except for language aggregation produce a composed
language for which the models have an integrated syntax as well. These three forms rely
on grammar inheritance in MontiCore and require executing the MontiCore generator
to synthesize integrated language tooling. Language aggregation is a loose coupling for
which the models remain in individual artifacts. From the language infrastructure, only
the symbol tables are composed, so executing the MontiCore generator for language
aggregation is unnecessary.

Language Inheritance The concept of language inheritance transfers the concepts of
inheritance relationships from object-oriented programming to MontiCore languages.
Language inheritance in MontiCore is indicated by inheritance between grammars. A
grammar can extend one or more other grammars with the keyword extends after
the name of the grammar. A MontiCore grammar that inherits from another grammar
reuses all its nonterminals and terminals and may, optionally, extend or override some of
the nonterminals. A nonterminal is overridden by assigning an inherited nonterminal a

29

Chapter 2 Foundations

new right-hand side. A nonterminal may extend or implement nonterminals of inherited
languages in the same way as nonterminal extension and implementation are realized
within a single grammar, which is described above. Multiple inheritance between lan-
guages is explicitly allowed and is the basis for different kinds of language composition,
such as language embedding.

A grammar can reuse the start nonterminal from an inherited language by explicating
the nonterminal with a start rule. The starting nonterminal of an inherited language is
not reused implicitly, i.e., without a start rule, the nonterminal defined by the first rule
of the inheriting language becomes the start nonterminal.

Beyond the grammar, most other parts of a language are integrated. The AST nodes of
inherited languages are integrated with the AST nodes of the inheriting language. For
example, overridden nonterminals cause the language infrastructure to instantiate the
AST types of the overridden nonterminal instead of the AST types of the original nonter-
minal. This is achieved by reconfiguration of the mills for inherited languages [HKR21].
The visitor infrastructures of languages reuse the visitor infrastructure of inherited lan-
guages through composition via the traverser. If a language inherits from one or more
other languages, visitors and handlers for inherited languages can be added to the tra-
verser via dedicated methods. Through the visitor infrastructure, the context condition
checker is integrated with inherited languages as well. Any context conditions imple-
mented against context condition interfaces of inherited languages can also be added to
the language.

In the following, we sometimes distinguish between the fact that a language directly
inherits from another language and that a language inherits from other languages tran-
sitively. If this information is omitted, we refer to both forms of inheritance.

Language Extension Language extension is a particular form of language inheritance
in which a language A extends another language B. In MontiCore, this is indicated
through grammar inheritance. Hence, the integration of the remaining parts of language
infrastructure is carried out in the same form as described for language inheritance.

Typically, language extension reuses the start nonterminal of the extended language and
adds additional alternatives to any nonterminal of the extended language. We say that B
is a conservative extension [HKR21] of A if any model that conforms to A also conforms to
B. The AST of language extension is schematically depicted on the left side of Figure 2.15.
The different shapes of the tree nodes refer to the different languages. Hexagonal-shaped
nodes refer to the extended language that provides, among other things, the root node
of the AST. Round-shaped nodes refer to nodes of the extending language. The nodes
of both languages can be interwoven, i.e., a child node of each node can be either a node
of the inherited or the inheriting language.

The hierarchical automata language is an example of a language that extends the au-
tomata language described by the grammar in Figure 2.4. The hierarchical automata

30

2.2 The MontiCore Language Workbench

01
02
03
04
05
06
07

grammar HierarchicalAutomata extends Automata {

start Automaton;

HState extends State = ["initial"]? "state" Name "{" (State | Transition)* "}";

}

MCG

Figure 2.16: The hierarchical automata grammar extends the automata grammar

language adds hierarchical states that can define nested states and transitions to the au-
tomaton body. The grammar of the hierarchical automata language is depicted in Fig-
ure 2.16. The grammar HierarchicalAutomata extends the grammar Automata
(l. 1) and reuses the start rule Automaton of the automata language (l. 3). The new
nonterminal HState describes the syntax of hierarchical states as an alternative to the
syntax of states from the automata language. Hence, the grammar rule for HState ex-
tends the grammar rule State (l. 5). By extending this grammar rule, a HState may
be parsed as an alternative to a State in the body of an automaton. The right-hand
side of the grammar rule introduces the syntax of hierarchical states that comprise a
body containing states and transitions. As the nonterminal HState extends State, a
hierarchical state may contain further hierarchical states.

Language Embedding In contrast to language extension, which reuses a single language,
language embedding reuses at least two languages: one language is reused as host lan-
guage, and another language is reused as embedded language. It is also allowed that
multiple languages are embedded into the same host language. The language embedding
describes how the embedded language is embedded into the host language. Typically,
the two languages interact at a single spot, which is the extension point of the syntax
in the host language and the extension of the embedded language. We say that the
extension realizes or implements the extension point.

In MontiCore, language embedding is realized through multiple inheritance of the in-
volved languages. The composed language extends both the host language and the
embedded language and may introduce new syntax for the integration “glue”. The mul-
tiple inheritance of the languages is described by inheritance in the grammar, where
the composed grammar extends both the grammars of the host and the embedded lan-
guages. The composed grammar reuses the start nonterminal of the host language. The
extension point and the extension of a language are usually integrated with a novel
grammar rule in the composed grammar. However, the form of this grammar rule can
differ depending on the grammar rule kinds of the extension point and the extension.
For example, if the extension point rule is an interface rule with the nonterminal I and
the extension is a class rule with a nonterminal E, the integrating grammar rule can be
realized by C extends E implements I;. Through this, the new nonterminal C is

31

Chapter 2 Foundations

added as an implementation of the extension point I, which is relevant for the parser.
Furthermore, C reuses the syntax of E by extending it. Extending the nonterminal of the
extension instead of overriding it yields the advantage that E can be used as an extension
for different extension points.

The AST of language embedding is schematically depicted in the center of Figure 2.15.
The root node of the AST is typically part of the host language. The figure visualizes
AST nodes of the host language with hexagonal shapes. A specific node, the extension
point, is the only node of the host language that has a child node of the embedded
language, which is the “extension” node. All nodes contained in the sub-tree induced
by the extension node are nodes of the embedded language. All nodes in the combined
AST that are not contained in the sub-tree induced by the extension node are nodes of
the host language.

Language Aggregation Language aggregation is a loose coupling between languages
whose models remain in separate model artifacts. However, the models may refer to
elements of models conforming to aggregated languages via names. To ensure specific
properties, such as, type correctness of referenced elements, the language infrastructures
of aggregated languages are integrated through their symbol tables. This is described in
more detail in the remainder of this thesis, which explains the symbol table infrastructure
in Chapter 4 and Chapter 5 and its effect on language composition in Chapter 6.

A central benefit of language aggregation over other forms of language composition is that
all involved language tools can be reused entirely, and no new language infrastructure
has to be generated. All parts of the language infrastructure that realize the language
aggregation can be added to the language tools through (re)configuration of the language
infrastructure.

The AST of language aggregation is schematically depicted on the right side of Fig-
ure 2.15. The ASTs of two aggregated languages remain individual trees. The only
relation between the two ASTs is a symbolic link from the referring model element to
the defining model element.

2.3 Software Product Line Engineering

Product lines have been investigated in classical engineering disciplines since the early
days of mass production. Henry Ford once stated that “Any customer can have a car
painted any colour that he wants so long as it is black” [For22] and by that, proposed to
prefer efficiency in the production process over variability [PH04]. Nowadays, cars are
offered to customers with a plethora of customization options, bearing grand challenges
to manage the variability in engineering and production processes. For example, due
to the large number of different bodies, power trains, colors, and optional features,
Mercedes offered approximately 1024 variations of the E-Class in Europe in 2002 [PH04].

32

2.3 Software Product Line Engineering

Therefore, today there are “almost no two equal cars rolling from the assembly line the
same day” [CE99]1. Product lines [ABKS13, CN02] help to systematically develop a
portfolio or family of similar products that have common parts among them as well as
particular options. In times of mass customization of produced goods, it is crucial to
manage the product variability to ensure that all configured products are valid in the
sense that they fulfill the intended set of requirements. Furthermore, identifying cross-
relations between optional features of the variants in the product line is essential. This
holds especially for safety-critical systems such as airplanes or cars, as a failure of such
systems can lead to significant problems.

Product line engineering is a field that develops means for engineering families of
similar products. One of the main drivers behind engineering product lines is reusing
parts common to multiple products of the product line. These parts are also referred to
as commonalities, and they can be effectively reused for all products of a product line. A
motivation for this is that the effort to develop and test new parts is usually larger than
the effort to reuse these parts. Product line engineering furthermore develops means to
manage the variability in the products of the product line, among other things, to gain
an overview of all products, to analyze constraints such as those imposed by product
requirements, and to be able to perform controlled evolution of product lines.

Software product line engineering (SPLE) [ABKS13, CN02] is a sub-discipline of soft-
ware engineering that investigates methods and techniques to manage variability in soft-
ware systematically. Software products are similar to products of classical engineering
disciplines but differ from these because their reproduction cost is negligible once the
software has been designed. This increments the motivation for reusing software parts
across different software variants rather than re-engineering these from scratch.

Software product lines (SPLs) have been successfully applied in different domains such
as consumer electronics, avionics, and automotive2.

2.3.1 Variability in Software and Software Product Lines

Variability is omnipresent in today’s software. During the software design phase, vari-
ability can be built into the software in terms of explicit underspecification to realize open
design decisions. Typically, such forms of underspecification are removed from the soft-
ware in an iterative process via refinement of the software throughout its design phase.
Variability further occurs during the evolution of software, where the different versions
of a software are its variants. Hence, every new release of a software is a new varia-
tion. Variability is built into software products, for instance, to increase the reusability
of software parts for similar applications or to address contradictory requirements by
different stakeholders. Towards users, variability of a software product can reflect as

1In practice, this may be violated, inter alia, due to the production of vehicle fleets.
2The Software Product Line Conference (SPLC) has collected several success stories of applying product

line techniques: http://splc.net/fame/

33

http://splc.net/fame/

Chapter 2 Foundations

preference menus in graphical user interfaces of software applications, as parameters in
command-line applications, as settings files, or in the form of plug-ins.

Internally, variability in software can be realized in numerous forms [SVGB05] that,
among other things, depend on the means of the underlying software languages. The
parts of the software that realize the variability are called variation points. In C++,
variation points can be realized in the form of #ifdef directives checked by the pre-
processor. A variation point can also be a parameter for an executed program.

The features of an SPL are the user-experienceable characteristics that distinguish
the products of the SPL. Features come in various shapes and guises. For instance, a
software development platform can have a feature that enables project-specific burndown
charts, or a model editor can have the feature to export a model to a PDF document.

In the remainder of the thesis, we distinguish different forms of variability:

Open variability enables an unbound number of variants that can be added to a variation
point. This is typically the case for extension points of a plug-in infrastructure or
customization points that are not aware of all potential extensions/customizations.

Closed variability – in contrast to open variability – is an alternative over a fixed number
of known variants. For example, a Boolean flag realizes closed variability as it can be
set either to true or false and, hence, yields two variants.

Positive variability describes that a feature adds software parts or functionality to a
product. For example, a merge operator that adds extensions to a base variant realizes
positive variability.

Negative variability – in contrast to positive variability – describes that a feature re-
moves software parts or functionality from a product. For example, this can be achieved
by applying delta operations that remove parts from a base variant [SBB+10].

With an annotative approach [TAK+14], some SPLs realize all products in a single
artifact. This artifact is sometimes referred to as a 150% model. The 150% model is used
as the base variant, and further products can be derived from the SPL by employing
negative variability to remove undesired parts. 150% models have certain advantages,
such as simplified analyses on the level of product lines. However, product lines typ-
ically comprise numerous features, resulting in complex 150% models that are hardly
maintainable.

The development process of SPLs distinguishes domain engineering from application
engineering [ABKS13], as depicted by the rows in Figure 2.17. Domain engineering
focuses on the reusability aspect of the product line. This includes making artifacts
reusable across different variants of the product line and identifying commonalities be-
tween variants. Application engineering, on the contrary, focuses on engineering a spe-
cific application as a product of the product line. This includes analyzing the require-
ments of an application and identifying artifacts that can be reused to realize these

34

2.3 Software Product Line Engineering

Domain

Engineering

Application

Engineering

Problem

Space

Solution

Space

Variability

Model

Feature

Selection

Software

Components

Product

Figure 2.17: Overview of engineering feature-oriented SPLs (inspired by [ABKS13])

requirements. Domain engineering can be referred to as “development for reuse”, and
application engineering is “development with reuse” [ABKS13].

The development process of SPLs further distinguishes the problem space and the so-
lution space perspectives, depicted as columns in Figure 2.17. The problem space is a
perspective that abstracts from the actual realization of the product line in the software
and focuses on requirements, variation points, and customization options of the product
line. On the other hand, the solution space perspective includes the realization of the
variability in the software. Distinguishing the two perspectives enables a separation of
concerns: the problem space models the variability in the SPL without the implementa-
tion details of the solution space and, hence, is a helpful representation for the different
stakeholders that are involved in the process of planning, conceiving, and maintaining
the product line.

In the context of feature-oriented SPLs, the intersections between the two engineering
processes and the two perspectives contain specific artifacts. The variability model,
which can be a feature model (cf. Section 2.3.3), is in the problem space of the domain
engineering. The software components that realize the product line are contained in the
solution space of the domain engineering. The feature selection manifests, for example,
in the form of a feature configuration model, is in the problem space of the application
engineering, and the actual software product for the selection is in the solution space of
the application engineering.

2.3.2 Software Reuse

Software reuse is “the use of existing software artifacts or knowledge to create new
software” [FT96] with the aim of increasing software quality while decreasing the cost
and effort of implementing new software [FK05]. We distinguish black-box reuse [FT96]
of software from reuse via clone-and-own [DRB+13].

35

Chapter 2 Foundations

Sport Family City XL

Body Design Coupe SUV SUV

Fuel Type Petrol Hybrid Electro

All Wheel Drive X

Park Assistant X X

Traffic Sign Recognition X X X

Lane Change Assistant X X

Figure 2.18: Example for car variants in terms of features, depicted as a feature table

Black-box reuse is a form of software reuse that prohibits modifications of the original
software for its reuse. This form of reuse is fostered by component-based software engi-
neering [NR68], where a component can be reused “off-the-shelf” without modifications.
The term black-box indicates that no knowledge about component internals is required
for reusing a component. An advantage of black-box reuse is that the reused parts are
not cloned and are, thus, typically less prone to co-evolution between clones. Modern
build tools such as Maven [MVM10] or Gradle [Mus14], for instance, enable the reuse of
software modules by indicating these as dependencies. In this, the reused modules are
addressed with dedicated coordinates that include a unique identifier and a version num-
ber. Indicating a dependency to the source module of a reused artifact avoids cloning it
into a new application. This form of reuse is black-box reuse because it does not allow
modification of the reused artifacts.

In contrast, reuse via clone-and-own typically relies on copying a piece of software
and modifying it according to its new application. While this form of reuse is more
straightforward in terms of ad-hoc reuse [FT96] of individual artifacts, its appliance
for systematic reuse of larger pieces of software within software product lines is often
discouraged [DRB+13]. Whenever we use the term reuse in the remainder of this thesis,
we refer to black-box reuse rather than reuse via clone-and-own.

2.3.3 Feature Diagrams

A variety of notations and techniques for modeling commonalities and variation points
of software product lines have been conceived [BSL+13]. Among these, a notation com-
monly used today are feature diagrams [CE00, KCH+90], which model common and vari-
able parts of a software product line in terms of user-experienceable features. Beyond
feature diagrams, there are other variability modeling languages [BSL+13, CGR+12],
such as decision models or the common variability language (CVL). Originally devel-
oped in the context of the feature-oriented domain analysis (FODA) [KCH+90], feature
diagrams have been adapted and extended in various contexts [CE00]. There is a variety
of feature diagram modeling tools, such as DarwinSPL [NES17], Familiar [ACLF13], Fea-
tureIDE [MTS+17], FeaturePlugin [AC04], pure::variants [Beu12], and SPLOT [MBC09].

36

2.3 Software Product Line Engineering

Parent

Feature

Selection1 Selectionn

Parent

Feature

Alternative1 Alternativen……

(a) (b) (c) (d)

Parent

Feature

Optional

Feature

Parent

Feature

Mandatory

Feature

Figure 2.19: Basic elements of the feature diagram notation: (a) mandatory feature (b)
optional feature (c) selection group (d) alternative group

In feature diagrams, the products of a product line are separated along their com-
monalities into features. For example, Figure 2.18 depicts a table with features of a car
platform as rows and three variants of the platform as columns. Some features, such as
the Traffic Sign Recognition, are contained in all three variants, some features, such as
the Park Assistant, are contained in two variants, and other features, e.g., the All-Wheel
Drive, are contained in a single variant only. A disadvantage of representing features and
variants in a table is that it becomes complex if the number of features or the number
of variants increases. For larger product lines, feature diagrams offer a more compact
notation.

We refer to models of the feature diagram language as feature models. A single feature
model describes the features of all products of an entire product line. A configuration
of a feature model is a set of selected features and a set of unselected features. If a
feature model contains at least one feature that is contained in neither of the two sets
of a configuration, the configuration is called a partial configuration. If each feature of a
feature model has been either selected or unselected in a configuration, the configuration
is called a full configuration or product of the product line. A feature model induces con-
straints on its configurations, rendering a configuration valid or invalid. The semantics
of a feature model is defined by all possible configurations that are valid.

Despite the variability in concrete notations and optional language extensions, there
are certain “core” feature model notation elements that most feature diagram languages
use. We introduce a notation that is mainly based on [CE00]. Each feature of the feature
model is characterized by a unique name, and the features of a feature model form a
tree. In graphical feature model syntaxes, features are typically represented by boxes
containing the feature name. Each feature model has a root feature that is part of every
valid feature configuration. As features are arranged as a tree, every feature may have
several child features, and every child feature has exactly one parent feature. Usually,
the meaning of a parent-child relationship in feature models is that the child feature
refines the parent feature. The children of a feature, also referred to as subfeatures, can
be or have to be part of a configuration depending on the kind of relation to their parent
feature. It is, however, not possible that a feature is part of a valid configuration that

37

Chapter 2 Foundations

FD

optional selection excludes

requiresalternative

x

mandatory

Cruise ControlBody Design

Petrol

Fuel Typespeed limiter non-adaptive

Car

Hybrid

SUV

Traffic Sign RecognitionLane Change Assistant

Coupe

Powertrain

Electric

adaptive All Wheel Drive

x

feature
diagram

Figure 2.20: Feature model for a product line of cars

does not contain its parent feature. There are two kinds of relations between a single
feature and its parent feature: mandatory features and optional features.

Mandatory features are contained in every valid configuration that contains their par-
ent feature. However, if the parent feature is not part of a configuration, its mandatory
subfeatures must not be included either. Mandatory features are graphically represented
by edges between parent and subfeature with a filled circle at the end towards the sub-
feature (cf. Figure 2.19 (a)).

Optional features (cf. Figure 2.19 (b) can be – but are not necessarily – part of a valid
configuration if their parent feature is part of this configuration. In graphical notations,
optional features are represented by an edge between parent and subfeature with an
empty circle at the end towards the subfeature.

Besides optional and mandatory features that connect a single feature with their parent
feature, there are relations between a group of sibling features and their (common) parent
feature. These are called feature groups and are subdivided into selection groups (cf.
Figure 2.19 (c)) and alternative groups (cf. Figure 2.19 (d)).

Graphical feature diagram notations represent selection groups with a filled arc cross-
ing the lines connecting the parent feature and the subfeatures that are members of the
group. Each valid configuration of a feature diagram that includes the parent of a selec-
tion group must select at least one and at most all features of the group. Other literature
refers to selection groups of feature diagrams as or-features [CE00] or some-out-of-many
choices [ABKS13].

Alternative groups are graphically represented by an empty arc crossing the lines
connecting the parent feature and the subfeatures that are part of the group. To form a
valid configuration that includes the parent of an alternative group, exactly one feature
of the group has to be selected as well. Alternative groups are also referred to as xor-
features [CE00] or one-out-of-many choices [ABKS13].

38

2.3 Software Product Line Engineering

The above associations between features only constraint features that are in a parent-
child or in a sibling relationship to each other. To make assumptions about any features
in the tree of a feature model, cross-tree constraints can be added to the feature model.
Cross-tree constraints are Boolean constraints that involve arbitrary features. A valid
configuration of the feature model must satisfy all cross-tree constraints. Beyond the
usual Boolean operators (and, or, xor, not), feature diagram languages typically allow
requires and excludes constraints. A feature may require the selection of another
feature B. If a feature A requires the feature B, every valid configuration that contains A
must also contain B. Otherwise, the configuration is invalid. If a feature A and a feature
B exclude each other, no valid configuration contains both A and B.

An example of a feature model is depicted in Figure 2.20. The feature model expresses
a product line of a car platform that includes, among others, the features and configura-
tions depicted in the feature table of Figure 2.18. While the feature table describes three
variants, the feature diagram visualizes 80 variants in an integrated form. Moreover, the
feature diagram can group features through the tree representation. For instance, Fuel
Type and All-Wheel Drive are grouped via the feature Powertrain.

Feature Diagram Analyses

A significant benefit of modeling a product line in terms of a feature model is the formal
grounding of the semantics of feature models and feature configurations. This bears
the advantage that different analyses and transformations can be performed on feature
models [BSRC10]. A fundamental analysis is the valid product analysis that determines
whether a given full configuration satisfies the constraints induced by a given feature
model, thereby yielding a valid product of the product line. The valid configuration
analysis indicates whether a partial configuration can be completed to a valid full con-
figuration by selecting further features. Beyond these analyses against a feature diagram
and a configuration, different analyses detect inconsistencies, anomalies, and redundan-
cies in a single feature model [vdML04].

Inconsistencies indicate contradictory information in the feature diagram such that typ-
ically no valid products are in the semantics of the feature model. For example, a feature
model whose semantics is an empty set of valid configurations is called a void feature
model. Such an inconsistency can be caused by an excludes cross-tree constraint
between any mandatory feature and the root feature.

Anomalies , similar to inconsistencies, represent contradictory information in the model
but prevent only some configurations from being in the semantics of the feature model.
Anomalies do not necessarily render errors but are typical sources of behavior that is
modeled unintentionally. An anomaly can be caused by a mandatory feature requiring
an optional sibling feature. The latter is referred to as a false-optional feature because
the feature model’s semantics would be the same if the feature were mandatory.

39

Chapter 2 Foundations

Redundancies typically do not influence the semantics of a feature diagram but indicate
spots that can lead to inconsistencies in evolved feature models. A redundancy, for
instance, is caused by an excludes cross-tree constraint between two features in an
alternative group. Removing the excludes relationship does not influence the semantics
of the feature diagram.

Variability Resolution Mechanisms

Depending on the relation between features and their realizations, there are different
forms for resolving the variability in a product line. In the remainder of the thesis,
we also call this deriving a product or deriving a variant from the SPL. If the feature
realizations are modules, a product can be derived from the SPL by composing the
modules of selected features with a suitable composition operator. If a feature is realized
via models and the SPL is aware of the languages to which the models conform, the
composition can be carried out by language-specific merge operators that consider the
model structure. Such merge operators are also referred to as superimposition [AKL09].
For example, if each feature is realized as a class diagram model, a dedicated merge
operator for class diagrams can merge the members of classes with the same name
regardless of their order within the class diagram models. As an alternative to language-
specific merge operators, general-purpose merge operators, for instance, with line-based
differencing can be employed to derive products from the SPL. If a feature is realized
through switches in the source code (e.g., with #ifdef directives), the feature selection
activates or deactivates all associated switches. Depending on the realization of the
variant derivation, deactivated switches are either contained in the product but remain
unused or are removed from the product. If a feature is realized through delta operations
instead, the delta operations are applied to the base product during derivation of the
variant [SBB+10].

A variant can be derived from the product line by selecting all features of a con-
figuration at once or in a process called staged configuration [CHE05]. In a staged
configuration, sets of features can be selected in a stepwise process. The result of each
step is a feature model in which parts of the variability have been resolved.

40

Chapter 3

Method for the Systematic Composition of
Language Components in MontiCore

This chapter gives an overview of the method for the systematic composition of language
components in MontiCore. The method comprises individual development steps that
support language engineering in the large. Although some of these steps build upon other
steps, it is not necessary to use all steps together in the proposed overall method that this
chapter describes. Instead, the steps can also be applied independently. For instance, the
language components can be used without the purpose of engineering language product
lines, and the kind-typed symbol tables can be used without using language component
models.

The method for the systematic composition of language components relies on reusing
language components in product lines. We refer to this as the language component
product line (LCPL) approach. The central goal of LCPL is to produce tailored DSMLs
for different applications or application domains. In this sense, a product line is a
language family where each variant of the product line is a language targeted to an
application or application domain.

The LCPL approach for engineering language product lines is feature-oriented. There-
fore the variability of the product line is represented as a feature diagram (cf. Sec-
tion 2.3.3). At the base, LCPL uses a customized form of textual feature diagrams that
contains dedicated rules connecting the features to their realization in terms of language
components. The language for this form of feature diagrams is realized on top of the
extensible feature diagram language described in Chapter 8 of this thesis.

Languages can generally be derived from a language product line either by removing
parts of a 150% language [WHT+09] or by composing languages from language mod-
ules [VCPC13]. 150% languages enable a compact notation of product lines that are
not scattered across numerous artifacts. However, they have the disadvantage that the
language definitions, which are complex for individual languages already, become even
more complex for 150% language constituents. This reduces the maintainability of the
language as well as the potential for extending and evolving the language product line.
Therefore, LCPL relies on the composition of language components to derive products
from the product line.

41

Chapter 3 Method for the Systematic Composition of Language
Components in MontiCore

Language components are the consequence of applying component-based software en-
gineering to software languages. Bundling languages into components is a prerequisite
for reusing languages in the large, such as in the LCPL. Only if a software language can
be identified as a unit of reuse, it can be composed with other languages without in-depth
knowledge of the language components’ internals. Our notion of language components is
based on the software artifacts that realize the language infrastructure. Language com-
ponents in MontiCore are described with MontiCore language component (MLC) models
that identify all artifacts of the language’s infrastructure via artifact-based tooling. The
notion of language components in general and the MontiCore language component lan-
guage and tooling are described in more detail in Chapter 7.

Each feature model in LCPL represents a set of language features. In analogy to soft-
ware features in general, a language feature is a user-experienceable part of the DSML.
Thus, a language feature covers syntax, semantics, and other language infrastructure of
this user-experienceable part. A language feature can realize, for example, hierarchical
states of an automata language, generic types in a class diagram language, or SI unit
data types in an action language. This is in contrast to some other approaches for lan-
guage product lines [MAGD+16] in which the variability dimension of a language feature
is crosscutting to the dimension of a language feature in LCPL. In such approaches, a
language feature describes, e.g., a specific concrete syntax or a transformation for a
language instead of a language component. While such notions of language features sup-
port realizing presentational [CGR09] or semantic [MRR11] variability, they complicate
representing variability in terms of the language itself as should be addressed by LCPL.

In LCPL, the feature tree and cross-tree constraints restrict which selection of language
features form a valid feature configuration and which feature constellations are forbidden
in the product line. As usual in feature modeling, the parent-child relationship between
features should express that the child feature refines the parent feature. For instance, a
feature realizing expressions of a language could have a subfeature realizing assignment
expressions. The realization of this and the coherence with the refinement relation is
not mandatory but lies in the responsibility of the language engineers. The refinement
relation can be realized via conservative extension [BEK+19] of the respective language
components.

The feature models in LCPL reify the variability in the problem space. However, a
feature model alone does not describe how a feature is realized in the solution space
and how the individual feature realizations relate to each other. A language feature in
LCPL is realized through a MontiCore language component as described in Chapter 7.
Language component mapping rules in the customized feature diagram notation of LCPL
map a feature of the feature model to a language component. If a feature is not mapped
to a language component, it is an abstract feature [TKES11], and its only purpose is
to group a set of related features as its child features. Leaf features of the tree are not
allowed to be abstract. Multiple mapping rules of a product line can point to the same
language component. For example, a feature for preconditions of a transition can map

42

to an expression language, and another feature for postconditions is allowed to map to
the same language component. Through this mapping, a language component can be
used multiple times within a single language product line but for different purposes.
Conceptually, the language component is the realization of a particular (part of a) lan-
guage such as, syntax and evaluation for expressions, while the language feature is the
purpose of a language component in the context of the language product line, such as
the precondition of a transition of an automata language.

The set of language features of a feature model, thus, maps to a set of language com-
ponents. However, through the set of language components, it is not specified how the
languages are composed, i.e., how the concrete and the abstract syntax of the languages
are integrated. As language components can use other language components, parts of the
syntax may be already integrated in a single language feature. This form of composition
is implicit in the product line. However, to foster the reusability of language compo-
nents without modifying these, our concept enables implementing integration “glue” for
the language by modeling how languages are composed as an explicit part of a language
product line.

A prerequisite for successful language composition in the large is to reuse languages
reliably. Language reuse can be simplified if composed languages are only loosely coupled
to each other in terms of their language infrastructures. Especially, it should be avoided
that any parts of language infrastructure from reused languages have to be re-compiled
or even re-generated. The language composition mechanisms in MontiCore (cf. Sec-
tion 2.2.8) generally avoid this. Chapter 6 of this thesis presents language composition
mechanisms via symbol tables requiring little or no knowledge about foreign languages,
for instance, via symbol adapters or exchanging stored symbol table files.

Beyond this, loading and storing symbol tables of models serves several other purposes.
Stored symbol tables can be exchanged between developers or languages to communicate
the central information contained in models without the need to communicate the entire
model. This improves the performance of loading models, e.g., in the context of im-
plementing type checks. Furthermore, stored symbol tables can be exchanged between
language tools during language composition to decouple the language infrastructures
from another completely. The purposes of persisting symbol tables are explained in
more detail in Chapter 5 together with the concept and implementation of loading and
storing symbol tables in MontiCore.

Binding rules (in contrast to mapping rules) in LCPL relate an extension point of a
language component to an extension of another language component. There are different
kinds of binding rules, extension points, and extensions for different forms of language
composition and the different constituents of a language component. For example, for
realizing language embedding between grammars, both extension points and extensions
must be nonterminals. For realizing language aggregation, extension points and exten-
sions are usually symbols kinds. Realizing language embedding in the abstract syntax
requires integrating AST classes of the individual languages to a joint AST data struc-

43

Chapter 3 Method for the Systematic Composition of Language
Components in MontiCore

ture. For the symbol table infrastructure, the scope of the composed language must be
able to resolve symbols of both individual languages. This is explained in greater detail
in Chapter 6. MontiCore generates large parts of the language infrastructure from the
grammar and, therefore, the language embedding for many language infrastructure con-
stituents can follow the embedding of the grammars. To this end, it suffices for realizing
binding rules to indicate language embedding by stating how the grammars are inte-
grated. For generated parts of the language infrastructure (such as AST classes, symbol
table classes, and visitors), a code generator can produce the infrastructure required for
integrating the languages.

The aggregation of languages via symbol tables is supported by kind-typed symbol
tables presented in Chapter 4 of this thesis. A symbol kind distinguishes different kinds
of symbols. With symbol kinds, the name definitions of different language elements can
be distinguished. For instance, a name that is part of a method definition in Java is
associated with a different symbol kind than a name that defines a Java class attribute.
Therefore, Java can distinguish method names from attribute names and allow a method
and an attribute of a Java class to have the same name.

A symbol kind is a conceptual part of the symbol table. In the kind-typed symbol
table infrastructure, each symbol kind is realized as an individual Java class. To this
end, the kind-typed symbol table infrastructure can check the compatibility of symbol
kinds through the type compatibility of the corresponding Java classes. This fosters
language composition, as no custom compatibility checks have to be implemented.

Via the mapping from feature model to language components, the product line de-
termines which combinations of binding rules can be applied to language components.
Thus, the feature model ultimately reduces the combinations of language components
that are technically realizable with all binding rules and all language components to
those that are intended and allowed to be realized. Based on a feature configuration,
the LCPL tooling can derive a language from the product line by applying the binding
rules to all language components mapped from selected features. The process of deriving
a language from a product line as well as the involved roles and tools are explained in
more detail in Chapter 9 of this thesis.

44

Chapter 4

Generating Kind-Typed Symbol Table
Infrastructures

In compiler construction [ALSU07], symbol tables are a means to realize the connection
between the usage of an identifier, like a variable, to the definition of the identifier. In
the engineering of DSMLs, symbol tables can be used not only to look up identifiers but
also to bridge the gap between identifiers across different models and across different
languages [MSN17, Völ11]. Furthermore, symbol tables can be a suitable data structure
for realizing context conditions or code generators. This section motivates why symbol
tables are part of language-processing infrastructures in MontiCore and introduces the
notions behind central parts and tasks of the symbol table infrastructure. These notions
build upon and extend previous work [HKR21, MSN17, Völ11].

In software languages, a common practice is that elements are identifiable via their
name. With such identifiers, a model can refer to other model elements by using their
names. Therefore, software languages employ names as part of the definition of a model
element and for using a model element. In the following, we refer to this as name
definitions and name usages.

The connection between a name usage and a name definition is the basis for checking,
e.g., whether a variable used within an expression refers to a variable declaration. Sim-
ilarly, the type of a variable refers to the definition of this type. This is the foundation
for realizing type systems, where name definition and name usage may be located in
different artifacts.

Definition 2 (Symbol & Symbol Kind (based on [MSN17])). A symbol contains all
essential information about a model element that is identifiable by a (usually unique)
name. Each symbol has a symbol kind that depends on the model element and determines
which information a symbol provides.

Name definitions that occur in a software language usually have the purpose that the
name can be used in another part of the same or of another model of the language.
We refer to this as symbol definition and symbol usage. Other sources [MSN17] refer
to symbol usage as symbol reference, but we avoid this due to the proliferation of the
different meanings of the term “reference”. An example of a model element that defines

45

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

Java

artifact scope

scope of class

method scope

scope of while loop

symbol definition

symbol usage

method scope

scope of enumeration

public class Game {

protected GameState current;

enum GameState {

MAIN, GAME, PAUSE

}

public void play() {

current = GameState.GAME;

while (current == GameState.GAME) {

simulate();

}

}

protected void simulate() {

//...

}

}

Figure 4.1: Example for scopes (areas with dotted boundaries), symbol definitions (bold
and underlined), and symbol usages (bold and italic) in a Java class Game

a symbol is a variable declaration "static int x;" in a programming language. A
variable is a viable candidate for being a symbol since it is identifiable by the variable’s
name. In this example, the symbol is of the kind variable. The kind determines that
variables have a name, a type, and a set of modifiers. An expression "x < 3" that
compares the value of the variable with a constant value is an example that uses the
symbol x by utilizing the name of the symbol.

While programming languages usually have a limited number of similar symbol kinds,
modeling languages have a wide variety of symbol kinds. For example, architecture de-
scription languages can have symbol kinds for component types, port definitions, and
typed messages [BHH+17], while state machine languages could have symbol kinds for
state machines and states [HKR21]. Other modeling languages may define symbol kinds
such as activities, features, association roles, or pins accordingly. To this end, a con-
cept for defining and distinguishing individual symbol kinds is much more relevant for
modeling languages than for programming languages.

In software languages, a variable definition is typically visible only in certain scopes.
Scopes [MSN17] are parts of the abstract syntax of a language that support realizing vis-
ibility concepts for symbols. Sometimes, scopes are also called blocks [ALSU07, GJR79]
or namespaces [Völ11].

Definition 3 (Scope (based on [MSN17])). A scope is a concept of the syntax that
encloses symbols and impacts their visibility.

46

In MontiCore, each symbol is contained in a scope. A scope determines the visibility
of the symbols it contains and usually corresponds to a subtree of the AST. Each scope
can have individual properties that impact the symbol visibility. For instance, scopes
can export symbols such that these symbols become visible in other scopes. This is
explained in further detail in Section 4.1.3. Scopes can be nested and form a tree-shaped
scope graph. For each model artifact, an artifact scope in the abstract syntax captures
symbols defined in the artifact. The root of this tree shape is always a global scope that
subsumes all known artifact scopes. In the following, a scope that is the child of another
scope in the scope tree is said to be contained in the parent scope or to be the subscope
of the parent scope. We further refer to the parent scope as the scope’s enclosing scope.

An example of symbol definitions, symbol usages, and scopes is the Java class Game
depicted in Figure 4.1. The class is contained in an individual artifact that spans an
artifact scope. Therefore, all symbols and scopes defined in this class are (transitively)
contained in the artifact scope enclosing the class. The class defines a symbol of the kind
JTypeSymbol with the name Game (l. 1). The symbol spans a scope that, in the con-
crete syntax of Java, is enclosed by curly brackets. This scope is a subscope of the artifact
scope and itself contains symbol definitions of the class members, which in this example
are a JFieldSymbol for the class attribute current (l. 3), two JMethodSymbols
for the two methods (ll. 9-14 and ll. 16-18), and a JTypeSymbol for the contained enu-
meration GameState (l. 5-7). The symbols for inner types and methods span a scope
that, again, can contain symbol definitions and subscopes. The scope spanned by the
GameState symbol contains symbol definitions for the enumeration values (l. 6) and
the scope of play contains a subscope for the while loop body (ll. 11-13).

Classical compiler construction [ALSU07] considers a symbol table as a data structure
that has entries (or records) for each definition (e.g., variable definition). In addition
to the identifier, an entry contains further attributes of the definition. One of the pri-
mary purposes of symbol tables in compilers is to search these for an identifier and find
suitable entries. In MontiCore, there is no dedicated concept realizing a symbol table.
However, all symbols are contained in scopes and, hence, the scope graph contains all
symbols. Furthermore, the scope graph can be traversed to search for suitable symbols
of a given kind for a given name. This process is referred to as symbol resolution, and
it is explained in Section 4.1.8. In the following, we denote the conceptual elements
for scopes and symbols as well as their management in terms of instantiation, traversal,
modification, and persistence as the constituents of the symbol table infrastructure. We
call the implementation of these constituents the symbol table infrastructure.

The proper analysis of a set of interrelated models requires the models to be inte-
grated [DCB+15]. Symbol tables are data structures that enable integrating different
models of the same language. The symbols of each model are contained in a separate
artifact scope, and all known artifact scopes are contained in the global scope. Further-
more, symbol tables are the interface of a language for realizing a composition of the
language with other languages. A global scope can be aware of artifact scopes of different

47

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

AST-CD

ast

symbol

symbol

enclosingScope

spanningSymbol

spannedScope

ast

AST Node

Scope

Symbol

1

*

0..1

enclosingScope
subScopes *

1

0..1

0..1

0..1

0..1

0..1

enclosingScope

spannedScope

0..1

Figure 4.2: Associations between symbols, scopes, and AST nodes in general

languages, which is the basis for language aggregation. Language extension, inheritance,
and embedding result in integrated artifacts and, hence, these forms of language compo-
sition require integrated artifact scopes. The effects of language composition on symbol
table infrastructures are explained in more detail in Chapter 6.

This chapter presents the typed symbol table infrastructure (STI) for MontiCore, in
which large parts of the infrastructure can be generated from a language’s grammar. In
this infrastructure, the Java classes that realize symbol table constituents such as sym-
bols and scopes have language-specific types rather than generic ones for all languages.
This supports language composition because the composition of the symbol table in-
frastructures can reuse the type compatibility checks for the infrastructure constituents
from the host language of the language workbench, i.e., Java.

In the following, Section 4.1 presents the concepts behind the STI. Section 4.2 explains
concepts for controlling the generation of symbol table infrastructure through annotation
of MontiCore grammars with symbol table information. Section 4.3 describes central
aspects of the implementation of the symbol table infrastructure and, through examples,
how the symbol table of a language can be customized to meet the language engineer’s
intents. Section 4.4 discusses central design decisions and Section 4.5 compares the STI
with related approaches.

4.1 Concept of Kind-Typed Symbol Tables

The STI is a language-specific symbol table infrastructure. With the application of a
code generator, large parts of the infrastructure can be generated from a language’s
grammar to alleviate language engineers from manually implementing the infrastructure
for each language individually. In the STI, there is a generated class for each symbol
kind of a language and several generated classes and interfaces for each scope. Together
with supporting classes and interfaces, such as for the instantiation of the symbol table,
these classes are generated based on information in a language’s grammar. This section
explains the concepts behind the constituents of the STI.

48

4.1 Concept of Kind-Typed Symbol Tables

4.1.1 Relationships between Symbols, Scopes, and AST Nodes

The parts of the infrastructure that realize symbols and scopes are associated with each
other through various interrelations. Furthermore, as the symbol table infrastructure is
part of a language’s abstract syntax data structure, symbols and scopes are associated
with the nodes of the AST. An overview of the relationships between these three kinds
of abstract syntax concepts is depicted in a language-agnostic form in Figure 4.2. Each
scope contains a set of symbols that are defined in the scope. To improve the navigability
of symbol tables, the association is bidirectional and each symbol has an enclosing scope.
It is not allowed that a symbol has no enclosing scope or is directly contained in more
than one scope.

Scopes are usually arranged in a scope graph. However, we follow a common restriction
to this and consider trees of scopes only. To this effect, each scope but the scope that
forms the root of the scope tree has an enclosing scope. In the reverse direction, each
scope has a set of subscopes that may be empty.

Some nonterminals define symbols. The AST nodes of such nonterminals have an
association with the corresponding symbols. If a nonterminal defines a symbol, the
association from the AST node to the symbol has a cardinality of 1. In the reverse
direction, the association from symbol to AST node has a cardinality of 0..1. This is
because the AST of a symbol is only available if the symbol table has been created from
an AST. After loading a stored symbol (cf. Chapter 5), the AST is not available. If a
nonterminal does not define a symbol, the AST node for this nonterminal does not have
such an association.

Each AST node is associated with an enclosing scope, regardless of whether the non-
terminal defines a symbol or spans a scope. This association is unidirectional because
there is currently no use case in which the reverse direction is relevant. For nonterminals
that span a scope, the scope is associated with the AST node of the nonterminal. As
with nonterminals that define symbols, the AST node of a nonterminal that spans a
scope is associated from the scope with the cardinality 0..1 to take into account that
scopes can be loaded from stored symbol tables. In the reverse direction, the AST node
of a nonterminal that spans a scope is always associated with the spanned scope.

Some scopes are spanned by a nonterminal that also defines a symbol. In this case,
there is a relationship between the spanned scope and the defined symbol. A symbol
that spans a scope is always associated with the scope (i.e., has a cardinality of 1). In
general, however, not all symbols span a scope and, thus, the association’s cardinality is
0..1. As not all scope instances are spanned by a symbol, the cardinality in the reverse
direction is 0..1 as well.

Section 4.2 explains language-specific examples for the relationships between AST
nodes, symbols, and scopes as well as the generated classes and interfaces that realize
these in the context of modeling symbol table information within MontiCore grammars.

49

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

ISymbol

AST-CD

language-specific

AutomatonSymbol

StateSymbol

«interface»

ICommonAutomataSymbol

run-time environment

kind-specific

generated

Figure 4.3: Interfaces and classes for symbols

4.1.2 Defining Names via Symbols

According to Definition 2, each symbol must be identifiable by a name. Consequently,
there are no anonymous symbols. In MontiCore, both name definitions and name usages
are represented by the nonterminal Name. To this end, not every occurrence of the non-
terminal Name is a name definition. Furthermore, not every name definition is required
to define a symbol. Only name definitions to which other model elements may refer via
their name should define symbols. This can be indicated by annotating the nonterminals
of a grammar with the keyword symbol as described in Section 4.2. In the following,
we use the terms symbol-defining model element and symbol-defining nonterminal in-
terchangeably. Symbol kinds associate additional information with a symbol-defining
nonterminal beyond the symbol name. Symbols in MontiCore further have an access
modifier [MSN17] that indicates which access rights other symbols require to be able to
access the symbol.

The classes and interfaces for symbols in the STI are depicted in Figure 4.3 by the
example of the automata language. In the STI, method signatures of common methods
are contained in an interface ISymbol that is part of the MontiCore runtime environ-
ment. For each language, MontiCore generates a language-specific interface that declares
methods signatures common to all symbols of the language, such as methods that use
language-specific types for parameters or return types. The language-specific symbol in-
terface, in this example the interface ICommonAutomataSymbol, extends the interface
ISymbol. For each symbol-defining nonterminal, MontiCore generates a symbol class
representing the symbol kind. For each AST object of the symbol-defining nonterminal
in a parsed model, a symbol object of the corresponding symbol class is created during
the instantiation of the symbol table. All symbol classes implement the language-specific
symbol interface. The separation between symbol class and interface enables better sup-
port for traversal with visitors.

For example, the Automata language defines two kinds of model elements that are
identifiable through names: Automaton and State. Transitions, on the other hand,
are not directly identifiable via explicit names. It is useful to distinguish the names

50

4.1 Concept of Kind-Typed Symbol Tables

symbol table object diagram:

A:Automaton

Symbol

a:Automata

Scope

B:

StateSymbol

C:

StateSymbol

b:Automata

Scope

as:Automata

ArtifactScope

D:

StateSymbol

A

B

C

D

= artifact scope
= scope
= symbol

symbol table concept:

automaton A {

state B;

state C {

state D;

}

B -> C;

}

1

2

3

4

5

6

7

textual model:

Figure 4.4: Interfaces and classes for scopes

that define automata from the names that define states to enable modelers to use the
same name for a state and for an automaton without causing ambiguities. Therefore,
the language defines two symbol kinds AutomatonSymbol and StateSymbol. While
automata symbols have no additional attributes besides their name, state symbols can
have a Boolean property indicating whether the state is an initial state. The H2O au-
tomata model defines an automaton symbol with the name H2O and three state symbols
Solid, Liquid, and Gaseous.

Besides the simple name that typically identifies a symbol uniquely within a single
scope, each symbol has a (derived) qualified name that identifies the symbol uniquely
from the global scope. However, the qualified name may be used internally only, and if a
symbol is not exported to the global scope, it might not be used at all. Qualified names
are conceptually interwoven with scopes and are explained in more detail in Section 4.1.6.

A symbol kind k can optionally extend another symbol kind h. The effect of this is
that symbols with the symbol kind k have all the essential information that symbols
with the kind h have. Symbols of kind k may provide additional information to the
information provided by symbols of kind h but may not omit (i.e., remove or hide) any
information of h. A symbol kind may not directly extend more than one other symbol
kind, i.e., multiple inheritance on symbol kinds is not allowed. Multiple inheritance on
symbol kinds would require conceiving novel concepts for realizing symbol resolution and
for handling potential conflicts in inherited symbol information. Section 4.1.8 explains
the effects of symbol kind hierarchies for symbol resolution.

4.1.3 Capturing Name Visibility with Scopes

The STI uses scopes to realize the visibility of symbols within a single model but also
across different models. The scopes from programming languages such as Java, as de-
picted in Figure 4.1, exist in a similar form in other software languages as well. This

51

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

IAutomataScope
AutomataScope«interface»

IScope

run-time environment language-specific, generated AST-CD

Figure 4.5: Interfaces and classes for scopes

especially includes modeling languages such as automata. An example of the scopes of
a model of the automata language is depicted in Figure 4.4. In the concrete syntax of
Java-style, textual languages, scopes are typically indicated by curly brackets as depicted
on the left side. The body of automaton A is enclosed by curly brackets and spans a
scope containing the state symbols B and C. The state symbol C spans a scope that
contains a state symbol D. The center part of Figure 4.4 depicts the concept for scopes
and their contained symbols and subscopes. The right part demonstrates an OD that
represents the Java objects that constitute the STI of the automata language with the
interrelations between symbols and scopes as described in Section 4.1.1.

Similar to the interface ISymbol for symbols, the runtime environment of Monti-
Core contains an interface IScope that all scopes implement. This interface defines
language-agnostic method signatures. For each language, there is a generated scope
interface defining language-specific method signatures, some of which contain default
implementations. Figure 4.5 depicts the scope classes and interfaces by the example of
the automata language. In this example, the scope interface is IAutomataScope. The
attributes of a scope are managed by a language-specific scope class that implements
the scope interface. In this example, the scope class is AutomataScope. Scope classes
and interfaces are separated to support language composition (cf. Chapter 6).

A scope has to manage all local symbols that are defined within the scope. As in
the STI, an individual Java type realizes each symbol kind, scopes have to handle each
of these Java types individually. Managing all symbols in a single collection would be
possible, as all symbols implement the interface ISymbol, but would result in a loss
of type information. Hence, scopes have individual collections of local symbols per
symbol kind. For each symbol kind, the scope class manages a multimap that maps a
symbol name to a list of symbols that have this name and are defined in the current
scope. Usually, a map with a single symbol entry per name would suffice. However,
sometimes languages allow multiple symbols in a scope to have the same name if these
are distinguishable with further criteria. For instance, the scope of the body of a Java
class allows multiple method symbols with the same name if these are distinguishable
by their arguments. The STI does not distinguish different types of scopes of a single
language. Some languages, for instance, Java, use different kinds of scopes for methods,
classes, and other language elements [Fla05]. In the STI, these different kinds of scopes
are realized by the configuration of the language’s scope via scope properties.

52

4.1 Concept of Kind-Typed Symbol Tables

There are different properties that each scope (object) of a language can assume. The
STI provides eight variants of scopes that can be controlled by setting the value of three
Boolean properties. Additional scope properties can be realized by applying the TOP
mechanism [HKR21] to scope interfaces and classes.

Export of symbols A scope may either export all its local symbols or it may not export
these. If a scope exports symbols, it exports symbols of all kinds. More fine-grained
control over exporting symbols of specific kinds has to be realized manually. A scope
that exports symbols typically makes these available for symbol resolution from other
scopes. Scopes that do not export symbols enclose symbols that are not visible from
other scopes. For example, the scope of a Java class exports local symbols such as fields
and methods to make these visible to other classes and subscopes of the class. The scope
of a Java method, on the other hand, does not export any symbols defined within the
body of the method.

Order of symbols Some scopes are sensitive for the order in which symbols are defined
while other scopes are agnostic of any order. In an ordered scope, symbol resolution can
only find symbols whose definition is syntactically located before the usage, i.e., if the
source position of the definition appears in the model before the source position of the
usage. In Java, for example, the body of methods is an ordered scope. A variable name
within a method body may only be used after it has been defined. The body of Java
classes, however, is a non-ordered scope. An inner class can be used as an attribute type
before the class is defined.

Shadowing of symbols Scopes may optionally shadow symbols that are defined in other
scopes. Non-shadowing scopes are also referred to as visibility scopes [MSN17]. If a
symbol with a certain kind and name is defined in the local scope, but another scope
exports a symbol with the same name and kind, a shadowing scope prefers the local
symbol over the foreign symbol(s) during resolution. Any foreign symbols with the same
name and kind are“shadowed”, i.e., ignored. A non-shadowing scope, on the other hand,
yields an ambiguity error in the same situation. By default, each artifact scope in the
STI is a shadowing scope. In Java, the body of a method is a shadowing scope. Any
variables introduced in the method shadow class attributes with the same name. The
body of a for loop, on the other hand, is a visibility scope. Defining a variable within the
for loop with the same name as a variable in the enclosing method causes a compilation
error.

All scopes have an optional name. By default, the name is either empty if a scope
is not spanned by a symbol or if it is derived from the name of a symbol that spans a
scope. However, scopes can be customized to set the name of a scope differently. This
is relevant in combination with symbol resolution, as explained in Section 4.1.8.

53

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

IAutomataScope
AutomataScope«interface»

IScope

run-time environment language-specific, generated AST-CD

«interface»

IAutomataArtifactScope
AutomataArtifactScope

«interface»

IArtifactScope

Figure 4.6: Interfaces and classes for artifact scopes

4.1.4 Providing Access to a Model’s Symbol Table with Artifact Scopes

Artifact scopes are special scopes that enclose the symbols and scopes of a model artifact.
Typically, the artifact scope has one or more symbols that are directly contained in the
artifact scope. We refer to such symbols as top-level symbols. Top-level symbols can
span scopes that contain further symbols. In Figure 4.4, the artifact scope for the
textual model of the automaton contains a single top-level symbol A that spans a scope,
which contains other symbols and subscopes.

Artifact scopes have all attributes of other scopes but have an additional package
name. Java-style languages organize artifacts in folder structures and indicate these
folder structures within the artifacts as qualified package names. Although, obviously,
not all languages use packages, and the concrete syntax of package declarations may differ
in different languages, the STI has a built-in mechanism to handle Java-style packages
that can optionally be used for symbol resolution. If a language does not use packages,
the package attribute in artifact scopes of this language can be left empty. The scope
name, which is an optional attribute of other scopes, is by default always present in
artifact scopes and should be equal to the name of the model. With the model’s name
being present in the symbol table, symbol resolution can rely on the model names without
requiring that the model file is known. This fosters symbol resolution in combination
with loading persisted symbol tables.

As depicted in Figure 4.6, the MontiCore runtime environment contains an interface
IArtifactScope that all artifact scopes implement. For each language, MontiCore
generates a language-specific artifact scope interface and an artifact scope class. Sim-
ilar to other scopes, the artifact scope class implements the language-specific artifact
scope interface, and the latter implements the runtime environment interface. As ar-
tifact scopes are special kinds of scopes, the language-specific artifact scope interfaces
extend the language-specific scope interfaces, and the same holds for the (artifact) scope
classes. The interface IArtifactScope does not extend the interface IScope to avoid
introducing unnecessary diamond inheritance.

54

4.1 Concept of Kind-Typed Symbol Tables

«interface»

IAutomataScope
AutomataScope«interface»

IScope

run-time environment language-specific, generated AST-CD

«interface»

IAutomataGlobalScope
AutomataGlobalScope

«interface»

IGlobalScope

Figure 4.7: Interfaces and classes for global scopes

4.1.5 Bridging the Gap Between Models with Global Scopes

Global scopes are the root of each scope tree in MontiCore and as such, have artifact
scopes as their direct subscopes. With global scopes, the symbol tables of different
models are integrated into a common data structure. Global scopes are realized as sin-
gletons [GHJV95], and the singleton instance can be obtained from a language mill. Mills
are relevant for language composition and are explained in more detail in Section 4.3.1.
As singletons, global scopes are central for the (re)configuration of a language’s symbol
table. Hence, global scopes manage different configurable attributes as well as accessor
and mutator methods for these attributes. The attributes of global scopes are utilized
for different purposes:

Inter-model symbol resolution. Inter-model symbol resolution (cf. Section 4.1.8) is re-
alized in global scopes and, hence, global scopes realize the class attributes required for
this. Besides the symbols that global scopes could contain as any other scope, the inter-
model resolution requires a map with names of artifact scopes that are already loaded
to avoid loading these multiple times.

Symbol table persistence. Loading of symbol tables as presented in Chapter 5 is real-
ized in the inter-model symbol resolution that is part of the global scope. For loading
and storing symbol tables, symbol DeSers (de)serialize symbols of a specific kind, scope
DeSers (de)serialize scopes, and a Symbols2Json class traverses the symbol table for
its serialization. All of these are explained in more detail in Chapter 5. Global scopes
have an attribute of the Symbols2Json class (cf. Section 5.4.4) for configuring the load-
ing and storing of symbol tables. Furthermore, they manage a map of symbol DeSers
(cf. Section 5.4.5) that can be reconfigured by adding or modifying entries. The global
scope manages the DeSer of the language’s scope (cf. Section 5.4.6) to use it during the
deserialization of symbol tables. For efficient loading of symbol table files, the set of
files considered for loading is constrained by a regular expression indicating potential file
extensions. The model path of a global scope holds entries that are folders of archive
files containing symbol table files.

55

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

A

B

C

D

symbol table conceptqualified name

x.y.Z.A.C.D
= artifact scope
= scope
= symbol

Key:

folder: /x/y

file: Z

Z

Figure 4.8: Interfaces and classes for global scopes

Language aggregation. Aggregation of languages (cf. Section 6.4) is realized in the
inter-model symbol resolution that is part of the global scope. Therefore, global scopes
manage sets of resolver interfaces for each symbol kind. By (re)configuring these, the
inter-model resolution searches for symbols of known or unknown symbol kinds in global
scopes of foreign languages.

As depicted in Figure 4.7, the MontiCore runtime environment contains an interface
IGlobalScope that is extended by generated, language-specific global scope interfaces.
Language-specific global scope classes implement these interfaces. Global scopes are
special kinds of scopes, and hence, the language-specific global scope interfaces extend
the language-specific scope interfaces. The same holds for the (global) scope classes. The
interface IGlobalScope does not extend the interface IScope to avoid introducing
unnecessary diamond inheritance. The types of global scopes and artifact scopes are not
in a mutual relationship.

4.1.6 Using Model Elements through Names

A fundamental purpose of symbol tables is to find a suitable symbol definition or even
the definition of the corresponding named model element from a given name usage. A
name usage refers to a name definition that is part of a symbol definition located in the
same model or in a different model. A name usage, hence, is itself a name. Names,
in MontiCore, are sequences of numbers, letters, and separating characters, such as
underscores. Typically, a name must not begin with a number and must not contain any
whitespace characters.

A name can be either a qualified name or an unqualified name, which we refer to as
simple name. A simple name is a name that does not contain any dots. A qualified
name comprises dot-separated parts, each of which is a simple name. Qualified names
create a hierarchical namespace that enables identifying names across different scopes or

56

4.1 Concept of Kind-Typed Symbol Tables

even globally unique. Thus, a language tool has to be able to address each symbol that
is exported beyond the artifact scope by a qualified name. A name does not necessarily
have to be stated as a qualified name in the model but instead can be qualified, e.g., via
import statements.

The beginning of a qualified name identifies the artifact scope by a simple name or a
qualified name that begins with the package of the model. Each consecutive name part
of a qualified name identifies a symbol. If a dot follows a name part, the name part is
expected to identify a symbol of a symbol kind that spans a scope. The dot identifies
the spanned scope, and the consecutive name part must identify a symbol in this scope.

An example of qualified names that identify symbols globally is depicted in Figure 4.8.
In Java-style languages, the folder structure of a model file corresponds with the package
of the model. In this example, the package x.y corresponds with the folders /x/y that
are relative to a starting root directory. In Java and MontiCore, such a root directory is
typically a class path entry. The model file in this example is Z and, hence, the qualified
name x.y.Z identifies the model artifact. To access the artifact scope of the model, the
qualified name has an appended dot. A simple name that follows this dot must identify
a symbol in the artifact scope. In this example, the qualified name has the simple name
A at the described position and, hence, identifies the symbol A in the artifact scope. A
dot that follows the symbol name in a qualified name identifies the scope spanned by
the symbol. In this example, the qualified name part x.y.Z.A. identifies the scope
spanned by the symbol A. The next name part in the qualified name is C, which equals
the name of the symbol C in the expected scope. The same holds for the consecutive
dot, and the name part D that equals the symbol name D in the scope spanned by the
symbol C.

The simple name of each symbol can be qualified. The qualifier is calculated by setting
the name parts from the symbols that span the enclosing scopes iteratively. For example,
in the automata language, a state with the name liquid can be qualified for global
identification via the name of the automata H20 that contains the state symbol. The
resulting qualified name is H20.liquid. In a language with hierarchical states, the state
liquid could span a scope that contains a state symbol inMotion. The qualified name
of this state would be H20.liquid.inMotion. A qualified name can be unqualified
by separating it into the qualifier and the simple name at the last occurrence of a dot.
The unqualified/simple name of the state H20.liquid.inMotion would be the name
inMotion.

There are different patterns for implementing symbol usages [MSN17]. A symbol usage
can be realized (1) via delegation from the usage to the definition, (2) with the proxy
pattern in which the usage can be replaced with the definition, or (3) in the same class as
the symbol definition. All three patterns have individual advantages and disadvantages.
Similar to the SMI [MSN17], the STI applies the pattern with a delegation from the
symbol usage to the symbol definition. However, contrary to the SMI, the STI does
not rely on explicit SymbolReference classes. Instead, the delegation is realized

57

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

from the AST class of the usage to the symbol definition, thus reducing the number
of involved classes and their objects. Our experiences have shown that languages do
not have information specific to the symbol usage, rendering any specifically generated
classes useless. If a language requires usage-specific information, it is often connected to
the type system of a language. For realizing symbol usages of symbols that are part of
a type system, MontiCore has a library of SymTypeExpressions [HKR21] as part of
its built-in type system framework [BEH+20]. SymTypeExpressions are handwritten
Java classes that represent usages of type symbols. Type symbols and their usages are
explained in more detail in Section 4.1.7. We recommend two options for language
engineers who intend to represent symbol-usage-specific information in a language that
does not use MontiCore’s built-in type system framework:

If the symbol-usage-specific information is visible only in the model in which it is
contained, the AST of the model is always present. Hence, the AST of the symbol
usage can be adjusted with the TOP mechanism to represent the additional symbol-
usage-specific information. An example of this scenario lies in the automata language,
in which transitions refer to the symbols of source and target states. If any information
about the source and target states should be kept in the transitions, it is viable to realize
such information in the AST class of the transition instead of the symbol table. This
option can be applied especially if the symbol-usage-specific information is not directly
related to the definition of another symbol.

If the symbol-usage-specific information must be visible for other models, the symbol
table infrastructure of the language should not rely on the AST to be present as the
AST of foreign models may not be available. Instead, the symbol table has to con-
tain the symbol-usage-specific information. This is usually the case in type systems of
object-oriented languages, where a type definition has usage-specific information about
supertypes. To realize this, the information should be extracted to a new class, which
is set as an attribute of the symbol that manages the usage-specific information. The
SymTypeExpression classes can serve as a guideline for this option.

4.1.7 Type Definitions and Type Expressions

To support engineering type systems [ALSU07] for DSMLs created with MontiCore,
the language component library [BEH+20, HKR21] contains five language components
described below that introduce abstract and concrete syntax for types. This includes
symbol kinds for type definitions in object-oriented languages. Type symbols are not
to be confused with typed symbol classes in the kind-typed symbol table infrastructure.
The former are symbols with a specific kind, such as OOTypeSymbols that contain
information about types, while the latter refer to the types of the Java classes that
realize symbol kinds in general.

This section explains the fundamentals of the support for engineering type systems
with the MontiCore language component library. New MontiCore languages can option-

58

4.1 Concept of Kind-Typed Symbol Tables

AST-OD
int

:SymTypeConstant :TypeSymbol

zoo.Tiger[]
:SymTypeArray :SymTypeOfObject

dim = 1
argument

name = "int"

:TypeSymbol

fullName = "zoo.Tiger"

zoo.Food<T>
:SymTypeOfGenerics :SymTypeVariable

argument

:TypeVarSymbol

name = "T"

:TypeSymbol

fullName = "zoo.Food"

AST-OD

AST-OD

Figure 4.9: Object structures of exemplary SymTypeExpressions for a type constant,
an array, and a generic type.

ally reuse (and extend) this type system or engineer an entirely new type system with
the means of the STI. We say that type symbols are defined within type definitions, and
type symbols are used within type expressions [ALSU07]. In this, a type expression is
a piece of syntax that reflects in a model as a type. A type expression in an object-
oriented language can be a type declaration including the statement of an associated
supertype or the syntactic part of a variable declaration that declares its type. The
language component library contains five language components that introduce syntax
for type expressions:

MCBasicTypes introduces the central interface nonterminal MCType that all other non-
terminals for type expressions implement. Moreover, it contains the syntax for com-
mon built-in types of programming languages (such as, int) and qualified names (e.g.,
example.Person) as type expressions.

MCArrayTypes extends the MCBasicTypes and provides the syntax for array types.

MCCollectionTypes extends the MCBasicTypes and provides the syntax for four com-
mon collection types List, Set, Map, and Optional, that have one or two type argu-
ments.

MCSimpleGenericTypes extends the MCCollectionTypes and introduces the syntax
for expressions over generic types such as Person<S,T> and Person<S<T>>, where
the constructor can be defined freely. Wildcards and restrictions on the generic type
arguments are not allowed.

MCFullGenericTypes extends the MCSimpleGenericTypes and introduces the syn-
tax for wildcards such as Person<?>, and restrictions on the generic type arguments
like in Person<S extends T>.

The AST of type expressions instantiated via the parser can be unhandy for com-
plex type expressions. To better support using type expressions, for instance, in the

59

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

AST-OD

java.util.Map<String,? extends zoo.Animal>

:SymTypeOfWildcard

fullName = "java.util.Map"

:SymTypeOfObject

:SymTypeConstant

isUpper = true

arguments

bound

:TypeSymbol

:TypeSymbol

name = "String"

fullName = "zoo.Animal"

:TypeSymbol

arguments

:SymTypeOfGenerics

Figure 4.10: Object structure of a complex exemplary SymTypeExpression.

context of persisting the symbol table of a model (cf. Chapter 5), the language com-
ponents for type expressions rely on handwritten abstract syntax classes in the form of
SymTypeExpressions. SymTypeExpression is realized as an abstract Java class
that manages a link from the type expression to a type definition in terms of an at-
tribute of the type TypeSymbol. Specific kinds of SymTypeExpressions are real-
ized as classes that extend the abstract class and add further, more specific attributes
and behavior. Currently, the built-in type checker of MontiCore supports eight different
kinds of SymTypeExpressions. The different kinds of SymTypeExpressions are:

SymTypeConstant represents a type expression of a constant type. For example, this in-
cludes the typical built-in primitive types of (programming) languages, like int, float,
and boolean. The symbols for these built-in types can be added to the global scope
of a language before any models are processed. The type expressions of constant types
refer to these symbols. The top of Figure 4.9 depicts an example for a type expression
of int.

SymTypeArray represents a type expression for an array type, such as Tiger[]. In-
ternally, the class has an integer attribute that represents the dimension of the array.
In the example, the dimension is 1. Another attribute of the class SymTypeArray is a
type expression that refers to the argument of the array, in this case Tiger. This type
expression can refer to the argument also via a qualified name. The center of Figure 4.9
depicts an example of a type expression of an array.

SymTypeOfObject represents a type expression of an object type. An object type
refers to a type definition via the qualified or simple name of the type. This kind of
SymTypeExpression does not introduce additional particular attributes. The center
of Figure 4.9 depicts an example of a type expression of an object that is used as an
argument for the array type.

SymTypeOfGenerics represents a type expression of a generic type. Generic types di-
rectly refer to a type symbol via a simple or a qualified name. Generic types have one or

60

4.1 Concept of Kind-Typed Symbol Tables

more type arguments that are realized as a list attribute over SymTypeExpressions.
The bottom of Figure 4.9 depicts an example for a type expression of a generic type
that has a single type argument. Figure 4.10 demonstrates a more complex example of
a type expression, in which the generic type java.util.Map has two type arguments,
out of which one uses a wildcard.

SymTypeVariable represents a type expression for a type variable. A type variable
is a variable that is part of a type expression whose values are, again, type expres-
sions [ALSU07]. Type variables are used, for instance, for generic type arguments. The
bottom of Figure 4.9 depicts an example of a type expression of a type argument with
the name T in the context of the generic type zoo.Food.

SymTypeOfWildcard represents a type expression for a wildcard in the context of a
generic type. In Java, the concrete syntax of a wildcard is realized via a question mark.
Optionally, a wildcard can have an upper or a lower bound that restricts the types that
the wildcard may assume. In Java, a lower bound for the wildcard is realized via the
keyword super, and an upper bound with the keyword extends. The bound of a
wildcard is a type expression. The type expression in Figure 4.10 depicts a wildcard
with the upper bound zoo.Animal that is a type expression of an object type.

SymTypeVoid represents a type expression for the particular type void that may be
used only as a return type of functions or methods. Similar to SymTypeConstants,
this kind of SymTypeExpression refers to a dedicated type symbol.

SymTypeOfNull represents a type expression for null. This kind of type expression
exists for reasons of completeness and compatibility with common programming lan-
guages. Utilizing null types in type systems for languages that are designed anew, in
general, should be avoided [Hoa09].

For each of the five language components for type expressions, there is a visitor-based
Synthesize class like the Java class SynthesizeSymTypeFromMCBasicTypes that
translates instances of the AST classes of the language component to instances of the
SymTypeExpressions. Moreover, the language component library contains two lan-
guage components BasicSymbols and OOSymbols that include syntax for type def-
initions. While the concrete syntax of these definitions comprises only a name, the
abstract syntax contains type expressions that are directly related to a type definition.
The language component BasicSymbols introduces the symbol-defining and scope-
spanning interface nonterminal Type. Each type has a list of type expressions that
indicate the supertypes of the type. In the MontiCore abstract syntax, this is realized
by the TypeSymbol that has a list of SymTypeExpressions. For each super type
of the type, the list contains an entry with a SymTypeExpression that points to the
type definition of the super type. Other elements of a type, such as type attributes, are
realized as individual symbols located in the scope spanned by a TypeSymbol.

61

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

In addition to the Type, MCBasicSymbols introduces syntax for TypeVariables,
Variables, and Functions. These are only an abstraction of the notions of types in
object-oriented languages and are also usable for functional and specification languages.
The language component OOSymbols extends the BasicSymbols and introduces fur-
ther syntax for object-oriented type definitions, including OOTypes, Methods, and
Fields. OOTypes are divided into classes, interfaces, and enumerations. Types, meth-
ods, and fields have the usual visibility concepts (i.e., public, protected, private,
or none of these). Additional modifiers indicating, e.g., that a method can be static,
are realized as well.

A type check can evaluate properties against given type expressions as well as other ex-
pressions and literals of a language. Such expressions and literals can be reused from the
language component library [BEH+20] that contains five language components for ex-
pressions and three language components for literals. The type check is realized as a Java
class with two attributes. One attribute is of the type Synthesize and is used to in-
stantiate a type expression from a given AST. The other attribute is of the type Derive
and determines type expressions from expressions and literals. The Synthesize and
the Derive attributes can be configured with specific implementations to use the type
check for a particular constellation of types, expressions, and literals.

Type expressions hold symbol-usage-specific information for type symbols that the
type check of a type system requires. Therefore, a central capability of the type check
is to test whether two SymTypExpressions are compatible. For instance, a class
diagram language uses type symbols for the definition of classes. A class with the name
List defines a TypeSymbol with this name. A type constructor can contain further
information about the type definition, such as a generic type variable T of the type
List. If the type List<T> is used in a type expression, a generic type argument
is assumed for the generic type variable. For instance, the type of a class attribute
items is List<String>, where String is the type argument. For the type check,
this usage-specific information kept in SymTypeExpressions is important to indicate
that items.add(“Ball”) is typed correctly whereas items.add(1.0) is not.

4.1.8 Symbol Resolution

Symbol resolution is the search from a symbol usage to a symbol definition considering
the visibility concepts realized via scopes. MontiCore’s concept for symbol resolution
relies on trees of lexical scopes as introduced in Section 4.1.3 that have a global scope
as their root. The global scope typically has artifact scopes as direct subscopes. These
bridge the gap between a set of known model artifacts. We distinguish three phases of
symbol resolution that are executed sequentially during the search for a symbol defi-
nition. If the execution of a phase does not yield a symbol definition as a result, the
resolution continues with the execution of the next phase. Otherwise, it terminates and
returns the symbol definition.

62

4.1 Concept of Kind-Typed Symbol Tables

bottom-up
intra-model
resolution

top-down
intra-model
resolution

inter-model
resolution

GlobalScope

class A {

void a() {

X var;

class X {

}

definition of
name Xusage of

name X

Figure 4.11: Overview of resolution of symbols by an example of resolving the type X of
the variable var

An exemplary scenario for symbol resolution in the context of two Java classes A and
X is depicted in Figure 4.11. In this scenario, the class A spans a scope for the method
a that, again, spans a scope containing the variable with the name var. The type of
the variable is X, which is a usage of a name that is defined somewhere in the same or
in another artifact. In this example, the definition of the name is contained in another
artifact in which X is the name of a Java class.

Bottom-up intra-model resolution resolves for a symbol in the local scope and from
there proceeds resolving in the enclosing scopes iteratively until the artifact scope is
reached. In the example, the resolution begins in the scope spanned by the method a.
This scope does not contain a definition of the name X and the resolution, therefore,
continues to search in the enclosing scope, which is the scope spanned by the class A.
As this scope does not contain a definition of X as well, the resolution continues with
the enclosing scope, which is the artifact scope of the class A. This scope also does not
contain a definition of X and the resolution, thus, proceeds with inter-model resolution.
Inter-model resolution resolves for artifact scopes that may contain definitions of the
searched symbol. If candidates for such artifact scopes are found, the resolution proceeds
with top-down intra-model resolution. In the example, the artifact scope of the class X
has been found as a candidate that may contain a definition of the name X. Top-down
intra-model resolution resolves for a symbol in the local scope and from there, proceeds
resolving in subscopes. In the example, the artifact scope contains a definition of the
name X in the form of a declaration of the class X. Resolution terminates and returns
the symbol.

Symbol resolution has to handle hierarchies of symbol kinds. If a symbol of kind k
is resolved, all symbols that are of kinds that specialize the kind k should be found,
too. As the Liskov substitution principle [LW94] applies to symbol kinds, a symbol of a
subkind can replace a symbol of the original kind in any program. However, this does

63

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

local resolution symbols of kind S

filter by

access modifier

lookup in map

return symbols
filter by

predicate
resolve adapted

resolve

sub kinds

symbols symbols

AD

symbols

symbols

Method Description

resolveSLocally(..)
performs local symbol resolution for a
single symbol of kind S

resolveSLocallyMany(..)
performs local symbol resolution for
symbols of kind S

resolveAdaptedSLocallyMany(..)
hook point for resolving adapted sym-
bols in the local scope

Figure 4.12: Activities involved in resolution in a local scope (top) and methods realizing
these (bottom)

not hold for symbols of super kinds, which therefore, should not be considered during
symbol resolution. To integrate resolving for subkinds into the overall process of symbol
resolution, the algorithm searches for symbols of subkinds in the local symbols contained
in each scope individually. The following sections explain the three phases of symbol
resolution in more detail.

Local Symbol Resolution

During both bottom-up and top-down intra-model resolution, the scopes of a model are
traversed to search for symbols. Both resolution algorithms rely on the resolution of
symbols that are locally contained in a scope. The local symbol resolution is depicted as
an activity diagram in the top of Figure 4.12. The bottom of the figure contains a table
that lists central methods that realize the local symbol resolution in the implementation
of the STI. These methods are explained in more detail in Section 4.3.2. Resolving local
symbols in a scope begins with three activities that can be carried out in an arbitrary
order. Symbols contained in a scope are organized in individual maps per symbol kind.
Each entry maps a symbol name to a list of symbols that have this name and that are
contained in the local scope. A lookup in this map with the name and kind of the
symbol resolution yields a list of symbols that are passed to the next activity. Besides
the lookup for the symbol kind S that is resolved for, the local resolution resolves for all
symbol kinds that are direct subkinds of S. This integrates hierarchical symbol kinds

64

4.1 Concept of Kind-Typed Symbol Tables

resolve symbols of kind S

resolve in local

scope

continue

resolving with

enclosing scope

perform inter-

model

resolution

return symbols

is this the

global scope?

found symbols and does the

scope shadow symbols?

no
yes

yes

no

no

yes

symbols

has this scope

already resolved

for S?

AD

Method Description

resolveS(..)
performs bottom-up intra-model resolu-
tion for a single symbol of kind S

resolveSMany(..)
performs bottom-up intra-model resolu-
tion for symbols of kind S

Figure 4.13: Activities involved in bottom-up intra-model resolution (top) and methods
realizing these (bottom)

into the resolution process. Transitive subkinds do not have to be considered since the
resolution for their direct super kinds considers these. Multiple inheritance is currently
not allowed for symbol kinds, and, hence, diamond inheritance cannot resolve for symbols
of the same kind multiple times. However, as the resulting symbols are collected in a
set, finding the same symbol more than once is inefficient but does not produce errors.
Usually, it is problematic if a type has to be aware of its subtype. The symbol resolution
infrastructure has to assume to be aware of the entire universe of symbol kinds. Symbol
kinds that the infrastructure is not aware of cannot be integrated into the resolution for
hierarchical kinds. This is challenging for the realization of language composition. The
implementation of the STI, however, handles this as described in Section 4.3.2.

The local symbol resolution algorithm further has a hook point that can be configured
to integrate resolution for adapted symbols (cf. Section 6.2). The default implementation
of this hook point is empty, but it can be implemented by languages, which is especially
useful in the context of language composition. The usage of the hook point is explained
in more detail in Section 6.2.

All symbols that the preceding three activities have found are filtered for the access
modifier in a subsequent activity. This activity filters all symbols that have an access
modifier with insufficient access rights. Afterward, the remaining symbols are filtered
by a predicate that can be passed to the resolution algorithm. Only if a symbol satisfies
the predicate, it is included in the set of symbols that is returned as a result in the last

65

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

inter-model resolution symbols of kind S

load

symbol

table

resolve

down

symbol

return

symbols

found

symbols?

no

yes

resolve

down

symbol

resolve

adapted

found files?

no

yes

found

symbols?

no

yes

symbols

AD

Method Description

resolveS(..)
performs inter-model resolution for a
single symbol of kind S in the global
scope

resolveSMany(..)
performs inter-model resolution for
symbols of kind S in the global scope

loadS(..)
loads the symbol table for a symbol of
kind S

resolveAdaptedS(..)
hook point for resolving adapted sym-
bols through symbol resolvers in the
global scope

Figure 4.14: Activities involved in inter-model resolution (top) and methods realizing
these (bottom)

activity. Access modifiers and predicates are inspired from the respective concepts in
the symbol management infrastructure [MSN17].

Bottom-up Intra-model Resolution

The activities involved in bottom-up intra-model resolution are depicted by means of an
activity diagram in the top of Figure 4.13. The bottom of the figure contains a table that
lists central methods that realize the bottom-up symbol resolution in the implementation
of the STI. These methods are explained in more detail in Section 4.3.2. The bottom-up
resolution of a symbol in the same model usually is the first step in symbol resolution.
Bottom-up resolution can only be performed in an artifact scope or a subscope of an
artifact scope but not in a global scope. Hence, the bottom-up intra-model resolution
algorithm terminates if the resolution is performed on the global scope.

The first step in this phase of symbol resolution is to check the termination condition.
If the current scope is the global scope, the overall symbol resolution continues with
inter-model resolution. Otherwise, the resolution algorithm checks if it has already
resolved for the symbol with the passed name and kind in the current scope. This is
part of a mechanism for avoiding cyclic symbol resolution in the presence of cyclic symbol

66

4.1 Concept of Kind-Typed Symbol Tables

adapters. The mechanism is explained in more detail in Section 6.2.2. If the symbol has
already been resolved for, the algorithm returns the symbols that have been found and
performs no further resolution. Otherwise, the algorithm resolves in the local scope. If
one or more local symbols have been resolved in the scope and the scope is a shadowing
scope (cf. Section 4.1.3), the algorithm returns the symbols and terminates. If either no
symbols have been found or the scope is not a shadowing scope, the bottom-up resolution
continues with the resolution in the enclosing scope of the current scope. In this case,
the result of the resolution in the enclosing scope is set as the result of the resolution in
the current scope.

Inter-model Resolution

The inter-model resolution algorithm is executed if the bottom-up intra-model resolution
has reached the global scope. The main activities in this algorithm are visualized as
an activity diagram in the top of Figure 4.14. The bottom of the figure contains a
table that lists central methods that realize the inter-model symbol resolution in the
implementation of the STI. These methods are explained in more detail in Section 4.3.2.
The algorithm begins with executing the top-down intra-model resolution in all artifact
scopes that are available as subscopes of the global scope. If this yields a non-empty
result, the inter-model resolution returns the symbols and terminates. Otherwise, the
resolution calculates candidates for names of symbol table files that contain artifact
scopes in which the resolved symbol may be contained. The candidates for symbol table
files are iterated. If a candidate points to an existing symbol table file, the contained
symbol table is loaded. Afterward, the top-down intra-model resolution algorithm is
executed on the loaded artifact scopes. If no suitable artifact scopes could be loaded
from symbol table files, the resolution returns an empty set of symbols. If one or more
symbols are found as a result of the top-down intra-model symbol resolution in the
loaded artifact scopes, the symbols are returned as a result of the inter-model resolution,
and the algorithm terminates. If no symbol is found, the algorithm resolves for adapted
symbols with all resolvers (cf. Section 6.2.2) that are configured for the symbol kind in
the global scope. If this yields any symbols as a result, these symbols are returned as a
result, and otherwise, an empty set of symbols is returned.

Contrary to the symbol management infrastructure [MSN17], the STI does not qualify
names as part of the inter-model resolution. Instead, the qualification of names, e.g.,
with package names and applicable import statements, has to be performed a priori of
the resolution as part of the symbol table instantiation that is explained in Section 4.1.10.
An advantage of this is that a name is qualified only once instead of during each symbol
resolution.

67

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

resolve down symbols of kind S with name N

resolve in local

scope

has this scope

already resolved

for S?

no

found symbols or is

N an unqualified

name?

no

split name at

first dot:

N = NB "." NE yes

has unvisited sub scope

that exports symbols

and is spanned by a

symbol with name NB?

no

yes
resolve down in

sub scope with

name NE

return symbols

yes

symbols

AD

Method Description

resolveSDown(..)
performs top-down intra-model resolu-
tion for a single symbol of kind S

resolveSDownMany(..)
performs top-down intra-model resolu-
tion for symbols of kind S

Figure 4.15: Activities involved in top-down intra-model resolution (top) and methods
realizing these (bottom)

Top-down Intra-model Resolution

The activities involved in top-down intra-model resolution are depicted by means of an
activity diagram in the top of Figure 4.15. The bottom of the figure contains a table that
lists central methods that realize the top-down symbol resolution in the implementation
of the STI. These methods are explained in more detail in Section 4.3.2. The resolution
algorithm begins by checking whether resolution for the symbol with the passed name
and kind has already been executed in the current scope. This is part of a mechanism
for avoiding cyclic symbol resolution in the presence of cyclic symbol adapters that is
explained in more detail in Section 6.2.2. If this is the case, the resolution returns an
empty set of symbols. Otherwise, the resolution proceeds with enacting the local symbol
resolution activity. If the local resolution has found at least one matching symbol, the
symbol(s) are returned. If no symbols were found but the name of the symbol that
the algorithm resolves for is not a qualified name (i.e., it does not contain a "."), the
resolution returns an empty set of symbols as well. This is due to the assumption that
each scope that is considered for resolution is identified via the name of the symbol that
spans the scope. If a resolved name is not qualified, it must be contained in the local
scope or an enclosing scope but not in a subscope. As stated before, this is the part of the
default resolving algorithm and can be customized for individual languages. If no symbol
was found in the local scope and the name is qualified, the top-down resolution proceeds
with splitting up the qualified name. The name is split on the first occurrence of a dot.
As visualized in Figure 4.15, a name N is split such that it equals a concatenation of three

68

4.1 Concept of Kind-Typed Symbol Tables

«interface»

AutomataVisitor

«interface»

AutomataHandler

«interface»

AutomataTraverser

AutomataTraverser

Implementation

«interface»

IVisitor

«interface»

IHandler

«interface»

ITraverser

handle(..)

traverse(..)

getTraverser()

visit(..)

endVisit(..)
0..1

*

for each:
- AST class
- symbol class,
- scope interface, and
- artifact scope interface

AST-CD

Figure 4.16: Generated visitor infrastructure for AST, scopes, and symbols

Strings NB, ".", and NE. If the resolved symbol is contained in a subscope of the current
scope, the name part NB must be the name of a symbol located in a direct subscope
of the current scope that spans this scope. Furthermore, if such a subscope exists, it
must export the symbols, and it must not have been visited in the current execution of
the resolution algorithm. If any of these conditions is violated, the algorithm returns
an empty set of symbols. Otherwise, if all conditions hold, the top-down resolution
continues with top-down resolution in the subscope for a symbol with the name NE. In
other words, top-down resolution removes the qualifiers of a qualified name iteratively
if these match suitable scopes. The set of symbols that results from this resolution is
returned as a result of the current resolution.

The current realization of top-down intra-model resolution has one exception to this
behavior. In Java-like languages, it is common practice that the name of a model/pro-
gram artifact equals the name of a symbol that is directly contained (“top-level”) in
the artifact scope. For instance, a Java class Person must be contained in a file
Person.java. If such a symbol exists, the top-down intra-model resolution in an
artifact scope continues resolving in subscopes not only with the name NB but also with
the name N. The resulting sets of symbols are merged. This behavior enables resolution
for symbols in the presence of this Java-like convention without requiring to qualify a
name both with the name of the artifact and the (same) name of the top-level symbol.

The realization of all symbol resolution algorithms is implemented in resolve meth-
ods that are part of generated scope interfaces, artifact scope interfaces, and global scope
interfaces. Their implementation is described in Section 4.3. All parts of the symbol res-
olution algorithm, especially the top-down intra-model resolution, may be conceptually
different in each language and therefore, it is essential that the generated code realizing
the algorithm is customizable.

4.1.9 Symbol Table Traversal

As introduced in Section 2.1, MontiCore generates a language-specific visitor infrastruc-
ture for traversing the abstract syntax of a language. This infrastructure contains a

69

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

Type Check

Scope + Symbol

Instantiation

:

: :

:

AST + ST

:

: :

:

AST

�

Context Condition

Checking
:

: :

: :

AST + ST

null

before type check,
symbol table is
incomplete

null

after type check, all required
parts of symbol table are
available

by scope genitor

by custom visitor(s)

Figure 4.17: Instantiation of symbol tables in the context of processing models

visitor, a traverser, and a handler that are all realized as Java interfaces. The visitor in-
frastructure described in Section 2.1 explains only the parts of the visitor that traverses
the AST. This section explains how the traversal is extended to consider symbol tables
as well.

The classes and interfaces of the generated visitor infrastructure are depicted at the
bottom of Figure 4.16. The top of the figure shows the interfaces of the MontiCore
runtime that the language-specific interfaces extend. Visitor interfaces, such as the
interface AutomataVisitor, contain visit and endVisit methods for each AST
node, each symbol class, and the scope interface and artifact scope interface of a language.
All of these methods are realized as empty default methods of the interface that are hook
points for realizing specific behavior in implementations of the visitor interface.

Handler interfaces, such as the interface AutomataHandler, contain handle and
traverse methods for each AST node, each symbol class, and the scope interface and
artifact scope interface of a language. The handle methods first call the visit, then
the traverse, and finally the endVisit method of an AST node, scope, or symbol.
The handle method realizes the double dispatching together with the corresponding
accept method in the AST node, scope, or symbol. The traverse methods for AST
nodes are explained in Section 2.1. Traverse methods of a scope visit the contained
symbols via double dispatching. Traverse methods of symbols, even if the symbol kinds
span a scope, are empty by default. However, the traversal strategy can be adjusted by
applying the TOP mechanism.

4.1.10 Symbol Table Instantiation

While processing models, a language tool typically creates the symbol table from a
given AST directly after the AST has been conceived as the result of parsing the model.

70

4.1 Concept of Kind-Typed Symbol Tables

As depicted in Figure 4.17, a scope genitor creates the symbol and scope objects that
constitute the symbol table of a model from an AST.

The instantiation of symbol tables in the STI largely depends on the types of symbols
and scopes and, hence, all parts are generated or have to be implemented manually,
but nothing is contained in the MontiCore runtime environment. The symbol table
instantiation is divided into multiple phases. In the first phase, the objects for all symbol
definitions are instantiated, and the symbol objects are linked with the corresponding
AST node objects. Furthermore, for symbols that span scopes, the scope objects are
instantiated and linked with their environment as depicted in Figure 4.2. This task is
realized by a scope genitor that is generated for each language. The scope genitor is a
class that implements the language’s visitor interface and uses a traverser to traverse
the AST. Scope genitors, however, only initialize the “skeleton” of the symbol table of
a model. This explicitly excludes additional symbol or scope attributes that have been
either added via symbol rules or scope rules (cf. Section 4.2) or by manually applying the
TOP mechanism to symbol and scope interfaces or classes. The initialization of symbol
and scope attributes cannot be generated because it may depend on parts of the symbol
table that may or may not have been initialized already. To this end, the initialization
of symbol or scope attributes can be realized by applying the TOP mechanism to the
scope genitor class only if the initialization does not rely on other parts of the symbol
table. This does not hold if a symbol has a direct association with another symbol. In
this case, the scope genitor cannot distinguish the case that the referenced symbol does
not exist from the case that it has not been instantiated yet.

If a symbol or scope attribute requires information about other parts of the symbol
table, the initialization of this attribute has to be carried out in a separate phase of sym-
bol table creation. This is achieved by manually implementing a class that implements
a language’s visitor interface and traverses either the AST or the symbol table to add
the missing information. The traversal of this visitor has to be executed after the scope
genitor has created the symbol table skeleton. In complex cases with transitive depen-
dencies between symbol table parts, adding further visitors and executing their traversal
consecutively might be necessary. Due to the tremendous variety in the requirements
for such visitors, they have to be conceived for each language individually by hand, and
MontiCore does not generate any additional infrastructure beyond the visitors. The
phase of establishing connections between usages of symbols and their definition is car-
ried out with visitors and is called the type check. After the type check, the symbol table
of a model is established entirely and can be the basis for further well-formedness checks
realized in context conditions that are checked after the type check.

Internally, the scope genitor manages a stack of created scopes to set the enclosing
scope of each symbol correctly. Initially, the scope stack contains only the global scope.
Scope genitors have a method createFromAST that initiates the symbol table instan-
tiation for a given AST object. As a first step, this method creates a new artifact scope
with the language mill and adds it on top of the stack. Then, the method begins with

71

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

01

02

03

04

05

06

07

08

09

10

11

12

grammar Automata3 extends de.monticore.MCBasics {

symbol scope Automaton = "automaton" Name "{" AutElement* "}" ;

interface AutElement;

symbol State implements AutElement = ["initial"]? "state" Name ";" ;

Transition implements AutElement =

from:Name@State "-" input:Name ">" to:Name@State ";" ;

}

MCG

Figure 4.18: Examples for symbol table information in the Automata grammar

the traversal of the AST. For every AST node that the visitor visits, the scope genitor
sets the scope that is on top of the scope stack as the enclosing scope of the AST object
in the implementation of the respective visit method. If the traversal encounters an
AST object of a symbol-defining nonterminal, the scope genitor further creates a new
symbol instance with the mill and integrates it with the remaining symbol table in the
visit method. As a part of this, the scope genitor sets the scope that is on top of the
scope stack as the enclosing scope of the symbol.

If the traversal encounters an AST object that spans a scope, the implementation
of the respective visit method of the scope genitor creates a scope instance with the
mill, integrates it with the environment, and adds it on top of the scope stack. If a
nonterminal defines a symbol and spans a scope, the created symbol and scope objects
are associated with each other as well. In this case, the enclosing scope of the symbol is
the enclosing scope of the spanned scope, i.e., the symbol is not contained in the spanned
scope. In the endVisit method of a scope-spanning nonterminal, the scope object on
top of the scope stack is removed. Consequently, the following nonterminals that the
traverser encounters are added to the enclosing scope. If symbols should be assigned
with different scopes, the scope genitor can be customized with the TOP mechanism.

For reconfiguration that is required, inter alia, for language composition, MontiCore
further generates a scope genitor delegator class. This class manages a traverser with
genitors for the individual languages that constitute a composed language. With this,
the scope genitor delegator takes into account manual changes to the individual scope
genitors. To foster reconfiguration through inheriting languages, a language tool should
always use the scope genitor delegator rather than directly employing the scope genitor.
If a language inherits from one or more other languages, only the scope genitor delegator
creates symbols and sets the enclosing scopes for nonterminals of the inherited languages.

72

4.2 Annotating Grammars with Symbol Table Information

symbol A = Name; // defines a symbol of kind A

symbol AO = Name?; // produces a symbol of kind A if name is present

symbol AO2 = (Name | "constant"); // same as for nonterminal AO

symbol AN = id:Name; // produces abstract symbol class

symbol AN2 = "no name"; // produces abstract symbol class

symbol AL = Name*; // not allowed

symbol AM = Name Name; // not allowed

MCG

X

X

Figure 4.19: Examples for allowed and forbidden uses of the symbol keyword

4.2 Annotating Grammars with Symbol Table Information

Most constituents of the STI can be generated with a code generator. To control the
generation of symbol- and scope-specific information, the grammar model of a language
can be enriched with symbol table information. This section describes when and how
symbol table information can be indicated in a language’s grammar and the effect of
such annotations on the generated symbol table infrastructure of a language.

An example of symbol table information in a language’s grammar is depicted for the
example of the automata language in Figure 4.18. Nonterminals can be annotated with
the keywords symbol and scope, and the Name nonterminal on the right-hand side of
a grammar rule can be annotated with an "@" and the name of a symbol kind.

4.2.1 Indicate that a Nonterminal Defines a Symbol Kind

The keyword symbol can be added at the beginning of a class or an interface grammar
rule. This keyword indicates that the nonterminal realizes a model element that is
identifiable through a (unique) name and that is intended to define a symbol kind.
Hence, each occurrence of such a nonterminal in the AST of a model produces a new
symbol of this kind. If the symbol keyword is added to an interface nonterminal, all
nonterminals that implement this interface nonterminal define a symbol of this kind as
well. Furthermore, if a nonterminal extends or overrides a symbol-defining nonterminal,
it defines a symbol of the same kind.

However, a nonterminal that extends another symbol-defining nonterminal can also
define a novel symbol kind. To do so, the grammar rule of the nonterminal must be
annotated with the symbol keyword individually. The novel symbol kind then inherits
from the symbol kind of the inherited symbol-defining nonterminal.

Figure 4.19 depicts several allowed and forbidden usages of the symbol keyword for
different grammar rules by example. As depicted by the rule for the nonterminal A, the

73

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

AST-CD

stateSymbols

symbol

enclosingScope

Automata

Scope

StateSymbol

1

*

1

ast

ASTState

0..1
1

enclosingScope

symbol State = /* … */ ; MCG

Automata

Scope

1

enclosingScope

subScopes *

ASTAutomaton

Body

1

ast0..1

enclosingScope 1 spannedScope

scope AutomatonBody = /* … */ ;

AST-CD

MCG

Figure 4.20: Example of the influence of the symbol keyword (depicted left) and the scope
keyword (depicted right) on the associations between symbols, scopes, and
AST nodes

symbol keyword can be added before the nonterminal name on the left-hand side of the
rule if the right-hand side contains an (unnamed) nonterminal Name. Sometimes, rules
have an optional name on their right-hand side either as an optional nonterminal (cf.
AO) or as an alternative (cf. AO2). In such cases, the nonterminal defines a symbol as
well, but symbols are only instantiated for instances in the AST that contain the name.

The symbol keyword can also be added to rules that either have a named Name
nonterminal (cf. AN) or no Name nonterminal at all on their right-hand side. The first
case may occur if a nonterminal has multiple names and no nonterminal should remain
unnamed. The second case may occur if the identifying name of a symbol is not realized
with the nonterminal Name in the grammar but with a different nonterminal instead.
However, these cases require manual adjustment of the symbol table infrastructure to
identify the name correctly and should be used carefully. The symbol classes generated
for such symbol-defining nonterminals are generated as abstract classes to indicate the
requirement for manual activity.

Iterations of names such as in direct iterations (cf. AL) or through multiple usages of
the nonterminal Name with the same name (cf. AM) are not allowed, as these would create
multiple symbols for a single nonterminal. This prevents a direct association between a
symbol and an AST node, as described in Section 4.1.1. If a language engineer intends
this, the grammar has to be restructured to use different nonterminals for the different
symbol definitions or different instances of the same nonterminal. The same regulations
for adding the symbol keyword to class nonterminals also hold for adding the symbol
keyword to interface nonterminals.

The left side of Figure 4.20 depicts the effect of the symbol keyword for the nonterminal
State on the code generation of the corresponding abstract syntax. Besides the class

74

4.2 Annotating Grammars with Symbol Table Information

ASTState that represents the AST node for states, the code generator produces a class
StateSymbol for the nonterminal. The classes ASTState and StateSymbol are in
a bidirectional association. The AutomataScope that is generated for the language is
also in a bidirectional association with the StateSymbol.

4.2.2 Indicate that a Nonterminal Spans a Scope

The keyword scope can be added to a nonterminal to indicate that the nonterminal
spans a scope. In the following, we refer to such nonterminals as scope-spanning nonter-
minals. The effect of this keyword is that all occurrences of the nonterminal in the parse
tree create a new instance of the language’s scope. All (transitive) children in the parse
tree are contained within this scope (or subscopes of this scope). This holds especially
for symbols produced by instances of symbol-defining nonterminals.

In Java, for example, a nonterminal for the body of a for-loop spans a scope that
impacts the visibility of any contained symbols. Another example of a scope-spanning
nonterminal and its effect on the code generation of the abstract syntax data structure of
the automata language is depicted on the right side of Figure 4.20. The keyword scope
is added before the name of the nonterminal AutomatonBody on the left-hand side of
the grammar rule. In the generated abstract syntax, there is an additional association
between the AST node of the nonterminal and the language’s scope class. In contrast to
the symbol keyword that produces a new symbol class per nonterminal, all nonterminals
of a language share the same scope class. The scope class can be configured with scope
properties (cf. Section 4.1.3). To this end, the grammar language has keywords for
customizing the scope properties for each scope-spanning nonterminal individually, in
case the value of the properties should deviate from the default. These keywords are
indicated in brackets after the scope keyword of a grammar rule. If multiple keywords
are indicated, these have to be separated by whitespace.

non_exporting marks the produced scope instance as a non-exporting scope, i.e., a
scope that does not export any locally defined symbols. By default, scopes export all
local symbols.

non_shadowing marks the produced scope instance as non-shadowing scope, i.e., a
scope in which local symbols do not shadow symbols of other scopes that have the same
name. By default, scopes shadow symbols from enclosing scopes.

ordered marks the produced scope instance as an ordered scope, i.e., a scope in which
the source position of a symbol must occur before the source position of any usages of
the symbol. By default, scopes are not ordered.

In many block-based languages, symbol definitions can be strongly related with scopes
that are spanned. In the language’s grammar, this is typically realized by a nonterminal

75

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

symbol scope Automaton = /* … */ ;

automatonSymbols

enclosingScope

spanningSymbol

Automata

Scope

Automaton

Symbol

*

enclosingScope

subScopes *

1 1

1

0..1

ast

symbol

spannedScope

ast

ASTAutomaton

0..1

0..1

enclosingScope

1 spannedScope

1

1

AST-CD

MCG

Figure 4.21: Example of associations between symbols, scopes, and AST nodes if a non-
terminal spans a scope and defines a symbol

that both defines a symbol and spans a scope. In Java, for instance, a Java class defines
a symbol, and the body of the Java class spans a scope. Similarly, a method definition
defines a symbol, and the body of the method definition spans a scope. For scopes
that export symbols, the connection to the symbol that spans the scope is relevant
for calculating qualified names. For instance, a Java class Foo defines a symbol Foo
and spans a scope with the body of the class. Any static members of the class can be
identified with the name of the class as a qualifier.

In the automata language, the nonterminal Automaton defines a symbol and spans a
scope. The effect of this is depicted in Figure 4.21. Besides the combined effects of the
individual keywords symbol and scope, the combination of both keywords produces a
bidirectional association between the symbol class and the scope class.

4.2.3 Indicate that a Nonterminal Uses the Name of a Symbol

In addition to marking nonterminals as symbol-defining and scope-spanning, nontermi-
nals can be enriched with information about symbol usages. A symbol is always used
via the symbol name, i.e., by using the nonterminal Name on the right-hand side of a
grammar rule. To indicate that a name on the right-hand side of a grammar rule is a
symbol usage of a symbol of certain kind K, the Name nonterminal can be suffixed with
an @K, i.e., Name@K. To distinguish multiple symbol usages in the right-hand side of the
same nonterminal, the annotation can be added to named nonterminals as well, such as
in n:Name@K.

The effect of a symbol usage in the grammar for the code generator is that the
corresponding AST class of the nonterminal obtains an additional attribute with the
name of the nonterminal and the suffix Definition. The type of the attribute equals

76

4.2 Annotating Grammars with Symbol Table Information

AST-CD

Transition = src:Name@State /*..*/; Initial = "initial" ; MCG

AST-CD

MCG

Automata

Scope

1

1

enclosingScope

subScopes *

ASTInitial

enclosingScope

Automata

Scope

1

1

enclosingScope

subScopes *

ASTTransition

enclosingScope
StateSymbol

1srcDefinition

Figure 4.22: Example of associations between symbols, scopes, and AST nodes if a non-
terminal uses a symbol (depicted left) or if a nonterminal does neither define
a symbol nor span a scope (depicted right)

the type of the symbol class. This additional relationship enables navigation from the
AST class of the symbol usage to the class of the symbol definition. Other than the
SymbolReferences in the SMI [MSN17], no dedicated infrastructure is generated for
symbol usages, and, hence, the annotation with a symbol usage has no further influence
on the code generator. An example of a symbol usage of the nonterminal Transition
in the automata language is depicted on the left side of Figure 4.22. The Name nonter-
minal with the name src is indicated to refer to the name of a State symbol. In the
generated code, this reflects in the directed association from the class ASTTransition
to the class StateSymbol.

For completeness of this description, the right side of Figure 4.22 depicts an example
of the abstract syntax in case no symbol table annotation is added to a nonterminal with
the name Initial.

4.2.4 Providing Symbol Kind Attributes

With the symbol keyword, a new symbol kind can be introduced through the grammar.
With this, the code generator produces a symbol kind with attributes common to all
symbol kinds, such as the connections to the symbol environment (e.g., AST and enclos-
ing scope) and a String attribute for the symbol name. However, additional attributes
cannot be indicated through the grammar rule of the symbol-defining nonterminal.

Theoretically, it would be possible to add additional information from the parts of the
right-hand side of the grammar rule that is reflected in the abstract syntax. However, this
pollutes the symbol table infrastructure with additional information that is not required
in most languages. Moreover, this would duplicate information already contained in
the AST. However, together with loading and storing of symbol tables as presented
in Chapter 5, the AST is not always available from a given symbol. Therefore, the

77

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

symbolrule State =

initial:boolean

adjacentStates:String*

method

public int getOutDegree() {

return adjacentStates.size();

}

;

AST-CDMCG

StateSymbol

boolean initial

List<String> adjacentStates

+ int getOutDegree()

#

Figure 4.23: Example of a symbol rule (left) and its effect on the generated symbol table
infrastructure (right)

STI has a dedicated mechanism for providing additional attributes for each symbol kind
through symbol rules, which are a specific kind of grammar rules.

Similar to AST rules presented in Section 2.1, symbol rules can contain named and
typed attributes as well as methods. A symbol rule begins with the symbolrule
keyword followed by the name of the symbol-defining nonterminal. The right-hand side
of a symbol rule contains attributes by indicating the attribute name, followed by a
double colon and the attribute type. Each attribute may be marked as optional (with
"?") or may be iterated (with "*"). Each attribute is translated into an attribute of
the generated symbol class.

Methods begin with the keyword method followed by the method signature and body
in the same syntax as the method would have in Java. Each method of the symbol rule
becomes a method in the generated symbol class.

As an alternative to symbol rules, attributes and methods can be added to a symbol
kind by applying the TOP mechanism to the symbol class. An advantage of adding
attributes to a symbol kind via a symbol rule is that more symbol-kind-specific language
infrastructure can be generated from the grammar. MontiCore generates infrastructure
for loading and storing additional symbol kind attributes in the context of symbol table
persistence (cf. Chapter 5). For symbol rule methods, MontiCore does not generate
additional language infrastructure. On the contrary, the body of methods in symbol
rules may be lengthy and, hence, “pollute” the grammar with implementation details.
Therefore, we recommend adding methods to symbol kinds with the TOP mechanism.

For each symbol-defining nonterminal, a grammar may contain at most one symbol
rule. An example of a symbol rule for the nonterminal State is depicted on the left side
of Figure 4.23. The symbol rule introduces an attribute initial of the type boolean
to transport the information whether the state is an initial state through the language’s
symbol table. Furthermore, the symbol rule defines a second attribute adjacentState
that is of the iterated type StateSymbol and lists all states to which the current state
is connected via a transition. Non-primitive types have to be indicated via their qualified
names, i.e., including the package. As this symbol rule associates StateSymbol objects
with other StateSymbol objects, the symbol table instantiation has to be carried out

78

4.2 Annotating Grammars with Symbol Table Information

scoperule = hashValue:String;

AST-CDMCG

«interface»

IAutomataScope

String hashValue+ String getHashValue()

+ void setHashValue(String)

%
AutomataScope

%

Figure 4.24: Example of a scope rule (left) and its effect on the generated symbol table
infrastructure (right)

in two phases, and the adjacentStates attribute has to be set in the second phase.
If set in the first phase, the symbol table instantiation could only set all adjacent states
from transitions visited before, which may omit transitions that are visited afterward.
The symbol rule further defines the method getOutDegree() that returns the size of
the list of adjacent states.

An excerpt of the effect of this symbol rule on the generated class StateSymbol
is depicted on the right side of Figure 4.23. Symbol rule attributes are translated to
attributes of the symbol class, iterated attribute types are realized as lists. The code
generator produces access and manipulation methods for the attributes. These are omit-
ted in the figure for presentational reasons. The method of the symbol rule is translated
into a Java method of the symbol class.

4.2.5 Providing Scope Attributes

Similar to symbol rules, scope rules enable adding additional attributes and methods
to the scope of a language. A scope rule begins with the keyword scoperule. Since
languages do not distinguish different scope types, a scope rule does not mention a
nonterminal name on the left-hand side of the rule. The right-hand side of the rule,
however, may contain the same elements as symbol rules and AST rules. There must
not be more than a single scope rule per grammar.

An example of a scope rule is depicted in Figure 4.24. The scope rule has a single
attribute hashValue of the type String. The intention of the attribute in this example
is to manage a hash value calculated on the scope that can be used to check whether
the scope has been modified. The generated scope interface contains abstract access
and manipulation methods for the scope rule attribute. The attribute itself and the
implementation of the abstract methods is contained in the generated scope class, which
can be customized with the TOP mechanism to calculate the hash value.

79

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

4.3 Implementation of the Typed Symbol Table Infrastructure

The implementation of the STI follows the concepts described in Section 4.1 and is inte-
grated into MontiCore in version 7. As such, the implementation is described in detail
in the technical report on MontiCore [HKR21], especially in the chapter about symbol
tables [BMSN21]. Furthermore, MontiCore is open-source and, hence, the implementa-
tion of the STI is publicly available1. The implementation of the STI follows a set of
central principles:

Generate language-specific types To enable customization through extension with sub-
types, each constituent of the symbol table infrastructure is generated as a language-
specific type. To further foster extensibility, no inner types are used in generated code.

Enable customization of generated types The TOP pattern and a language mill are
employed to integrate handwritten customizations with generated code [HKR21]. Every
generated artifact is extensible with the TOP pattern. All artifacts that realize compo-
sitional constituents of the symbol table infrastructure (cf. Chapter 6) are instantiated
through a language mill and, hence, can be exchanged with subtypes through reconfig-
uration of the mill.

Generate default realizations In different software languages, type systems, visibility
concepts, and namespaces can rely on various concepts and, hence, large parts of the
implementation of the symbol table infrastructure can vary. The STI contains a gener-
ated default realization for such concepts that can be adjusted via customization of the
corresponding Java types.

Reduce generating boilerplate code The implementation of the symbol table infras-
tructure for language-agnostic parts contains boilerplate code. To reduce manually writ-
ten boilerplate code, reusable units of language-agnostic symbol table infrastructure
are contained in default method implementations of interfaces that the generated types
implement. Therewith, such parts can be customized by overriding the corresponding
methods and extending the generated types with the TOP mechanism. If boilerplate
methods instead were extracted to static methods in “helper” classes, the customization
would be more complex in general.

The following explains the generated parts of the STI using the automata language
as an example. To reduce redundant explanations, source code generated for each sym-
bol kind is often explained for state symbols only, and the analogous explanation for
automaton symbol kind is omitted.

1MontiCore on GitHub: monticore.github.io

80

monticore.github.io

4.3 Implementation of the Typed Symbol Table Infrastructure

4.3.1 Implementation of Language Mills in MontiCore

Language mills [HKR21] provide builders for objects of language infrastructure classes
and enable reconfiguration of language infrastructure for language composition. They
are needed for flexible instantiation of objects from symbol table infrastructure types
for composed languages (cf. Chapter 6). Mills are realized as singleton Java classes,
and MontiCore generates a single mill class for each language. Each mill has static
access methods to obtain the objects of the language infrastructure from the singleton
mill instance. Furthermore, the singleton instance of the mill can be set with a method
initMe(..) to reconfigure the mill with a subtype of the mill that must be passed to
the method as an argument. The init() method initializes the current mill and the
mills of inherited languages. This is explained in more detail in the context of language
composition in Section 6.1.4. With the mill’s reset() method, any reconfigurations of
a mill can be set to their initial configuration.

As a singleton, a mill class manages the single mill instance as a class attribute. The
class contains several static methods that delegate to corresponding non-static methods
of the mill instance. The non-static methods implement the actual behavior and have
the same method signature as their static equivalences, except that the method names
have an appended underscore.

While a language tool processes a model, multiple instances of AST nodes and symbol
classes have to be created. MontiCore contains builders for these classes, and the lan-
guage mill creates the builders. The mill, hence, is a “builder for the builders”. For all
other parts of the language infrastructure that have to be reconfigured during language
composition, the mill provides individual access methods. This includes the following
parts of the STI:

� Instances of the scope class are created via the method scope()

� Artifact scope class instances are created via the method artifactScope()

� The singleton instance of the global scope class can be obtained through the method
globalScope()

� The scope genitor class can be accessed via the method scopesGenitor()

� The scope genitor delegator class can be accessed via the scopesGenitor-
Delegator() method

The names of the methods do not include the language name and the usual syntax of
getter methods to keep their names short and readable. In the usual naming conventions
for Java methods, the method scope() would be named, e.g., getAutomataScope().
Apart from the constituents of the STI described above, mills contain methods for ob-
taining other parts of language infrastructure, such as the parser and the traverser of a
language.

81

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

AutomataMill

init()

reset()

initMe(AutomataMill m)

AutomataMill getMill()

IAutomataScope scope()

IAutomataArtifactScope artifactScope()

IAutomataGlobalScope globalScope()

AutomataTraverser traverser()

AutomataScopesGenitor scopesGenitor()

AutomataScopesGenitorDelegator scopesGenitorDelegator()

ASTStateBuilder stateBuilder()

StateSymbolBuilder stateSymbolBuilder()

IAutomataScope _scope()

�
AST-CD

Figure 4.25: Static methods of the language mill for the automata language that delegate
to non-static methods of the singleton instance

Figure 4.25 depicts the static methods of a mill by the example of the automata
language. The init(), reset(), and initMe() methods are part of every mill. In
addition to these methods, the mill contains static accessor methods for each language-
specific type of the STI described above, such as the global scope, the traverser, and
the scope genitor. The implementation of these methods uses an instance of the mill
and a corresponding non-static method to implement the getter method and enable
proper reconfiguration. By convention, the names of the non-static methods match the
names of the static methods but begin with an underscore. For each symbol-defining
nonterminal, the mill contains two static builder methods, one for the AST node and one
for the symbol class. The figure depicts these by the example of the State nonterminal.
Other methods such as all non-static methods and methods for types that are not directly
related to the STI, such as the language’s parser or its inheritance traverser, are omitted.

4.3.2 Implementation of Scopes in MontiCore

Scopes contain and manage local symbols, realize the visibility concepts for symbols,
and are capable of performing symbol resolution. The concept for scopes is explained
in Section 4.1.3. MontiCore generates a single dedicated scope type for the STI of each
language. Hence, all nonterminals of a language that span a scope rely on the same
scope type. To support multiple inheritance of scopes for language composition, the
implementation of scopes is split into a scope interface and a scope class implementing
this interface. This is explained in more detail in Chapter 6. Furthermore, the artifact
scopes of a language have a particular behavior that is realized in a separate artifact
scope type. Again, to support multiple inheritance of languages, artifact scopes are split
into artifact scope interfaces and classes.

82

4.3 Implementation of the Typed Symbol Table Infrastructure

«interface»

IAutomataScope

AutomataScope

«interface»

IAutomataArtifactScope

AutomataArtifactScope

«interface»

IAutomataGlobalScope

AutomataGlobalScope

«interface»

IScope

«interface»

IArtifactScope

«interface»

IGlobalScope
run-time
environment

language-
specific
interfaces

language-
specific
classes

AST-CD

Figure 4.26: Classes and interfaces realizing scopes in the STI

The behavior of artifact scopes deviates from other scopes of a language only in some
parts. Thus, the artifact scope interface extends the scope interface to reuse most of
its methods directly and override only some methods. Global scopes support resolving
symbols between different artifacts. A language-specific global scope class and a global
scope interface are generated for each language. Similar to artifact scopes, the types
of global scopes require only parts of dedicated behavior that are different from other
language scope types. To reuse the other parts of the behavior encoded into methods,
global scope interfaces extend the scope interfaces.

Figure 4.26 presents an overview of the classes involved in realizing scopes within
the STI based on the example of the automata language. At the top row of the figure
are the runtime interfaces that realize default implementations of language-independent
methods to reduce boilerplate code in the generated scope classes and interfaces. These
default methods can be customized by applying the TOP mechanism pattern [HKR21]
to a generated scope class or interface to override the methods. The middle row of
the figure shows the scope interfaces, which realize language-specific functionality such
as the symbol resolution algorithm. The bottom row comprises the scope classes that
manage scope attributes and direct access to the attributes. Artifact scopes are depicted
in the left column, global scopes in the right column, and the center column presents the
general scopes. The inheritance relationship between scopes, artifact scopes, and global
scopes is realized on the level of scope interfaces and scope classes. An inheritance
relationship among runtime environment scope interfaces is not required as it does not
provide any benefits but instead produces additional diamond inheritance relationships.
The following introduces the scope interface and scope class in Figure 4.26 in more detail.

83

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

IAutomataScope

AST-CD
AutomataScope

Multimap<String,StateSymbol> stateSymbols

add(StateSymbol s)

remove(StateSymbol s)

int getSymbolsSize()

List<StateSymbol> getLocalStateSymbols()

boolean isStateSymbolAlreadyResolved()

void setStateSymbolAlreadyResolved(boolean b)

add(StateSymbol s)

remove(StateSymbol s)

List<StateSymbol> getLocalStateSymbols()

boolean isStateSymbolAlreadyResolved()

void setStateSymbolAlreadyResolved(boolean b)

Figure 4.27: Managing local symbols within scopes

Managing Symbols

Scopes in the STI manage their local symbols separately for each kind. For each symbol
kind defined in a language, the scope class contains a multimap as depicted in Figure 4.27
that maps the symbol name to a list of symbols with this name. In many languages, a
list mapping a symbol name to a single local symbol would suffice, but some languages
allow multiple symbols with the same name to be present in a scope. In such cases,
the symbols must be differentiable based on further information. For example, the
scope of a Java class can have multiple method symbols of the same kind that have
the same name but are differentiable based on the method arguments. The STI uses
a multimap as data structure to enable languages defining such cases. However, this
requires language engineers to define custom predicates passed to the symbol resolution
as arguments [MSN17].

All method signatures for managing symbols are defined in the scope interface IAuto-
mataScope. The implementation of methods that directly access or modify the symbol
map attributes, such as getter and setter methods, are contained in the scope class. Some
methods, such as getSymbolsSize(), delegate in their implementation to the getter
and setter methods of the class and, hence, can be located as default implementation
in the scope interfaces. The following shortly explains the purpose of the most relevant
methods for managing symbols in scope:

add(..) is a method that a scope class realizes once per symbol kind of the language.
It adds a passed symbol of a certain kind to the respective multimap attribute. The
method is contained as an abstract method in the scope interface and implemented in
the scope class.

remove(..) is a method for removing a symbol from the current scope. It is contained
as an abstract method in the scope interface and implemented in the scope class for each
symbol kind.

getSymbolsSize() calculates the number of all local symbols in the current scope.
This method is generated because it requires calculating the sum of the multimap sizes

84

4.3 Implementation of the Typed Symbol Table Infrastructure

«interface»

IAutomataScope
AutomataScope

boolean isExportingSymbols()

setExportingSymbols(boolean b)

boolean isOrdered()

setOrdered(boolean b)

boolean isShadowing()

setShadowing(boolean b)

�

boolean isExportingSymbols()

setExportingSymbols(boolean b)

boolean isOrdered()

setOrdered(boolean b)

boolean isShadowing()

setShadowing(boolean b)

� AST-CD

Figure 4.28: Access to scope properties

of all symbol kinds. As the implementation relies on other scope methods instead of
direct access to the multimap attributes, it can be realized as a default method in the
scope interface.

getLocalStateSymbols() is a method that returns a list of all local symbols of a
specific kind, in this example, all local StateSymbols. It is generated once per symbol
kind of each language and is contained as an abstract method in the scope interface and
implemented in the scope class.

isStateSymbolAlreadyResolved() is a method that returns true if during an
execution of the symbol resolution algorithm, resolution of the symbol has already been
attempted with the current kind in this scope instance. The method is required to
prevent cycles in the resolution algorithm that could occur due to cyclic symbol adapters.
Although the method is not intended to be used outside of the scope, it is contained
in the scope interface to be used within the resolution algorithm encoded into default
implementations of the resolve methods in the scope interface.

setStateSymbolAlreadyResolved(..) is a method used together with the method
isStateSymbolAlreadyResolved() to avoid cycles and, similarly, should not be
used outside of the scope. It sets a local Boolean attribute to the passed value.

Scope Properties

Each instance of a scope type can be adjusted with three properties, as explained in Sec-
tion 4.1.3. To control these properties, scopes in the STI define the methods depicted
in Figure 4.28.

isExportingSymbols() and setExportingSymbols(..) are methods to access
and control whether the scope instance is set to export its symbols.

isOrdered() and setOrdered(..) are methods to access and modify whether a
scope instance considers the order of the locally defined symbols.

85

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

IAutomataScope

addSubscope(IAutomataScope s)

removeSubscope(IAutomataScope s)

List<IAutomataScope> getSubscopes()

setEnclosingScope(IAutomataScope s)

IAutomataScope getEnclosingScope()

�«interface»

IScope

setAstNode(ASTNode node)

ASTNode getAstNode()

boolean isPresentAstNode()

setAstNodeAbsent()

setSpanningSymbol(IScopeSpanningSymbol s)

IScopeSpanningSymbol getSpanningSymbol()

boolean isPresentSpanningSymbol()

setSpanningSymbolAbsent()

�

connections to
AST and subscope

connections to enclosingScope and
the symbol that spans the scope

AST-CD

Figure 4.29: Integration of the scope with its environment

isShadowing() and setShadowing(..) are methods for obtaining and setting the
scope property that determines whether local symbols shadow symbols with the same
name and kind of other scopes.

Integration with Environment

Scopes are typically arranged within scope trees, contain symbols, and can be connected
to the AST, as explained in Section 4.1.1. To this end, scopes have methods for managing
the connections to their direct environment, i.e., the technical realization of the scope’s
associations to other constituents of the symbol table infrastructure and the AST. An
overview of these methods is depicted in Figure 4.29, and the following explains the
methods individually.

addSubscope(..), removeSubscope(..), and getSubscopes() manage the at-
tribute subscope of a scope. Each scope has a list of subscopes that can be of the same
scope type or a subtype. The abstract methods are contained in the scope interface, and
the implementation of these methods is contained in the scope class.

getEnclosingScope() and setEnclosingScope(..) are methods to access and
modify the enclosing scope of the current scope. As scope instances are usually arranged
as a tree, each scope – except the scope that is the root of the scope tree – has an
enclosing scope. As the root of a scope tree is always the global scope, these methods
are overridden and handled differently there. The type of the enclosing scope is always
the same type or a subtype of the type of the current scope.

getAstNode() and setAstNode(..) access and modify the AST node that can be
associated with the scope. The type of the AST node is the interface ASTNode, as it
can be of various concrete types. During model processing, each AST node instance is
associated with an enclosing scope after the symbol table has been created. A scope is
associated with an AST node if the scope has been created during model processing,
i.e., as a processing step after parsing a model. If a scope is created as part of loading a

86

4.3 Implementation of the Typed Symbol Table Infrastructure

«interface»

IAutomataScope

List<StateSymbol> resolveStateLocallyMany (..)

Optional<StateSymbol> resolveStateLocally (..)

List<StateSymbol> resolveStateMany(..)

Optional<StateSymbol> resolveState (..)

List<StateSymbol> resolveStateDownMany (..)

Optional<StateSymbol> resolveStateDown (..)

List<StateSymbol> continueStateSymbolWithEnclosingScope(..)

List<StateSymbol> continueAsStateSymbolSubScope()

List<StateSymbol> resolveAdaptedStateLocallyMany (..)

'

«interface»

IScope

boolean checkIfContinueWithEnclosingScope(boolean foundSymbols)

boolean checkIfContinueAsSubScope(String name)

String getRemainingNameForResolveDown(String name)

' AST-CD

Figure 4.30: Methods realizing the symbol resolution by the example of state symbols

symbol table from a stored symbol table file, no AST node is associated with it. Thus,
the AST node is realized as an optional attribute of a scope.

isPresentAstNode() and setAstNodeAbsent() delegate to the respective meth-
ods of the optional attribute.

getSpanningSymbol() and setSpanningSymbol(..) access and modify the sym-
bol that spans the scope if the scope is spanned by a symbol. Whether a scope is spanned
by a symbol depends on the language element that spans the scope. As the scopes
spanned by different elements of a language are realized through the same Java type,
the spanning symbol is realized as an optional attribute and is not typed with a specific
symbol class.

isPresentSpanningSymbol() and setSpanningSymbolAbsent() delegate to
corresponding methods of the optional attribute.

getName() and setName(..) access and modify the scope’s name if the scope has a
name. An artifact scope typically has the name of the model artifact, and scopes that
are spanned by a symbol have the same name as their spanning symbol. Other scopes
typically do not have a name and, thus, the name is realized as an optional attribute.

isPresentName() and setNameAbsent() delegate to the respective methods of
the optional attribute.

87

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

Symbol Resolution

The implementation of the symbol resolution algorithm is contained in the resolve
methods of the scope interfaces. The algorithm is explained in Section 4.1.8 in detail,
and this section gives an overview of its technical realization. All resolve methods are
specific to the kind of symbols that these resolve in the symbol table. To indicate this,
the name of the symbol kind is encoded in the name of the methods. An overview of the
resolve methods for state symbols is depicted in Figure 4.30. Each resolve method exists
in variants of overloaded methods that have different arguments. All resolve methods
exist in variants with and variants without the argument of a Predicate over the
symbol. This predicate enables further restrictions of the symbols that are searched.
It can be utilized, for instance, for realizing the resolution of method symbols with a
particular list of arguments among multiple available method symbols with the same
name. By default, all symbols satisfy the predicate. This is equal to using the predicate
s -> true.

Furthermore, some variants of the resolve methods offer to pass an AccessModifier
as an argument. Language engineers can use access modifiers to realize sophisticated
visibility concepts. In general, scopes can use the exportSymbols property to globally
restrict access to symbols from all scopes except the scope in which the symbol is defined.
Sophisticated visibility concepts such as the package visibility in Java, however, require
granting access to the symbol from some scopes but prohibiting access from others. To
realize this, the visibility is passed as an access modifier argument to the resolve
methods. The following gives an overview of the resolve methods contained in a scope
interface by the example of the symbol kind StateSymbol:

resolveStateLocallyMany(..) realizes the local symbol resolution. The method
implementation searches for symbols of a specific kind (in this example, the kind State-
Symbol) that are directly contained in the local scope and have the passed symbol name.
Furthermore, the method searches for symbols of subkinds of the kind. It returns the
resolved symbols as a list.

resolveStateLocally(..) realizes the local symbol resolution but expects to find
a single matching symbol only. If no such symbol exists, it returns an empty Optional
value. If multiple symbols exist, the method yields an ambiguity error listing the am-
biguous symbols.

resolveStateMany(..) realizes the bottom-up intra-model resolution. The resolu-
tion begins in the local scope and continues with the resolution in enclosing scopes until
the global scope is reached. The subsequent inter-model resolution is carried out by
the method resolveStateMany(..) in global scope interfaces. The consecutive top-
down resolution in foreign artifacts is executed by the resolveStateDownMany(..)
method. Internally, the method uses the continueStateSymbolWithEnclosing-

88

4.3 Implementation of the Typed Symbol Table Infrastructure

Scope(..) method to execute the resolution in enclosing scopes. The resolve-
StateMany(..) method returns the resolved symbols as a list.

resolveState(..) resolves for a single symbol with the passed name. If no such
symbol exists, it returns an empty Optional value. If multiple symbols exist, the
method yields an ambiguity error that lists the ambiguous symbols.

resolveStateDownMany(..) realizes the top-down intra-model resolution and re-
turns the resulting set of symbols as a list. The method internally uses the method
continueAsStateSymbolSubScope(..) to perform the evaluation of qualified
names and to continue resolution in subscopes.

resolveStateDown(..) performs the top-down intra-model resolving but expects
to find a single matching symbol only. If no such symbol exists, it returns an empty
Optional value. If multiple symbols exist, the method yields an ambiguity error that
lists the ambiguous symbols.

continueStateSymbolWithEnclosingScope(..) supports the realization of the
bottom-up symbol resolution. The method realizes the part of the resolution that
changes from the resolution in the current scope with the resolution in the enclosing
scope. This is carried out in a dedicated method to foster customization through the
TOP mechanism and by overriding the method. Internally, the method first checks
whether the intra-model resolution may continue in the enclosing scope with the method
checkIfContinueWithEnclosingScope(..). If this is the case, the method in-
vokes resolveStateMany(..) on the enclosing scope of the current scope.

checkIfContinueWithEnclosingScope(..) is a method that supports the real-
ization of the bottom-up symbol resolution by checking whether the resolution has to
continue searching for symbols in the enclosing scope. If a scope shadows its enclosing
scope and the current execution of the resolution algorithm has found at least a single
symbol, there is no need to continue resolution in the enclosing scope, and the method
returns the Boolean value false. Otherwise, it returns true. This check is carried out
in a dedicated method to foster its customization.

continueAsStateSymbolSubScope(..) supports the realization of the top-down
symbol resolution. This is carried out in a dedicated method to foster its customization.
The method first checks whether the resolution should be continued in any subscope with
the method checkIfContinueAsSubScope(..). If this is the case, the method iter-
ates over name candidates for the resolution in subscopes that are calculated by employ-
ing the method getRemainingNameForResolveDown(..). For each of these can-
didates, the resolution is performed with the method resolveStateDownMany(..),
and the resulting sets of symbols are merged.

89

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

checkIfContinueAsSubScope(..) supports the realization of the top-down sym-
bol resolution. The default implementation of this method is contained in the interface
IScope and is carried out in a dedicated method to foster its customization. The
method returns a Boolean value that is true if the current scope exports symbols, the
name to resolve for is a qualified name, and the first part of the qualifier equals the name
of the symbol that spans the scope. Otherwise, the method returns false.

getRemainingNameForResolveDown(..) supports the realization of the top-down
symbol resolution. The default implementation of this method is contained in the inter-
face IScope and is carried out in a dedicated method to foster its customization through
the TOP mechanism and method overriding. The default implementation removes the
first part of the qualifier if the name is a qualified name and returns the remainder of
the qualified name. Otherwise, it returns the full name.

resolveAdaptedStateLocallyMany(..) is a method that acts as a hook point for
resolving adapted symbols in the current scope. By default, the implementation of this
method returns an empty list. It can be overridden by applying the TOP mechanism to
the scope interface and instantiating symbol adapters. This is explained in more detail
in Section 6.2.

Global scopes override some of these methods and provide a different behavior for re-
alizing the inter-model symbol resolution. These methods are described in Section 4.3.4.

Support for Traversal with Visitors

Scopes can be traversed with the visitor infrastructure that MontiCore generates for
each language. The default traversal strategy that the generated traverser of the vis-
itor infrastructure implements visits all local symbols of a scope [HKR21]. Subscopes
of a scope are not traversed. Each scope contains an accept(..) method that en-
ables accepting a passed traverser for traversing the scope. accept(..) methods
of scopes realize double dispatching in collaboration with the handle(..) methods
of traversers. Artifact scopes have an individual implementation of the accept(..)
method to enable handling the traversal of artifact scopes and the traversal of other
scopes individually. Global scopes do not have an accept(..) method, as these are
currently never traversed completely.

4.3.3 Implementation of Artifact Scopes in MontiCore

The implementation of artifact scopes follows the concept described in Section 4.1.4.
Similar to other scopes, the language-agnostic method signatures are contained in the
runtime-environment interface IArtifactScope. The generated language-specific ar-
tifact scope interface, such as the interface IAutomataArtifactScope for the au-
tomata language, contains method signatures with language-specific arguments or return

90

4.3 Implementation of the Typed Symbol Table Infrastructure

«interface»

IArtifactScope

String getPackageName()

setPackageName(String p)

String getFullName()

«interface»

IAutomataArtifactScope

Optional<ISymbol> getTopLevelSymbol()

boolean checkIfContinueAsSubScope(String name)

String getRemainingNameForResolveDown(String name)

run-time environment generated

AST-CD

Figure 4.31: Artifact scope methods by the example of the automata language

types. Methods that do not require direct access to any attributes are realized as default
methods in interfaces. The artifact scope class, e.g., AutomataArtifactScope, is
also generated for each language and contains an attribute for the language’s package
declaration. Other scope attributes and method implementations are reused from the
scope class that the artifact scope class extends (cf. Figure 4.26). Contrary to the name
of usual scopes, the name of an artifact scope object is not derived based on the symbol
that spans the scope. Instead, the name of an artifact scope should match the name of
the model artifact. In Java-based languages, the name of an artifact scope is usually
equal to the name of the top-level symbol if a unique top-level symbol exists. The STI
supports this behavior by default. To realize this, the scope class overrides the usual
getName() method of scopes and calculates the name accordingly if no name has been
set explicitly.

Artifact scope interfaces contain other methods to preserve potential customizations
of the methods for language composition. These methods are depicted in Figure 4.31
and shortly introduced in the following:

getPackageName() and setPackageName(..) are methods for obtaining and set-
ting the package of the artifact scope as a String. The signatures of the methods are
defined in the interface IArtifactScope, and the implementations are located in the
artifact scope class since these require direct access to the corresponding attribute.

getFullName() is a method with default implementation in the IArtifactScope.
It calculates the full name of the artifact scope from the package declaration if it is
non-empty and the simple name of the artifact scope.

getTopLevelSymbol() is a method with a default implementation in the language-
specific artifact scope interface. The method obtains the top-level symbol if an artifact
scope contains a unique top-level symbol. Otherwise, the method returns an empty
Optional. As symbols of different kinds can be top-level symbols, the return type is
ISymbol.

checkIfContinueAsSubScope(..) overrides the method of the language-specific
scope interface to realize artifact scope-specific behavior. The method returns true if

91

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

IGlobalScope

ModelPath

1

«interface»

IDeSer

«interface»

ISymbolDeSer

kind

1

«interface»

IAutomataGlobalScope

«interface»

IStateSymbolResolver

init()

clear()

String getFileExt()

setFileExt(String e)

addLoadedFile(String f)

boolean isFileLoaded(String f)

clearLoadedFiles()

*

isPresentName()

String getName()

setName(String n)

IAutomataScope getEnclosingScope()

setEnclosingScope(IAutomataScope s)

boolean checkIfContinueAsSubScope(String name)

resolveStateMany(+)

resolveAdaptedState(+)

loadState(String name)

Set<String> calculateModelNamesForState(String name)

run-time environment generated

AST-CD

Figure 4.32: Global scope methods by the example of the automata language

the artifact scope exports symbols and the beginning of the resolved name matches the
package of the artifact scope. Otherwise, it returns false.

getRemainingNameForResolveDown(..) overrides the method of the language-
specific scope interface to realize artifact scope-specific behavior. The method performs
the separation of name parts during top-down intra-model resolution as described in Sec-
tion 4.1.8. If the package of an artifact scope is not empty, the package is cut off from the
resolved name for the remaining symbol resolution. Artifact scopes handle the special
behavior of Java-style languages in which an artifact typically has the same name as
the top-level symbol. To this end, the getRemainingNameForResolveDown(..)
method returns two candidates for remaining names for which to resolve. One candidate
includes the name of the artifact scope at the beginning of the resolved name to resolve
for symbols that have this name in the current scope. The other candidate cuts the first
name part off of the resolved name to include the case that no such symbol exists, and
the name part identifies the artifact scope.

4.3.4 Implementation of Global Scopes in MontiCore

The implementation of global scopes follows the concept described in Section 4.1.5. Sim-
ilar to artifact scopes, the realization of global scopes is divided into a language-agnostic
runtime-environment interface IGlobalScope, a generated, language-specific global
scope interface and a generated, language-specific global scope class (cf. Figure 4.26).
Global scopes are singletons whose instance is managed through the language’s mill.

The interfaces of global scopes contain the signatures for access and manipulation
methods of attributes to enable their use within default implementations of other inter-
face methods. This includes such methods for the attribute modelPath, the language’s

92

4.3 Implementation of the Typed Symbol Table Infrastructure

deSer, and the map of symbolDeSers. The map maps symbol kinds in the form of
Strings to implementations of the interface ISymbolDeSer. Global scopes contain the
realization of inter-model resolution, including attributes and methods for realizing load-
ing and storing of symbol tables. These parts of the global scope, such as the language’s
DeSer and the symbol DeSers, are explained in more detail in Chapter 5.

Language-specific global scope interfaces further offer access and manipulation meth-
ods for all individual resolver interfaces (cf. Section 4.3.5) of a language. Again, the
actual attribute and the implementation of the methods are located in the global scope
class. The methods of the global scope interfaces are depicted in Figure 4.32 and ex-
plained in the following:

init() is a method for initializing the DeSer and the symbol DeSers of a global scope
with default values. This method is called by the global scope constructor and as part
of clearing a global scope. The global scope class contains the implementation of the
method.

clear() is a method for resetting all reconfigured attributes to default values. This
includes that the method empties all collection attributes, such as the resolvers, the
model path entries, the loaded files, and any local symbols. The method implementation
is contained in the global scope class.

getFileExt() and setFileExt(..) are methods for accessing and modifying the
fileExt attribute that realizes the regular expression for file extensions of files to con-
sider for loading stored symbol tables (cf. Section 4.1.5). The method implementations
are contained in the global scope class.

addLoadedFile(..), isFileLoaded(..), and clearLoadedFiles() are meth-
ods for accessing and manipulating the value of the list of files that have been considered
for loading symbol tables (cf. Chapter 5). The files are represented as Strings. The
method implementations are contained in the global scope class.

getName(), isPresentName(), and setName() are methods for accessing and ma-
nipulating the value of the optional name of a scope. The global scope overrides these
methods inherited from scopes, as global scopes must not have a name. Hence, the getter
and setter methods yield an error, and the isPresentName() method always returns
false. The method implementations are contained in the language-specific global scope
interface. They do not actually access the attributes and, hence, do not need to be
defined in the global scope class.

getEnclosingScope() and setEnclosingScope(..) are methods inherited from
scope interfaces with the purpose of accessing and manipulating the enclosing scope. As
global scopes must not have an enclosing scope, these methods are overridden and yield

93

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

an error if they are called. The methods do not access any attributes and, hence, are
defined in the language-specific global scope interfaces.

checkIfContinueAsSubScope(..) is a method inherited from the scope that usu-
ally is employed during top-down intra-model resolution. As global scopes are not sub-
scopes of any other scopes, the implementation of this method in the language-specific
global scope interface always returns false.

resolveStateMany(..) inherits from the scope interface with a default implemen-
tation in the language-specific global scope interface. The global scope method overrides
the behavior of scopes that realizes bottom-up intra-model resolution for state symbols
in this method and instead performs inter-model resolution as described in Section 4.1.8.

resolveAdaptedState(..) has a default implementation in the language-specific
global scope interface. It searches for adapted state symbols with the IStateSymbol-
Resolver implementations configured to be used by the global scope.

loadState(..) is a method with a signature defined in language-specific global scope
interfaces and an implementation contained in global scope classes. It is used in the
realization of the inter-model resolution. The method attempts to load an artifact scope
that contains a state symbol with the qualified name passed as an argument. Internally,
the method relies on the calculateModelNamesForState(..) method and the
deserialization infrastructure of the STI.

calculateModelNamesForState(..) is a method with a default implementation
in the language-specific global scope interface that calculates candidates for model names
that may contain a state symbol. To do so, the method obtains a qualified name as an
argument. Any qualifiers of the qualified name that may identify model names should
be returned as candidates by this method. As this can vary for each symbol kind in
each language, the implementation of the method, by default, considers only the entire
qualifier of a passed qualified name as a candidate for identifying the model name.
Consequently, only symbols that are directly located in the artifact scope can be found
during inter-model resolution. To change this, the method has to be overridden, as
explained in Section 4.3.6.

4.3.5 Implementation of Symbol Resolvers in MontiCore

Symbol resolvers enable integrating resolution for foreign symbol kinds into the inter-
model resolution. To prepare the language infrastructure for reconfiguration, the STI
contains a resolver interface for each symbol kind of a language. The global scope man-
ages a list of each resolver interface to integrate these into the actual resolution for the
corresponding symbol kind. Language engineers can realize a class that implements a

94

4.3 Implementation of the Typed Symbol Table Infrastructure

generated symbol resolver interface. Resolvers are mainly relevant for language compo-
sition and, hence, their purpose is explained in more detail in Section 6.2.2.

The generated symbol resolver interfaces contain a single method signature for inte-
grating the adaptation for the symbol resolution strategy. For state symbols, the resolver
interface has the name IStateSymbolResolver, and the abstract method is called
resolveAdaptedStateSymbol(..). The method returns a list of state symbols.

4.3.6 Customizing Symbol Resolution

The symbol resolution algorithms described in Section 4.1.8 provide default solutions for
searching for the (symbol) definition of a given name and a given kind. These solutions
are encoded in the method implementations of generated scope interfaces as described
in Section 4.3.2. The default solutions are suitable for various languages, but in general,
languages may handle symbol resolution with strategies that deviate from the default
solutions. To this end, the generated resolve algorithms are completely customizable. All
methods that constitute parts of the resolution algorithm can be overridden by applying
the TOP mechanism to the surrounding scope interfaces.

The generated inter-model symbol resolution is based on the assumption that symbols
located in foreign artifacts are located in one of two expected locations. Either they
must be located directly in the artifact scope, i.e., it is assumed that a foreign artifact
scope does not have subscopes that export symbols. Alternatively, the symbols must be
located in a scope spanned by a symbol in the artifact scope that has the same name
as the artifact scope. The latter is a common case in Java-style languages. The reso-
lution algorithm uses only the complete qualifier and the entire name that is resolved
for as candidates for the name of a model that contains the symbols. The method
calculateModelNamesForState(..) of the automata language, for instance, cal-
culates names of automaton models that may contain a StateSymbol. As the method
is located in an interface, its behavior is realized as a default implementation. For a
given qualified name of a state material.H2O.liquid, the calculated candidates for
qualified model names are material.H2O.liquid and material.H2O. In this ex-
ample, material refers to the package of the automaton model H2O and liquid is
the state’s name. Symbol resolution, hence, would find the symbol in the artifact scope
for the model material.H2O.

A language engineer realizing an automata language with hierarchical states may
want to export state symbols with a hierarchical namespace. In this example, a qual-
ified name material.H2O.liquid.compressed may refer to an automaton model
H2O located in a package material that defines a hierarchical state liquid with
a substate compressed. The default symbol resolution would not be able to re-
solve this symbol through inter-model resolution, as the model name is neither equal
to the qualified name that is resolved for nor equal to its entire qualifier. Instead,
material.H2O identifies the model containing the searched symbol. Language en-

95

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

AccessModifier

StateSymbol
«interface»

ISymbol

«interface»

ICommonAutomataSymbol

IAutomataScope getEnclosingScope()

setEnclosingScope(IAutomataScope s)
ASTState getAstNode()

boolean isPresentAstNode()

setAstNode(ASTState a)

setName(String n)

setFullName(String n)

1

String getName()

String getFullName()

run-time environment generated

AST-CD

Figure 4.33: Methods of symbol classes by the example of the class StateSymbol

gineers can extend the interface IAutomataGlobalScope to override the method
calculateModelNamesForState(..) and adjust its behavior such that it calcu-
lates candidates for model names differently. One solution for adjusting the behav-
ior such that the searched state symbols in hierarchical namespaces are found during
inter-model resolution is to consider all qualifier prefixes, i.e., material.H2O.liquid,
material.H2O.liquid, material.H2O, and material.

4.3.7 Realization of Symbols in Symbol Classes

As described in Section 4.1.2, the STI provides a generated symbol class per symbol kind
of a language and a common, generated symbol interface for each language. Addition-
ally, the MontiCore runtime-environment contains an interface ISymbol that provides
signatures for language-agnostic methods and enables basic handling of symbols without
being aware of their concrete kind, i.e., the type of the corresponding Java class. The
ISymbol interface has getter and setter methods for an access modifier of a symbol
whose implementations are contained in the generated symbol classes. The access mod-
ifier of symbols corresponds with the access modifiers of scopes to realize sophisticated
visibility concepts. The realization of this reuses the implementation of access modifiers
of the SMI [MSN17] and hence, is not detailed in this thesis. Figure 4.33 depicts the
symbol interfaces and classes with an excerpt of relevant methods that are explained in
the following:

getName() and setName(..) are accessor and mutator methods for the (simple)
name of a symbol that is internally represented as a String attribute in the symbol
class. The method signature of the getter method is defined in the interface ISymbol
to enable accessing a symbol’s name without the requirement of being aware of its con-
crete kind (i.e., symbol class). There is no signature for the setter method in the interface
to prohibit altering the name of a symbol without being aware of its concrete kind.

getFullName() and setFullName(..) are methods for accessing and modifying
the full name of a method. The full name of a symbol is derived from the enclosing
scopes of the symbol as described in Section 4.1.6. Similar to the methods for the name

96

4.3 Implementation of the Typed Symbol Table Infrastructure

attribute, the signature of the getter method is contained in the interface ISymbol, and
both method implementations are located in the symbol class.

getEnclosingScope() and setEnclosingScope(..) are methods for accessing
and modifying the scope that encloses a symbol. The enclosing scope of a symbol is
always present if the symbol table has been completely instantiated. The methods are
located in the language-specific symbol interface in which the type of the language-
specific scope interface is available.

getAstNode(), setAstNode(..), and isPresentAstNode() access and modify
the AST node that corresponds to the symbol. The AST node of a symbol may not be
set if the symbol table has been loaded from a stored symbol table rather than created
from the AST. Hence, the method isPresentAstNode() checks whether the AST
node is available. If the AST node is unavailable, the method getAstNode() yields an
error. The enclosing scope of a symbol is always present if the symbol table has been
completely instantiated.

Symbol classes further have an accept(..) method to be traversable with the
visitor infrastructure. However, the default traversal strategy does not visit anything
other than the symbol itself, even if the symbol spans a scope. The default traversal
does not visit spanned scopes, as it is intended to be based on the AST. Traversing the
AST and the scope tree simultaneously can lead to multiple visits of the same abstract
syntax concepts. This can be adjusted by applying the TOP mechanism to the class
of the traverser implementation. By overriding the traverse(..) methods, language
engineers can realize different traversal strategies. Example scenarios are the traversal
of a scope tree along the association between a scope and its subscopes or along the
association between symbols and spanned scopes.

4.3.8 Instantiating Symbol Tables with Scopes Genitors

The scope genitor is responsible for instantiating symbol and scope objects and populates
the initial symbol table structure. It follows the concept described in Section 4.1.10.
Scope genitors implement the language’s visitor to implement visit(..) methods
for AST nodes and set their enclosing scopes. If the corresponding nonterminal defines
a symbol kind, the implementation of the visit method controls the instantiation of
symbol objects and the linking between symbol, AST node, and enclosing scope. If the
corresponding nonterminal spans a scope, a new scope object is instantiated, linked with
the environment, and added to the stack of scopes managed by the scope genitor.

Scope genitors further implement the handler interface of a language to enable lan-
guage engineers to override the handle(..) and traverse(..) methods if the scope
genitor is customized with the TOP mechanism. To carry out the actual traversal of the
AST, scope genitors employ an object of the language’s traverser.

97

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

«interface»

AutomataVisitor

«interface»

AutomataHandler

visit(..)

endVisit(..)

handle(..)

traverse(..)

AutomataScopesGenitor

Stack<IAutomataScope> scopeStack

IAutomataArtifactScope createFromAST(ASTAutomaton a)

initScopeHP1(IAutomataScope s)

initScopeHP2(IAutomataScope s)

initArtifactScopeHP1(IAutomataArtifactScope as)

initArtifactScopeHP2(IAutomataArtifactScope as)

initStateHP1(StateSymbol s)

initStateHP2(StateSymbol s)

«interface»

AutomataTraverser

visit(..)

endVisit(..)

handle(..)

traverse(..)

1

AST-CD

Figure 4.34: Methods of a scope genitor by the example of the class AutomataScopes-
Genitor

Language engineers typically utilize the scope genitor in a language tool via the method
createFromAST(..). The method uses the language’s traverser to traverse the AST
and instantiate and interconnect the objects of the symbol table. This results in an
instance of the language’s artifact scope that is returned by the method. Afterward, the
instantiation of the symbol table is not necessarily complete, as potential subsequent
phases of the instantiation may follow. The scope genitor contains several hook point
methods whose default implementation is empty to enable handwritten additions for the
first phase of symbol table creation. The following shortly explains the central methods
of the scope genitor that are depicted in Figure 4.34:

createFromAST(..) instantiates the symbol and scope objects based on the AST
node passed as an argument and returns an instance of the language’s artifact scope.
The type of the AST node in the argument is the AST node of the start rule of the
corresponding grammar.

initScopeHP1(..) is a hook point method for initializing any scope attributes before
the content of the scope is traversed. It is called as the last operation of the visit(..)
methods of scope-spanning nonterminals.

initScopeHP2(..) is a hook point method for initializing any scope attributes after
the content of the scope is traversed. It is called in the endVisit(..) methods of
scope-spanning nonterminals.

initArtifactScopeHP1(..) is a hook point method for initializing any artifact
scope attributes before the content of the scope is traversed. It is called in the create-
FromAST(..) method.

initArtifactScopeHP2(..) is a hook point method for initializing any artifact
scope attributes after the content of the scope is traversed. It is called at the end of the
createFromAST(..) method.

98

4.4 Discussion

Automata

ScopesGenitor

«interface»

AutomataTraverser

1

1

AutomataScopesGenitorDelegator

IAutomataArtifactScope createFromAST(ASTAutomaton a)

Stack<IAutomataScope> scopeStack

AST-CD

Figure 4.35: Methods of a scope genitor delegator by the example of the class
AutomataScopesGenitorDelegator

initStateHP1(..) is a hook point method for initializing any attributes of a state
symbol. It is called at the end of the visit(..) methods of nonterminals that define
state symbols.

initStateHP2(..) is a further hook point method for initializing any attributes of
a state symbol. It is called in the endVisit(..) methods of nonterminals that define
state symbols. For symbol kinds that span a scope, the HP2 methods are called after
the spanned scope has been instantiated.

4.3.9 Instantiating Symbol Tables of Composed Languages with Scopes
Genitor Delegators

A scope genitor delegator class is generated for each language. For example, the scope
genitor delegator class for the automata language, the AutomataScopesGenitor-
Delegator, is depicted in Figure 4.35. The class is mainly used for instantiating the
symbol tables of composed languages in which a single AST may contain nodes from
several languages. The scope genitor delegator delegates the symbol table creation of
each node to the scope genitor of the corresponding language. Language engineers can
use the scope genitor delegator via the createFromAST(..) method with the same
signature as the method in the scope genitor class. Internally, the scope genitor delegator
uses a traverser configured to use the individual scope genitors. As the nodes of different
languages may be interwoven, all scope genitors share a mutual stack of scopes.

4.4 Discussion

Instead of realizing kind hierarchies by integrating the symbol resolution for subkinds
into the local symbol resolution algorithm as described in Section 4.1.8, it would have
been possible to manage hierarchical symbol kinds by adding the same symbol object
to different symbol maps in a scope. For instance, if a symbol kind i extends a symbol
kind j that extends a symbol kind k, a symbol object of the kind i could be added to the
individual maps of symbols of kind j and k. This, however, could lead to inconsistencies
if manipulation of the maps was not applied consequently. As scopes, in general, should
be fully customizable, such inconsistencies could not be prevented. Furthermore, loading

99

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

and storing the symbol tables would have to consider the object identity of the same
symbols in different maps.

The top-down intra-model symbol resolution that follows the inter-model resolution
can be omitted if symbols are loaded directly into the global scope. This is different from
the current solution for symbol table persistence (cf. Chapter 5) that re-establishes scope
objects while loading an artifact scope. While loading symbols directly into the global
scope could be more efficient, the symbol table infrastructure of the symbols would be
incomplete as the associations with scope objects would not be present. These associa-
tions, however, are crucial for proper symbol resolution in some languages. For example,
resolving the symbol of a method in an object-oriented programming language requires
information about method arguments and return types, which are usually located within
the scope of a method. Furthermore, re-establishing the scope structure enables language
engineers to customize the symbol table, e.g., by integrating transformation operations
on the symbol table into the activities of processing a model.

Typically, languages define symbol kinds, and models that conform to the language
define symbols that conform to the symbol kinds of the language. Sometimes, languages
may provide symbols themselves. For example, symbols for built-in types, such as the
symbol int in Java, are symbols that should be available in every model of the language.
For such symbols, it is useful if the language itself defines the symbols such that these
are not required to be defined in each model. We recommend realizing this by adding
such built-in symbols directly to the global scope. The case that models define new
symbol kinds is rare. However, languages can use annotations or stereotypes that make
the language extensible with novel language concepts at the level of models [BHH+17].
These, however, are limited in the freedom of syntax design, and new language concepts
must be reducible to the language elements that are annotated.

The relationships between AST, symbols, and scopes, as presented in Section 4.1.1,
consider that the AST may not be available since symbols and scopes can be loaded
from persisted symbol tables instead of being created from the AST. This is reflected
in the cardinality of the associations from scopes and symbols to the AST that is 0..1.
However, the fact that the symbol table is not yet created from the AST and only the
AST is present is not reflected in the relationships. Hence, associations from AST to
enclosing scopes have a cardinality of 1. This is not reflected in the cardinalities of
the relationships because symbol tables should always be created in the next or in a
consecutive step after parsing and before the actual use of an AST. Most operations
(type checks, well-formedness rules, code generation, etc.) are executed after the symbol
table for a model has been created.

It is a deliberate decision that symbol-defining language elements have to be identi-
fiable via a name that is indicated explicitly in the model. There are possibilities that
language elements may be identifiable via derived names or by the position in the AST,
such as transitions of automata. For example, a transition from the state solid to
the state liquid with the stimulus melt could be identified within the automaton by

100

4.5 Related Work

the derived name solid_melt_liquid. However, such derived names rarely identify
definitions that are used via their name by other language elements. In language design,
it is a good practice to make modelers decide for identifier names they use in other parts
of the same or a different model. Derived names, on the other hand, can be unintuitive
or unnecessarily complex. Nevertheless, it is possible (but not recommended) to add
derived names as symbols in symbol tables.

4.5 Related Work

The design of the kind-typed symbol table infrastructure as presented in this thesis relies
on the symbol management infrastructure [MSN17] (SMI). The STI borrows several con-
cepts from the SMI, such as access modifiers and predicates during symbol resolution or
the presence and purposes of artifact scopes and global scopes. A significant difference
between the two approaches is that the SMI in large parts uses language-agnostic infras-
tructure. For instance, the STI contains language-specific scope classes and interfaces,
while the SMI uses the class CommonScope for all languages. This makes language-
specific customization more challenging to apply, as the TOP mechanism cannot be
employed individually.

The symbol resolution algorithm of the SMI obtains the symbol kinds as an argument,
while the resolution strategy presented in this thesis uses different resolution algorithms
for each symbol kind, as the symbol kind is encoded into the infrastructure realizing the
algorithms. While both the SMI and our approach distinguish bottom-up and top-down
intra model resolution, the SMI further distinguishes between bottom-up and top-down
inter model resolution. The reason for this is that the SMI has a built-in strategy for
qualifying symbol names during bottom-up inter-model resolution.

In the SMI, names are qualified during each symbol resolution. In our approach, names
are not qualified during the resolution but instead have to be qualified as part of the type
check (cf. Section 4.1.10). The benefit of this is that it usually suffices to perform the
qualification once instead of each time a symbol is resolved. In the STI, the type check
can be executed as part of the symbol table instantiation. It connects a symbol usage
to the correct symbol definition by considering that an unqualified name of the symbol
usage may need to be qualified with import statements or the package declaration. This
can require manual effort to qualify symbols correctly. The SMI uses symbol references
for name usages that resolve for a suitable symbol definition on demand. Realizing
type checks in the SMI typically relies on context conditions to check the success of the
resolution for all symbol references of a model.

The symbol table creation of the STI uses scope genitors and a phased symbol table
creation process. The symbol table creators of the SMI are similar to scope genitors, as
both are realized as classes implementing the visitor interface to traverse the AST of a
model. However, the SMI instantiates a SymbolReference for every usage of a symbol.

101

Chapter 4 Generating Kind-Typed Symbol Table Infrastructures

As the type checks in the SMI are typically carried out within context conditions that are
checked after the symbol table is created, the lazy loading of symbol definitions in symbol
references yields correct results. However, symbol references have the disadvantage that
an explicit check for the existence of the symbol is either performed multiple times (i.e.,
on every query for obtaining the symbol definition) or may lead to inconsistencies if
the symbol definition is cached locally. Furthermore, most symbol usages do not require
usage-specific information leading to an unnecessarily large number of objects for symbol
references.

The SMI does not foresee the loading and storing symbol tables. Hence, symbol
resolution uses model loaders to load symbol tables of other models by parsing these,
and creating the symbol table of the resulting AST. Under the (realistic) assumption
that instantiating the symbol table from persisted symbol table files requires less time
than parsing the model and instantiating the symbol table from the AST afterward,
model loaders are less efficient.

Another approach for realizing symbol tables for MontiCore languages [Völ11] is based
on namespaces instead of scopes. A namespace in this approach may refer to different
symbol tables that contain symbol table entries. The latter correspond to symbols in
the SMI and the STI. While the SMI and the STI rely on access modifiers to constrain
the visibility of symbols, the symbol table entries in the approach described in [Völ11]
can be contained in different symbol tables that are part of the same namespace. A
namespace may import, export, forward, and encapsulate symbol tables. Furthermore,
a symbol table entry can be contained in more than a single symbol table. Implementing
and using the symbol table infrastructure with the approach in [Völ11] is more complex
than with the STI. In the former, language engineers have to handle different symbol
tables for a model, and the data structure in the STI is less intricate.

The Spoofax [KV10] language workbench uses a name binding language [KKWV12]
for describing type systems realizing type checks. A name binding specification com-
prises declarative rules, where each rule starts with a pattern that is matched against
the abstract syntax of a model. The name binding languages distinguishes different kinds
of names via different namespaces. In contrast to the STI, which distinguishes different
kinds of names via different symbol kinds, the concept of namespaces is optional. If no
explicit namespaces are declared, all name definitions are located in the same names-
pace [www21d]. Rules in the name binding language can also introduce scopes that
influence the visibility of name definitions. A name binding assigns a unique qualified
identifier to the definition of a name. Name usages are assigned a qualified identifier
as well. All name bindings of a project are contained in a single hash table, in which
each name binding may contain additional information. This is in contrast to the STI,
in which each scope manages the locally defined symbols individually.

When resolving for name definitions, the Spoofax approach relies on three phases. In
the first phase, name definitions and references are gathered and assigned (preliminary)
qualified identifiers. In the second phase, name definitions are analyzed and assigned

102

4.5 Related Work

further information. The third phase completes the name references by potentially up-
dating their qualified names to point to the correct name definition.

103

Chapter 5

Infrastructure for Loading and Storing
Symbol Tables

As stated in Chapter 4, the symbol table of a model can be seen as a description of its
interface that can be used for correctness checking and for including a model in a greater
model composition. In other words, the symbol table of a model contains all information
that other models require to check their correct usage. Therefore, language-processing
infrastructure has to be able to access the symbol tables of other models efficiently.
Instead of parsing these models again, modern programming languages, such as Java
rely on symbol tables that are persisted in symbol table files. In the case of Java, the
symbol information is serialized and persisted as part of the class files [www21c]. This
enables

� efficient model processing, as the information required for correctness checking is
only a part of the information contained in a model.

� persisting the symbol table in a form that can be loaded faster than loading the
entire model.

� efficient type checking because the information for type checking in the symbol
table has itself undergone a type-checking phase.

In Java, the location of class files and the qualified names of imported classes correlate,
which fosters efficient identification of the storage location of a symbol table. However, as
the level of detail of type information depends on the purpose for which it is required, the
suitable form of abstraction is often language-specific. In fact, for correctness checking
between model artifacts, it suffices to store symbol table information of an artifact that is
visible to other artifacts. For different purposes, however, it may be viable for languages
to store symbol tables with more information than is directly necessary for correctness
checking.

In MDD [VSB+13], models are central software engineering artifacts and, thus, contain
(large parts of) the intellectual property of the software. However, for integrating a model
with other models or other software in general, it is usually not required to be aware
of all intricacies of a foreign model. Instead, it suffices to communicate an interface of

105

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

the model that describes its abilities for integration and documents the model without
internal details. Internal parts of the model, on the other hand, are not required for
this integration and can be hidden to keep the intellectual properties private. As symbol
tables contain the information that other models require to check their type correctness,
stored symbol tables together with a documentation of the model’s interface can provide
an interface for accessing a model or model library that does not contain the model
internals.

Persisted symbol tables foster efficient language aggregation under the assumption
that adapting between stored symbol tables is more efficient than adapting between
symbol tables on the level of Java objects. Consequently, the adaption between symbol
kinds can be carried out by translating persisted symbol table files. Adaptations via
persisted symbol tables are efficient if symbol tables are persisted in a notation that
can be processed quickly. Various suggestions for realizing suitable symbol adapters are
described in Section 6.2.

With persisted symbols tables, the infrastructure that stores symbol tables can be
decoupled from the infrastructure that loads the symbol tables. This enables realizing
an exchange format for sharing information about models between different variants or
different versions of a language under the assumption that the exchanged data format
remains compatible.

In language engineering, the symbol table of a model, among other things, has the
purpose of acting as its interface for language composition. Persisting symbol tables can
support language extension in two scenarios: if a symbol table of a model conforming to
a language L is stored, it should be possible to load it as a symbol table of a language M
that extends L. On the other hand, it should be possible to load a symbol table stored
in the symbol table data structure of language M with the symbol table infrastructure
of language L. The abilities described by the two scenarios foster the reusability of per-
sisted symbol tables and avoid unnecessary translations of symbol tables. In summary,
persisting symbol tables enables the

� efficient correctness checking between models,

� encapsulation of model internals,

� realization of efficient symbol adapters for language aggregation, and

� decoupling of language tools.

As the information captured in symbol tables is language-specific, the loading and
storing of symbol tables has to be realized for each language individually. However, most
parts of the infrastructure for loading and storing symbol tables can be synthesized with
a code generator.

In the following, Section 5.1 introduces terminology and concepts for realizing serial-
ization and deserialization in general. Section 5.2 explains the concept for realizing the

106

5.1 Serialization in General

(de)serialization of MontiCore symbol tables. Section 5.3 describes a JavaScript object
notation (JSON) infrastructure [www17, www20c] for realizing serialization and deseri-
alization before Section 5.4 explains the implementation of symbol table persistence in
MontiCore centered around DeSer classes, and Section 5.5 gives examples for possible
customizations of the implementation. Section 5.6 discusses central design decisions,
and Section 5.7 explains related approaches.

5.1 Serialization in General

The concept for realizing type-safe serialization and deserialization of MontiCore symbol
tables relies on central definitions that are explained in the following.

5.1.1 Serialization and Deserialization

Various applications require that objects (in the context of object-oriented programming)
are encoded in a persistable or transmittable representation. For example, distributed
systems such as web applications require encoding of objects to communicate these be-
tween physically distributed systems. Database management systems for object-oriented
programming require encoding of objects that can be stored in persistable memory. A
typical agreement for persistable or transmittable representations is that these are real-
ized as a sequence of characters. For brevity, we use the term String for such character
sequences in the following interchangeably. The process of encoding an object into a
String is referred to as serialization, and deserialization is the process of decoding a
serialized object.

Definition 4 (Serialization and Deserialization). Serialization is the process of trans-
lating an object structure into a storable sequence of characters. Deserialization is the
inverse process of translating a serialized object structure, i.e., a sequence of characters,
into the original object structure.

An object can be serialized in a variety of different forms. For example, a Java object
representing a blue color that is an instance of a Java class Color can be serialized as the
String with the symbolic color name "blue", as a String with the tuple of RGB values,
such as "(0,0,204)", or as a String containing the hexadecimal number "#0000CC".
Deserialization of the respective representation produces an instance of the color type
with the same properties as the original object.

The following describes properties of serialization and deserialization in which, for
reasons of simplicity, we assume that two operations serialize and deserialize
exist that realize the serialization and the deserialization.

Often, serialization and deserialization are symmetric with regard to the persisted
information. Deserializing the result of serializing an object o, hence, produces an ob-
ject with the same visible properties as the original object o, which means that o ==

107

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

deserialize(serialize(o)). This property can be leveraged to realize correctness
tests for serialization and deserialization strategies that are unaware of the serialized rep-
resentation. Sometimes, this property is violated on purpose to enable compactness in
the serialized representation. For example, empty collections can be omitted during seri-
alization, which renders it impossible to distinguish these from an explicit null reference
during deserialization. However, this can be feasible as such a distinction is often not
required or even undesired. Further, null must generally be avoided in good software
engineering practice.

Deserialization of links of associations between objects requires that the associations
are established correctly. This entails that all association cycles in an object structure
must prevail after serialization and deserialization. For instance, a bidirectional associa-
tion between two objects a and b may assume that a == a.b.a. This must still hold
after serialization and deserialization of a1 = deserialize(serialize(a)), i.e.,
a1.b.a == a1).

5.1.2 Serialization Strategies

To operationalize the functionality for serialization and deserialization of object struc-
tures, procedures for translating between object structures of a particular type and
Strings are required.

Definition 5 (Serialization Strategy). A serialization strategy is an algorithm that re-
alizes serialization and deserialization for objects of a particular type.

For example, a serialization strategy for the Java type Color comprises an algorithm
for translating color objects into Strings and another algorithm for translating Strings
with an encoded serialized color into instances of the Java type Color.

Serialization strategies have to ensure that serialization of bidirectional associations
between objects does not produce cyclic nesting of objects. On the other hand, deseri-
alization must establish the bidirectionality of these associations such that each bidirec-
tional association connects precisely two objects. For avoiding cycles in object structures,
serialization strategies can use indirection to decouple objects from each other or make
use of knowledge about the underlying data structure. Decoupling associated objects
through indirection, for example, can be achieved by storing only an identifier of each
associated object instead of the object as a whole. Knowledge about the data structure
behind object structures can be leveraged to serialize only one direction of bidirectional
associations and establish the opposite direction during deserialization. While the solu-
tion with indirection is applicable even without knowledge about the data structure, the
produced serialized character sequences are longer.

Serialization strategies for attributes comprise either rigorous or robust deserialization
algorithms for the attributes. Robust deserialization ignores serialized data that cannot
be processed, while rigorous deserialization produces errors on unrecognizable serialized

108

5.1 Serialization in General

data. Robust deserialization can also assume default values for information that a seri-
alized String lacks but is required to build an object. Evolution of the data structure
causes fewer problems if the deserialization is robust because additional serialized in-
formation does not yield errors. Rigorous deserialization, on the other hand, is more
suitable for safety-critical systems, as it is more restrictive and enables better detection
of erroneous program behavior.

Whether a realization of deserialization is rigorous or robust affects the serialization
strategies for optional members of an object. The serialization strategies for optional
members have to consider symmetric serialization and deserialization for the cases that
a value is present and that it is absent. Different solutions for serialization strategies
of optional attributes exist. For example, the fact that an attribute is optional can be
explicated in the serialized character sequence. This enables distinguishing the case that
an optional attribute is absent on purpose from the case that an optional attribute is
absent due to, e.g., faulty serialization behavior.

Robust deserialization fosters realizing serialization strategies for inheritance in serial-
ized attribute types. Serialization strategies must be able to handle the inheritance of the
serialized types. Inheritance of the types can be either handled implicitly or explicitly. If
inheritance is handled implicitly, a serialization strategy holds for a type and, implicitly,
for all of its subtypes. This is feasible due to the Liskov substitution principle [LW94] in
inheritance between types. Explicit handling of inheritance prohibits serialization and
deserialization of subtypes of the original type of the serialization strategy.

Persistence of Type Information

We distinguish three alternative solutions for handling type information of objects during
serialization and deserialization. The type information is the type to which an object
conforms. In Java, the type information of an object is the corresponding class or
interface.

Persisted type information. The type of an object can be serialized as explicit infor-
mation that is part of the serialized String. This type information remains prevalent
throughout serialization and deserialization, even if these are executed by different tools,
in different contexts, or on different machines. However, the type information can ob-
struct realizations of rigorous serialization with implicit handling of type inheritance.

Typeless persistence. The type information can be omitted during serialization, and
deserialization can reconstruct the type based on the remaining information that is avail-
able for the serialized object. Moreover, the type reconstruction can rely on knowledge
encoded in a language-specific or domain-specific deserializer. In combination with ro-
bust deserialization, as much information of a serialized type as possible can be retrieved.
However, this is less suitable for safety-critical systems as the loss of type information
during deserialization easily leads to misinterpretation of the type.

109

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

p:Point2D

x=13

y=42

persisted type
information

p:Vector2D

x=13

y=42

p:Point2D

x=13

y=42serialize(p)

deserialize(p)

p:Point2D

x=13

y=42

typeless
persistence

p:

x=13

y=42serialize(p)

deserialize(p)

p:Point2D

x=13

y=42

type as argument
of deserialization

p:

x=13

y=42serialize(p)

deserialize(p, Point2D.type)

object structures serialized representations

Figure 5.1: Alternative solutions for serializing type information

Type as argument of deserialization. In combination with omitting the type informa-
tion of a serialized object, the type information can be an argument for deserialization
instead of reconstruction of the type from serialized information. This prevents undesired
type recognition errors but requires checking of type information during runtime, i.e.,
the application of reflection. In addition, it prevents the use of sub types in composed
or extended languages.

Examples of the three solutions are depicted in Figure 5.1. An object with the name
p of the type Point2D contains two integer members, one with the name x and the
value 13 and the other with the name y and the value 42. When the type information
is persisted, all information is also contained in the serialized form of the object. With
typeless persistence, only the name of the object and the members are persisted, but not
information about the type. During deserialization, the object can be constructed not
only with a serialization strategy for Point2D but also with other serialization strategies,
such as for the type Vector2D, that has members of the same type and name. While
this enables flexible reusability of persisted information, it can yield unintended results.
This can be prevented by using the desired type, such as the type of Point2D1, as an
argument of the deserialization.

For the serialization strategies of MontiCore’s symbol table, the proposed approach
persists the kind of a symbol as an explicit attribute of the persisted symbol object. For
scopes, the approach does not persist any type information. During deserialization, the
choice of the concrete DeSer determines which symbol or scope types are instantiated.
Therefore, the type can be considered an argument of the (configurable) deserialization.

1In Java, the type of a class Point2D is Point2D.class

110

5.1 Serialization in General

Character

Sequence
Intermediate

Representation

Object

Structure

Visitor

Builder Parser

Printer

Serialization

Deserialization

Figure 5.2: Overview of serialization strategy with an intermediate representation

Omission of Default Values

Serialization of sparse object structures, i.e., object structures for which a large part of
object members are empty lists or absent optional values, can yield numerous redundant
sections. To improve the readability and reduce the complexity of such serialized struc-
tures, default values can be omitted during serialization. We distinguish two different
approaches for realizing default values for serialization.

Type-specific default values are default values specific to the type of the serialized
value. Typical examples are empty Strings, the Boolean value false, or empty lists.
Default values do not only exist for primitive and built-in types but can also be defined
for any other data types. For example, the default for a Color object can be the black
color. In combination with collections, it is essential that values that are entries in a
collection are not omitted in case their value equals the default. Omitting these would
lead to a loss of information. Depending on the context, type-specific default values can
already capture large parts of redundant characters within a serialized String.

Member-specific default values further improve type-specific default values as the de-
fault value of a type can be defined for each object member individually. For example,
the default color of an attribute backgroundColor can be white, while the default
for an attribute fontColor is black. This is especially helpful if a type has numerous
Boolean flags for which some, by default, should be activated while others are not. How-
ever, member-specific default values have to be handled with care in combination with
typeless persistence, as the type information determines the default values of the object.
Furthermore, member-specific default values harm the readability of serialized objects
as external context information about the type is essential.

5.1.3 Serialization with Intermediate Structure

Conceiving a serialization strategy requires realizing both serialization and deserializa-
tion. By employing an intermediate representation between the object structure and
the serialized String, the knowledge about the serialization format can be decoupled
from the knowledge about the data structure behind the object structure. This reduces

111

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

the complexity of the serialization infrastructure that is specific to a data structure as
the remaining parts, e.g., the printer and parser of the intermediate representation, can
be reused independently. Serialization with intermediate structures can rely on well-
understood design patterns of object-oriented software engineering [GHJV95], such as
builders and visitors. Figure 5.2 depicts the constituents for realizing a serialization
strategy with an intermediate structure. During serialization, an object structure (de-
picted on the left) is translated into an intermediate representation (depicted in the
center) by employing a visitor. The visitor traverses the object structure. For each ele-
ment that should be serialized, it uses a printer to translate the element to a character
sequence (depicted on the right). In this, the visitor requires only knowledge about the
structure of the intermediate representation and not about the concrete syntax of the
format in which the object structure is serialized. The printer, on the other hand, trans-
lates elements of the intermediate structure into character sequences without knowledge
of the data structure of the underlying serialization strategy. During deserialization, a
parser processes the character sequence and instantiates the intermediate representation.
Builders for the data types of the serialization strategy can be employed to instantiate
objects systematically. Again, parsing into the intermediate structure does not require
knowledge about the data structure, and building up the object structure from the in-
termediate representation does not require knowledge about the serialization format.

5.2 Concept for Symbol Table Persistence

The concept for persisting symbol tables comprises a mechanism for loading and storing
symbol tables that has to be integrated into the process of processing of models. Besides
this, it requires a concept for organizing serialized symbol tables in terms of artifacts
of the file system. At the core of loading and storing symbol tables is the serialization
and deserialization of symbol tables. The concept further requires means to adjust the
serialization infrastructure through language-specific customization.

5.2.1 Overview of Symbol Table Persistence

In MontiCore, models are the central development artifacts of a language and are indi-
vidual units of reuse in the context of model-driven software engineering. In the symbol
table infrastructure of MontiCore, each model is associated with a corresponding in-
stance of an artifact scope (cf. Chapter 4). When persisting symbol tables, it is helpful
to realize the modularity of files containing stored symbol tables in the same way as the
modularity induced by the model artifacts. To this effect, a symbol table file contains
the symbol table information for precisely one model artifact, i.e., it contains a serial-
ized artifact scope including its internal structure in terms of subscopes and contained
symbols. A central global scope manages a list of all known artifact scopes that may
include artifact scopes that have been established as subscopes of the global scope by

112

5.2 Concept for Symbol Table Persistence

L2L1 L3

� { kind="B", name="b" } �

A B

b:B b:A b:C

symbol classes
loading & storing symbols

DC

L4

b:D

Figure 5.3: Reusing a symbol stored as kind B by loading it as a symbol of a super kind
A, a subkind C, or an unrelated kind D.

loading a file that contains a stored symbol table. Global scopes, consequently, are not
persisted.

Loading stored symbol tables is integrated into the inter-model symbol resolution al-
gorithm (cf. Section 4.1.8), for which MontiCore generates the infrastructure. Storing
symbol tables, however, has to be integrated into the tool that orchestrates model pro-
cessing, which is handcrafted. Undeniably, storing symbol tables requires that these have
been instantiated before. However, it is not useful to store ill-formed symbol tables. To
this effect, the context conditions ensuring the well-formedness of a model should be
executed before an artifact scope is stored.

Methods for loading and storing symbol tables are realized within the Symbols2Json
classes described in Section 5.2.3. However, these methods can only load the content
of a file as a String and print a String to a file. The content of the String is calcu-
lated and processed by DeSers that realize serialization strategies and are explained
in Section 5.2.3.

A central decision in the concept for symbol table persistence is that after loading
a stored symbol table, the object structure of the artifact scope shall be instantiated
again. Alternatively, it would have been possible to store only the symbols and omit
storing scopes. This is a feasible alternative because under the assumption that a loaded
artifact scope must not be modified (which would render it potentially ill-formed), the
scopes are not required. Instead, the visibility of symbols can be pre-calculated before
symbol tables are persisted since the visibility is always considered only from viewpoints
that are external with respect to the artifact scope. Nevertheless, the concept presented
in this thesis deliberately stores the object structure of scopes for several reasons:

� Reconstructing scope trees from loaded symbol tables integrates the scope structure
better with the remaining abstract syntax infrastructure. Since scopes and symbols
in MontiCore are associated with each other in various forms, re-establishing the
associations between these yields a more complete abstract syntax object structure.

113

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

In an incomplete object structure, analyses may be required to distinguish between
associations that have not been loaded from associations that do not exist.

� Persisting the scope structure yields the option to use the information about scopes
and the symbols that span these scopes, inter alia, for symbol adaptation during
language composition. If, instead, only symbols are stored, the information about
scopes is lost. This includes the information which symbols are contained in scopes
spanned by other symbols.

� Loading symbols as part of reconstructed artifact scopes enables a less invasive
integration of symbol table persistence into the symbol resolution algorithm.

The serialization of MontiCore symbol tables is realized as a robust serialization
(cf. Section 5.1) to allow for reusability of persisted symbol tables via language com-
position. This form of reusability is depicted by example in Figure 5.3. The example
uses four symbol kinds A, B, C, and D where A is a super type of B and B is a super
type of C. The symbol kind D is not related to the other symbol kinds through any type
hierarchy. The tool of a language L1 stores a symbol b with the symbol kind B. Other
languages, such as the language L2, should be able to load the symbol b as a super
kind A of the original kind B. Attributes of b that are specific to the kind B and not
available in symbols of kind A are, thus, simply omitted during deserialization. Further-
more, it should be possible for other languages to deserialize the symbol b in a limited
form as the subkind C. In this case, the deserialization has to assume default values
for attributes required for instantiating a symbol of kind C that are not contained in
the symbol stored as kind B. In addition to that, the symbol b should be deserializable
as a symbol of kind D that is neither sub nor super kind of B. In this case, attributes
are deserialized whenever available, redundant attributes in the serialized symbol are
ignored, and missing attributes have to be deserialized with default values. All three
forms can be achieved by reconfiguring the deserialization through customization of the
global scope as described in Section 5.2.3.

5.2.2 Organization of Persisted Files

The absolute path of each persisted symbol file comprises four parts. Only all four parts
make a symbol file uniquely identifiable. The organization of symbol files is inspired by
the organization of class files in Java [www21b].

Symbol path: A symbol path is the path from the root of the file system to the directory
in which the symbols are located. This is conceptually similar to entries of the classpath
for Java class files and entries of the model path for models of MontiCore languages.
From the viewpoint of a language tool that stores symbol tables, the symbol (output)
path is the output directory for stored symbols. From the viewpoint of a tool that

114

5.2 Concept for Symbol Table Persistence

PickUpItem.aut

target/symbols/robot/ctrl/PickUpItem.autsym

package robot.ctrl;

automaton PickUpItem {

// …

}

1

2

3

4

symbol path entry symbol file extension

model package path model file name

Figure 5.4: Organization of symbol files

loads stored symbol tables, a symbol (input) path is the location that is searched for
stored symbols. Internally, the symbol path may be stated relative to a project root
(cf. Chapter 7) to enable its machine-independent specification. Whether this is the
case or not does not influence the concept for persisting symbol tables.

Package qualifier: The package qualifier is a folder structure that reflects the name
parts of a qualified package path in the same way as Java. The package statements
in Java-style languages are typically qualified names where a dot separates the name
parts. The package qualifier path is derived from the qualified name by replacing each
dot with a file separator. The purpose of package qualifiers is to realize a hierarchical
namespace for symbol table files that can be efficiently searched through a traversal of
the file system.

Filename: The name of a symbol file is equal to the name of the artifact scope that it
contains, which in turn should be equal to the name of the model for which this artifact
scope has been created. In Java-style languages, the name of the artifact scope typically
is also equal to the name of a top-level symbol within the model.

File extension: The file extension of a symbol file indicates the language of the stored
symbol table. With language-specific file extensions, the file system can distinguish
symbol tables for models with the same name that conform to different languages. In
MDD, this is a common case as different aspects of a system are modeled with different
modeling techniques, i.e., with different modeling languages. For example, the software
architecture of a car can be modeled in an architecture model Car.arc, whereas the
variability is modeled in a feature diagram Car.fd. For MontiCore symbol files, the
file extension is composed of the language-specific file extension of the models of the
language with the suffix sym to indicate that the file contains symbol tables.

An example of the four parts of a symbol file path is depicted by example in Figure 5.4.
The example demonstrates the absolute file path for the automaton model PickUpItem
depicted on the left. The model is located in the package robot.ctrl. To this end,
the model is contained in a model file PickUpItem.aut that is located in the file
path robot/ctrl as described by the package. This path, again, is relative to an
absolute location in the file system that contains the models of the example application.

115

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

The persisted symbol table file, in this example, is contained in a symbol path entry
target/symbols that is relative to some absolute location in the file system that is
of no further importance for this scenario. Relative to the symbol path entry, the folder
structure induced by the package is re-created. In this location, the symbol table is stored
in a file with the same filename as the model and the file extension of the language with
the suffix sym, i.e., to the file PickUpItem.autsym.

When loading MontiCore symbol tables, a distinction between symbol paths and model
paths often is not required. For efficiency, MontiCore languages typically load symbol
tables of other models during symbol resolution rather than parsing these and creating
the symbols from the ASTs. However, loading the model instead of the symbol table
can be useful for some languages, e.g., if more information about the loaded models than
contained in the symbol table is required. However, enabling a language to load both
symbol tables and models should usually be avoided to reduce the risk of inconsistencies.
If both models and symbol tables should be considered for loading, separating model
path and symbol path improves the performance of loading with the cost of additional
management of individual paths in language tools.

To this end, the paths in which a language searches for files to load contains either
models or symbols. Due to historical reasons, MontiCore languages make use of a model
path. With the introduction of persisted symbol tables, we avoided introducing novel
infrastructure for symbol paths because either model path or symbol path would be
empty. Instead, the model path is reused to bundle entries that contain symbol files.
In the following, we use the term model path interchangeably with the term symbol
path. This is in line with the Java compiler [www21b] that uses the classpath mainly
for class files but, by default, also for searching java source files.

5.2.3 Concept for Symbol Table Serialization and Deserialization

The concept for serializing and deserializing symbol tables is centered around a mecha-
nism for serialization with an intermediate structure (cf. Section 5.1.3). The serialized
symbol tables should be compact, machine-processable, and human-readable. The re-
alization of serializing symbol tables in MontiCore relies on JSON [www20c] as serial-
ization format, a standardized notation widely used for various kinds of applications.
To decouple the DSML-specific serialization infrastructure from the JSON infrastruc-
ture explained in Section 5.3, a model of the abstract syntax of JSON is used for an
intermediate representation.

Serializing and deserializing symbol tables requires conceiving serialization strategies
for all parts of the symbol table infrastructure that should be persisted. This includes se-
rialization strategies for symbols and (artifact) scopes. In the concept, each serialization
strategy is realized through an individual type of DeSer. The traversal of a language’s
symbol tables with the purpose of their serialization is realized through Symbols2Json
types. MontiCore generates the Symbols2Json classes and the DeSers of all symbols and

116

5.2 Concept for Symbol Table Persistence

Json
Abstract Syntax

Model of Json

Lng

Symbol

Table

LngSymbols

2Json

LngDeSer
Json

Parser

Json

Printer

Serialization

Deserialization

Json infrastructuregenerated for each DSL

Figure 5.5: Overview of the classes realizing the serialization strategy for MontiCore
symbol tables

scopes of a language as part of the STI. As for other artifacts generated by MontiCore,
the TOP mechanism [HKR21] can be applied to customize generated types.

An overview of the concept for (de)serializing symbol tables is depicted in Figure 5.5.
The object structure of a symbol table of the language Lng (depicted left) is serialized
as JSON-encoded String (depicted right). During serialization of the symbol tables,
the data structure is traversed with a language-specific LngSymbols2Json object that
reuses the visitor for the language. The serialization of each object of the symbol table
is delegated to the DeSer that realizes the serialization strategy for this type. DeSers
employ a JsonPrinter to translate objects into a String encoded in JSON.

During serialization, no explicit intermediate representation in terms of an abstract
syntax model of JSON is instantiated to increase the performance of serialization. Nev-
ertheless, the JSON printer encapsulates the concrete syntax of JSON from the type-
specific serialization strategies, which yields the opportunity to exchange the serialization
format to other textual representations of object structures. s During deserialization,
an abstract syntax model of JSON is instantiated by parsing the serialized symbol table
with a JsonParser. The outermost object of a serialized symbol table is always a seri-
alized artifact scope. Therefore, the deserialization can always begin with the DeSer for
scopes. The scope DeSer delegates the deserialization of contained symbols and scopes
to the DeSers for these. Internally, the DeSers use the builders for scopes and symbols
that are generated by MontiCore [HKR21].

DeSer Classes

A DeSer class realizes a serialization strategy for a concrete type of object that should
be serialized and deserialized. MontiCore generates a DeSer class for each symbol
kind defined within a language. As handling artifact scopes and scopes of a language
is similar, a single DeSer class realizes the serialization strategies for both scopes and
artifact scopes of a language. To distinguish these in the following, we denote DeSers that
serialize symbols as SymbolDeSers and DeSers of (artifact) scopes as ScopeDeSers.
Serialization strategies have to be realized in a way that all information that should be

117

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

persisted is serialized. Furthermore, serialization strategies should omit the serialization
of irrelevant information. To satisfy the purpose of symbol tables being interfaces for
language composition, serialized symbol tables must be deserializable by tools that may
not be aware of all contained serialized information.

DeSers realize explicit handling of inheritance (cf. Section 5.1). A DeSer, thus, is
only responsible for serializing and deserializing objects of a single type and none of
its subtypes or supertypes. Instead, the global scope manages the DeSers used for each
type of scope or symbol individually (cf. Section 5.2.3). To shorten the produced Strings,
DeSers realize type-specific default serialization (cf. Section 5.1) for object members of
built-in types. DeSers omit the serialization of:

� empty Strings, i.e., Strings with the value ""

� numeric types with the value 0, 0L, 0.0, etc.

� Booleans with the value false

� empty lists

� optional types with an absent value

As a further means to compactify Strings, DeSers omit producing unnecessary whites-
pace characters in the produced JSON Strings by default. Instead, developers can use
external tools to beautify/format the JSON-encoded Strings2. Besides methods for re-
alizing the serialization and deserialization of the type that the DeSer is responsible
for, DeSers have other methods that enable individual customization through overriding
methods via implementing a subclass of the DeSer. A typical scenario for customiza-
tion is the adjustment of the serialization of attributes that have been added through
symbol rule or scope rule attributes (cf. Section 4.2). Therefore, the serialization and
deserialization of such attributes is encapsulated in individual methods. Furthermore,
DeSers have hook point methods that enable (de)serialization of additional members.
By default, these methods have an empty implementation.

Serialization usually includes the persistence of the intermediate processing steps of ob-
jects. When serializing data structures such as symbol tables, however, not all attributes
need to be persisted. Any state information of symbols or scopes, such as the Boolean
flags for avoiding circular resolving (cf. Section 6.2.2), are omitted in the serialization
and set to a default value after deserialization.

Besides built-in types such as boolean or int, symbol rules and scope rules can use
any other Java type, such as java.awt.Color. While the serialization strategies for
built-in types as well as optionals and iterations thereof can be generated, the serializa-
tion strategies for arbitrary Java types cannot be generated without runtime knowledge

2For example, the MontiCore Json tool offers such functionality: https://github.com/MontiCore/
json

118

https://github.com/MontiCore/json
https://github.com/MontiCore/json

5.2 Concept for Symbol Table Persistence

about the fields of the Java types. Since this would require utilizing the Java reflection
API [McC98], our approach does not provide serialization strategies for arbitrary Java
types. Instead, if a symbol has a symbol rule attribute of a type for which no built-in
serialization strategy is available, the serialization and deserialization of such attributes
is realized as an abstract method. The same holds for scope rule attributes and scope
DeSers. If any abstract method is contained in a generated DeSer class, the class is
generated as an abstract class, and language engineers have to apply the TOP mecha-
nism to implement the abstract methods and, thereby, complete the missing (parts of)
serialization strategies.

Concept for Serialization Strategies of Scopes

The serialization strategy for scopes comprises individual serialization strategies for ar-
tifact scopes and for scopes that are no artifact scopes because these yield different
properties. However, most parts are common to both strategies.

In general, scopes are serialized with typeless persistence (cf. Section 5.1). This is
due to the fact that in many languages, scopes are only containers for the symbols
that are defined within the scope. Therefore, scopes rarely transport language-specific
information, and thus, the type of the scope harms the reusability of persisted symbol
tables. By default, MontiCore supports a single scope type for each language. All scopes
within an artifact scope, therefore, are of the same scope type and persisting scope types
is a piece of redundant information as the language is already determined by the file
extension of the symbol table files.

Serialization and deserialization of scopes are not realized as a fully symmetric opera-
tion. Instead, scopes are only persisted if these contribute information that is useful when
a symbol table is loaded. To this end, a scope is only serialized if it is not empty and if it
exports symbols visible beyond the artifact scope. The scope property isExporting,
therefore, does not have to be serialized as an explicit attribute of a serialized scope or
artifact scope. The property isOrdered is not serialized as well since its value does no
affect the symbol resolution from beyond an artifact scope. The property isShadowing
is only serialized for inner scopes and not for artifact scopes because the latter are always
shadowing scopes. A non-shadowing artifact scope would prohibit all local symbols that
have the same name as any other symbol of this kind that is exported by any other
known model artifact. Artifact scopes are serialized as JSON objects with the following
members:

� name if present

� package if present

� scope rule attributes

� list of contained symbols if it is not empty

119

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

AST-OD

aSymbol:

aScope:

bSymbol: cSymbol:

bScope:

artifactScope:

aScope:

bScope:

bSymbol:

cSymbol:

aSymbol:

artifactScope:

(a) serialize containment
of spanned scope

(b) serialize containment
of symbols and sub scopes

aSymbol: aScope:

bSymbol: cSymbol:bScope:

artifactScope:

example object structure

= spanning symbol / spanned scope
= enclosing scope / sub scope
= enclosing scope / contained symbol

= store shortcut only

Figure 5.6: Example for two alternative approaches for serializing object structures of
scopes and symbols

The list of symbols includes all symbols that are directly contained in the scope re-
gardless of their kinds. The reason for this is that a separation into individual lists per
symbol kind would be less compact.

For non-artifact scopes, the name of the scope can be derived from the symbol that
spans the scope. Scopes that are not spanned by symbols are not serialized, as these can
never be addressed from beyond an artifact scope. Inner scopes are serialized as JSON
objects with the following members:

� property isShadowing

� scope rule attributes

� list of contained symbols, if not empty

Scopes are associated with other scopes and symbols through different bidirectional
associations. As depicted in Figure 5.6, there are different approaches for serializing
scopes and symbols. The left side visualizes an example of an artifact scope that contains
a symbol aSymbol, which spans the scope aScope. This scope contains two symbols
bSymbol and cSymbol, where the symbol bSymbol spans a scope bScope. In this,
any scope and its enclosing scope, any scope and the contained symbols, as well as
any symbol and its spanned scope, are connected with each other via a bidirectional
association. During serialization with JSON, the object graph is transformed into a
tree, and thus, bidirectional associations and other cycles have to be removed. This
can be achieved by serializing the association between a symbol and a spanned scope
as a composition, as depicted in Figure 5.6 (a). During deserialization, the association
between scopes and enclosing scopes can be re-established. This solution would require a
special handling of scopes that are not spanned by a symbol, which in general is allowed
in MontiCore. However, these scopes are not serialized since all contained symbols

120

5.2 Concept for Symbol Table Persistence

cannot be addressed via names. A disadvantage of this approach is that the kinds of
the symbols that span scopes must be known in the language that loads a stored symbol
table to deserialize the contained scope. An alternative solution is depicted in Figure 5.6
(b), where both, a list of contained symbols and a list of subscopes, are realized as
members of a scope. However, this form of serialization requires information about the
symbols that span a scope to establish the same object structure when an artifact scope
is loaded. Therefore, a shortcut from the scope to the symbol that spans the scope has to
be serialized as well. For this shortcut, it suffices to indicate the name and the kind of the
symbol as the symbol must be contained in the scope that encloses that current scope.
The MontiCore implementation of DeSers realizes the alternative (a) since all persisted
scopes are spanned by a symbol and for this, (a) yields a more compact serialization.

The serialization of an artifact scope begins with instantiating a JsonPrinter ob-
ject that captures the current state of the JSON-encoded String. During serialization,
a DeSer for scopes begins with serializing the (artifact) scope members as described
above before it leaves the traversal of the local symbols in the scope open for the
Symbols2Json class. After performing the traversal of the scope that delegates se-
rialization of all individual symbols to the respective symbol DeSers, the scope DeSer
invokes the hook point for additional scope attributes. Afterward, it returns the content
of the JSON printer that contains the serialized scope.

During deserialization, a scope DeSer parses the JSON-encoded String and instantiates
an artifact scope with the object members of the persisted artifact scope. For the
deserialization of local symbols, the scope DeSer reads the symbol kind of a persisted
symbol and uses the global scope to obtain the DeSer configured to deserialize symbols
of this kind. The deserialization of the symbol persisted as a JSON object is delegated to
the responsible DeSer, and the result is added as a symbol to the (artifact) scope. DeSers
of symbols that span a scope also instantiate the spanned scope. After all symbols of an
(artifact) scope are deserialized, the hook point for additional scope attributes is invoked,
and the resulting (artifact) scope is returned. All scopes are instantiated through the
language mills.

Concept for Serialization Strategies of Symbols

Contrary to the serialization strategy for scopes, the serialization strategy for symbols
relies on type information that is persisted in each symbol explicitly (cf. Section 5.1).
A symbol is serialized as a JSON object, and the symbol kind is realized as a String
member of this object. As in the STI, the symbol kind is directly related to the type of
the symbol class, the type information is persisted explicitly. However, the kind can be
re-interpreted during deserialization by reconfiguring the global scope (cf. Section 5.2.3).
Whenever a symbol is deserialized, the symbol kind can be obtained by scope DeSers
without requiring more knowledge about a concrete symbol kind’s serialization strategy.
Instead, it can delegate further deserialization of the symbol to a suitable symbol DeSer.

121

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

Serialized symbols are JSON objects with the following members:

� kind as a String

� name as a String

� symbol rule attributes

� spanned scope, only if the symbol kind spans a scope, the scope exports symbols,
and the scope is not empty

The serialization of a symbol begins with instantiating a JsonPrinter for capturing
the serialized String. During serialization of a symbol, the kind and name of the symbol
are printed as first members, followed by all symbol rule attributes that are defined for
the symbol kind. If the symbol kind spans a scope, the DeSer uses the Symbols2Json
class of the language to traverse the spanned scope and serialize it if it exports symbols
and is not empty. Finally, the symbol DeSer invokes the hook point for additional symbol
attributes and returns the content of the JSON printer containing the printed symbol.

During deserialization, a symbol DeSer parses the JSON-encoded String and instan-
tiates a symbol with the persisted name. The symbol DeSer does not check whether it
is capable of deserializing the symbol kind. Instead, scope DeSers perform this check
during deserialization of a scope. If the symbol kind spans a scope, the deserialization
proceeds with deserializing the scope by obtaining the scope DeSer from the global scope.
The deserialization of the scope is delegated to this DeSer, and the resulting scope ob-
ject is connected with its environment. If a symbol kind spans a scope, but no scope is
contained in the serialized String, the scope either does not export symbols or is empty.
To avoid deserializing an incomplete object structure in such scenarios, symbol DeSers
create and connect empty scope objects with the environment. Afterward, the hook
point for additional symbol attributes is invoked, and the resulting symbol is returned.
All symbols and scopes are instantiated through the language mills.

GlobalScopes

Global scopes realize the inter-model symbol resolution and, as such, trigger the loading
of symbol table files. Beyond this, global scopes have other tasks in symbol persistence.

Global scopes manage a regular expression for symbol file extensions that can address
symbol files of multiple languages at once. All files with file extensions that satisfy the
regular expression and are found in the symbol path are considered for loading artifact
scopes during symbol resolution. Each global scope further has a map of symbol DeSers.
The keys of the map are Strings with symbol kinds, and the values are instances of
symbol DeSers. Each entry maps a symbol kind to the DeSer that should be employed
to serialize and deserialize symbols of this kind. This map can be used as a central spot
for the reconfiguration of DeSers since the singleton global scope instance is statically

122

5.3 JSON Infrastructure

key

«interface»

JsonElement

Json

Array
Json

Object

Json

String

Json

Number

Json

Boolean

* *
membervalues

Json

Null

AST-CD

Figure 5.7: Overview of the classes of the JSON abstract syntax model

available via the language mill. Instead of using the DeSer for the exact symbol kind
by default, language engineers can configure the map in the global scope to use a DeSer
for a type compatible symbol kind instead (cf. Section 5.5.6 and Section 5.5.7). We say
that symbol kinds are compatible if they are in a mutual inheritance relationship. By
default, the map contains entries for all symbol kinds that are defined in a language
and all symbol kinds defined in any (transitively) inherited language. Besides the map
of symbol DeSers, global scopes manage the scope DeSer. Each global scope uses, by
default, a single scope DeSer instance to serialize and deserialize all scopes of symbols
tables that are loaded and stored. This includes scopes that are instantiated by symbol
DeSers of symbols defined in foreign languages. To this end, symbol DeSers obtain the
scope DeSer that is employed for deserializing a spanned scope from the global scope.

Furthermore, the global scope manages a Symbols2Json object that carries out the
loading of symbol tables and can be used by a language tool for storing symbol tables.

Symbols2Json

The Symbols2Json classes generated by MontiCore realize both the traversal of the
symbol table data structure with the purpose of its serialization and offer methods
for loading and storing symbol tables. To realize the traversal, a Symbols2Json class
implements the visitor interface of a language. Symbols2Json classes do not have a
custom traversal that deviates from the traversal strategies implemented by the visitors.
For language composition, the class uses a traverser that employs the Symbols2Json
classes of inherited languages to serialize types defined in these languages. The traversal
of a scope or an artifact scope covers the local symbols of this scope. The traversal
of symbols is empty, i.e., for all symbols, including symbols that span a scope, the
traversal does not cover any contained structures. Upon visiting a symbol, a scope, or
an artifact scope, the Symbols2Json class delegates the serialization to the responsible
DeSers obtained from the global scope.

5.3 JSON Infrastructure

JSON [Mar17, www20c] is a compact, yet human-readable notation for object structures.
The JSON syntax is standardized [www17] and, due to its compactness, a common for-

123

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

JsonString

String value

""

"foo"

"foo bar"

"\"foo\nbar\" \u2615 "

1

2

3

4int length()

JSONAST-CD

Figure 5.8: The JsonString class (left) and example JSON representations (right)

mat in web-based software systems [Mar17] for data exchange or the syntax of configu-
ration files3. Although the foundations of JSON are based on JavaScript, the notation
is language-independent, and any object structure can be represented in JSON.

Unlike documents of markup languages, such as the extensible markup language
(XML) [PSMB+06], JSON documents typically do not conform to an explicit schema.
Certain properties of JSON enable efficient lexing and parsing of JSON models. For
example, the JSON language requires only a few different token classes and the first
character of each token uniquely identifies the token class. For instance, whenever a
JSON lexer encounters the letter t at the beginning of a lexed character sequence, the
only valid token is the Boolean true, and all other token classes can be discarded.

The following presents an infrastructure that we conceived for serializing and dese-
rializing Java object structures in JSON. The motivation for this implementation is to
provide a JSON infrastructure that can support serialization strategies with JSON as an
intermediate representation as depicted in Figure 5.2 and avoids using the Java reflec-
tion API [McC98]. Beyond this, the infrastructure should be customizable for serializing
MontiCore symbol tables. A further aim is to provide fast serialization and deserializa-
tion of JSON, focusing on the latter. The remainder of this section describes the abstract
syntax model of the JSON infrastructure in Section 5.3.1 before explaining the infras-
tructure for serializing JSON in Section 5.3.2 and deserializing JSON in Section 5.3.3.

5.3.1 JSON Abstract Syntax Model

An abstract syntax model of JSON can serve as an intermediate representation for seri-
alization strategies, as depicted in Figure 5.5. The abstract syntax of a JSON document
consists of a single (main) JSON element. A JSON element is either an object, an array,
a String, a number, a Boolean value, or null, as depicted in Figure 5.7. Arrays and
objects are elements decomposed from other JSON elements. The following presents
for each of these abstract syntax classes the concrete syntax and the realization of the
abstract syntax classes in our JSON infrastructure.

A JSON String is a character sequence surrounded by quotation marks. JSON sup-
ports the usual escape sequences (e.g., \n to indicate a line break) that begin with a
backslash character. The class JsonString of our JSON infrastructure realizes JSON
Strings and is depicted on the left side of Figure 5.8. This class wraps the data type

3Angular uses JSON for configuration files: https://angular.io/guide/build

124

https://angular.io/guide/build

5.3 JSON Infrastructure

JsonNumber

String value
-17

123.356789

-13.4E-7

1

2

3

int getNumberAsInt()

long getNumberAsLong()

float getNumberAsFloat()

double getNumberAsDouble()

JSONAST-CD

Figure 5.9: The JsonNumber class (left) and example JSON representations (right)

JsonBoolean

boolean value

true

false

1

2

JSONAST-CD

Figure 5.10: The JsonBoolean class (left) and example JSON representations (right)

java.lang.String through a class attribute value that can be accessed and modi-
fied through getValue and setValue methods. JsonString further has a method
delegating to the length() method of the Java String. The right side of the figure
presents examples for the concrete syntax JSON Strings. Each JSON String begins and
ends with quotation marks. A String can be empty (l. 1) or contain characters (l. 2)
including whitespace characters (l. 3) and escape sequences (l. 4) such as \", \n, or a
Unicode escape sequence \u2615.

A JSON Number is any signed decimal integer or floating-point number with an
optional exponent. Contrary to the type systems in typical programming languages,
JSON does not further distinguish different types of numbers, such as int, float,
double, short, or long. To transport such type information beyond serialization and
deserialization, it has to be either encoded explicitly or through a symmetric form of
serialization and deserialization. The class JsonNumber of our JSON infrastructure
realizes JSON numbers and is depicted on the left side of Figure 5.9. Internally, this
class manages the numeric value in the form of a String attribute to be independent of
a numeric data type in Java. Users of the JSON infrastructure can decide on a numeric
data type through methods that convert the String representation to common built-in
Java data types. These methods internally use parsers provided by the JDK to ensure
compatibility of the number formats. For instance, the method getNumberAsInt()
internally employs java.lang.Integer.parseInt(String). Three examples for
the concrete syntax of JSON numbers are depicted on the right side of Figure 5.9: an
integer number (l. 1), a floating-point number (l. 2), and a number using the exponent
notation (l. 3).

A JSON Boolean is either true and false, i.e., it forms the basis for a bivalent and
not a ternary logic. However, through the absence of a Boolean value, ternary logic
values can be realized as well. The class JsonBoolean of our JSON infrastructure

125

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

JsonObject

Map<String,JsonElement> members
{ }

{ "someMember":"someValue" }

{ "width":2,

"height":4.5,

"color":{"r":10,"g":20,b":30}

}

1

2

3

4

5

6

JsonElement putMember(String n, JsonElement v)

JsonElement getMember(String n)

Set<String> getMemberNames()

boolean hasStringMember(String n)

String getStringMember(String n)

Optional<String> getStringMemberOpt(String n)

JSONAST-CD

Figure 5.11: The JsonObject class (left) and example JSON representations (right)

realizes JSON Booleans and is depicted on the left side of Figure 5.10. This class wraps
the primitive data type boolean through a class attribute value. The concrete syntax
of the two different JSON Boolean values is depicted on the right side of Figure 5.10.

A JSON Null is the character sequence null and represents the absence of another
value, thereby realizing the infamous null pointer that exists in many modern program-
ming languages [Hoa09]. We recommend avoiding JSON nulls and instead omitting
serialization of members or elements that would be null and handling this properly dur-
ing deserialization. The class JsonNull of our JSON infrastructure realizes JSON nulls.
As JSON nulls should not be used, this class exists only for reasons of completeness.

A JSON Object contains an unordered set of members. Each member has a member
name and a value, which is an instance of a JSON element. Therefore, JSON objects
can also be decomposed from other JSON objects. A common convention is to assume
that member names are unique within a JSON object. This simplifies the handling of
JSON objects and is reasonable as JSON object members typically reflect serialized class
attribute members, whose names have to be unique per class in many object-oriented
programming languages. Contrary to other object notations such as UML object dia-
grams, there is no explicit notation for types to which JSON objects conform. However,
if desired, the type information of an object can be encoded into any JSON object mem-
ber. The class JsonObject of our JSON infrastructure realizes JSON objects and is
depicted on the left side of Figure 5.11. Members of an object are realized as a map
attribute that maps member names to member values in the form of JSON elements. To
this end, member names are unique Strings that form the key set of the map. The class
JsonObject contains methods to modify and access the members of an object, which
delegate to methods of the underlying map. Besides these, the JsonObject contains
methods for checking whether a member with a given name and an expected kind of
JSON element exists. Direct access methods (e.g., getStringMember(..)) yield an
error if no such member exists, and other methods (e.g., getStringMemberOpt(..))
return an empty Optional value if the member does not exist. The latter can be used
to handle the deserialization of optional attributes by avoiding the usage of JsonNulls.
The right side of Figure 5.11 presents the concrete syntax of three exemplary JSON ob-

126

5.3 JSON Infrastructure

JsonArray

List<JsonElement> values
[]

["foo", "bar"]

["width", 2, true, [1, 2, 3], { }]

1

2

3JsonElement get(int i)

boolean isEmpty()

JSONAST-CD

Figure 5.12: The JsonArray class (left) and example JSON representations (right)

«interface»

JsonElement

+ boolean isJsonArray()

+ JsonArray getAsJsonArray()

+ boolean isJsonNumber()

+ JsonNumber getAsJsonNumber()

�
JsonArray

+ boolean isJsonArray()

+ JsonArray getAsJsonArray()

�

List<JsonElement> valuesdefault
implementations
return false

default implementations throw error

returns true

returns thiswith
the correct type

AST-CD

Figure 5.13: Avoidance of down casts for the JSON infrastructure

jects. Each object is surrounded by curly braces. An object can be empty (l. 1) or
contain one (l. 2) or more (l. 3-6) comma-separated members. A member begins with
the member name surrounded by quotation marks followed by a colon and the member
value. The member value can be of any JSON kind such as a String (l. 2), a number
(ll. 3-4), or an object (l. 5).

A JSON Array is an ordered list of JSON elements. As a JSON array can contain
values that are arrays, it is a recursive data structure. A single JSON array may contain
elements of different kinds, such as a String, a Boolean value, and an object. The
JsonArray class of our JSON infrastructure realizes JSON arrays and is depicted on
the left side of Figure 5.12. It manages a list of JSON elements that contain the array’s
values and defines methods that delegate to methods of the list. Each JSON array is
surrounded by square brackets and can be empty (l. 1) or contain one or more comma-
separated values of the same (l. 2) or different kinds (l. 3).

The JSON data structure adheres to the JSON standard, i.e., it is unlikely to be
extended with novel JSON element kinds. However, the classes realizing JSON element
kinds can be extended. For example, a class MemberTracingJsonObject could ex-
tend the class JsonObject and log read and write access on JSON object members.
To this end, the JsonElement interface is aware of all kinds of distinguishable JSON
elements, which are realized by classes that implement the JsonElement interface.
This can be leveraged to provide methods for each distinguishable kind of element. The
JsonElement provides methods for checking that the element is of a specific kind,
such as the method boolean isJsonArray() for the element kind JsonArray, as
depicted in Figure 5.13. These methods exist for each distinguishable kind of JSON
element, and the default implementation in the JsonElement returns false for all of

127

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

de.monticore.prettyprint.

IndentPrinter
JsonPrinter

+ enableIndentation()

+ disableIndentaton()

+ beginObject()

+ beginObject(String)

+ endObject()

+ beginArray()

+ beginArray(String)

+ endArray()

+ member(String, Optional<String>)

+ member(String, int)

+ member(String, String)

+ member(String, JsonPrinter)

+ memberJson(String, String)

+ value(int)

+ value(JsonPrinter)

+ String getContent()

#

printed only if present

methods exist for all
Java primitive types

three ways of handling
String members

start a member that is a nested object

start a member that is a nested array

AST-CD

Figure 5.14: Overview of the JSON printer

these methods. The individual kinds override the methods for checking that a JSON
element is of their own kind and return true. For example, the method boolean
isJsonArray() in the class JsonArray overrides the method from the interface and
returns true instead.

Similarly, the JsonElement interface provides methods for returning itself as an
instance of each concrete kind. The default implementation in the interface throws an
error if the method is called. The classes implementing the interface override the methods
of their own kind and return the current instance. For example, the class JsonArray
overrides the method getAsJsonArray() and returns the current object (i.e., this)
without a type cast. Through these methods, the subtypes of each class can override the
methods for checking the element kind individually. This mechanism, thus, offers more
flexibility for extensions through subclasses than instanceof checks and down-casting.

5.3.2 Serialization Infrastructure

A challenge in serializing Java object structures is to apply type-specific serialization
strategies. Some JSON libraries make use of the Java reflection API to handle serializa-
tion strategies for each type [www20a]. The realization of the symbol table serialization
in MontiCore employs visitors for traversing the object structures that are serialized.
With a JSON abstract syntax model as an intermediate representation (cf. Figure 5.5),
the printing of the concrete JSON-encoded Strings can be decoupled from the traversal
of the data to be serialized. Thus, the JSON serialization infrastructure does not include
any explicit handling of the serialized types.

For building JSON-encoded Strings from Java, the JSON infrastructure contains the
JsonPrinter class. Figure 5.14 depicts an excerpt of the methods of the JsonPrinter
class. This class realizes an API including value(..) methods for printing values of

128

5.3 JSON Infrastructure

common built-in Java data types such as int, double, or boolean. For printing de-
composed JSON arrays, the printer offers beginArray() and endArray() methods.
Values of the array can be printed by using the value(..) methods. For printing
JSON objects, the printer offers beginObject() and endObject() methods.

The JsonPrinter is a facade for the concrete syntax of JSON as its methods reflect
mainly the abstract JSON syntax. In the realization of the concept for serialization
strategies (cf. Figure 5.5), no explicit instance of the JSON abstract syntax has to be
created during serialization. Instead, it suffices to use the JsonPrinter in the symbol
table printers. As an alternative to the JsonPrinter, it would have been possible to
instantiate the JSON abstract syntax model when serializing objects. Then, a pretty
printer could traverse this structure by employing a visitor and print the JSON abstract
syntax to concrete syntax. However, this would require creating additional objects and
performing additional traversal. Hence, it would be less efficient both in terms of memory
and time consumption compared to using the JsonPrinter.

To support being used in combination with MontiCore visitors [HKR21] that tra-
verse the objects to be serialized, the JsonPrinter separates printing the begin,
content, and end of objects and arrays. This enables to invoke a beginObject()
method in the visit(..) method of an object, then traversing the object using
the traverse(..) method of the visitor, and afterward invoking the endObject()
method in the endVisit(..) method of the object.

The JSON printer does not perform any formatting such as indentation by default.
Instead, only the least necessary characters are printed to reduce the size of JSON doc-
uments for efficient storage. This contradicts the fact that JSON is often the format
of choice, inter alia, because it is character-based and, thus, should be human-readable.
However, as JSON is a common data format, many editors support auto-formatting of
JSON and, thus, JSON documents can be formatted with little effort. Nevertheless, the
JsonPrinter can be set to print formatted JSON documents if manual inspection of
the produced documents is intended. This is realized in the implementation as a prop-
erty that is controlled statically for all JsonPrinter instances through the methods
enableIndentation() and disableIndentation().

To encode a Java String in JSON, it has to be surrounded by (escaped) quotation
marks, and all escape characters that have to be escaped both in JSON and in Java
have to be escaped twice. Without the double escaping, the JSON printer would yield
vulnerabilities to the security of the serialization. If, for instance, quotation marks are
not escaped properly, it would be possible to inject any JSON code through a String
member or value. Printing String members or values in the context of printing JSON,
therefore, has to be treated with care. Whereas in some cases, the String that should be
printed is not encoded in JSON, in other cases, it might be intended that the String is
already encoded in JSON. The latter is the case if the String that should be printed is the
result produced by another JSON printer. To foster this, the JsonPrinter provides
three alternatives for printing Strings:

129

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

JsonParser

JsonElement parseJson(String json)

JsonArray parseJsonArray(String json)

JsonObject parseJsonObject(String json)

�
JsonLexer

JsonLexer(String json)

JsonToken peek()

JsonToken poll()

�
JsonToken «enumeration»

JsonTokenKind
String value

TRUE

FALSE

BEGIN_ARRAY

END_ARRAY

COLON

�

kind

1

1

STRING,

NUMBER,

BOOLEAN_TRUE,

BEGIN_ARRAY,

END_ARRAY,

BEGIN_OBJECT,

COLON

for performance
reasons realized as
queue

constants for
each token kind
without value

�
AST-CD

boolean hasValue()

Figure 5.15: Overview of the JSON parser

� The methods value(String) and member(String,String) escape the passed
String and should be used for serializing any non-JSON-encoded Strings.

� The methods valueJson(String) and memberJson(String,String) do
not escape the passed String and should be used for serializing any JSON-encoded
Strings.

� The methods value(JsonPrinter) and member(String,JsonPrinter) use
the result of the passed JsonPrinter for serialization.

To avoid vulnerabilities due to malformed JSON, the methods valueJson(..) and
memberJson(..) should be handled with care. Usually, it is not necessary to use
these methods.

5.3.3 Deserialization Infrastructure

Deserializing a JSON document to an object structure requires information about the
data structure of the objects. As stated before, this information can be passed to
the JSON infrastructure in Java via the Java reflection API. For example, Google
GSON [www20a] uses an argument of type java.lang.Class to indicate the type
of data in a serialized String. However, our JSON infrastructure has the ambition to
avoid the reflection API and thus, uses individual builders for each data type to be deseri-
alized. Similar to the serialization explained in Section 5.3.2, we separate deserialization
into two phases. In the first phase, the serialized String is parsed to an intermediate data
structure using a JSON parser. During the second phase, the instances of the interme-
diate JSON data structure are used as the information basis for systematically building
up object structures.

As depicted in Figure 5.15, the JSON Parser offers a static method for parsing a passed
String encoded in JSON into an instance of JsonElement. Other methods exist to
parse a String directly into concrete kinds of JSON elements such as into a JsonArray.
Internally, the parser uses the JsonLexer to transform the JSON-encoded String into
tokens before further processing. As JSON documents can be large, it is not feasible

130

5.3 JSON Infrastructure

for the JSON lexer to transform the entire JSON String into a list of tokens at once.
This would cause problems, such as a significant memory overhead and the risk of an
overflow of indices. Instead, the JSON lexer is realized as a queue that reads only one
token at a time from the input String. The JSON parser uses a JSON lexer to obtain
the next token from the input document through the common queue operations peek()
and poll().

The JSON lexer distinguishes twelve kinds of tokens in the JsonTokenKind enumer-
ation. Some token kinds (such as numbers) have a variable value, while others, such as a
colon, have a constant value. For each token with a constant value, the class JsonToken
defines a constant attribute. For these tokens, the lexer always uses the same instance.
Using these constants prohibits providing instance-specific information with each occur-
rence of a token, such as the source position within the input document. However, this
increases the lexing performance, and for the use case of loading and storing symbol
tables, no instance-specific information for these tokens is required. For tokens with
variable values, individual instances of JsonToken are created during lexing. Regular
automata are employed for identifying the kind of these tokens. Given that the first
character of a token excludes all but (at most) one token kind, lexing does not require
parallel execution of these automata. The following lists all different kinds of tokens that
the JSON lexer distinguishes:

Begin object: denotes the start of an object and has the constant value ‘{’.

End object: denotes the end of an object and has the constant value ‘}’.

Begin array: denotes the start of an array and has the constant value ‘[’.

End array: denotes the end of an array and has the constant value ‘]’.

Boolean true: denotes the Boolean true and has the constant value ‘true’.

Boolean false: denotes the Boolean false and has the constant value ‘false’.

Colon: separates the name and the value of an object member. It has the constant
value ‘:’.

Comma: separates the values of an array or the members of an object. It has the
constant value ‘,’.

Null: denotes the JSON null pointer and has the constant value ‘null’.

String: denotes a String that can be both member name or value in a syntax as de-
scribed in Section 5.3.1. The variable value of the token contains the content of the
String, excluding the surrounding quotation marks.

Number: denotes a floating-point or integer number in a syntax as described in Sec-
tion 5.3.1. To avoid a concrete numeric data type, the token’s variable value is managed
as a String whose value can be transformed into a numeric data type in a later stage.

131

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

JSON{ "name": "GameFile",

"symbols": [

{ "kind": "automata._symboltable.AutomatonSymbol",

"name": "Game",

"spannedScope": {

"symbols": [

{ "kind": "automata._symboltable.StateSymbol",

"name": "Main"

},

{ "kind": "automata._symboltable.StateSymbol",

"name": "InGame"

},

{ "kind": "automata._symboltable.StateSymbol",

"name": "Pause"

}

]

}

}

]

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

Game:

AutomatonSymbol

GameScope:

Main:

StateSymbol

InGame:

StateSymbol

GameFile:

Pause:

StateSymbol

AST-OD

Figure 5.16: Example of a serialized symbol table visualized as object diagram (left) and
encoded in JSON (right)

Whitespace: denotes a sequence of whitespace characters with a constant value of
‘ ’. It is a deliberate decision to ignore any formatting of the processed JSON docu-
ment, as this is of little importance in further processing of the JSON document and
– assuming that the whitespace follows strict formatting rules – can be reproduced by
pretty printing with a formatter. The ignored whitespace characters include line breaks.

5.4 Realization of Loading and Storing of Symbol Tables in
MontiCore

This section presents the realization of the loading and storing of symbol tables in Monti-
Core following the concepts explained in Section 5.2. The implementation of the concepts
forms the serialization infrastructure of languages and relies on the JSON infrastructure
presented in Section 5.3.

The right side of Figure 5.16 depicts an example of an artifact scope encoded in JSON,
and the left side of the figure depicts the corresponding object diagram. The name of
the model that contains the exemplary artifact scope is GameFile and is persisted as
the first member of the JSON object containing the serialized artifact scope. Types of
scopes are not persisted. The second member of the serialized artifact scope describes
the symbols contained in the scope as JSON array. In this example, the array contains
only a single symbol, which is serialized as a JSON object. The symbol is of the kind

132

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

AST-CD

«interface» ISymbolDeSer

String serialize(S sym, J s2j)

S deserialize(String s)

S deserialize(JsonObject o)

S extends ISymbol, S2J

language-specific Symbols2Json class

Figure 5.17: Common interface for all symbol DeSers

AutomatonSymbol and has the name Game. Both attributes are serialized as members
of the type JsonString. The symbol kind AutomatonSymbol spans a scope, and
therefore, the serialized symbol contains a member for the spanned scope that is serialized
as a JSON object. This scope contains three symbols that are serialized within a JSON
array. Each individual symbol is serialized as a JSON object that is a value of the array.
All three symbols are of the kind StateSymbol and have individual names that are,
again, serialized as object members.

The realization of the serialization infrastructure for MontiCore symbol tables com-
prises parts belonging to the MontiCore runtime and parts generated for each language
individually. The following sections introduce central constituents of the implementa-
tion of symbol table persistence in MontiCore to realize the serialization described by
the example above.

5.4.1 Commonalities of Symbol DeSers in the ISymbolDeSer Interface

The interface ISymbolDeSer is part of the MontiCore runtime and is implemented by
all generated symbol DeSer classes. The interface has two generic type arguments that
support indicating language-specific method return types and method parameters from
the language-agnostic MontiCore runtime. The first generic type argument indicates the
concrete symbol class that a symbol DeSer is able to (de)serialize, and the second argu-
ment indicates the language-specific Symbols2Json class. The ISymbolDeSer interface
is depicted in Figure 5.17 and defines three methods.

serialize(S extends ISymbol, S2J) translates a symbol object passed as method argu-
ment into a String representation that is returned by the method. For printing the
serialized characters, the implementation of the method in the individual symbol DeSer
classes employs the JsonPrinter that is a member of the passed Symbols2Json object.
If the symbol kind of the DeSer spans a scope, the passed Symbols2Json is further used
for traversing the scope. This is realized by accepting the traverser of the Symbols2Json
class from the spanned scope.

deserialize(String) translates a serialized symbol encoded in JSON into a newly instan-
tiated symbol object. To do so, the String is parsed with the JsonParser first, which
yields an instance of a JsonObject. Otherwise, the deserialization terminates with an

133

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

error. The remaining deserialization is delegated to the deserialize(..) method
with the JsonObject as an argument. For this method, the ISymbolDeSer interface
provides a default implementation.

deserialize(JsonObject) translates a serialized symbol in the JSON object passed as
method argument into a newly instantiated symbol object that the method returns.
Internally, the method implementation contained in the individual symbol DeSer classes
deserializes the JSON object member containing the symbol name and uses the symbol
builder to instantiate a novel symbol object with this name. Furthermore, if the symbol
kind has any attributes defined via symbol rules, the values for the attributes are also
set. The deserialization of each of these attributes is carried out in a separate deserialize
method to foster customization of their serialization strategies. If the symbol kind spans
a scope, the scope is deserialized as well. To realize this, the symbol DeSer obtains the
scope DeSer object from the global scope and delegates the deserialization of the scope
to this DeSer. It is essential that the scope DeSer is obtained through the global scope,
as in the presence of language composition, the type of the scope and hence, the scope
DeSer to employ may have been reconfigured. Afterward, the hook point method for
additional symbol attributes is called.

While the primary intention for using the deserialize(..) method with a String
parameter is testing the (de)serialization of individual symbols, the generated implemen-
tation of symbol table persistence uses the deserialize(..) method with the JSON
object as an argument. The reason for this is that once the JSON of a scope is parsed,
the scope DeSers delegate the deserialization of contained symbols to the symbol DeSers.
If these used the deserialization with a String as input, the parsed JSON would have to
be printed and parsed again, which is inefficient. The ISymbolDeSer interface does
not introduce method signatures for the hook point methods that can provide additional
attributes to be considered for the (de)serialization. This is due to the fact that the
method signatures are only used within the respective DeSer class and, thus, have a
protected visibility.

5.4.2 Commonalities of Scope DeSers in the IDeSer Interface

The interface IDeSer is part of the MontiCore runtime. It is an interface that all
generated DeSer classes for scopes implement. The interface defines eight methods that
are implemented by each DeSer and one method with a default implementation. The
type IDeSer is generic with three type arguments. The first generic type argument is
the scope type for which the DeSer realizes the serialization strategy, and the second
argument is the type of the corresponding artifact scope. The third argument is the type
of the language-specific Symbols2Json class required for traversing the symbol table for
its serialization. All methods that are involved in the serialization have a parameter
of the language-specific Symbols2Json type. This serves two purposes. For one, the

134

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

«interface» IDeSer

String serialize (A as, J s2j)

String serialize (S sc, J s2j)

serializeAddons (A as, J s2j)

serializeAddons (S sc, J s2j)

A deserialize (String s)

A deserializeArtifactScope(JsonObject o)

S deserializeScope(JsonObject o)

deserializeAddons(A as, JsonObject o)

deserializeAddons(S sc, JsonObject o)

S extends IScope,

A extends IArtifactScope,

S2J

language-specific
Symbols2Json class

AST-CD

Figure 5.18: Common interface for all scope DeSers

class has an attribute of the JsonPrinter object containing the String serialized so far.
Furthermore, the class implements a visitor and is employed for traversing the scope or
artifact scope.

For the methods realizing the serialization and the deserialization, DeSers for scopes
distinguish the deserialization of scopes and artifact scopes. This is due to the fact that
artifact scopes yield different attributes than other scopes. In the methods realizing
the hook points for additional attributes to be (de)serialized, the DeSer distinguishes
artifact scopes and other scopes as well. This simplifies realizing hooks for one of these
only. Other than for the ISymbolDeSer, the hook point methods for (artifact) scopes
are contained in the IDeSer interface. The reason is that these are called from the
Symbols2Json class that is not aware of the concrete scope DeSer class. The IDeSer
interface is depicted in Figure 5.18 and defines nine methods explained in the following:

serialize(A extends IArtifactScope, S2J) translates an artifact scope object passed as
method argument into a JSON-encoded String that the method returns. The method
requires a Symbols2Json object as a second argument. The IDeSer interface declares
only the signature of this method, but concrete DeSer classes implement this method
and realize the serialization. For artifact scopes, the name and the package are printed as
JSON String members if these are present. The serialization of symbols is delegated by
employing the Symbols2Json object. Afterward, the hook point for serializing additional
artifact scope attributes is invoked. This method only prints the members of a JSON
object. The Symbols2Json class (cf. Section 5.4.4) prints the beginning and the end of
the object.

serialize(S extends ISymbol, S2J) translates a scope object passed as method argu-
ment into a JSON-encoded String that the method returns. Like the serialize(..)
method for artifact scopes, the method requires a Symbols2Json object as a second ar-
gument for traversing the scope. The Boolean property isShadowing is only printed
if its value is true. The name of a scope is not serialized as it can be derived from the
symbol that spans the scope. Again, this method only prints the members of the JSON

135

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

object, the Symbols2Json class (cf. Section 5.4.4) prints the beginning and the end of
the object.

serializeAddons(A extends IArtifactScope, S2J) is a hook point for realizing serializa-
tion of additional members of an artifact scope. The method has two arguments: the
artifact scope object and the Symbols2Json object of the language. The latter provides
an attribute of the JsonPrinter that has to be employed for printing the attribute to
JSON. As the Symbols2Json is also a visitor, it can optionally be used to traverse the
symbol table further. The default implementation of this method is empty.

serializeAddons(S extends IScope, S2J) is a hook point for realizing serialization of
additional members of a scope. The method has two arguments: the scope object and
the Symbols2Json object of the language. The default implementation of this method is
empty.

deserialize(String) translates a serialized artifact scope encoded in JSON into a newly
instantiated artifact scope object. For this method, the IDeSer interface provides a de-
fault implementation. In this implementation, the String is parsed with the JsonParser
first, which yields an instance of a JsonObject. The actual deserialization is delegated
to the deserializeArtifactScope(..) method with JsonObject as an argu-
ment.

deserializeArtifactScope(JsonObject) translates a serialized artifact scope passed as
method argument into a newly created artifact scope object that is returned by the
method. The IDeSer interface defines the signature of the method, and concrete scope
DeSers provide the implementation. The first step in the realization is to instantiate an
artifact scope object with the artifact scope builder obtained from the language’s mill.
If the JSON object contains a member containing the name of the artifact scope, the
value of this member is set as the name of the artifact scope. Afterward, the hook point
method for deserialization of additional attributes is called. Finally, the list of symbols is
deserialized. Each element of the list is a JsonObject containing a serialized symbol.
Therefore, each of these objects has a member with the persisted symbol kind. The
scope DeSer deserializes the symbol kind member and obtains the symbol DeSer for this
kind from the DeSer map in the global scope. The deserialization of the JSON object
containing the symbol is delegated to the deserialize(..) method of the symbol
DeSer. The resulting symbol object is added to the artifact scope object.

deserializeScope(JsonObject) translates a serialized scope passed as method argument
into a newly created scope object that is returned by the method. Similar to the method
deserializeArtifactScope(..), the IDeSer interface defines the signature of
the method, and concrete scope DeSers provide the implementation. The scope is in-
stantiated via the builder obtained from the mill, and the isShadowing property is

136

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

deserialized. Afterward, the hook point for scopes is called, and the deserialization of
symbols is performed in the same way as it is for artifact scopes.

deserializeAddons(A extends IArtifactScope, JsonObject) is a hook point for realiz-
ing deserialization of additional members of an artifact scope. The method has two
arguments: one for the artifact scope object deserialized so far and another argument
with the JSON object of the entire artifact scope. The default implementation of this
method is empty.

deserializeAddons(S extends IScope, JsonObject) is a hook point for realizing deseri-
alization of additional members of a scope. The method has two arguments: one for
the scope object deserialized so far and another argument with the JSON object of the
entire artifact scope. The default implementation of this method is empty.

5.4.3 The JsonDeSers Class

The class JsonDeSers is contained in the MontiCore runtime. It defines constants and
static methods that support realizing language-specific DeSers. While many parts of
the typed symbol table infrastructure are specific to the different types, other parts are
common to all scopes or all symbols. The class JsonDeSers manages constant Strings
for commonly used member names of symbols and scopes. Using String constants for
member names avoids inconsistencies between the member names that are used for serial-
ization and the member names expected during deserialization. These constants include
the member names for symbol kinds, the spanned scope of a symbol, the isShadowing
property of scopes, and the list of symbols in scopes.

The static methods of the JsonDeSers class are used by the generated symbol DeSer
and scope DeSer classes and include handling of the serialization and deserialization of
members that are common to all (artifact) scopes. These include the deserialization of
an artifact scope’s package that evaluates to the empty package "" if the member is not
contained in a serialized artifact scope. On the contrary, the deserialization of symbol
kinds yields an error if a serialized symbol does not contain this member.

5.4.4 Symbols2Json Classes for Traversing Symbol Tables

A Symbols2Json class is generated for each MontiCore language. The name of the class
is the name of the grammar with the suffix Symbols2Json. Symbols2Json classes pro-
vide the load and store methods to interact with the serialization infrastructure. Other
than for DeSers, the MontiCore runtime does not contain an interface for Symbols2Json
classes. The reason is that such an interface has no benefits for the current implemen-
tation. Loading symbol tables is integrated into the symbol resolution algorithm and
therefore, usually controlled by generated code only. The symbol resolution algorithm
uses universal resource locators (URLs) to identify a file that contains a persisted symbol

137

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

AST-CD

JsonPrinter

AutomataTraverser
traverser

printer

AutomataVisitor

Automaton

SymbolDeSer

AutomataDeSer

State

SymbolDeSer

implementation delegates to
deser.serialize(..)

scopes: Symbols2Json prints begin
and end of object, content is
delegated to DeSer. Leaves traversal
of local symbols to visitor.

AutomataSymbols2Json

IAutomataArtifactScope load(Reader r)

IAutomataArtifactScope load(String model)

IAutomataArtifactScope load(URL u)

store(IAutomataArtifactScope s, String file)

visit(AutomatonSymbol symbol)

visit(StateSymbol symbol)

visit(IAutomataArtifactScope scope)

visit(IAutomataScope scope)

endVisit(IAutomataArtifactScope scope)

endVisit(IAutomataScope scope)

Figure 5.19: Methods of the Symbols2Json class of the automata language

table. For manual purposes, e.g., testing, the Symbols2Json classes also offer methods
for identifying files via a String with the filename or a Reader. The result of all methods
is an instance of the artifact scope interface of the language.

For storing symbol tables, which is currently always controlled through handwritten
code, only a single method is available. The method has an argument of the artifact
scope interface of the language and a String with the file path comprising all four parts
(cf. Section 5.2.2).

Conceptually, Symbols2Json classes are not able to perform the actual (de)serialization
for any type. Instead, the (de)serialization is delegated to the DeSers responsible for
an object that the traversal encounters. However, the Symbols2Json classes have no
direct association to any concrete DeSer. Instead, the DeSers for each type are obtained
from the global scope to enable their reconfiguration during the instantiation of the
Symbols2Json object. To increase performance, the DeSers for symbols and scopes are
obtained from the global scope during the init() method and are cached for quick
access. An example of the AutomataSymbols2Json class of the automata language is
depicted in Figure 5.19. The class contains methods that are explained in the following.

load(Reader) loads a persisted artifact scope from a file with the java.io.Reader
object passed as method argument. The result of the method is a new instance of the
IAutomataArtifactScope interface. The method first reads the content of the file
into a String variable, which then is deserialized with the AutomataDeSer instance
obtained from the global scope.

load(String) loads a persisted artifact scope from a file at the location passed as String
method argument. The result of the method is a new instance of the IAutomata-
ArtifactScope interface. The method first reads the content of the file into a String
variable, which then is deserialized with the AutomataDeSer. The String argument
of this method must not be confounded with a String representing the content of the

138

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

serialized file. Such a method is not contained in the Symbols2Json class because its
implementation would equal the implementation of the deserialize(..) method of
scope DeSers.

load(URL) loads a persisted artifact scope from a file at the location passed as URL
method argument. The result of the method is a new instance of the IAutomata-
ArtifactScope interface. The method first reads the content of the file into a String
variable, which then is deserialized with the AutomataDeSer. While the load(..)
methods with a String of the file location and a reader for the file as argument are
for manual testing purposes, the load(..) method with the URL is used within the
resolving algorithm. This is because MontiCore internally uses URLs for identifying files,
among other things, since these enable accessing files in compressed archives.

store(IAutomataArtifactScope, String) stores the artifact scope object that is passed
as a method argument to a new file created at the location passed to the method as String
argument. The passed artifact scope object first is serialized with the corresponding
DeSer. Afterward, the String is printed to a file at the given location. If a file at this
location exists, it is overridden. The file location argument should follow the guidelines
explained in Section 5.2.2. If these guidelines are violated, the symbol file will not be
considered for loading by the default symbol resolution algorithm.

visit(AutomatonSymbol) delegates to the serialize(..) method of the correspond-
ing DeSer, e.g., the AutomatonSymbolDeSer. Handling of the spanned scope of an
automaton symbol is contained in the symbol DeSer, the traversal of MontiCore’s visitors
does not traverse scopes spanned by symbols.

visit(StateSymbol) delegates to the serialize(..) method of the corresponding
DeSer, in this example the StateSymbolDeSer.

visit(IAutomataArtifactScope) is part of the serialization for artifact scopes. While
most parts of the serialization are delegated to the scope DeSer, an empty JSON object
is printed by the Symbols2Json class. The reason for this is that the traversal of symbols
that are contained in the scope, which is carried out by the traverser in the Symbols2Json
class, requires splitting the serialization of scopes into a part before the traversal of the
scope and a part after the traversal.

visit(IAutomataScope) is part of the serialization for scopes. The method uses the
JsonPrinter to print the beginning of an object ({). If the passed scope object
is not the first object being printed with the JsonPrinter, the beginning of an object is
printed as part of an object member ("symbols" :{). This way, the Symbols2Json
class distinguishes scopes that are printed as spanned scopes and scopes that are printed
as outermost objects. Although usually, only the artifact scope is persisted as outermost

139

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

AST-CD

StateSymbolDeSer

+ String getSerializedKind()

serializeAddons (StateSymbol s, AutomataSymbols2Json s2j)

deserializeAddons(StateSymbol s, JsonObject o)

serializeAdjacentStates(List<String> s, AutomataSymbols2Json s2j)

List<String> deserializeAdjacentStates(JsonObject o)

«interface» ISymbolDeSer

Figure 5.20: Methods of the StateSymbolDeSer

scope, for other purposes, such a unit testing, language engineers may serialize a non-
artifact scope as outermost scope.

endVisit(IAutomataArtifactScope) prints the parts of a serialized artifact scope after
the traversal and serialization of symbols contained in the scope. First, the method
prints the end of the JSON array of symbols. Afterward, the hook point method for
additional serialization of artifact scopes is called, followed by the end of a JSON object
closing the serialized artifact scope.

endVisit(IAutomataScope) prints the parts of a serialized scope after the traversal and
serialization of symbols contained in the scope. First, the method prints the end of the
JSON array of symbols. Afterward, the hook point method for additional serialization
of scopes is called, followed by the end of a JSON object closing the serialized scope.

5.4.5 SymbolDeSer Classes with Serialization Strategies for Symbols

For each symbol kind defined by a language via the grammar, MontiCore generates a
symbol class and a corresponding symbol DeSer class. The name of the symbol DeSer
class is the name of the symbol-defining nonterminal with the suffix SymbolDeSer.
Each symbol DeSer class implements the interface ISymbolDeSer that is described
in Section 5.4.1. If a symbol kind inherits from another symbol kind, the symbol
DeSer classes are not in an inheritance relationship. An inheritance relationship be-
tween symbol DeSers would introduce unnecessary complexity since each symbol kind
may have a different form of representing serialized objects, and only a few parts could
be reused. The signatures for central methods of symbol DeSers are provided by the
ISymbolDeSer interface and are implemented with type-specific implementations in the
symbol DeSer classes. The implementation of these methods is described in Section 5.4.1.
Other methods are only defined in the symbol DeSer classes and are not contained in
the interface. These methods are depicted by the example of the StateSymbolDeSer
in Figure 5.20. For each symbol rule attribute, the symbol DeSer class has a method for
the serialization of the attribute and a method for its deserialization.

140

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

getSerializedKind() is a method that returns the symbol kind that the symbol DeSer
(de)serializes in the form of a String. This method is used to print the symbol kind into
serialized Strings and, by default, returns the fully qualified name of the symbol class.
Language engineers can override this method to serialize a different kind. This can be
useful if the generated symbol kind is unnecessarily long, e.g., in case the simple name
of a symbol class suffices as unique identifier of the symbol kind.

serializeAddons(..) is a hook point for the serialization of additional symbol attributes.
The generated body of this method is empty, but language engineers can apply the TOP
mechanism to the symbol DeSer class to provide implementations of the hook point.

deserializeAddons(..) is a hook point for the deserialization of additional symbol at-
tributes. The generated body of this method is empty, but language engineers can apply
the TOP mechanism to the symbol DeSer class to provide implementations of the hook
point.

serializeAdjacentStates(..) is a method for the serialization of the symbol rule attribute
with the name adjacentStates that symbols of the state symbol kind have. The
name of the method, hence, is the name of the attribute with the prefix serialize.
The method has two arguments: a List<String> argument that passes the value of
the attribute to the method and an AutomataSymbols2Json object for additional
traversal of the symbol table and for obtaining the JsonPrinter to print the serialized
String. MontiCore has a built-in serialization strategy for lists of Strings, which are
serialized as a JSON array of JSON Strings. Thus, the implementation of the method
serializeAdjacentStates(..) realizes this serialization strategy.

deserializeAdjacentStates(..) is a method for the deserialization of the symbol rule
attribute with the name adjacentStates of state symbols. The name of the method,
hence, is the name of the attribute with the prefix deserialize. The method has a
single argument, which is the JSON object of the entire symbol. The reason that this is
not only the serialized value of the attribute is that the serialization of the attribute may
be realized as one or more members of the JSON object of the symbol with arbitrary
member names. The method returns the result of the deserialization of the attribute.

5.4.6 ScopeDeSer Classes with Serialization Strategies for Scopes

From each grammar, MontiCore generates one (scope) DeSer class for the artifact scopes
and scopes of the language. The name of the DeSer class equals the name of the gram-
mar with the suffix DeSer. All DeSer classes implement the interface IDeSer that is
explained in Section 5.4.2. The signatures for central methods of symbol DeSers are pro-
vided by the IDeSer interface and are implemented with type-specific implementations
in the DeSer classes. The implementation of these methods is described in Section 5.4.2.

141

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

AST-CD

AutomataDeSer

+ String serialize(IAutomataScope s)

+ String serialize(IAutomataArtifactScope s)

deserializeSymbols(IAutomataScope s, JsonObject o)

serializeInitialState(StateSymbol s, AutomataSymbols2Json s2j)

StateSymbol deserializeInitialState(JsonObject o)

«interface» IDeSer

abstract methods

Figure 5.21: Methods of the AutomataDeSer

For other methods, the signature is not contained in the interface IDeSer. These
methods are explained in the following by the example of the AutomataDeSer that is
depicted in Figure 5.21.

For each scope rule attribute, the scope DeSer class has a method for the serializa-
tion and a method for the deserialization of the attribute. If no built-in serialization
strategy is available for the type of the attribute, both methods are generated as ab-
stract methods, and the entire DeSer class is generated as abstract class. In the example
of the AutomataDeSer, there is a scope rule attribute initialState of the type
StateSymbol, for which no serialization strategy is available. Therefore, the two meth-
ods are generated as abstract methods, and the DeSer class is generated as an abstract
Java class.

serialize(IAutomataScope) is a method that can be employed for manual serialization of
a scope of the Automata language. Internally, the method implementation instantiates
a new object of the Symbols2Json class, accepts the traverser of the Symbols2Json object
from the scope object passed to the method as an argument, and returns the content of
the JsonPrinter contained in the Symbols2Json as the result of the method.

serialize(IAutomataArtifactScope) is a method that can be employed for manual seri-
alization of an artifact scope of the Automata language. The method is realized in the
same way as the equivalent method for scopes.

deserializeSymbols(IAutomataScope, JsonObject) is a method that is internally used
during the deserialization of a scope. The task of the method is to iterate over the
serialized list of symbols, find a suitable DeSer for each symbol from the symbol map
in the global scope, and employ the DeSer to deserialize the symbol and add it to
the respective list of symbols contained in the scope object. If the deserialized symbol
spans a scope, this method adds the deserialized spanned scope as a subscope of the
current scope, which establishes the bidirectional association between enclosing scopes
and subscopes. If the method encounters a serialized symbol that is of a kind for which

142

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

AST-CD

AutomataGlobalScope

IDeSer deSer

Map<String, ISymbolDeSer> symbolDeSers

AutomataSymbols2Json symbols2Json

String fileExt

Set<String> loadedFiles

«interface»

IGlobalScope

IDeSer getDeSer()

setDeSer(IDeSer d)

Map<String, ISymbolDeSer> getSymbolDeSers()

setSymbolDeSers(Map<String, ISymbolDeSer> m)

putSymbolDeSer(String k, ISymbolDeSer d)

ISymbolDeSer getSymbolDeSer(String kind)

String getFileExt()

setFileExt(String f)

addLoadedFile(String f)

clearLoadedFiles()

isFileLoaded(String f)

init()

clear()

accessor and mutator methods for

attributes are omitted

Figure 5.22: Methods of global scope interfaces and attributes of the global scope class
that are relevant for symbol table persistence

no symbol DeSer is contained in the symbol map of the global scope, the method omits
the further deserialization of this symbol and yields a warning.

serializeInitialState(StateSymbol, AutomataSymbols2Json) is a method for the seri-
alization of the scope rule attribute with the name initialState. The name of the
method, hence, is the name of the attribute with the prefix serialize. The method
has two arguments: a StateSymbol argument that passes the value of the attribute
to the method and an AutomataSymbols2Json object for additional traversal of the
symbol table and for obtaining the JsonPrinter to print the serialized String. Monti-
Core has no built-in serialization strategy for StateSymbols, and thus, the method is
generated as an abstract method.

deserializeInitialState(JsonObject) is a method for the deserialization of the scope rule
attribute with the name initialState. The name of the method, hence, is the name
of the attribute with the prefix deserialize. The method has a single argument,
which is the JSON object of the entire scope. The reason that this is not only the
serialized value of the attribute is that the serialization of the attribute may be realized
as one or more members of the JSON object of the scope with arbitrary member names.
The method returns the result of the deserialization of the attribute. However, in this
concrete example, the method is generated as an abstract method since MontiCore has
no built-in serialization strategy for StateSymbols.

5.4.7 Loading and Storing Symbol Tables via the Global Scope

In MontiCore, the global scope is realized as a singleton, for which the instance is cen-
trally available via the language mill (cf. Section 4.3.4). Therefore, the symbol table
persistence infrastructure uses the global scope for (re)configuration of the infrastruc-

143

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

ture. To do this, e.g., in the presence of language composition, the instances of symbols
DeSers, the scope DeSer, and the Symbols2Json class are managed by the global scope.
Furthermore, the regular expression for file extensions of symbol table files enables ad-
justments for loading symbol tables from files in the file system. The initial configuration
of the global scope including the map containing the symbol DeSers, is initialized in the
init() method. All reconfigurations can be set to the initial configuration by invoking
the clear() method of the global scope.

Accessor and mutator methods for the attributes of the global scope class are generated
following the usual MontiCore schema for such methods of the respective types. The sig-
natures of methods for language-agnostic attributes of the global scope class that are used
from generated code are defined in the MontiCore runtime class IGlobalScope. Fig-
ure 5.22 depicts the methods and attributes for symbol table persistence in global scopes
by the example of the automata language. All method signatures depicted in the interface
IGlobalScope are implemented by methods in the class AutomataGlobalScope,
which are omitted in the class diagram for reasons of compactness. The attributes for
symbol table persistence that global scope classes manage are described in the following:

deSer is the DeSer object employed for the (de)serialization of scopes and artifact scopes.
The type of this attribute is the general MontiCore runtime interface IDeSer and not the
generated, language-specific scope class. This enables reconfiguration of the scope, e.g.,
for language composition in which the scope DeSers are not in a hierarchical relationship
with each other that follows the inheritance of grammars.

symbolDeSers is a map containing symbol DeSer objects configured for all known sym-
bol kinds. The map entries have a String of the symbol kind as key and a symbol DeSer
object as their value. This map can be employed for reconfiguration of symbol DeSers for
individual symbol kinds as described in Section 5.5. The Symbols2Json class obtains the
symbol DeSers from the global scope for the serialization, and the scope DeSers obtain
the symbol DeSers from the global scope for deserialization.

symbols2Json is an object of the language-specific Symbols2Json class generated for
each language. Global scopes use this to load symbol table files, to traverse the sym-
bol table, and to provide access to the JsonPrinter object. Symbols2Json classes
do not implement a common interface, and it is not required for these to be reconfig-
urable for language composition. Instead, the traverser contained as an attribute in the
Symbols2Json classes is internally reconfigured for language composition. Hence, the
accessor and mutator methods for these attributes are not contained in the global scope
interface.

fileExt is a String containing the regular expression for file extensions to consider for
loading symbol tables from files. The mechanism is explained in more detail in Sec-
tion 5.4.8.

144

5.4 Realization of Loading and Storing of Symbol Tables in MontiCore

loadedFiles contains a set of filenames that have been either successfully loaded or for
which an attempt to load these has failed. This is part of the integration between the
symbol table persistence and the symbol resolution algorithm and avoids loading the
same artifact scope from a persisted symbol table multiple times.

5.4.8 Integrating Loading of Symbol Tables into Symbol Resolution

Loading artifact scope objects from symbol table files is integrated into the process of
inter-model symbol resolution explained in Section 4.1.8. At first, a set of candidates for
model names is calculated based on the (qualified) name of the symbol that is resolved
for. Typically, the model name is a prefix of the name to resolve. The calculation of
candidates for model names is realized specific to each symbol kind. For example, the
calculation of model names for symbols of the kind StateSymbol in the automata
language is realized in the method calculateModelNamesForState(..) of the
IAutomataGlobalScope interface. For each calculated model name candidate, the
global scope attempts to load a symbol table file. For state symbols, this is realized in
the global scope method loadState(..).

Global scopes contain a regular expression for file extensions of symbol table files.
Fixing a single file extension or an immutable list of file extensions in a global scope limits
the reusability of the language as it cannot be extended with stored symbol tables of
foreign languages that provide symbol definitions of known symbol kinds without explicit
reconfiguration. On the other hand, including every file extension into the process of
loading symbols can yield unintended side effects if numerous heterogeneous models
are employed. If symbol table files are located in the same directory as other files
(e.g., documentation, explanatory videos), traversing files with all extensions can be
inefficient. To this end, the default regular extension for file extensions is ".*sym",
which includes all symbol table files that are named according to the guidelines described
in Section 5.2.2. The intention behind this is to maximize the extensibility with novel
languages providing symbols while minimizing the consideration of files that are unlikely
to contain symbol tables. This default expression can be altered by reconfiguring the
global scope if it causes undesired side effects (cf. Section 5.5.5).

For each model name candidate, the symbol resolution searches in all model path
entries for files with the calculated model name candidate. Only files that satisfy the
regular expression for symbol table file extensions are considered. If such a file exists for
the given model name candidate, the file is loaded by employing the load method of the
Symbols2Json object of the global scope. Furthermore, the fully qualified path of the
symbol table file is added to the set of loaded files to avoid loading it more than once. If
a file contains a serialized symbol table and the deserialization is successful, the resulting
artifact scope object is added as a subscope of the global scope. The inter-model symbol
resolution algorithm then proceeds the attempt to resolve for the symbol in all known
artifact scopes, including those that have been loaded from symbol table files.

145

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

public class AutomataTool {

AutomataSymbols2Json s2j = new AutomataSymbols2Json();

public void run(String model) {

ASTAutomaton ast = parse(model);

IAutomataArtifactScope symtab = createSymbolTable(ast);

checkCoCos(ast);

storeSymbolTable(symtab);

// pretty printing, code generation,…

}

public void storeSymbolTable(IAutomataArtifactScope symtab) {

s2j.store(symtab, "target/" + model + "sym");

}

// further methods omitted

}

Java01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

Figure 5.23: Integrating persistence of symbol tables into a language tool by the example
of the automata language

5.4.9 Supporting Storing of Symbol Tables for Model Processing

Storing symbols is manually integrated into the process of processing a model. This is
typically carried out by a language tool that, in MontiCore, currently must be imple-
mented by hand. The language-specific Symbols2Json class generated for each language
contains a method for storing symbol tables (cf. Section 5.4.4).

Figure 5.23 depicts an example of the integration of symbol table persistence into the
AutomataTool that processes models of the automata language in the method run.
As a first step, the model is parsed, which yields either an AST or the tool terminates
with an error. From this AST, the symbol table can be instantiated, which results in
an instance of the IAutomataArtifactScope. Afterward, the well-formedness of the
model can be checked by applying context conditions to the integrated structure of the
AST and symbol table. Only if a model is considered well-formed should the symbol
table be persisted. Therefore, a violation of a context condition produces an error that
terminates the processing of the model. In this example, the storage of artifact scopes
is extracted to a method storeSymbolTable(..).

The persistence requires calculating the name of the symbol table file according to the
guidelines described in Section 5.2.2. The example sets the output path for stored sym-
bols to the folder target. The automata language does not use packages, but languages
that use packages have to transform the package of the model into a corresponding folder
structure. The name of the symbol table file equals the name of the model file, including
its file extension, suffixed with "sym".

146

5.5 Customizing the Persistence of Symbol Tables in MontiCore

JSON{ "kind": "automata._symboltable.StateSymbol",

"name": "main",

"color": [115, 172, 87]

}

01

02

03

04

public class StateSymbolDeSer extends StateSymbolDeSerTOP {

protected void serializeColor(Color color, AutomataSymbols2Json s2j) {

JsonPrinter printer = s2j.getJsonPrinter();

printer.beginArray("color");

printer.value(color.getRed());

printer.value(color.getBlue());

printer.value(color.getGreen());

printer.endArray();

}

protected Color deserializeColor(JsonObject symbolJson) {

List<JsonElement> cArray = symbolJson.getArrayMember("color");

int r = cArray.get(0).getAsJsonNumber().getNumberAsInteger();

int g = cArray.get(1).getAsJsonNumber().getNumberAsInteger();

int b = cArray.get(2).getAsJsonNumber().getNumberAsInteger();

return new Color(r, g, b);

}

}

Java01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

Figure 5.24: Implementation (top) and example (bottom) of a custom serialization strat-
egy for the color attribute of state symbols in the automata language

5.5 Customizing the Persistence of Symbol Tables in
MontiCore

In general, the TOP mechanism [HKR21] can be applied to all classes and interfaces of
the infrastructure for symbol table persistence. Each generated DeSer class further has
hook point methods for the customization of additional (de)serialization. The regular
expression for file extensions of symbol table files in global scopes can be employed for
configuring a language to load symbols tables of any language. Beyond this, the symbol
DeSer map in global scopes can be used for configuring a language to load symbols of
any kind. For this, the language infrastructure does not require to be aware of the kind,
i.e., it enables loading unknown kinds. This section demonstrates the customization of
symbol table persistence based on a collection of typical customization scenarios.

5.5.1 Providing a Serialization Strategy for a Symbol Attribute

The (de)serialization of symbols or scopes can rely on types for which no serialization
strategy is prepared. In this case, the DeSer for the symbol kind or scope is generated
as an abstract class, and by applying the TOP mechanism, the abstract methods for
the serialization and deserialization of the unknown serialization strategy have to be
overridden. The serialization strategy must be realized for each attribute individually.

147

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

An example of an attribute for which no serialization strategy is available is the color
attribute of StateSymbols. The handwritten class for the StateSymbolDeSer that
extends the generated StateSymbolDeSerTOP class is depicted in Figure 5.24. In the
serializeColor(..) method, a serialization for the attribute color of the type
Color has to be provided. Colors can be serialized in various JSON representations:

� as a JSON String containing the hexadecimal representation of the RGB value,
such as "#73AC57"

� as a JSON array with individual numeric entries for red, green, and blue values,
like [115,172,87]

� as a JSON object with individual members for the red, green, and blue values, as
in {"red":115, "blue":172, "green":87}

The example depicted in the top of Figure 5.24 serializes a color as a JSON array with
three values. The JSON-encoded String is produced with the JSON printer contained
in the AutomataSymbols2Json object that is passed to the method as an argument.
The printer prints the beginning of an object member of the type JSON array with the
member name "color". The RGB values of the color are obtained from the color object
passed as method argument and printed as values of the JSON array. As the last step
in the serialization of a color, the end of the array is printed. The deserialization of the
color attribute begins with obtaining the object member with the name "color" from
the JSON object containing the serialized state symbol. The deserialization assumes
that the member is a JSON array. Otherwise, the deserialization yields an error. The
first three values of the array are read as integer values and stored in individual variables.
JSON arrays are ordered, and hence the first value is set as the red value, the second as
the green value, and the third as the blue value. If the serialized array contained more
than three members, the deserialization would ignore these. If the array contained less
than three values, the deserialization would yield an error. The deserialization returns
a new Color object instantiated via a constructor that uses the color values from the
variables. The bottom of Figure 5.24 depicts an example of a serialized state symbol
with the color attribute as realized by the serialization strategy implemented in the
StateSymbolDeSer depicted in the top of the figure.

5.5.2 Omitting Serialization of Symbols of a Certain Kind

The traversal of symbol tables with the purpose of their serialization is performed by the
Symbols2Json class. The traversal performed by this class can be customized to ignore
symbols of certain kinds. This is depicted by the example of the class Automata-
Symbols2Json that extends the AutomataSymbols2JsonTOP class in Figure 5.25.
The class implements the AutomataHandler interface that is part of the generated
visitor infrastructure of the automata language. In the constructor, the current object

148

5.5 Customizing the Persistence of Symbol Tables in MontiCore

JSON{ "kind": "automata._symboltable.AutomatonSymbol",

"name": "H2O"

}

01

02

03

public class AutomataSymbols2Json extends AutomataSymbols2JsonTOP

implements AutomataHandler {

public AutomataSymbols2Json() {

getTraverser().setAutomataHandler(this);

}

public AutomataSymbols2Json(AutomataTraverser t, JsonPrinter p) {

super(t, p);

}

public void traverse(IAutomataScope s) {

for (AutomatonSymbol sym : s.getLocalAutomatonSymbols()) {

sym.accept(getTraverser());

}

}

}

Java01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

spanned scope is empty, because state
symbols are not traversed

Figure 5.25: Example for omitting serialization of a certain symbol kind

of the class has to be set as the handler for the automata language in the traverser of
the Symbols2Json class. As an effect, the AutomataSymbols2Json class can override
the traverse(..) methods for any symbol kinds, the artifact scope, and the scope of
the automata language. The other constructor of the AutomataSymbols2Json class
delegates to the constructor of the TOP class. This constructor does not set the current
object as a handler of the traverser to enable reconfiguration of the Symbols2Json class
through subclasses.

To ignore the traversal of state symbols within scopes of the automata language, the
traverse(..) method is overridden and iterates only over the automaton symbols
and not over state symbols. The symbols have to be traversed with double dispatch-
ing [HKR21], and therefore the traverser is accepted by each automaton symbol instead
of directly calling the handle(..) method with the automaton symbols as an argu-
ment.

The bottom of Figure 5.25 depicts a JSON-encoded String of a serialized automaton
symbol H2O. Without the customization, the serialized automaton symbol would contain
a member for the spanned scope that itself would contain state symbols. However, as
state symbols are not serialized, the spanned scope is empty and is not serialized.

5.5.3 Realizing Serialization of an Additional Scope Attribute

There are applications of symbol table persistence in which information should be per-
sisted that is not directly available from an attribute described by a symbol rule or
scope rule. To this effect, the serializeAddons(..) methods are hook point

149

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

JSON{ "kind": "automata._symboltable.AutomatonSymbol",

"name": "Game",

"states": ["Main", "InGame", "Pause"]

}

01

02

03

04

public class AutomatonSymbolDeSer extends AutomatonSymbolDeSerTOP {

protected void serializeAddons(AutomatonSymbol aut, AutomataSymbols2Json s2j) {

JsonPrinter printer = s2j.getJsonPrinter();

printer.beginArray("states");

for (StateSymbol state : aut.getSpannedScope().getLocalStateSymbols()) {

printer.value(state.getName());

}

printer.endArray();

}

protected void deserializeAddons(AutomatonSymbol sym, JsonObject j) {

IAutomataScope scope = sym.getSpannedScope();

for (JsonElement e : j.getArrayMember("states")) {

String n = e.getAsJsonString().getValue();

StateSymbol s = AutomataMill.stateSymbolBuilder().setName(n).build();

scope.add(s);

}

}

}

Java01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

Figure 5.26: Example for using the hook points for (de)serialization

methods for adding further object members to a serialized symbol or scope, while the
deserializeAddons(..) methods are hook point methods enabling to reflect the
serialized additional information in the symbol or scope object.

An example of an attribute for which the hook points for serialization strategies are
used is the attribute for states of an AutomatonSymbol. This information is not cap-
tured in a symbol rule of the AutomatonSymbol because it is entirely derived from the
scope that an automaton symbol spans. In fact, serializing the states as an enumeration
of state names that itself is a member of an automaton is more compact than serializing
the spanned scope and the state symbols as individual JSON objects. In combination
with omitting the serialization of state symbols individually (cf. Section 5.5.2), this can
significantly reduce the complexity of symbol table files of the automaton language.

The handwritten class for the AutomatonSymbolDeSer that extends the generated
AutomatonSymbolDeSerTOP class and provides implementations for the hook point
methods is depicted in the top of Figure 5.26. The serialization uses the JsonPrinter
from the Symbols2Json object passed to the method as an argument. The symbols are
printed as an object member of the type JsonArray. The first step is to indicate the
beginning of the array with the name of the member, which is "symbols". Then, a
for loop iterates over the state symbols directly contained in the scope spanned by the
automaton symbol. For each of these, the printer adds a value to the array. The value
is the name of the state symbol as a JSON String. As the last step in the serialization
of the states, the end of the array is printed. The deserialization begins with storing

150

5.5 Customizing the Persistence of Symbol Tables in MontiCore

public class AutomataGlobalScope extends AutomataGlobalScopeTOP {

public void loadFileForModelName(String modelName) {

ModelCoordinate model = ModelCoordinates

.createQualifiedCoordinate(modelName, "aut");

String filePath = model.getQualifiedPath().toString();

if(!isFileLoaded(filePath)) {

model = getModelPath().resolveModel(model);

if(model.hasLocation()) {

ASTAutomaton ast = parse(model);

IAutomataArtifactScope artScope =

AutomataMill.scopesGenitor().createFromAST(ast);

addSubScope(artScope);

addLoadedFile(filePath);

}

}

}

public ASTAutomaton parse(ModelCooordinate model) { /* omitted here */ }

}

Java01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

Figure 5.27: Load AST and symbol table from models

the scope spanned by the symbol to a variable. At the time the method is invoked
from the deserialization algorithm, the scope has already been established because all
regular steps of the deserialization that the serialization strategy for automaton symbols
foresees have been executed before. For each value of the JSON array of the "symbols"
member of a serialized automaton symbol, the deserialization performs three steps: (1)
read the array value as a JSON String and store it to a variable containing the state
name, (2) create a new StateSymbol object with the mill of the automata language
and set the name of the symbol, and (3) add the symbol to the scope spanned by the
automaton symbol. An example of a serialized automaton symbol that uses the compact
form of state serialization realized in the hook point methods is depicted at the bottom
of Figure 5.26.

5.5.4 Load ASTs together with Symbol Tables

In the symbol management infrastructure [MSN17], symbol tables are not persisted,
but instead, artifact scopes can be loaded by searching for model files, parsing these
models, and instantiating a novel artifact scope from their AST. While it is generally
less efficient to load a symbol table through a model file than through a symbol table
file, the presence of AST nodes in loaded symbol tables can be beneficial in certain use
cases. Through customization of the typed symbol table infrastructure presented in this
thesis, this behavior can be mimicked.

To do so, the method loadFileForModelName(..) in the global scope class has
to be overridden by applying the TOP mechanism to the global scope class. Figure 5.27
depicts an example of loading models of the automata language. The first step in the

151

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

implementation of this method is to create a model coordinate for the location of the
model. Other than for symbol table files, where the file extension is indicated via a
regular expression, the file extension for the location of the model can, e.g., be set to a
fixed file extension of models such as "aut".

The global scope mechanism for avoiding to load an artifact scope multiple times
has to be applied to model files instead of symbol table files. Therefore, the model
filename for each loaded artifact scope has to be added to the list of loaded files via
addLoadedFile(..). Furthermore, loading a model must only be attempted if load-
ing the same model has not been attempted before, i.e., if the filename is not contained
in the list of loaded files. In the first attempt of loading a model, the model path of the
global scope is used to find an absolute path of the model file that is relative to a model
path entry. This is achieved by the resolveModel(..) method of the ModelPath.
In case an existing file has been found, the model coordinate has a location in the form
of a URL. This location can be passed as an argument to a parse(..) method of a
language’s parser. If the AST has been successfully created, it can be used as an argu-
ment for the createFromAST(..) method of the scope genitor of a language. The
resulting artifact scope instance is added as subscope of the global scope.

5.5.5 Load Symbol Tables of a Single Language Only

By default, the regular expression for file extensions of symbol table files that are con-
sidered during symbol resolution is ".*sym". This includes all symbol table files whose
naming schema follows the guidelines described in Section 5.2.2. However, the regular
expression can be adjusted with the setFileExt() method of a global scope. For
instance, via setting the file extension to "autsym", only symbols of the automata
language are considered.

5.5.6 Load Symbols as Instances of their Subkinds

A scenario for symbol reusability foresees that it shall be possible that a symbol stored as
a kind K shall be loaded as a symbol of kind M, where M is a subkind of K. To achieve this
in the realization of symbol table persistence, the global scope has to be reconfigured. In
this scenario, the symbol map in the global scope, by default, has an entry for the symbol
kind K that employs a KSymbolDeSer for the deserialization of stored K symbols. The
map has to be reconfigured such that it uses an MSymbolDeSer for the deserialization
of stored K symbols. Additional members of a symbol of kind M that do not exist in
the stored symbols of kind K have to be initialized with default values. One approach
for achieving this is to realize symbol DeSers in general in a way that these initialize all
symbol-kind-specific attributes with default values if no information about the attribute
is contained in a persisted symbol. This prevents errors if the symbol DeSers are reused
for loading a symbol as a subkind.

152

5.6 Discussion

However, when a language infrastructure including the symbol DeSers is reused, it
might occur that a symbol DeSer does not follow this approach and cannot be modified.
In this case, the default values for symbol attributes can also be established by realizing
a subclass of the original DeSer that sets the attributes or by setting the attribute default
values of such symbols as part of loading the artifact scope in a scope DeSer.

5.5.7 Load Symbols as Instances of their Super Kinds

Another scenario for symbol reusability foresees that it shall be possible that a symbol
stored as a kind K shall be loaded as a symbol of kind J, where J is a super kind of K.
To achieve this in the realization of symbol table persistence, the global scope has to be
reconfigured. In this scenario, the language infrastructure is only aware of the symbol
kind J but not aware of the symbol kind K. The map of symbol DeSers in the global
scope requires an entry for the symbol kind K that indicates that the JSymbolDeSer
for symbols of kind J shall be used to deserialize such symbols. This can either be
achieved by the language engineer who designs the language or it can be passed for
reconfiguration through the modelers, e.g., by leaving the global scope reconfiguration
open via an optional command-line interface argument. Additional members of a stored
symbol of kind K that do not exist in symbols of kind J are ignored during deserialization.

5.6 Discussion

Both the DeSer classes for symbols and for scopes, as well as the Symbols2Json classes,
are not compositional in the context of language composition. It is a deliberate decision
not to integrate their instantiation into the language mill because it is not required to
configure a language with subtypes of these classes.

The approach for (de-)serializing symbol tables stores artifact scopes top-down begin-
ning with the artifact scope and continuing with the contained subscopes. The deserial-
ization of artifact scopes begins with instantiating the artifact scope and then instanti-
ates the local symbols of the artifact scope. If any of these symbols spans a scope, these
scopes are instantiated afterward. Instantiation of objects, hence, is realized top-down
from the artifact scope. After a symbol or scope is instantiated, it is connected with the
remaining parts of the symbol table infrastructure. Therefore, if a symbol or scope re-
quires information about other parts of the symbol table during its deserialization, only
the enclosing parts of the infrastructure are available. Through the statically available
global scope instance, information about all other known models is also available.

Java uses classpath entries for looking up both source files (.java) and symbol table files
(.class) by default [www21b]. However, the Java compiler enables to specify a source path
that deviates from the classpath optionally. If this is the case, Java searches classpath
entries for class files only and source path entries for source files only. Our approach for
storing symbol tables does not distinguish symbol path entries from model path entries.

153

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

Instead, both model files and symbol table files are searched in model path entries, such
as in the default case of the Java compiler. Besides the additional complexity, a reason
for the decision is to reduce misconfigurations by language engineers. A disadvantage
of this is that directories containing model files have to be searched for stored symbol
tables and vice versa, which may be inefficient. However, DSMLs often load either
symbol tables or models, but rarely both. Furthermore, an optional separation between
the model path and symbol path can be added to MontiCore with little effort.

Sometimes, marshaling is used as a synonym for serialization. In the context of Java
and the lightweight directory access protocol (LDAP), there is a slight difference: “Mar-
shalling is like serialization, except marshalling also records codebases.” [www99] Ac-
cording to this, marshaling an object, therefore, comprises serialization of an object and
record of the codebase. This codebase includes, inter alia, the exact location of the Java
class to which the serialized object conforms. The purpose of this is that the type infor-
mation has to be only available at the time of unmarshaling of a marshaled object, i.e.,
at the time the software is executed and not at the time it is compiled. In the context
of symbol table persistence, this is not the case, and therefore, we refer to the processes
as serialization and deserialization.

The presented JSON infrastructure does not use the Java reflection API [McC98] and
avoids explicit type casts. The avoidance of the Java reflection API requires serializing
type information with each object or performing type reconstruction based on the avail-
able serialized information of the object. Sometimes it is also possible to reconstruct the
type through information about the data structure to which the object structure con-
forms. To obtain the type information from object structures during serialization, the
visitor pattern is employed, and the instantiation of objects based on serialized types dur-
ing deserialization relies on builders. This, however, requires that visitors and builders
for all serialized types (except primitive types) exist. The serialization infrastructure is
intended to be used in the context of MontiCore symbol tables for the serialization of
symbols and scopes. As the types realizing these are generated (cf. Section 4.3), builders
and visitors are generated as well. Serialization strategies for scope or symbol attributes
of non-primitive types, however, have to be added manually. For this, the serialization
infrastructure of MontiCore symbol tables is extensible with handwritten customization
through MontiCore’s TOP mechanism [HKR21].

5.7 Related Work

Xtext [Bet16] supports the serialization of the abstract syntax in terms of a transfor-
mation from the EMF model to a textual representation. In this, serialization is a
complement to the parsing and lexing of the textual representation. This is in contrast
to the serialization of symbol tables presented in this thesis, which has the primary
purpose of providing an interface for language composition on the level of models.

154

5.7 Related Work

One requirement for a suitable serialization format of MontiCore symbol tables is
to keep the symbol table files readable for humans to enable language engineers and
modelers to inspect these. Thus, binary serialization formats, such as the Java serial-
ization [www20b] or Protobuf [www20h], are not suitable for our approach. However,
binary formats are typically both more efficient regarding the deserialization speed and
the size of the serialized data [SM12]. Besides JSON, there are different formats for
representing object structures in a textual form that is human-readable.

XML [PSMB+06] enables representing object structures in a textual syntax that,
similar to JSON, is human-readable as it is not binary-encoded. In contrast to JSON,
XML is a markup language and XML documents typically conform to an XML schema
definition. Thus, sophisticated well-formedness checks with regard to their schema can
be applied to XML documents. Beyond this, a wealth of languages that operate in the
context of XML exist. For example, XPath [DC99] is a language for addressing data
entries of an XML document, XQuery [FRF+10] is a language that enables querying data
within XML documents, and XSLT [Cla99] is a language for describing transformations
of XML documents. Compared to JSON, XML is more verbose, inter alia, since it relies
on end tags that match the different kinds of start tags. Furthermore, JSON can be
parsed more efficiently than XML [NPRI09] due to its simpler structure.

UML object diagrams [Rum16] are a concise form of representing object structures.
The formal model of ODs is well understood [EFLR99]. However, to the best of our
knowledge, no standardized textual syntax for ODs exists. Therefore, in contrast to
XML and JSON, limited tool support such as sophisticated text editor infrastructure is
provided for ODs. Furthermore, ODs allow for more complexity in models, which may
complicate engineering efficient parsers and well-formedness checking for ODs. However,
the exact efficiency mainly depends on the textual syntax. While XML documents
conform to schemata and with JSON schema [www20f], there is similar a effort to realize
this for JSON, UML ODs have the advantage that their underlying data structure can
be modeled adequately in terms of UML class diagrams [MRR11].

Besides the JSON infrastructure described in this thesis, different libraries exist for
serializing and deserializing Java objects with JSON. However, most of these libraries
support direct instantiation of Java objects and thus, make use of the reflection API.
Gson [www20a] is an open-source JSON library that focuses on intuitive usability. The
two methods fromJson and toJson of the class Gson suffice to integrate serialization
and deserialization into any Java application. Gson uses reflection to produce serial-
ization strategies for any type automatically. However, Gson can be parametrized with
custom serialization strategies as well. Due to the extensive use of final classes, the
potential for customization is limited. The JSON infrastructure presented in this thesis
is entirely customizable by introducing subclasses.
org.json [www20d], sometimes also referred to as Json-java, is a reference imple-

mentation of the JSON standard, which features encoding and decoding of JSON as well
as conversion between JSON and XML, Cookies, and other formats. While the library

155

Chapter 5 Infrastructure for Loading and Storing Symbol Tables

has no dependencies to external libraries and does not provide serialization strategies
based on reflection, it makes use of unnecessary downcasts and instance-of checks that
our infrastructure avoids.

JSON-P [www20e] is an API for the JSON standard that is standardized in Java
through a Java specification request [www20g] and is also contained in Java EE [Hef14].
It strictly separates interfaces (the actual API) from the implementation. An imple-
mentation is contained, e.g., in Java EE’s Glassfish [Hef14] open-source reference imple-
mentation. The binding from API to interfaces is carried out by loading the classes via
their names using a ServiceLoader. For the purpose of persisting symbol tables, this
introduces avoidable complexity.

156

Chapter 6

Using Typed Symbol Tables for Language
Composition

MontiCore supports four different kinds of language composition [KRV10, HLMSN+15a],
which are language extension, language inheritance, language embedding, and language
aggregation. The general notions of these forms of language compositions are introduced
in Section 2.1. The symbol table infrastructure of a language is affected by all four kinds
of language composition but is also a core enabler for achieving language composition. In
MontiCore, language extension and language embedding are technically realized via lan-
guage inheritance and can be considered special cases of the latter. This chapter explains
language inheritance in the STI in Section 6.1. Section 6.2 describes the purpose and
realization of symbol adapters translating between symbol kinds and their integration
into the symbol resolution algorithm. Section 6.3 presents a means to reuse symbols
from foreign technological spaces by the example of Java. Section 6.4 introduces the
realization of language aggregation with the STI before Section 6.5 discusses the STI for
realizing language composition, and Section 6.6 describes related work.

6.1 Language Inheritance in the Typed Symbol Table
Infrastructure

Language engineers can indicate language inheritance in MontiCore through inheritance
of the corresponding MontiCore grammars. This section describes how this affects and
is assisted by the generation of symbol tables infrastructures in the STI. The effect
of language inheritance on parts of the language infrastructure that are not directly
associated with the STI – such as parsers and AST nodes – are not in the focus of
this thesis and, hence, omitted. The composition of such parts of the infrastructure is
explained in the MontiCore handbook [HKR21].

6.1.1 Language Inheritance of Scopes

Language inheritance reflects in the scopes, artifact scopes, and global scopes of a lan-
guage because these have to be able to resolve for symbol kinds that are defined in

157

Chapter 6 Using Typed Symbol Tables for Language Composition

«interface»

IAutomataScope

«interface»

IHierarchicalAutomataScope

AutomataScope HierarchicalAutomataScope

inheritance in scope interfaces

AST-CD

no inheritance in scope classes

Figure 6.1: Effect of language inheritance on scopes

inherited languages. To realize this, the inheritance relationships in scopes, conceptu-
ally, follow the inheritance relationships of languages.

Multiple inheritance is allowed on MontiCore languages and on Java interfaces but
not on Java classes. To overcome this, the scopes, artifact scopes, and global scopes
are divided into scope classes and scope interfaces, as described in Chapter 4. The
composition of languages is carried out through the (artifact, global) scope interfaces.
This is depicted in Figure 6.1 by the example of the scope interfaces and scope classes
of the automata language and the hierarchical automata language that extends the au-
tomata language. The scope interface IHierarchicalAutomataScope extends the
interface IAutomataScope. The scope classes implement the interfaces of the corre-
sponding languages but are not in a mutual inheritance relationship. Therefore, the
class HierarchicalAutomataScope cannot use any methods defined in the class
AutomataScope. However, the majority of the functionality of scopes, such as the
resolve methods, is located as default implementation in the interfaces. Scope classes,
for the most part, manage scope attributes and direct access to these. As the class
HierarchicalAutomataScope transitively implements the IAutomataScope in-
terface, all methods defined there can be reused for the inheriting language. If a lan-
guage inherits from multiple languages, the scope interface of the language inherits from
all scope interfaces of inherited languages. The same inheritance relationship for scope
interfaces also holds for artifact scope interfaces and global scope interfaces. For in-
stance, the interface IHierarchicalAutomataArtifactScope extends the inter-
face IAutomataArtifactScope, but the artifact scope classes of the languages are
not in a mutual inheritance relationship.

The reuse of default method implementations in scope interfaces implies that any
handwritten adjustments of such method implementations through the application of
the TOP mechanism to the scope interfaces can be reused for language inheritance.
Contrary to this, handwritten adjustments to scope classes are not reused. The reason
for this is that multiple inheritance on languages would only allow extending at most
a single scope class of an inherited language. Artifact scope classes and global scope
classes extend the scope class and, hence, inheritance between these and the artifact and
global scope classes of inherited languages would always require multiple inheritance.

158

6.1 Language Inheritance in the Typed Symbol Table Infrastructure

«interface»

IAutomataScopeTOP

«interface»

IAutomataScope

«interface»

IHierarchicalAutomataScopeTOP

«interface»

IHierarchicalAutomataScope

AutomataScope

Hierarchical

AutomataScope

«interface»

IScope

AST-CD

AutomataScopeTOP

Hierarchical

AutomataScopeTOP

generated

generated

hand-
written

hand-
written

MontiCore
runtime

automata language
extended by
hierarchical
automata language

Figure 6.2: Integration of handwritten code into scopes

A scenario for handwritten adjustments of scope classes and scope interfaces for the
automata language and for the hierarchical automata language is depicted in Figure 6.2.
In this example, both scope classes and both scope interfaces are extended via the
TOP mechanism. Hence, the handwritten class AutomataScope extends the gener-
ated class AutomataScopeTOP and the handwritten interface IAutomataScope ex-
tends the generated interface IAutomataScopeTOP. The same applies to the scope
class and interface of the hierarchical automata language. The inheritance relation-
ship that realizes the language inheritance is carried out through the generated in-
terface IHierarchicalAutomataScopeTOP that extends the handwritten interface
IAutomataScope. Through this, the handwritten adjustments to the IAutomata-
Scope interface are considered in the hierarchical automata language. The adjustments,
hence, are also transitively available in scope classes of the hierarchical automata lan-
guage. Any handwritten adjustments to the scope class of the automata language,
however, are not available in the scopes of the hierarchical automata language.

The language’s mill creates all scope objects of a language and manages singleton
instance of the global scope. In the presence of language inheritance, there is only a single
global scope instance for all involved languages. By reconfiguring the mills of inherited
languages (cf. Section 6.1.4), the infrastructures of inherited languages instantiate the
intended scope types of the most concrete language.

6.1.2 Language Inheritance of Symbol Table Creation

As described in Section 4.3, the scope genitor of a language is responsible for instantiat-
ing symbol and scope objects for a model. To do so, the scope genitor traverses the AST
with the visitor infrastructure of the language. The scope genitor delegator (cf. Sec-
tion 4.3.9) employs a traverser (cf. Chapter 2) to enact the traversal of an AST and

159

Chapter 6 Using Typed Symbol Tables for Language Composition

automaton H2O {

state liquid {

state inMotion;

}

state solid;

}

H2O:AST

Automaton

solid:

ASTState

liquid:AST

HierarchicalState

inMotion:

ASTState
liq:Hierarchical

AutomataScope

h2o:Hierarchical

AutomataScope

model:Hierarchical

AutomataArtifactScope

AST-ODHierarchicalAutomata

automata language hierarchical automata language

all scopes
are of the
hierarchical
automata
language

Figure 6.3: Model of a composed language (left) and excerpt of scopes and AST nodes
instantiated by processing the model (right)

delegate the traverse, handle, visit, and endVisit methods to the correspond-
ing scope genitor methods of the language. In the presence of language inheritance,
traversers are able to traverse ASTs and delegate the visitor methods to visitors and
handlers of the individual languages. An advantage of this delegation is that it does not
require the visitor and handler classes to be in a relationship with visitors and handlers
of other languages. To achieve this, the scope genitor delegator configures the traverser
not only with the scope genitor of the own language but also with the scope genitors
of all transitively inherited languages. This enables reusing handwritten adjustments to
visit method implementations in all scope genitors of the individual languages.

If a model conforming to a language that inherits from one or more other languages is
processed, the symbol table creation involves creating scope instances and setting these
as enclosing scope, subscope, and spanned scope attributes of AST nodes, symbols, and
other scopes. The ASTs of such models typically contain nodes from different languages,
which are processed by different scope genitors controlled by the scope genitor delegator.
Nonetheless, the symbol tables for all models of the language use only the scope type
from the language and no scope types from inherited languages. The reason behind this
is that only the scopes of the current language are able to resolve for symbols of all known
kinds and consider potential handwritten scope adjustments. As the scope interfaces of
a language extend the scope interfaces of inherited languages, using the more specific
scope does not violate type restrictions, e.g., of the methods for access and manipulation
of the enclosing scope of an inherited language’s AST node.

For example, an object diagram with AST nodes and scopes instantiated while pro-
cessing the H2O automata model with the scope genitor delegator of the hierarchical
automata language is depicted in Figure 6.3. The hierarchical automata model depicted
on the left side has a non-hierarchical state solid and a hierarchical state liquid
with a contained state inMotion. An excerpt of the AST nodes and scopes instan-

160

6.1 Language Inheritance in the Typed Symbol Table Infrastructure

tiated while the model is processed is depicted on the right side of the figure. The
relations between AST nodes and the enclosing scopes equal the relations that would
have been created when instantiating the symbol tables for individual languages, as ex-
plained in Section 4.1.10. An exception to this is that the AST nodes of the automata
language, such as the ASTState, have an enclosing scope that is an instance of the
HierarchicalAutomataScope. All three relations of AST nodes from the automata
language to scopes of the hierarchical automata language are visualized in the figure as
bold lines. The same holds for symbols of the automata language that are omitted in
the figure for better readability.

The associations across the “borders” of the languages are realized via reconfiguration
of the scope instantiation process of inherited languages, which is performed through
reconfiguration of the mills of the inherited languages as described in Section 6.1.4.
The process of mill reconfiguration is contained in the generated language infrastructure
and does not require manual interaction by language engineers. To this end, all scope
instances created in the generated language infrastructure are instantiated via the mill.
To support language inheritance, all scope instances that are created in handwritten
code must be conceived via the mill as well.

6.1.3 Language Inheritance of Symbol Table Persistence

Similar to the instantiation of symbol tables, the symbol table persistence relies on
the visitor infrastructure of a language (cf. Chapter 5). Other than the symbol table
instantiation that traverses the AST, the symbol table persistence traverses the symbols
and scopes. However, in both cases, the traversal is carried out by a traverser. Like
the scope genitor delegator for symbol table instantiation, the Symbols2Json class holds
an attribute of the language’s traverser for storing symbol tables. Symbol DeSers for
symbol kinds defined in inherited languages can be reused.

All symbol DeSers are obtained via the map of symbol DeSers in global scopes. For
reusing symbol DeSers of inherited languages, the global scope has map entries for all
symbol kinds defined in inherited languages as well. If a symbol kind spans a scope, the
scope is serialized and deserialized with the scope DeSer obtained from the global scope
in a procedure described in Chapter 5.

For language inheritance, the scope DeSer of a language is not reconfigured by default.
The reason for this is that the inheritance of scope DeSer classes does not follow the
inheritance relationship of scopes, i.e., if a language inherits from another language,
the scope DeSers are not in an inheritance relationship. An inheritance relationship
between scope DeSers would require separating scope DeSer interfaces and classes to
support multiple inheritance of languages in the same way as the separation for scopes.
This would, among other things, introduce additional complexity into potential manual
adjustments and reduce the compile time of the language infrastructure. However, the
scope instances that are created during deserialization are created via the language’s

161

Chapter 6 Using Typed Symbol Tables for Language Composition

AutomataMill
AST-CD

Hierarchical

AutomataMill

AutomataMillFor

HierarchicalAutomata

init() {

mill = new HierarchicalAutomataMill();

AutomataMill.initMe(new

AutomataMillForHierarchicalAutomata());

}

automata
language

hierarchical
automata
language

Java

IAutomataScope _scope() {

return new AutomataScope();

}

Java

@Override

IAutomataScope _scope() {

return new HierarchicalAutomataScope();

}

Java

Figure 6.4: Reconfiguration of mills for language inheritance

mill. In language inheritance, the mill is reconfigured to create instances of the correct
scope type, as described in Section 6.1.4.

6.1.4 Reconfiguration via Mills

As described in Section 4.3.1, language mills are singleton classes, inter alia, for the
purpose of obtaining instances of symbol table classes. If a language inherits from one or
more languages, the mills of the inherited languages are (re)configured to create instances
of the desired types. For instance, if the automata language is reused for the hierarchical
automata language through language inheritance, the mill of the automata language has
to instantiate scopes of the hierarchical automata language instead of the scopes for
the automata language it instantiates otherwise. As the scopes are in an inheritance
relationship, the mill can be reconfigured by overriding the methods that instantiate
scopes and let these instantiate the desired subtypes of the scopes to produce integrated
symbol tables, as depicted by example in Figure 6.3.

This enables reusing the entire language infrastructure of inherited languages with-
out any modification of the language infrastructure that requires manual interaction
or a new generation of the language infrastructure for the reused languages. Instead,
languages are configured via bridge mills. A bridge mill acts as a facade for a lan-
guage’s mill that reconfigures the original mill with the purpose of reusing the language
as inherited language. For each language that a language inherits from – either di-
rectly or transitively through other languages – MontiCore generates a bridge mill as
part of the language’s infrastructure. For example, MontiCore generates the bridge mill
AutomataMill4HierarchicalAutomata as part of the infrastructure for the hierar-
chical automata language. This bridge mill configures the AutomataMill for using the
automata language as part of the hierarchical automata language. Technically, bridge
mills are Java classes that extend the Java classes realizing language mills. Bridge mills

162

6.2 Adapting between Symbol Kinds

override the non-static methods of language mills for obtaining the global scope, artifact
scope, and scope instances. Furthermore, bridge mills override the methods for obtain-
ing the language’s traverser. As the inheritance in all the above parts of the language
infrastructure follows language inheritance, the overridden methods can return instances
of the inheriting language instead of instances of the inherited language.

An example of the reconfiguration of the automata mill for reuse in the hierarchi-
cal automata language is depicted in Figure 6.4. The bridge mill class extends the
AutomataMill and overrides all methods that create instances of language infrastruc-
ture constituents that the bridge mill reconfigures. For example, the class overrides the
method _scope to return scope instances of the desired type. In the init method of
the HierarchicalAutomataMill, the mills of all (directly and transitively) inherited
languages are initialized with the bridge mills via the mills’ initMe methods. In this
example, the hierarchical automata language extends only the automata language. If a
language inherits from multiple languages, all mills of inherited languages are reconfig-
ured with bridge mills. With these reconfigurations, the infrastructure of the automata
language that uses the automata mill to create scope instances creates scopes of the
hierarchical automata language instead.

6.2 Adapting between Symbol Kinds

In all forms of language composition that MontiCore supports, it can occur that a symbol
usage should refer to a symbol definition of a model conforming to another language.
In language inheritance and language extension, a language is typically aware of other
languages that it reuses. Hence, the language engineers can ensure that the (expected)
symbol kind of the name usage and the (provided) symbol kind of the name definition are
compatible. Language embedding and language aggregation, on the other hand, typically
compose two or more independent languages that are not aware of one another.

For instance, a language L1 can be embedded into a language L2, which creates a
new language L3, and L1 and L2 remain unaware of each other. Furthermore, the
input languages of language embedding and language aggregation typically should be
immutable with respect to language composition. To this end, it may occur that a
language engineer composing languages intends that the symbol usage points to a symbol
definition of a model conforming to another language, although the expected and the
provided kind of the symbol definitions differ. For this purpose, a symbol can be adapted
from a source symbol kind to a target symbol kind with a symbol adapter. The following
sections first introduce the concept of symbol adapters in the STI before explaining how
resolving for adapted symbol kinds is integrated into the symbol resolution algorithm
and how symbol adapters in combination with symbol table persistence foster efficient
language aggregation.

163

Chapter 6 Using Typed Symbol Tables for Language Composition

models

JType2CDType

Adapter

symbols

public class Color {

protected int r;

protected int g;

protected int b;

}

01

02

03

04

05

JTypeSymbol

JavaDSL

Language
JavaDSL and CD

Language Aggregation

classdiagram TrafficSim {

class TrafficLight {

Color currentColor;

}

}

01

02

03

04

05

CDTypeSymbol

CD

Language languages

Figure 6.5: Example for adaption between symbol kinds on the level of models, lan-
guages, and symbols

6.2.1 Concept for Symbol Adapters

At the core of symbol adaptation are symbol adapters that translate a symbol from a
source kind to a target kind. A symbol adapter realizes the adapter pattern [GHJV95]
for symbol classes. In the technical realization, a symbol adapter is a (handwritten)
Java class that extends the symbol class of the target symbol kind and has an attribute
adaptee with the type of the source symbol kind. The adapter class overrides all neces-
sary methods of the target symbol class and, in the method implementations, delegates
to methods of the adaptee. Which methods are necessary to override depends both on
the symbol classes and on the purpose of the symbol adapter. Symbol adapters do not
alter the source symbol class, which enables the language engineers to resolve for the
original symbol with the source symbol kind.

An example of a symbol adapter is depicted in Figure 6.5. The top row depicts two
models. The model on the left is the CD model TrafficSim that uses the name Color
as the type of the attribute currentColor of the class TafficLight. The model
depicted on the right side is a model of the class Color that conforms to a JavaDSL
language, which is a DSML with Java-based syntax. It is intended that the name usage
of Color in the CD model refers to the name definition of Color in the Java class
model. On the level of languages depicted in the center row, this is realized via language
aggregation between the CD language to which the TrafficSim model conforms and
the JavaDSL language to which the Color class conforms. The result is a language
aggregation of the JavaDSL and the CD language. The bottom row of the figure depicts
the symbol adapter class as well as the Java classes realizing the source and the target
symbol kind. The source symbol kind JTypeSymbol depicted right is the symbol kind
in which the symbol definition is provided. The target symbol kind CDTypeSymbol

164

6.2 Adapting between Symbol Kinds

depicted left is the symbol kind for which the symbol resolution searches. The middle
depicts the adapter class that extends the class CDTypeSymbol and has an attribute of
the JTypeSymbol. By convention, an adapter class for a source symbol kind SSymbol
and a target symbol kind TSymbol has the name S2TAdapter1. In this example, the
name of the adapter is JType2CDTypeAdapter.

6.2.2 Finding Symbol Adapters during Symbol Resolution

Symbol adapters are handwritten Java classes that can be integrated into a language.
To integrate symbol adapters into a language, they must be found during resolution
for symbols of the target symbol kind. The symbol resolution, as described in Sec-
tion 4.1.8, takes into account that language engineers intend to resolve for adapted
symbols during resolution for local symbols in a scope. Hence, the hook point method
resolveAdaptedTLocallyMany is contained in a scope interface for every symbol
kind T of the language. The default implementation of the hook point method is empty,
but by applying the TOP mechanism to the scope interface, the hook point method(s)
for adapted symbols can be overridden. A language engineer who intends to search for
symbols of kind S when the language tool searches for symbols of kind T can override the
method resolveAdaptedTLocallyMany. The new implementation of this method
can also search for symbols of multiple source kinds. In the new implementation of
the method, the resolution should delegate to the resolution for symbols of kind S with
the method resolveSLocallyMany. Each element in the resulting list of symbols of
kind S has to be adapted by instantiating a symbol adapter translating the symbol to a
symbol of kind T. The list of adapters is then returned by the method.

With this approach, language engineers can integrate any adapter into the symbol
resolution as far as the language is aware of the source symbol kind. If this is not the
case, the resolution has to be continued in a global scope of a different language. The
following describes how this is achieved in the STI with symbol resolvers.

Symbol Resolvers

Resolvers enable resolving symbols in global scopes of foreign languages. A resolver is
always specific to a symbol kind T, for which it resolves. It resolves either for symbols
of kind T in a foreign global scope or it resolves for symbols of another symbol kind S
for which it instantiates an adapter translating the symbols to the symbol kind T. The
language employing the resolver is not required to be aware of the symbol kind S.

For each symbol kind T of a language, MontiCore generates a resolver interface
ITResolver. The global scope of a language manages a list of resolvers for each symbol
kind of the language. During the inter-model resolution of symbols of a kind T, global
scopes resolve for adapted symbols. For this, the global scope iterates over all resolvers

1S stands for the Source and T represents the Target

165

Chapter 6 Using Typed Symbol Tables for Language Composition

CDAutomata

Automata Class Diagrams

«interface»

IAutomataGlobalScope

«interface»

IStateResolver

«interface»

IClassDiagramsGlobalScope

Class2StateResolver

individual languageslanguage
aggregation

1

*

MLCD

MontiCore language
component diagram

Figure 6.6: Example for a symbol resolver realizing language aggregation

for the kind T of which it is aware. By default, no resolvers are configured in a global
scope. Language engineers can develop resolver classes that implement the generated
resolver interfaces and perform custom symbol resolution. To consider a resolver during
symbol resolution, language engineers have to add an instance of the resolver class to
the global scope.

An example of using a resolver is depicted in Figure 6.6. The left side of the fig-
ure displays the type of the global scope of the automata language that manages a
list of resolvers for state symbols. The top right part of the figure displays the type
of the global scope of a class diagram language. The bottom right displays a re-
solver class that carries out a language aggregation between the automata language
and the class diagram language if it is added to the global scope of the automata lan-
guage. If added, the Class2StateResolver class is utilized during resolution for
state symbols in the automata global scope and internally resolves for class symbols
in the class diagram language. If a suitable class symbol is found, an instance of a
Class2StateSymbolAdapter is created and added to the result of the resolution for
state symbols. To decouple the languages, the resolver class is neither considered a part
of the automata language nor a part of the class diagram language.

Avoiding Circular Resolution

If a language uses multiple symbol adapters, it might be possible to form cyclic adapta-
tions. For example, we consider a language that uses two symbol adapters. One adapter
adapts symbols of kind K to symbols of kind J, and another adapter adapts symbols
of kind J to symbols of kind K. Without a mechanism to avoid cyclic adaptations, the
resolution process described in Section 6.2.2 would not terminate. The resolution for
symbols of kind J would trigger the resolution for kind K, which again would trigger
resolution for the kind J.

To avoid such cycles, each scope instance must resolve for a symbol of a specific kind at
most two times: the first resolution occurs during bottom-up resolution and the second
resolution occurs during top-down resolution in the scope. The top-down resolution in

166

6.2 Adapting between Symbol Kinds

Source

Language

Target

Language

S

.srcsym

1.

Symbol

Adapter

store load

2.

Target Language ToolSource Language Tool

Figure 6.7: On-demand symbol adaptation: a symbol is loaded as its source kind and
then adapted to the target kind

the same scope may find a symbol that has not been found during bottom-up resolution
if the symbol name is qualified or unqualified as part of the inter-model resolution that
is executed in between.

To this end, the resolution contains a mechanism to avoid such cyclic resolutions with
a Boolean flag for each symbol kind contained in each scope instance. For a symbol kind
K, the flag is called kAlreadyResolved. Each scope instance skips the resolution of a
symbol at the beginning of the resolveMany and resolveDownMany methods if the
corresponding flag has the value true. Global scopes further do not search for adapted
symbols with the resolveAdapted methods if the flag is set to the value true. The
flag is set to true before each call of the resolveLocallyMany method and is set to
false afterward. This prevents that the resolution of any adapted symbols continues
with searching for symbols of a kind that has already been resolved for during both
bottom-up and top-down resolution.

Local resolution of a symbol triggers resolution of adapted symbols (cf. Section 4.1.8)
in the scope, which could lead to cyclic calls of the method without the mechanism for
avoidance of circular resolution.

6.2.3 Combination of Symbol Adapters and Symbol Persistence

Together with symbol table persistence as described in Chapter 5, symbol adapters can
support the realization of language aggregation with different forms of efficient transla-
tions between symbols of a source kind and symbols of a target kind. A requirement for
this is that source language and target language must not be modified permanently, as
both languages should be reusable in different contexts and independent of each other.

Temporal reconfiguration of a language tool, e.g., with symbol resolvers as described
in Section 6.2.2, is not problematic as it typically has no side effects if it is applied
correctly. Hence, a symbol adapter that is part of a language infrastructure would per-

167

Chapter 6 Using Typed Symbol Tables for Language Composition

Source

Language

Target

Language

S

.srcsym

Symbol

Adapter

Target Language ToolSource Language Tool

S

.trgtsym

1.
load

3.
store

2.
store

Figure 6.8: Polyglot symbol persistence: a symbol is persisted in multiple representations
for different kinds

manently tie a language to another language. We distinguish three different approaches
for realizing combinations of symbol adapters and symbol persistence that are explained
in the following sections.

On-Demand Symbol Adaptation

For realizing on-demand symbol adaptation, the source language stores symbol tables
as usual. In the example depicted in Figure 6.7, the source language tool produces
and stores a symbol table for the model S in the file S.srcsym. By default, the tar-
get language is not able to load symbol tables of the source language. However, with
(re)configuration of the target language, inter alia, with the regular expression enabling
it to recognize srcsym files as symbol table files, the language tool is able to find and
load the symbol table. Furthermore, the target language has to be configured to search
for symbols of the source kind, instantiate a symbol adapter, and return the adapter as
a result of resolution for the target kind as described in Section 6.2.2.

An advantage of this solution is that the symbol is only persisted in a single repre-
sentation, which avoids inconsistencies that could occur if the same symbol was stored
in different representations and individual files. Furthermore, transporting the symbol
from the source language to the target language requires only two load/store operations.

However, loading a symbol with on-demand symbol adaptation requires instantiating
the adapter first. Thus, loading an adapted symbol is less efficient than loading a symbol
in the target symbol kind representation directly. It is feasible to assume that a symbol
is loaded and adapted more often than it is stored and thus, the balancing may be
disadvantageous. However, the instantiation of a symbol adapter typically does not
cause much effort.

168

6.2 Adapting between Symbol Kinds

Source

Language

Target

Language

Symbol

Adapter

Target Language ToolSource Language Tool

S

.srcsym

S

.trgtsym

Source2TargetSymporter

store store loadload

1. 2. 3. 4.

Figure 6.9: Standalone symbol translation: a standalone tool carries out the translation
from source to target symbol kind

Polyglot Symbol Persistence

The concept of polyglot symbol persistence is depicted by example in Figure 6.8. The
source language tool processes and stores the symbol table of a model S. For poly-
glot symbol persistence, the source language is configured to store symbols in different
representations. Whenever the source language tool stores a symbol table file, it trig-
gers adapters that translate the symbols into different kinds. Afterward, the resulting
adapted symbols are stored. In the example of the figure, the symbol adapter translates
symbols in the artifact scope of S and stores the artifact scope in the file S.trgtsym.
The symbol adaptation should be triggered in the source language tool whenever a sym-
bol table is stored. Language engineers have to conceive individual (re)configuration
infrastructure in the language tools. A target language can load the symbol in the tar-
get symbol kind representation. This reduces the cost of loading a symbol compared
to the on-demand symbol adaptation. Since all adapters that translate a symbol from
a specific source kind are triggered together, all representations of a persisted symbol
are produced at once, and the risk of inconsistencies between different stored symbol
representations is relatively low. This solution requires three load/store operations.

Despite the advantages of this approach, the assumption that all potential represen-
tations of a symbol are available at the time a symbol is stored is unrealistic. Hence,
polyglot symbol persistence does not support to reuse libraries of arbitrary (processed)
source language models without configuring and executing the source language tool.
This raises the problem that the source language tool co-exists in different configura-
tions, and each configuration has to be handled individually. It might occur that target
language tools invoke suitable configurations of the source language tool on-demand,
and the source language tool has to re-produce symbol tables in different representa-
tions again. Thus, it cannot be assured that all symbol representations of a symbol are
stored at once, which again raises the potential for inconsistencies.

169

Chapter 6 Using Typed Symbol Tables for Language Composition

Standalone Symbol Translation

In the standalone symbol translation, depicted by example in Figure 6.9, the source
language tool that produces a symbol table for the model S stores it only in its source
kind. A standalone tool loads symbols of a source kind, translates these symbols into
a target representation, and stores these afterward. This tool is specific to the pair of
source and target languages, and the translation requires four load/store operations. An
advantage of this solution is that the process of symbol adaptation is neither bound to
loading a symbol during resolution (cf. Figure 6.7) nor to the process of storing a symbol
during model processing (cf. Figure 6.8). Instead, it can be performed independently
and, hence, does not decrease the efficiency of processing models with source and target
language tools.

However, standalone symbol translation requires a well-defined processing toolchain,
as otherwise, it can lead to inconsistencies between the different stored representations
of a symbol. If the source representation of a symbol table is modified and the tool
of the source language persists this symbol table, the symbol translator tool is not
triggered to translate the source representation into the target representation. Hence,
the persisted representations of the symbol table remain inconsistent until the symbol
translator tool is executed again. While inconsistencies between symbol table objects and
their persisted representations can occur in all three approaches, the standalone symbol
translation has a greater risk of producing inconsistencies due to the fact that a third tool
is involved. The tool executions can be coordinated with a proper build management
tool, such as Gradle [Mus14]. To this end, the approach is not suitable if the source
symbol may potentially be modified. Despite this limitation, the approach is useful for
importing a library of symbols from a foreign representation. Therefore, we also refer
to the standalone symbol translator tool as a symbol importer (or short, Symporter).
The tool that translates symbols from the Source language to the Target language,
hence, is called Source2TargetSymporter.

6.3 Importing Symbols from Java with Class2MC

The techniques described in the previous sections are able to bridge the gap between
different MontiCore languages and models. In practice, it may be the case that a Monti-
Core language should enable its models to reuse models produced by tools from different
technological spaces. In other words, a MontiCore language should be able to refer to
elements of languages that are not available as MontiCore languages. For example, the
engineers of a MontiCore language for class diagrams intend to use Java types that are
loaded from Java’s class files in the class diagram language. More precisely, a class in
the class diagram language should be able to indicate that it extends or implements a
Java type that is available from a class file or to use a Java type as the type of a class
member, return type of a method, or similar.

170

6.3 Importing Symbols from Java with Class2MC

Class2MCResolver
«interface»

IOOTypeSymbolResolver

JClass2OOType

Adapter

JMethod2Method

Adapter

JavaClass

Method

Field
JField2Field

Adapter

OOTypeSymbol

MethodSymbol

FieldSymbol

ClassParser

*

*

1

1

1

creates

1

OOType language Java class file toolClass2MC

related via scopes

AST-CD

Figure 6.10: Central types of the Class2MC tool that enables importing Java types into
MontiCore languages

The STI contains generated resolver interfaces that are integrated into the resolution
for symbols of known kinds. For instance, the class diagram language contains the
ICDTypeResolver that can be implemented by a handwritten class that is added to
the global scope of the CD language. This handwritten class can resolve for adapted
CDTypes, e.g., in global scopes of foreign MontiCore languages. Moreover, the resolver
can be utilized to search for foreign representations of CDTypes in technological spaces
beyond MontiCore.

This section presents the Class2MC tool, which enables to import Java types from
class files into the universe of MontiCore languages. MontiCore’s built-in type system
framework contains the OOSymbols grammar [HKR21] that defines the syntax for type
definitions in object-oriented languages. MontiCore languages can extend this grammar
to reuse the syntax for type definitions and reuse a type check for such symbols.

The Class2MC tool is realized as a resolver for OOTypeSymbols. The Class2MC-
Resolver implements the interface IOOTypeSymbolResolver of the OOSymbols
language. Whenever an OOTypeSymbol is resolved, the Class2MCResolver searches
for suitable Java types loaded from class files, instantiates symbol adapters, and con-
tributes these to the result of the symbol resolution.

The tool internally employs a tool that parses class files and instantiates the abstract
syntax of a Java type. This is performed by the class ClassParser. If the resolved
name identifies a class file that is located relative to a location indicated in the model
path of the global scope of the language, the ClassParser parses the class file. The
result of parsing the class file is an instance of the class JavaClass that realizes the
abstract syntax of a class file and, hence, contains information about the content of the
class file, such as the top-level type definition(s). The Class2MC tool instantiates an

171

Chapter 6 Using Typed Symbol Tables for Language Composition

artifact scope of the OOSymbols language for each class file that is loaded. Afterward,
the symbol definitions of the class file have to be adapted to the OOSymbols language.

A symbol adapter adapts the JavaClass to an OOTypeSymbol. Furthermore, all
methods and fields of the Java type are translated into the corresponding elements of
the OOSymbols symbol table with suitable adapters, as depicted in Figure 6.10. In the
abstract syntax instantiated by the ClassParser, methods and fields are realized as
attributes of the JavaClass. In the symbol table infrastructure of the OOSymbols
language, this is realized differently. MethodSymbols and FieldSymbols are located
in scopes that the OOTypeSymbols span. Through this, the symbol resolution strategy
of MontiCore is able to resolve for methods and fields as well. As the last step, the
Class2MCResolver resolves for the symbol in the newly created artifact scope.

To avoid new instantiation of adapters if a particular Java type is resolved more than
once, the Class2MC tool adds all adapters to the corresponding artifact scopes and all
artifact scopes to the global scope.

The engineer of the class diagram language can use the Class2MC tool if the class
diagram language inherits from the OOSymbols language. Beyond being able to use
Class2MC, inheriting from the OOSymbols language enables the CD language engineer
to use MontiCore’s built-in type checker and simplifies integration with other MontiCore
languages that define or use types via the built-in type system framework. The Class2MC
tool is integrated into the CD language by adding the Class2MCResolver class to the
CD global scope with the following statement:

1 CDMill.globalScope()
2 .addAdaptedOOTypeSymbolResolver(new Class2MCResolver())

The Class2MC tool realizes on-demand symbol adaptation. Instead, it could have
been realized as a standalone symbol translation tool that translates a library of class
files into a library of OOSymbols symbol table files. The latter is better suitable for
translating the entire Java runtime environment into the MontiCore representation since
loading a stored symbol table is more efficient than instantiating the adapters.

However, the standalone tool would be less flexible if an application intends to use local
class files. In such situations, the standalone tool would have to be called individually
before the remaining models of an application are processed. Therefore, the Class2MC
tool is realized as an on-demand symbol adaptation that can be better integrated into the
workflows of processing models in different applications. Furthermore, most languages
use only a tiny part of the entire Java runtime environment. Translating all types of the
Java runtime environment, hence, would create numerous symbol table files that are not
used at all.

172

6.4 Aggregation of Languages

6.4 Aggregation of Languages

Language aggregation [HKR21] is a loose coupling between languages whose models
remain in separate artifacts per language. A model of one language may, however, refer
to elements of models conforming to other languages. In MontiCore, this is reflected
through the symbol table infrastructure in which the resolution of name usages yields
the symbol definitions that may be located in other models.

One purpose of symbols is being surrogates for foreign models, typed through the
symbol kind. Languages, thus, use symbols for acquiring the information they require
of other models. These models may conform to the same or to a different DSML. In the
latter case, it is beneficial for language reusability to realize a loose coupling between
the DSML that requires information of a model conforming to another DSML.

The following describes four alternative methods for realizing language aggregation
with the STI, where each method has individual advantages and disadvantages. Lan-
guage engineers have to decide on a suitable form of language aggregation for each
application individually.

6.4.1 Aggregation through Shared Grammar

In the STI, the resolve methods are located in scope interfaces, and the inheritance of
scope interfaces follows the inheritance of languages. Language engineers can utilize this
if the languages that are intended to be aggregated are engineered anew. In such a sce-
nario, a language engineer can extract all symbol-defining nonterminals to a common,
shareable language that all languages-to-be-aggregated extend. As an effect of this, the
resolve methods for all symbols are available in all languages and enable symbol resolu-
tion across different languages. This form of language aggregation requires little effort
for the actual integration of the languages but requires a-priori knowledge about the
aggregation at the time the languages are engineered. This form of language aggrega-
tion, hence, is suitable for preparing a language to be used in combination with other
languages.

MontiCore’s built-in type system framework contains grammars that define symbols
for different kinds of type definitions. For instance, the grammar OOSymbols intro-
duces nonterminals that define types in object-oriented languages. If a language, such
as a class diagram language, reuses the nonterminals of the OOSymbols language to
define the symbols of class diagram types, other languages can be integrated with the
class diagram language through a shared grammar. For example, we consider an object
diagram language that is intended to be aggregated with the class diagram language such
that the type of an object in the object diagram refers to a type definition in the class
diagram language. If the object diagram language extends the OOSymbols language,
the scope of the object diagram language is able to resolve for type symbols that are inter
alia, used for type definitions in class diagrams. Through the proper configuration of

173

Chapter 6 Using Typed Symbol Tables for Language Composition

the symbol table persistence infrastructure in the object diagram language, the symbol
table files of the class diagram languages can be found, and the symbol tables can be
instantiated.

An advantage of this form of language aggregation is its simplicity as ideally, no im-
plementation dedicated to the language aggregation has to be conceived. Furthermore,
the language aggregation can be extended with additional languages via language inheri-
tance with little effort. However, a disadvantage is the prerequisite of languages to inherit
from the common language. This causes a weak form of conceptual coupling between
the aggregated languages since it is not possible to aggregate arbitrary languages.

6.4.2 Aggregation through Unifying Grammar

Another approach for achieving language aggregation with the STI relies on producing
a novel grammar that inherits from all grammars of the languages that should be aggre-
gated. Upon execution of the MontiCore generator, language infrastructure is generated
from the unifying grammar. This grammar, however, is not intended for obtaining an
integrated parser rather than an integrated symbol table infrastructure in which symbols
of all aggregated languages can be resolved. The integrated grammar is necessary since
large parts of the STI are generated from a language. Especially, this produces a global
scope that is aware of all languages. The grammar that integrates the languages can
optionally introduce a novel start rule that uses an alternative over all start rules of the
aggregated languages on its right-hand side. Through this, the language infrastructure
generated from the integrating grammar is capable of parsing models of all aggregated
languages. This form of language composition, however, is merely language extension
rather than language aggregation.

For example, an object diagram and a class diagram language can be aggregated by
conceiving a novel grammar CDandOD that extends the grammars of the object diagram
and the class diagram language. The tool for the novel grammar can realize a context
condition that checks the validity of name usages across the border of the aggregated
languages. In the example, a context condition could check whether all names that are
used as types of objects in the object diagram refer to names of type definitions in a
class diagram by resolving for type symbols in the class diagram.

The aggregation through a unifying grammar is especially suitable for language aggre-
gations that are rarely extended with new languages. A disadvantage of the mechanism
is that extending the aggregation with additional languages requires adjusting the gram-
mar and re-generating the language infrastructure from the grammar.

6.4.3 Aggregation through Resolvers

A further method for achieving language aggregation relies on separate global scope
instances for each aggregated language that are connected to each other via symbol

174

6.4 Aggregation of Languages

resolvers. Resolvers are explained in Section 4.3.5 and enable resolving for symbols in
foreign global scopes. This form of language aggregation can be extended with new
languages with little effort, as it requires adding other resolvers to the global scopes
only instead of re-generating novel language infrastructure such as in the approaches
described in Section 6.4.1 and Section 6.4.2. Furthermore, the aggregated languages do
not have to be coupled, are not aware of each other, and do not share any common
language infrastructure.

6.4.4 Aggregation through Symbol Files

With the STI and the mechanism for symbol table persistence, languages can be aggre-
gated without any integrating infrastructure. As the type of scopes is not persisted, the
scope type instantiated while a symbol table is loaded can be different from the type of
the scope that was stored. However, this does not hold for symbols, whose kind is always
persisted. To this end, two languages L1 and L2 can be aggregated by interpreting stored
symbol tables of the language L1 as stored symbol tables of L2. This is feasible since
all global scopes use a regular expression to identify the file extensions of files that are
considered for loading symbol tables. Using a regular expression that includes symbol
files of all aggregated languages as a filename extension considers the symbol tables of all
these languages. By default, symbol tables are stored by translating the association be-
tween a symbol and its spanned scope into containment in JSON (cf. Chapter 5). Hence,
the deserialization can only consider symbols and scopes contained in symbols of known
kinds. If an unknown symbol kind occurs during deserialization, the deserialization of
the symbol and all transitively contained scopes is omitted. For example, a statechart
language that is aware of state symbols could load the state symbol Pause from a sym-
bol table stored by an automaton language (cf. Figure 5.16) only if the language is aware
of automaton symbols either directly or through a symbol adapter that translates these
to a known kind. Therefore, language aggregation through symbol files can only be
applied in scenarios in which the symbols that should be resolved across the borders of
the language are available in the stored symbol tables through known symbol kinds or
through symbol adapters that translate symbols into a known kind. Language engineers
must consider this when performing language aggregation through symbol files.

An advantage of this approach is that it does not require any form of explicit in-
tegration, and the infrastructures remain completely separated. However, besides the
restriction of its applications for scenarios in which symbols are exported to the artifact
scopes only via known symbol kinds, the approach has certain disadvantages. A dis-
advantage of this approach is that through re-interpretation of the type of the stored
scope instances, any scope-specific information that is stored in a symbol table is lost.
For instance, if an automata language uses a scope attribute defined via a scope rule,
the attribute values are lost when the symbol table is loaded with a different language.
A further disadvantage is the risk of loading symbol tables unintendedly if these can be

175

Chapter 6 Using Typed Symbol Tables for Language Composition

identified through the regular expression for symbol table file extensions in global scopes.
This can cause ambiguities if multiple matching symbols result from symbol resolution.

6.5 Discussion

Language composition is a complex endeavor for which MontiCore and the STI offer
powerful tools and capabilities. This chapter has described different forms of language
composition and alternative approaches for realizing certain aspects of language com-
position. However, there is no blueprint or single “best” solution for realizing language
composition with the STI. Language engineers who compose languages should be aware
of all concepts and techniques and decide on the approaches that are most suitable for
a concrete application.

A language L may define name usages that refer to name definitions of models that
conform to a language, for which the symbol kind of the name definition is not known
or should be left underspecified intentionally. Without symbol tables that are integrated
through any form of language composition, the connection between name usage and
name definition could not be checked in such scenarios. With symbol adapters, language
engineers can compose languages that are not intended to be used together. The STI
does not allow to indicate a name usage that leaves the symbol kind unspecified. Hence,
such an adapter could not be realized within L, and the correctness check of the name
usage could not be located within the language L. However, language engineers of L can
introduce a symbolic extension point by defining a symbol kind k to which L expects
to refer. Other languages can then provide symbols of any kind j that can be used as
name definition if the person who composes the languages provides a symbol adapter
that translates j symbols into k symbols. Through this, any correctness checks can be
implemented against symbols of kind k, although L never instantiates any symbols of
this kind. Only if another language provides a suitable adapter, symbols of the kind k
are resolved and satisfy the correctness checks. The feature diagram language presented
in Chapter 8 uses this mechanism in a slightly modified form.

6.6 Related Work

Language composition exists in different shapes and guises [EGR12]. The four kinds of
language composition that MontiCore supports are supported in similar form by related
language workbenches and language engineering tools [EvdSV+13].

ableC [KKCVW17] is an extensible C language framework based on the extensible
attribute grammar system Silver [WBGK08]. The core C language is extensible with
independent language modules. ableC provides several mechanisms for composing mod-
ules. A focus of the automated process of language composition in ableC is that it
produces correct composed attribute grammars and accompanying language infrastruc-

176

6.6 Related Work

ture reliably. As a C language framework, ableC aims at providing a customizable
programming language, while the focus of MontiCore is to provide tailored modeling
languages without setting a fixed base language.

mbeddr [VRSK12] is a family of modular languages that extend the C language for use
in various purposes. It is realized with the language workbench MPS [VP12], which relies
on projectional editors for building languages. mbeddr supports three kinds of language
composition for extending the base C language. At the center of language extension are
inheritance relations in abstract syntax elements. With mbeddr, languages can either
be composed via language references similar to language aggregation in MontiCore, via
language extension, or via language embedding.

SugarJ [EKR+11] is an extensible Java language. Language extensions are centered
around novel syntactical constructs that can be translated into the base syntax in a
“desugaring” process. SugarJ organizes language extensions in syntactic sugar libraries.

The SMI [MSN17] does not rely on a strictly typed infrastructure for symbols and,
hence, requires less reconfiguration for language composition compared to the STI. How-
ever, the general forms of language composition (i.e., language inheritance, embedding,
extension, and aggregation) are the same. A major difference for language composition
between the SMI and the STI is that the resolve methods in the SMI use the symbol
kind as a method argument, while the STI has the symbol kind encoded into the method
names. This ensures type compatibility in the STI but restricts composing languages as
flexible as in the SMI. Language aggregation in the SMI is realized via language families,
which are realized as Java classes that aggregate the language infrastructures of all aggre-
gated languages. The global scope in the SMI is a Java class in the runtime environment
of MontiCore that can be initialized with a set of languages that should be aggregated.
This is not feasible for the STI, as the strictly typed infrastructure would prohibit initial-
izing a global scope with arbitrary languages. Furthermore, as the resolve methods of
the STI have the symbol kind encoded into their names, composing arbitrary languages
on the level of global scopes is not possible.

However, the typed symbol table infrastructure has the advantage that the type sys-
tem of the host language of the language workbench (for MontiCore, i.e., Java) can be
employed for checking the type correctness of language composition rather than imple-
menting custom type checks, e.g., for the compatibility of symbol kinds, that are carried
out during the execution of MontiCore. Furthermore, the STI relies on generating large
parts of the infrastructure and, hence, consequently considers adjustments via the TOP
mechanism also for language composition.

177

Chapter 7

Language Components

Component-based software engineering is a sub-discipline of software engineering that de-
velops means to modularize software into components to foster their off-the-shelf reuse.
This has proven helpful in software engineering [NR68]. As “software languages are
software too” [FGLP10], the concepts and techniques of component-based software engi-
neering can also be applied to software languages. In this sense, a software language is a
collection of artifacts that describe the language and that realize tooling for processing
models of the language.

As depicted in Figure 7.1, the technical realization of a language component constitutes
a number of different artifacts. In the reverse direction, an artifact may be part of one
or more language components. Software artifacts are realized in the context of a file
system. Therefore, an artifact is always located in a file system directory. A software
language typically comprises heterogeneous artifacts that are scattered across different
directories. Modern build tools such as Maven [MVM10] or Gradle [Mus14] propose
separating handwritten files from generated files, productive files from files for testing
purposes, and source code files from resource files. This separation enables managing the
files efficiently from each perspective. However, it harms the comprehensibility of the
language infrastructure as the entirety of files cannot be easily overviewed at a glance.

The software language engineering literature has proposed a wealth of different defi-
nitions for the term language component [CBCR15] in various levels of abstraction and
for different purposes. Some of these approaches and their notions of language compo-
nents are described in Section 7.6. For the purpose of analyzing software languages and
realizing language composition in MontiCore, we consider language components as sets
of artifacts.

Definition 6 (Language Component). A language component is a reusable unit encap-
sulating a potentially incomplete language definition. A language definition comprises
the realization of syntax and semantics of a software language.

A language component, therefore, contains either a complete language definition or
parts of a language definition. For simplicity, we sometimes refer to language compo-
nents containing complete definitions as languages in the remainder of this thesis if the
distinction to language components is clear from the context.

179

Chapter 7 Language Components

Language

Component

Folder Artifact

1 *

*

*

contains

location consists of

constitutes

*

constitutes

*

contained in

Figure 7.1: Relation between language components and artifacts

A language component can be left incomplete for different purposes:

� A language component can be an interface provider. Such language components
create the basis for which other language components and languages can provide
different realizations. For example, the language component MCBasicTypes of
MontiCore provides an interface MCType, for which other language components
provide different realizations [BEH+20].

� A language component can realize a feature of a language. Such language compo-
nents realize a part of a language that is not intended to be a complete language,
but a language feature that can be used within different languages or that is an
optional part of a language. In the latter, the language component realizing a
feature can be optionally added to the main language component. This realizes
two variants of the language and is the basis for realizing language product lines
in Chapter 9. For instance, the language component CommonExpressions real-
izes syntax and evaluation for commonly used expressions [BEH+20]. This is not a
complete language but can be used by any language that requires such expressions.

� A language component can group other language components. Such language
components are handy to reduce the effort for other languages to use a common
combination of language components. For example, the MontiCore core language
component FullJavaStatements does not introduce any new nonterminals but
inherits from six other language components and thus, simplifies their reusabil-
ity. Other languages can indicate to rely on this language component instead of
indicating to rely on all inherited language components individually.

� A language component can realize a language with holes. Such language com-
ponents realize entire languages (in contrast to features) but leave one or more
concrete realizations for language concepts open to other language components.
Languages with holes are explicitly parametrized and need the parameters to be
defined to become a complete language. For example, the BaseADL introduced
in Section 2.1 defines the interface nonterminal IBehavior without providing

180

7.1 Language Component Models

a nonterminal implementing it. Instead, inheriting languages have to provide a
nonterminal implementing the interface to complete the language component.

Definition 7 (Language Constituent). A language constituent is a kind of artifact in
the infrastructure that realizes a software language.

Examples for language constituents are grammar, parser, context condition, or a scope
class. Language constituents can either be handwritten or generated. Considering the
constituents of a language supports describing systematic handling of language compo-
nents, inter alia, to describe their composition. In the following, we use the term language
component constituent for a constituent of the (potentially incomplete) language defined
within a language component.

This chapter describes several approaches for supporting the modular development of
MontiCore languages. The chapter first details the notion of language components in
MontiCore, then introduces a diagrammatic notation for describing language components
with the purpose of documentation, before introducing a textual DSML for MontiCore
language component models. Such models are the basis for operations and analyses
against language components, for instance, for identifying the artifacts of a language or
for unveiling forbidden artifact relations.

7.1 Language Component Models

A language component model is a model that describes which artifacts are part of a
language and which artifacts a language is allowed to use. This serves several purposes.
Using a language component requires identifying all artifacts of the language compo-
nent. A language engineer using the language component should be able to identify
all accessible constituents of the language by their kind. For example, identifying the
context conditions of a language component enables executing a tool checking these.

Once all artifacts of a language are identified through a language component model,
they can be packaged into an archive for distribution. In the case of Java as host lan-
guage for the language infrastructure, jar files can be packaged to bundle a language
infrastructure and provide access to the language for language users.

A straightforward solution to identifying all artifacts that constitute a language com-
ponent is to use an explicit build module for each language component, where each
module is located at a separate location in the file system. This form of modularization
is often fostered by build tools such as Maven or Gradle. The modularization through
such build tools alone, however, may not be sufficient as modularization for language
components. Language components are typically fine-grained and may constitute a small
number of artifacts only, while build tool modules usually capture larger software com-
ponents. A one-to-one relationship between a build module and a language component
would cause management overhead.

181

Chapter 7 Language Components

module m1 module m2

language

component

A

language

component

B

language

component

C

e.g., defined via
Maven or Gradle

artifact

e.g., if B extends A

e.g., if language frontend and generator are separated

Figure 7.2: Relationship between artifacts in build modules and in language components

Furthermore, language components can have an artifact overlap if the intersection of
their sets of artifacts is not empty. For instance, there might be two language components
A and B that differ only in the fact that B contains a single additional artifact, as
depicted in Figure 7.2. This could be an artifact realizing a context condition that B
does not use. If each of these two language components was bundled into a separate
build module, the module of B would either have to (1) clone all constituents from the
module of A or (2) define a dependency relation to the module of A. The first solution
leads to inconsistencies through evolution or co-evolution of the cloned artifacts. The
second solution causes unnecessary management overhead because the module of B
would constitute only a single artifact. The management overhead further increases if A
constitutes a single artifact that B does not contain. In this scenario, the commonalities
of A and B would have to be extracted to a common build module, and the modules of
A and B each constitute a single artifact only.

If no one-to-one relationship between a build module and a language component is
prescribed, the artifacts that belong to a language component may also be distributed
over different build modules as depicted in Figure 7.2 by the language component C.
This occurs, for instance, if language engineers build or use a library of code generator
templates contained in a dedicated build module for different language components.

Because of these reasons, we propose to identify language component artifacts with a
mechanism that supports fine-grained selection of artifacts cross-cutting to their location
within the file system or within build modules. The MLC language presented in Sec-
tion 7.4.1 supports selecting artifacts via regular expressions over their path within the
model path of a language (cf. Section 2.1).

Language components rarely operate in isolation. Instead, they refer to the Monti-
Core runtime environment and may refer to further language components or any other
software (cf. Figure 7.3). The task of managing such relations is usually performed by
the dependency management of a build tool. Multiple language components may be

182

7.1 Language Component Models

MCG
gen

LC2

refersTo

refersTo

Candidate1Candidate1Candidate2 (refersTo)+

(refersTo)+ M
o
n
ti
C
o
re

R
T
E

MCG
gen

LC1

refersTo

refersTo

Candidate1Candidate1Candidate1

FileFileFile

FileFileFile
artifacts that are
handwritten or produced
by foreign code generator

Figure 7.3: Artifacts of a language component LC1 and their environment

located within a build tool module, so more fine-grained dependency management is
required. Precise dependency management for language components fosters identifying
relationships of a language component to external artifacts that may potentially harm
their reusability. For example, a language tool for a language A uses a pretty printer of
a language B that extends A. In this example, the language tool for A can only be used
if the language B is available in this context, although other than for reusing the pretty
printer, there is no reason for B to be required.

As we define the language components in the context of MontiCore, many artifacts
that constitute a language component can be automatically identified. This includes all
artifacts that are generated from a language’s grammar, as depicted in Figure 7.3. How-
ever, often there are artifacts that are not part of the generated artifacts of a language
to which the generated artifacts directly refer. This involves even more artifacts if tran-
sitively referred artifacts and, e.g., subclasses of referred artifacts are included. For such
artifacts, it cannot automatically be inferred whether these should be considered as part
of the language component or not. We denote such artifacts as Candidate1 artifacts.
Examples of these artifacts are the handwritten classes in the context of the TOP mech-
anism [HKR21] or custom types used for symbol rule attributes. Furthermore, there
are artifacts that directly or transitively refer to the generated artifacts of a language
component. For such artifacts, which we refer to as Candidate2 artifacts, it is unclear
whether these are considered part of the language or not. Examples for such artifacts
are handwritten context condition classes that implement generated context condition
interfaces or classes realizing a code generator that rely on generated abstract syntax
types of a language. Due to Candidate1 and Candidate2 artifacts, it is not helpful to
generate language component models from MontiCore grammars. Instead, these have to
be modeled manually by the language component designer.

Definition 8 (Language Component Model). A language component model describes
the sets of own and allowed artifacts. Own artifacts are the artifacts that constitute a
language component, and allowed artifacts are the artifacts that a language component
is permitted to use.

183

Chapter 7 Language Components

AutomataMCBasics

language component language

language inheritance

MLCD

Class

Diagrams

language aggregation

adapt CDSymbol

to StateSymbol MontiCore language
component diagram

Figure 7.4: Syntax elements of MontiCore language component diagrams

While the own artifacts of a language component model serve the purpose of iden-
tifying artifacts that are part of the language, the allowed artifacts realize fine-grained
dependency management on the level of individual artifacts.

7.2 MontiCore Language Component Diagrams

For visualizing the interrelations between different MontiCore language components,
we use a graphical notation for MontiCore language component diagrams (MLCDs).
An example presenting all syntactical elements of MLCDs is depicted in Figure 7.4.
Languages and language components are represented by rectangles containing the name
of the language (component) and a dedicated marker in the upper right corner. To
distinguish a complete language from a language component, both use a different marker.
The marker for a language is a speech bubble with three lines as a symbolic representation
of text and language. The marker for language components includes two additional small
rectangles in analogy to ports in markers of UML component diagrams. The name of a
language or language component must be unique in an MLCD. Figure 7.4 depicts the
language component MCBasics and two languages Automata and ClassDiagrams.

MLCDs distinguish two kinds of relations between language components, namely lan-
guage inheritance and language aggregation. Language inheritance models the Monti-
Core language inheritance that is also employed for realizing language extension and
language embedding. These three forms of language composition are not distinguished
in MLCDs as there exist various forms of achieving each of these in the implementation.
Furthermore, the distinction between these is not required for analyzing the interrela-
tions between language components, which is a major motivation for creating MLCD
models. Language inheritance between a language and a language that it extends is
visually represented by an inheritance arrow lent from the notation for the inheritance
relation in UML class diagrams.

As MontiCore language composition supports multiple inheritance, a language in an
MLCD may inherit from multiple languages. Both complete languages and language
components may extend other language components or complete languages. In the
example depicted in Figure 7.4, the language Automata inherits from the language
component MCBasics. As usual for language inheritance in MontiCore, this is modeled

184

7.2 MontiCore Language Component Diagrams

Automata MLCD

Automata.mc4

UniqueStates

Automata2Java

Generator

AutomataCoCos

HAutomata

HAutomata.mc4 HAutomataCoCos
Flatten

StatesTrafo

contained
artifact

inheritance
relation
between
artifacts

contained
software
component

association between
language component and
software component

Figure 7.5: Internal elements of MontiCore language component diagrams

in the grammar of the automata language that extends the grammar of the MCBasics
language component.

Language aggregation in MLCDs is represented by lines as lent from the notation
of associations in UML class diagrams. The line usually has an arrow from the lan-
guage (component) providing the global scope instance to the language (component)
that is reused, e.g., through employed resolvers. The direction of the arrow may be left
underspecified if the language providing the global scope has not (yet) been decided.
Optionally, the line can be labeled with an indicator that describes how the symbols of
the languages are adapted if any adapters are employed. If any adapters are used, these
typically adapt between a symbol kind defined in the language that does not provide the
global scope to a symbol kind defined by the language that provides the global scope
of the aggregation. If this is the case, it can be realized in MontiCore by configuring
the global scope to use a resolver adapting a foreign symbol kind to a known symbol
kind. Both languages and language components can be aggregated with other language
components and other languages.

The MLCDs, as presented so far, enable modeling an overview of the relationships
between language components. Sometimes it is helpful to visualize the internals of
a language component as well. For this purpose, MLCDs lend the notation of UML
component diagrams for describing the internals of a language component. The box
visualizing a language component can have nested software components or nested indi-
vidual artifacts. These artifacts or components are usually excerpts of the entire set of
contained artifacts, as a visualization of all artifacts of a language is highly complex.
The artifacts are visualized as boxes with a folded edge symbolizing sheets of papers,
and software components are denoted as boxes with a software component icon known
from UML component diagrams. Arrows visualizing inheritance and other forms of as-
sociations between contained individual artifacts, software components, or the language
components themselves can be used to depict the relationships between parts of one or
more language components.

185

Chapter 7 Language Components

An example of an MLCD with nested elements is depicted in Figure 7.5. The exam-
ple comprises two language components Automata and HAutomata. Each language
component contains a grammar, and the grammar HAutomata.mc4 extends the gram-
mar Automata.mc4. The artifact AutomataCoCos is associated with the artifact
UniqueStates, which are both located in the Automata language component. How-
ever, the artifact HAutomataCoCos of the language component HAutomata is also
associated with UniqueStates. The software component Automata2Java is asso-
ciated from the language component HAutomata, but it is underspecified from which
part of it.

While with language component diagrams, the contents of language components can
be overviewed, a complete visualization of all artifacts that are part of the language
components is rarely feasible. The MLC language presented in Section 7.4.1 enables
precise specification of all artifacts via textual models. The following describes a concept
for identifying artifacts that are part of a language component in a semi-automated
process. This concept is the basis for the MontiCore language component language.

7.3 Concept for Identifying Artifacts of Language Components

The own and allowed artifacts contained in language component models describe the
entirety of artifacts that a language contains and that it is allowed to use. However,
specifying each of such artifacts individually would be cumbersome, and the concrete
syntax of such models would be inherently complex. Instead, language component mod-
els can address such artifacts via regular expressions that we refer to as artifact selectors.
If an artifact analysis is carried out on a file system, the artifacts that a language compo-
nent actually uses can be determined. With this information, forbidden artifact usages
can be identified, and self-contained language component archives can be bundled. The
following sections describe the concepts for this.

7.3.1 Address Artifacts of a Language Component

Artifact selectors are statements that rely on a glob [Fri06] pattern that can be evaluated
against a file system. With a single glob expression, an artifact selector can describe the
selection of a set of artifacts. The combination of several artifact selector statements,
therefore, enables describing large sets of artifacts with little effort.

Glob expressions identify file paths in which parts of a path can be specified with dif-
ferent wildcard characters. A star * is a wildcard that identifies a sequence of characters,
and a question mark ? identifies a single character. For example, the glob expression
foo/*.aut identifies all files in the directory foo with the file extension aut. Simi-
larly, foo/*/PingPong.* identifies all files in direct subfolders of the folder foo with
the name PingPong and an arbitrary file extension. To address transitive subfolders of
a folder, glob expressions can use a double star **, like in foo/**/PingPong.aut.

186

7.3 Concept for Identifying Artifacts of Language Components

The correct identification of artifacts requires their fully qualified path in the file
system, beginning with the root of the file system. In the context of language component
models, however, fully qualified paths prevent the language component models from
being applicable in different file systems. This is a severe restriction because language
component models should be transferable. To overcome this restriction, artifact selectors
can be relativized with respect to a base indicator. A base indicator, thus, is a variable
that can be used as the prefix of a glob expression to absolutize a relative artifact
selector in a way that the relativized part can be evaluated against different file systems.
Currently, we distinguish three kinds of base indicators:

callDir is a base indicator that evaluates to the directory, from which the tool that pro-
cesses the language component model is invoked. This behavior matches the typical
behavior of relative file system indications in command-line interfaces. However, this
base indicator has to be handled with care as invocations of the tool from a different di-
rectory may yield different evaluations, which ultimately may identify different language
components.

projectDir is a base indicator that evaluates to a common root directory that the lan-
guage component is located in. Typically, this is the root directory of the build tool
module or project. For the proper evaluation of this base indicator, the directory must
be passed as an argument to the evaluating tool.

mp is a base indicator that evaluates to a set of directories that are entries of the model
path of the language. Currently, this is the only base identifier that can evaluate to
multiple directories. If this is the case, each artifact identifier is evaluated against multi-
ple base locations. The mp base indicator enables specifying artifacts that a language is
allowed to use that are located in a different language component or software component
whose absolute location relative to the location of the current language component should
not be explicated. Furthermore, in the context of build tools, this enables identifying
artifacts across the borders of build tool modules.

The MLC language described in Section 7.4.1 uses artifact selectors and base indicators
to enable evaluating language component models on different file systems.

7.3.2 Artifact Analysis

The own and allowed artifacts of a language have to be modeled in a manual process to
avoid omitting or including unintended artifacts. The artifacts that a language actually
uses, however, can be extracted in an automated process. An artifact analysis can unveil
refersTo associations between artifacts [BGRW17, GHR17]. The kinds of refersTo
relations between artifacts are modeled in an artifact model and depend on the kinds
of artifacts that are involved. For instance, MontiCore languages typically involve Java

187

Chapter 7 Language Components

artifacts, grammars, and FreeMarker templates. A MontiCore grammar can refer to
other MontiCore grammars only via grammar inheritance. Java artifacts can refer to
other Java artifacts in multiple reifications of refersTo associations including, among
others, via inheritance between the Java types or via usage of a Java type as the type
of an attribute, as the return type of a method, or as a super type of a generic type
argument. Given an input artifact, the artifact analysis calculates the set of all artifacts
to which the input artifact directly refers. Through iterative application, the transitive
closure of referred artifacts can be calculated as well.

Given the set of own artifacts as input, an artifact analysis can be performed against
a file system to calculate several sets of artifacts that are of importance for handling
language components.

Used artifacts are artifacts that a language component uses. More precisely, this set of
artifacts includes all artifacts to which at least one own artifact of a language component
refers. Own artifacts of a language are not included in the used artifacts. Therefore, if
an own artifact refers to another own artifact of the language, the referred artifact is not
contained in the set of used artifacts.

Forbidden artifacts are artifacts that a language uses illegally. Forbidden artifacts are
all artifacts that a language uses that are not allowed artifacts of the language. Hence,
the set is calculated with a set difference operation. If the set of forbidden artifacts of
a language is not empty, the language violates the specification given in the language
component model.

Unused artifacts are artifacts that are allowed through a language component model but
are not actually used by the language. This set of artifacts is an indicator for potential
refinements of artifact selectors specifying the allowed artifacts. Refining the artifact
selectors fosters immutability of the language component model against evolution in the
file system.

To simplify the calculation of forbidden artifacts of a language component, we assume
that each allowed artifact of a language component is an own artifact of another language
or software component that is modeled explicitly. Under this assumption, it suffices to
check the allowed artifacts against artifacts that are directly used by a language rather
than checking these against transitively used artifacts.

7.3.3 Building Self-Contained Language Component Archives

Self-contained language component archives can be built after evaluating a language
component model to distribute language components. To be self-contained, the language
component archive must contain not only the own files of a language component but also
the files that the language component uses transitively.

188

7.3 Concept for Identifying Artifacts of Language Components

There are different use cases for distributing a language component via an archive. A
language component can be distributed to access the language component via a language
tool that is realized as a command-line interface tool. For this use case, it is not relevant
that the archive includes the source files of a language component. Instead, it suffices to
include compiled class files and, if the language includes a code generator, the templates
of the code generator. Tool archives should usually be self-contained and thus should
include transitively used artifacts.

Another use case is the distribution of language components for reusing these in the
context of engineering another language component. For this purpose, language com-
ponent archives must include grammar files in addition to the compiled Java class files
and templates required for tool archives. Usually, it is not required to provide Java
source files as the language composition of MontiCore languages does not require their
re-compilation. An exception to this is a language that applies the TOP mechanism to a
class generated for an inherited language. However, we strongly recommend avoiding this
due to the required re-compilation. Alternative solutions for employing the TOP mecha-
nism to a Java type of an imported language include reconfiguration of the language mill
with a handwritten subtype or overriding a nonterminal and applying customization of
the generated code for classes synthesized from this nonterminal.

A third use case for language component archives is the distribution of the language
components for evolving or customizing the language component. This use case requires
including all source files of a language component in an archive. Generated artifacts are
not required to be included, as these can be reproduced from the source files.

All language component archives that do not have the purpose of using the language
component through a (command-line interface) tool should not include the artifacts
that a language component uses. The reason is that including used files increases the
likelihood of clashes between files with the same name if different language components
are reused at once. However, a single artifact may also be part of multiple language
components, and hence, such clashes cannot be avoided completely. To this effect, in
case that a build tool is used in combination with language component models, we
recommend using the archives produced by build tools for engineering languages and
self-contained archives only for distributing language tools. Build tools usually prohibit
that a file is part of multiple (atomic) modules at once. A further advantage of using
build tools for archiving language components is that their sophisticated dependency
management can be reused to identify archives by unique coordinates rather than by
their fully qualified location. Such coordinates usually contain the name of the module,
its version, and an optional classifier.

189

Chapter 7 Language Components

mlc Automata {

files "$projectDir/src/main/grammars" {

include "Automata.mc4" ;

}

files "$projectDir/src/main/java" {

include "automata/**/*.java" ;

}

files "$projectDir/target/generated-sources/monticore/sourcecode" {

include "**/*.java" ;

}

uses {

language "MCCommonLiterals" ;

include "$mp/java/**.class" ;

include "$mp/java/lang/reflect/**/*.class" ;

}

}

MLC01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

Figure 7.6: Example model of the MLC language

7.4 Realization of Language Components

This section presents the realization of language component models in MontiCore through
the MontiCore language component (MLC) language and the tool that processes MLC
models and can perform artifact analysis.

7.4.1 The MLC Language

The syntax of the MLC language is explained based on an exemplary model for the lan-
guage component Automata depicted in Figure 7.6. The language component definition
in an MLC model begins with the keyword mlc followed by the name of the language
component (l. 1). The body of the language component is enclosed by curly brackets
and may contain file blocks, include statements, and use blocks in arbitrary order. The
first element of the MLC body in the example is the file block in ll. 2-4. While file blocks
and include statements in the body of MLC models define own artifacts of a language
component, use blocks indicate artifacts and languages that a language component is
allowed to use.

File blocks begin with the keyword file, followed by an artifact selector that begins
with a base indicator (cf. Section 7.3). The consecutive block enclosed by curly brack-
ets contains a non-empty sequence of include statements followed by optional exclude
statements. Include statements and exclude statements have an artifact selector String
that uses a glob expression to address artifact sets. Include statements indicate artifacts
that should be included in a file block, while exclude statements exclude artifacts that

190

7.4 Realization of Language Components

grammar MLC extends MCBasicTypes, MCCommonLiterals {

MLCCompilationUnit = ("package" package:MCQualifiedName ";")? MLCDef;

symbol MLCDef = "mlc" Name "{" MLCElement* "}";

interface MLCElement;

interface UseElement;

FileBlock implements MLCElement, UseElement = "files" StringLiteral

"{" IncludeStatement+ ExcludeStatement* "}";

UseBlock implements MLCElement = "uses" "{" UseElement+ "}";

IncludeStatement implements MLCElement, UseElement = "include" StringLiteral ";";

ExcludeStatement implements UseElement = "exclude" StringLiteral ";";

LanguageStatement implements UseElement = "language" StringLiteral ";";

symbolrule MLCDef = includedFiles:Multimap<String, String>;

}

MCG01

02

03

04

05

06

07

08

09

10

11

12

13

Figure 7.7: MontiCore grammar of the MLC language

have been included before. The include and exclude statements of a single file block are
evaluated in the order of their appearance within a model. The order of different file
blocks in an MLC model does not influence the selection of artifacts.

The file block in ll. 2-4 includes artifacts from the folder src/main/grammars
relative to the project root directory. In the body of the block, only the artifact
Automata.mc4 is included. The second file block in ll. 6-8 uses a glob expression
to include all files with the file extension java that are located in transitive subdirecto-
ries of the directory automata relative to the path specified in the artifact selector in
the head of the file block.

Use blocks begin with the keyword uses, followed by a block of include and exclude
statements enclosed by curly brackets. Additionally, a use block may refer to other
MLC models whose own artifacts are allowed to be used. The use block in ll. 14-18
defines that the language component may use all artifacts of the language component
MCCommonLiterals. Furthermore, all Java class artifacts that are located in any
subfolders of the folder java relative to any model path entry may be used, except for
those that are located in any subfolders of java/lang/reflect.

In summary, the language component includes the grammar of the Automata lan-
guage as well as all handwritten and generated Java artifacts for the language. Further-
more, the language may use any artifacts of the inherited language MCCommonLiterals
and any Java API artifact except for the artifacts of the Java reflection API.

191

Chapter 7 Language Components

Grammar

The following describes the syntax in more detail through the grammar of the language,
which is the MLC grammar depicted in Figure 7.7. The grammar inherits from the
grammar MCBasicTypes to reuse the nonterminal MCQualifiedName and from the
grammar MCCommonLiterals to reuse the nonterminal StringLiteral (l. 1). To
create a hierarchical namespace of MLC models, each model may begin with a package
statement (l. 2) in the same syntax that Java uses for package statements. Import state-
ments are not allowed in an MLC model. The definition of an MLC is realized through
the nonterminal MLCDef (l. 3) that defines an MLCDefSymbol. The elements in the
body of an MLC definition are realized through the interface nonterminal MLCElement
(l. 4). Currently, the nonterminals FileBlock, UseBlock, and IncludeStatement
implement this interface nonterminal. The MLC language can be extended with addi-
tional elements if further nonterminals implement this interface.

The nonterminal FileBlock (ll. 6-7) defines the syntax for file blocks that begin with
the keyword file followed by a StringLiteral that realizes the artifact selector. The
body of a file block contains a non-empty list of include statements followed by a list
of exclude statements that may be empty. Hence, within a single file block, it is not
allowed that an include statement follows an exclude statement.

A use block may contain a list of UseElements, which are realized as another in-
terface nonterminal (l. 5). Currently, the nonterminals IncludeStatements (l. 9),
ExcludeStatements (l. 10), and LanguageStatements (l. 11) implement this in-
terface. Each of these statements begins with a specific keyword followed by a String-
Literal that realizes an artifact selector and by a semicolon. Furthermore, the non-
terminal FileBlock implements the interface. Because of this, a use block may have
nested file blocks. Modelers can use such nested file blocks as an alternative syntax for
individual include and exclude statements relative to a common base directory.

With the symbol rule for the nonterminal MLCDef in l. 12, the grammar adds an addi-
tional attribute to the MLCDefSymbols Java class, for which MontiCore also generates
access and modification methods. This attribute has the name includedFiles and is
a String multimap, i.e., a data type that maps Strings to a list of Strings. The entries
in the map are the paths of the own files of a language. The map is explained in more
detail in Section 7.4.1.

Context Conditions

The implementation of the MLC language currently relies on two context conditions that
ensure well-formedness of the syntax of models beyond the restrictions of the grammar.

The restriction that include statements must not follow exclude statements is achieved
through the grammar for file blocks. For use blocks, however, the combination of include
and exclude statements with language statements would require more complex handling

192

7.4 Realization of Language Components

of this restriction through the grammar. Furthermore, the use block elements are re-
alized via interface nonterminals because checking the restriction through the grammar
would impede the extensibility of the language with further nonterminals that imple-
ment the interface. Therefore, this restriction is realized through the context condition
UseBlockOrder. This context condition uses a visitor for traversing the AST of use
blocks and, during the traversal, ignores any contained file blocks. It sets a Boolean flag
once it encounters an exclude statement in an AST and yields an error on any consecutive
occurrence of an include statement.

The second context condition of the MLC language ensures proper usage of base
indicators. The artifact selector in the head of file blocks must always start with a
base indicator. If no explicit base indicator is given, the default base indicator is the
$callDir. All include and exclude statements within file blocks are relative to the path
in the file block’s head and, therefore, must not begin with an explicit base indicator. If
this condition is violated, the context condition yields an error. For include statements
outside of file blocks and include and exclude statements contained in use blocks, no
well-formedness checks are required. Instead, the artifact selectors in these statements
can have an optional explicit base indicator that evaluates to the default if it is omitted.

Symbol Table

The symbol table of the MLC language captures the essence of a language component
that other language components have to be aware of for their evaluation. To this end,
the symbol table of the MLC language performs the evaluation of the artifact selector
statements to obtain sets of absolute file locations for each artifact selector. Only the
absolute locations identify a consistent set of artifacts that other language components
can rely on for their evaluation. The exported symbol table of an MLC model includes
only the set of own artifacts of the language component, as the set of allowed artifacts
is not relevant for other language components.

As described in Section 7.4.1, the MLCDefSymbol derived from the grammar of the
MLC language contains an attribute includedFiles that manages the set of own
artifacts of the language component. Each entry in this set is the file path of an own
artifact of the language and is realized by an entry of the map of included files. The paths
are, however, separated into two parts, where one part is the key of the map and the
second part is a value for the key in the map. The keys of the map are model path entries
in which the artifact is located. The values are the file locations relative to the model
path entry. This separation is required for bundling the files of a language component
into archives. While the absolute qualifier of own files, i.e., their model path entry, is
omitted in archives, the folder structure of relative qualifiers is rebuilt in archives.

The includedFiles attribute is realized as multimap and, thus, MontiCore cannot
generate a built-in serialization strategy for this attribute. The custom serialization
translates the multimap into a JSON array with a value for each entry of the map. The

193

Chapter 7 Language Components

mlc Automata {

files "$projectDir/src/main/java" {

include "automata/**/*.java" ;

}

}

MLC { "kind": "mlc._symboltable.MLCDefSymbol",

"name": "Automata",

"includedFiles": [

{ "mpEntry": "C:/MLCExample/src/main/java",

"values": [

"automata/_ast/ASTAutomaton.java",

"automata/_symboltable/AutomatonSymbol.java"

]

}

]

}

JSON

MLCTool

with C:/MLCExample as projectDir,
artifact analysis yields two own files:
- C:/MLCExample/src/main/java/automata/_ast/ASTAutomaton.java

- C:/MLCExample/src/main/java/automata/_symboltable/AutomatonSymbol.java

Figure 7.8: Example for an MLC model and the exported MLCDefSymbol

individual entries are realized as JSON objects where the key of the map is realized as
object member with the key mpEntry and are of the JSON type String. The values of
the includedFiles are realized as a JSON object member with the key values of
the type JsonArray. The values of the array are the values of the includedFiles
map for the given key and are realized as JSON Strings.

An example of a minimalistic MLC model for the language component Automata
is depicted in the left side of Figure 7.8. The model contains a single file block with
the model path entry src/main/java relative to the projectDir base indicator.
The model is processed with the MLC tool (cf. Section 7.4.2) that performs an artifact
analysis and exports the symbol table for the Automata model. As an argument of the
tool, the project directory is set to the absolute location C:/MLCExample. The results
of the artifact analysis are the absolute locations of two Java source files ASTAutomaton
and AutomatonSymbol. The resulting exported symbol is serialized as the JSON object
depicted on the right side of Figure 7.8. The includedFiles map contains a single
map entry only. The key of this map entry is a model path entry with an evaluated
base indicator. For both files that have been found during the artifact analysis, a value
is contained in the entry. These values have locations relative to the mpEntry key.
The artifact paths in the stored symbol tables are specific to the file system on which
the artifacts are located. Hence, stored symbol tables of MLC models must not be
exchanged or distributed, e.g., as part of symbol libraries of language components. This
is a deliberate decision because it prevents re-evaluation of the regular expressions in the
models if the symbol table is loaded.

The symbol tables of the MLC language are loaded while evaluating the language
statements (cf. Figure 7.7). If a symbol file is found for the resolved name, it is loaded,
and re-evaluation of the regular expressions can be omitted. Otherwise, the language
attempts to find a suitable MLC model, parses it, and instantiates its symbol table.

194

7.4 Realization of Language Components

CDMLCTool

MLCDefSymbol mlc

Set<URI> ownArtifacts

Set<URI> allowedArtifacts

Set<URI> usedArtifacts

calculated from
MLC model

calculated during
artifact analysis

MLCTool(mlc, projectDir, mp)

void run(args)

boolean check()

Set<URI> getOwnArtifacts()

Set<URI> getAllowedArtifacts()

Set<URI> getUsedArtifacts()

Set<URI> getUnusedArtifacts()

Set<URI> getForbiddenArtifacts()

returns true if the set of
forbidden artifacts is empty

calculated via set difference

realizes a CLI

MLCLangTool

parse(..)

createSymbolTable(..)

checkCoCos(..)

storeSymbols(..)

run(..)

getAllowedFiles()

Figure 7.9: Tool for using the MLC language

7.4.2 Tool for Processing MLC Models

The class MLCTool implements the functionality to process language components in
the form of MLC models. The usual operations for processing MLC models with the
MLC language, such as parsing a model, creating the symbol table for a given AST,
checking the context conditions, and storing a symbol table, are realized in the class
MLCLangTool. The signatures for the static methods realizing the operations are as
follows:

parse(..) takes a path to an MLC model as an argument and returns the parsed model
as an instance of the class ASTMLCCompilationUnit. This method yields an error if
the model cannot be parsed.

createSymbolTable(..) uses an instance of the AST, such as the result of executing the
parse method, a String to the projectDir location, and a ModelPath as arguments.
The input is used to calculate the own files of the language component and instantiate the
symbol table for the passed AST. The result is an instance of the IMLCArtifactScope.

checkCoCos(..) uses a passed AST and checks the context conditions of the MLC lan-
guage. The method yields errors on a violation of context conditions.

storeSymbols(..) stores a passed artifact scope instance to a file at a file path passed as
String. As a side effect, the symbol table of the model is persisted.

run(..) executes all methods described above. As input, it requires the path to an MLC
model as a String argument, the projectDir path as a String argument, and the
ModelPath as another argument. The result is an instance of an MLCDefSymbol. As
a side effect, the symbol table of the model is persisted if the input model is parseable
and well-formed.

195

Chapter 7 Language Components

getAllowedFiles(..) calculates the set of allowed files as an instance of Set<URI>, i.e., a
set of Uniform Resource Identifiers [www05]. These identify artifacts uniquely regardless
of whether these are located in the local file system, in an archive, or at a remote web
server. As input, the method requires an AST, the path to the projectDir location,
and the ModelPath.

The MLCTool uses the MLCLangTool for processing an MLC model and, based on
the symbol table of this model, executes an artifact analysis to calculate the derived
artifact sets described in Section 7.3.2. An overview of the methods of the MLCTool
is depicted in Figure 7.9. An input MLC model is processed with the MLCLangTool
during instantiation of the MLCTool and, as a result, the MLCDefSymbol of the model
as well as the sets of own and allowed artifacts are available. The set of used artifacts
is calculated with an artifact analysis whenever it is required. Once calculated, the
set is cached for further requests. With the set of used artifacts, the sets of forbidden
artifacts and unused artifacts can be calculated by applying set differences. The method
check returns a Boolean value that is true if the set of forbidden artifacts is empty and
false otherwise. As a side effect in the latter case, the tool prints a list of forbidden
artifacts. The MLCTool realizes a command-line interface in the static method run.
The arguments are as follows:

-input reads the input MLC file at the passed location. This argument is mandatory.

-out sets the output directory for exported symbol tables. The default value is target/.

-projectDir sets the project directory for the evaluation of the MLC model.

-path sets the model path for the evaluation of the MLC model either as a single path
or as multiple path entries separated by space.

-prettyprint prints the MLC file to the console or to a specified output file.

-store serializes and prints the symbol table to the specified output file.

-check checks whether the language uses forbidden artifacts. If so, the tool reports these
and terminates with an error.

-own prints a list of all artifacts that are part of the language.

-allowed prints a list of all artifacts that the language is allowed to use based on the
MLC model.

-used prints a list of all artifacts that are used from artifacts of the language but are
not part of the language.

-forbidden prints a list of all artifacts that the language uses illegally.

196

7.5 Discussion

> java –jar MLCTool.jar –input Automata.mlc –projectDir . –own –forbidden

own: file:///C:/aut-lng/src/Automata.mc4

own: file:///C:/aut-lng/src/automata/_ast/ASTState.java

own: file:///C:/aut-lng/src/automata/_symboltable/StateSymbol.java

forbidden: file:///C:/gradle-repository/Statecharts.jar!statecharts/_ast/ASTState.java

�

Figure 7.10: Example output of an execution of the MLCTool.

The tool has several arguments that print lists of artifacts. Within these lists, the
URL of each artifact is printed in a new line. Each line starts with a short name
identifying the artifact list and a double colon, like in allowed:, followed by the URL
of the artifact. The prefix of the lines supports, among other things, reading in the
tool output with another tool. If the tool is called with multiple such arguments, the
corresponding lists are concatenated. An example of the output of a tool execution
is depicted in Figure 7.10. The first line depicted the tool call. The tool is executed
for an MLC model Automata.mlc with the directory of the tool call set as project
directory. Furthermore, the tool call uses the arguments own and forbidden to print
the respective artifacts. As a result of the tool call, the absolute locations of all own
artifacts and all forbidden artifacts are printed as described above. The figure depicts
three own artifacts (the grammar, an AST class, and a symbol class) and one artifact
that is illegally used. Three artifacts are files in the file system and one artifact is a file
contained in a jar file. A realistic tool execution would print larger numbers of artifacts,
which are omitted in the figure for presentational reasons.

7.5 Discussion

A typical characteristic of software components is that they have an interface that de-
scribes the interaction of the component with its environment [BHP+98]. The presented
approach does not proclaim explicit interfaces for language components. Instead, our
intention is that language component interfaces should be realized as part of the doc-
umentation of the language rather than through explicit development artifacts. Some
approaches for language componentization use explicit provided and required interfaces
of a language component [BPRW20, CBCR15]. Explicit interfaces enable language engi-
neers to oversee the important part of a language component, such as extension points,
without required in-depth knowledge about the internals of a language component. Such
internals are hidden from language engineers who want to reuse the language components
and, thus, realize a black-box character of language components. In practice, explicit
interfaces require additional effort for developing, evolving, and maintaining language
components that can lead to inconsistencies between the explicit interface and the imple-

197

Chapter 7 Language Components

mentation. Furthermore, a provided interface of a language component prevents reusing
parts of the language component that are not part of the provided interface and, thus,
requires language engineers to foresee all potential extension points of a language during
the design time of a language. Explicit interfaces cannot completely replace documenta-
tion about how to reuse a language component. Overall, the benefit of explicit interfaces
is more significant the higher the complexity of an individual language component. Our
approach, on the contrary, pursues language components with low complexity to foster
their independent reusability.

The artifact analysis performed in the context of language components can be extended
to identify proper access to the language component’s constituents. With the name and
location of the constituents alone, as it would be available in previous work [BEK+18b,
BEK+19], a fixed assumption about the access to objects, such as via a zero-argument
constructor, has to be made.

The symbol table of the MLC language exports the absolute location of all own arti-
facts of a language. This prevents distributing exported symbol tables between different
physical locations, e.g., between different machines. However, the set of absolute loca-
tions of the own artifacts of a language component is the information that other language
components have to know of a particular language component. For example, an MLC
model for the language A indicates that artifacts of A are allowed to refer to artifacts of
a language B. If the own files of B were not captured by the exported symbol table of
B, the MLC model of B would have to be processed anew completely. For constellations
of language components with many interrelations, this would be a severe reduction of
the performance.

With the artifact selectors presented in Section 7.3, it is possible to address artifacts
either precisely through their individual names or imprecisely by using wildcard symbols.
This affects the evolution of language components. For example, the include statement
in l. 7 of Figure 7.6 includes all Java artifacts that are located relative to the folder
automata. The include statement in l. 11 of the same figure includes all Java artifacts
of the base location. If the language component is renamed, the statement in l. 7
has to be adjusted accordingly while the statement in l. 11 is still correct. However,
if another language component HAutomata is conceived next to the location of the
language component Automata, the statement in l. 11 would include the artifacts of
HAutomata, which may be unintended.

During the evolution of a language component, the MLC models have to be evolved
accordingly. If this is not the case, the conceptual boundary of a language component’s
artifacts and the inclusion and exclusion of artifacts expressed in the MLC model diverge.
Future work should investigate tool support for the recommendation of adjustments to
the MLC model in accordance with the evolution of the infrastructure of a language
component.

In the MLC language, the modularization of build tools co-exists with the modulariza-
tion induced by language components. More precisely, MLC models are intended to be

198

7.6 Related Work

used upon the modules of build tools to foster more concise and finer-grained modular-
ization. If MLC modules were intended to replace build tool modules, the dependency
management would have to be more sophisticated, for instance, in terms of different
versions of the artifacts used. Furthermore, MLCs currently lack support for executing
the actual build through a build script.

The implementation of the MLC language realizes the identification of own artifacts
through include and exclude statements within file blocks. Within each file block, it is
prohibited that any include statements follow an exclude statement. The reason behind
this is that an inclusion of files after the exclusion might lead to the unintended inclusion
of artifacts that have previously been excluded. To circumvent include statements that
follow exclude statements, these can be extracted to a separate file block with the same
artifact selector.

7.6 Related Work

Componentization of languages is investigated in various related approaches. To foster
reusability of languages, many language workbenches [EvdSV+13] such as GEMOC Stu-
dio [www21a], MPS [VP12], Neverlang [VCPC13], Spoofax [KV10], and XText [Bet16]
support engineering language modules. The modularization of software languages re-
quires means to perform language composition [EGR12] of such modules. Other related
approaches for such mechanisms are described in Chapter 6.

The definition for language components presented in this chapter is similar to the
definition of GEMOC [CBCR15]. The major difference between the two definitions
is that the definition in this thesis does not prescribe that language components have
required and provided interfaces.

Melange [DCB+15], as part of GEMOC Studio [DMW17], separates language inter-
faces from language implementations to foster their reusability. Language interfaces
expose information about language constituents for a specific purpose. A primary moti-
vation behind the language interfaces in Melange is that these abstract from the imple-
mentation and thus, enable modifying the implementation while the interface remains
the same. Melange languages can be composed with different composition operators such
as merge and slice through their interfaces. Language implementations in GEMOC Stu-
dio rely on Ecore [SBPM09] metamodels for the definition of the abstract syntax, Sirius
or Xtext for realizing concrete syntax, as well as different meta-languages for defining
the execution semantics of a language.

In the revisitor [LDC+17, LDC18, Led19] approach, modular executable languages
are based on Ecore metamodels and have attached semantics that can be composed
with the revisitor pattern. In the metamodels, required elements can be used to real-
ize underspecification in the syntax. Bindings [LDC18] can relate elements of different
metamodels to realize language composition with the revisitor pattern [LDC+17]. With

199

Chapter 7 Language Components

this approach, language engineers can reuse language modules without foreseeing ex-
plicit extension points. The focus of this approach is to support independent language
extensions [LDWC19].

Concern-oriented language development (COLD) [CKM+18] is a paradigm for engi-
neering modular languages with the purpose of their reuse. A language concern in COLD
is similar to language components in our approach. Languages in COLD are the ana-
log of complete language components, and a facet in COLD is similar to a constituent
of a language component. Language concerns have three interfaces. The variation in-
terface makes closed variability within a language concern available for reuse, and the
customization interface realizes this for open variability within a language concern. The
usage interface defines the access to relevant operations and information of the concern.
In MontiCore, the usage interface is typically realized via the tool of a language, and the
customization interface is induced by the nonterminals of a language’s grammar. With
MontiCore language components alone, no variability interface is available. In combina-
tion with a feature model as described in Chapter 9, however, closed variability can also
be described.

In previous work in the context of product lines of languages [BEK+18b, BEK+19],
we described language components through tuples of grammar, context conditions, and
code generators. This approach is well suited for identifying the constituents of language
components by their kind. Through the grammar, all artifacts generated by the grammar
can be identified, and by strict usage of the TOP mechanism, handwritten adjustments
to these can be identified as well. With context conditions and code generators, many
commonly used handwritten artifacts that constitute a language are covered as well.
However, further handwritten constituents of a language cannot be addressed.

LISA [LDA13, Mer13] employs attribute grammars that describe integrated concrete
and abstract syntax and semantics of language modules. To compose these language
modules, LISA relies on inheritance as known from object-oriented programming. The
inheritance can be applied to the attribute grammars as well as to individual rules of
the grammars.

Component-based semantics [Mos19] is an approach for realizing semantics modules
based on context-free grammars for describing language syntax. Through using nonter-
minals that are not defined in a grammar, extension points can be realized. When the
language modules are composed, another grammar has to provide definitions for such
nonterminals. However, the focus of this approach is the compositional semantics based
on “funcons” as individual fundamental programming constructs. To give meaning to a
model, the syntax is translated into funcons that an interpreter executes.

200

Chapter 8

The MontiCore Feature Diagram Language
Family

The MontiCore feature diagram language family realizes feature diagrams (cf. Sec-
tion 2.3.3) and two different notations for feature configurations as textual DSMLs.
The language family comprises three languages:

The feature diagram language (FDL) is used to describe the variability of a product
line in the form of a feature model. Feature models may import other feature models
to foster their modularization. The language contains extension points to enable the
customization of feature diagrams for different application scenarios.

The feature configuration language (FCL) is used to model feature configurations that
describe a product of the product line. Feature configurations refer to a feature model
and contain a set of selected features. They do not make assumptions about features
that are not selected. Therefore, all features of a feature diagram that are not explicitly
selected in a feature configuration model are either excluded or no choice has been made
for these. The FCL does not distinguish this.

The partial feature configuration language (PFCL) is used to model partial feature
configurations. In addition to selecting features, partial feature configuration models can
explicitly exclude features that should not be part of the described product. Compared
to models of the FCL, partial feature configurations, thus, distinguish excluded features
from those for which no decision has been made yet. The set of features for which no
decision has been made contains exactly those features of the feature model, which are
neither explicitly selected nor excluded. This fosters, among other things, the staged
configuration [CHE05] of products from the product line.

The advantage of engineering a feature-oriented software product line with the feature
diagram language family is that the realizations of features in software can be strongly
coupled with the features of the feature diagram. The powerful language composition
mechanisms of MontiCore can integrate feature diagrams with software artifacts that
implement the features. Such integrations can be realized in different forms, as explained
in Section 8.4. In contrast, feature diagram tools without language composition use

201

Chapter 8 The MontiCore Feature Diagram Language Family

Feature

Configuration

Feature

Diagram

Common

Expressions

FeatureConfig-

urationPartial

Cardinality

MCBasicTypes

MCBasics

Expressions

Basis

Literals

Basis

Common

Literals

MontiCore
language component library

Feature diagram languages

used for cardinality feature groups

used for cross-tree
constraints

for qualified names
and import statements

MLCD

Figure 8.1: Overview of relations between language components and languages realizing
the feature diagram language family

concepts such as bindings between features and software artifacts or annotations in source
code artifacts that mark the feature to which these belong. The consistency between
the feature model and the features in the source code often has to be checked manually
or with external tools. In the feature diagram language family, such integrations can be
realized in different forms, as explained in Section 8.4.

The languages of the feature diagram language family and the language compo-
nents that these reuse from the MontiCore language component library [BEH+20] are
overviewed in Figure 8.1. The FeatureDiagram language extends three language com-
ponents. It extends the language component MCBasicTypes for reusing qualified names
and import statements, the CommonExpressions language component for realizing
cross-tree constraints, and Cardinality for realizing cardinality feature groups. These
language components again reuse other language components, as depicted in Figure 8.1.
MontiCore’s library of language components and their interrelations are explained in
more detail in the MontiCore reference manual [HKR21].

The FeatureConfiguration language extends the FeatureDiagram language to
reuse the symbols of features and feature diagrams. The FeatureConfiguration-
Partial language extends the FeatureConfiguration language and adds selection
and exclude statements. The following sections explain the syntax for the languages of
the feature diagram language family in more detail.

202

8.1 The Feature Diagram Language

01

02

03

04

05

06

07

08

09

10

11

package car.pl;

featurediagram Navigation {

Navigation -> Display & GPS & PreinstalledMaps? & Memory;

Navigation -> VoiceControl ^ TouchControl;

Memory -> Small ^ Medium ^ Large;

Display -> SmallScreen | LargeScreen;

PreinstalledMaps -> [1..3] of {Europe, NorthAmerica, SouthAmerica, Asia, Africa};

TouchControl requires LargeScreen;

SmallScreen excludes TouchControl;

(Europe && NorthAmerica && Asia) requires (Large || Medium);

}

FD

alternative feature group

selection feature group

mandatory featureoptional feature

equal to: !TouchControl || LargeScreen

equal to: !(SmallScreen && TouchControl)

cardinality feature group

cross-tree constraints can be nested expressions

Figure 8.2: Exemplary model conforming to the feature diagram language

8.1 The Feature Diagram Language

The feature diagram language describes textual feature models with cross-tree constraint
expressions and cardinality groups. The language provides extension points for extending
it with novel feature diagram concepts as language extension or for embedding other
languages. This can be used to realize attributed feature diagrams.

The textual syntax of feature models is depicted by the example of a feature model
Navigation in Figure 8.2. Each feature model has a name (l. 2). Similar to artifacts
in programming languages such as Java, feature model artifacts can be arranged in
packages with package statements (l. 1), which yields a hierarchical namespace for feature
diagram names. The example feature model has the simple name Navigation and the
full name car.pl.Navigation. The body of a feature diagram is enclosed by curly
brackets and contains feature tree rules as well as cross-tree constraints. The root feature
Navigation of the feature model has the same name as the feature model (l. 3) and
four subfeatures. In this example, the root feature is the first feature tree rule. In
general, however, this is not necessarily the case. Instead, the root feature is identified
as the only feature that is not contained in a right-hand side of a feature tree rule.
The subfeatures of Navigation are not arranged in a feature group, indicated by the
separating character '&'. The features Display, GPS, and Memory are mandatory
subfeatures of Navigation. PreinstalledMaps is an optional subfeature, indicated
by a subsequent question mark. Subfeatures of a feature can be part of a feature group.
The supported kinds of feature groups are

� alternative feature groups (l. 4), indicated by the separating character 'ˆ',

� selection feature groups (l. 6), indicated by the separating character '|', and

203

Chapter 8 The MontiCore Feature Diagram Language Family

FD

GPSDisplay
Preinstalled

Maps

Touch

Control

Navigation

Small Medium Large

Voice

Control
Memory

Small

Screen

Large

Screen
Europe

North

America

South

America
Asia Africa

¬��������	
�� ∨
�
����
���	

¬(�������
��� ∧ ��������	
��)

¬(��
��� ∧ ��
	����
��� ∧ ����) ∨
�
�� ∨ ������	

[1..3]

Figure 8.3: Graphical representation of the textual feature model presented in Figure 8.2

� cardinality feature groups (l. 7), indicated by a cardinality range from the minimum
to the maximum number of selected features and a set with the subfeatures that
are part of this group.

A feature must not be part of more than one feature group. However, a feature may
have more than one group of subfeatures. In the textual notation, this is realized through
multiple feature tree rules that have the same feature on the left-hand side. For example,
the feature Navigation is on the left-hand side of two feature tree rules (ll. 3-4).

For realizing cross-tree constraints, the feature diagram language has two dedicated
built-in operators. The requires operator (l. 8) indicates that the selection of a feature
on the left-hand side of the operator requires the selection of the feature on the right-
hand side in every valid feature configuration. The excludes operator (l. 9) indicates
that the feature on the left-hand side of the operator and the feature on the right-hand
side of the operator may not both be part of a valid configuration. Cross-tree constraints
can be comprised of arbitrary nested Boolean expressions, including the dedicated built-
in operators (l. 10). The meaning of the cross-tree constraint in l. 10 is that if Europe,
NorthAmerica, and Asia are selected in a configuration, this requires either Large or
Medium to be selected as well. A graphical representation of the textual feature model
presented in Figure 8.2 is depicted in Figure 8.3.

For modularization of feature diagrams, the feature diagram language supports that
a feature diagram imports other feature diagrams. If a feature diagram B imports a
feature diagram A, all feature tree rules and cross-tree constraints of A hold for the
feature diagram B as well. There is a flat namespace of feature names, which means
that A and B may not use the same name for different features. If a feature name occurs
in both diagrams, it identifies the same feature. Thus, any feature name f of A can
be used in the feature tree of B. This integrates the feature f and the feature subtree

204

8.1 The Feature Diagram Language

01

02

03

04

05

06

07

08

09

10

11

12

13

14

grammar FeatureDiagram extends Cardinality, MCBasicTypes, CommonExpressions {

FDCompilationUnit = ("package" package:MCQualifiedName ";")?

MCImportStatement* FeatureDiagram ;

symbol scope FeatureDiagram = "featurediagram" Name "{" FDElement* "}" ;

interface FDElement ;

symbol Feature = Name ;

FeatureTreeRule implements FDElement = Name@Feature "->" FeatureGroup ";" ;

FeatureConstraint implements FDElement = constraint:Expression ";" ;

interface FeatureGroup = GroupPart+ ;

GroupPart = Name@Feature optional:["?"]? ;

OrGroup implements FeatureGroup = GroupPart ("|" GroupPart)+ ;

Requires implements Expression <115>, InfixExpression =

left:Expression operator:"requires" right:Expression;

}

MCG

Figure 8.4: Excerpt of the grammar realizing the syntax of the feature diagram language

that the feature induces into the feature tree of B. However, all constraints for feature
configurations of A that are described through feature groups, cross-tree constraints,
and parent-child relationships between features, then also hold for the feature diagram
B. With this import mechanism semantics, the root feature can be defined either in
the imported feature diagram or in the local feature diagram. Any feature can be
imported, not only the root feature of an imported feature diagram. If the local and
imported feature tree rules do not describe a tree of features but a forest1 of features or
a feature that has more than a single parent, the model is not considered well-formed
anymore. By importing other feature diagrams, a feature diagram may have feature
tree rules that describe a tree but yield no valid feature configuration. We call such
feature diagrams void feature diagrams and consider these well-formed. Suitable feature
analysis [BSRC10] can detect void feature diagrams.

An excerpt of the grammar realizing the syntax of the feature diagram language is
depicted in Figure 8.4. An FDCompilationUnit (ll. 2-3) contains the optional package
declaration, a list of import statements, and a FeatureDiagram. A FeatureDiagram
begins with the keyword featurediagram, has a Name, and contains FDElements.
The nonterminal defines a symbol with the name of the feature diagram and spans a
scope to create a namespace for contained feature names. The interface nonterminal
FDElement (l. 5) is implemented by the nonterminals FeatureTreeRules (l. 7) and
FeatureConstraints (l. 8). It further acts as an extension point. If a language ex-

1With forest, we denote a set of trees.

205

Chapter 8 The MontiCore Feature Diagram Language Family

Common

Expressions
A.b() A.b ~ ! * / % + - <= >= < > == != && || A?B:C (A)

Feature

Diagram
✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔

Figure 8.5: Some expressions of CommonExpressions are reused for the feature dia-
gram language (3), and some are not (7)

tends the feature diagram language and adds another nonterminal implementation for the
interface, novel kinds of feature diagram elements, such as for instance, blocks for declar-
ing feature attributes, can be added. Each feature tree rule has the name of a feature
on its left-hand side, followed by an arrow separating the left- and right-hand side and a
feature group on its right-hand side. FeatureGroup (l. 9) is an interface nonterminal
for which different implementations are included in the feature diagram language. The
excerpt of the grammar only introduces the OrGroup (l. 11) as implementation, but
similar nonterminals exist for XorGroups, AndGroups, and CardinalizedGroups.
The interface nonterminal FeatureGroup is a further extension point of the feature di-
agram grammar. Novel kinds of feature groups can be added through language extension
by adding further nonterminals implementing the interface.

The nonterminal FeatureConstraint introduces cross-tee constraints in feature
models. For these, it reuses the Expression interface nonterminal from grammar
ExpressionsBasis of the MontiCore language component library. As the feature
diagram grammar further extends the CommonExpressions grammar, all implemen-
tations of the Expression nonterminal can be used for cross-tree constraints as well. The
grammar for CommonExpressions introduces more kinds of expressions than the fea-
ture diagram intends to reuse. Hence, some expressions are explicitly forbidden to be
used in feature models. This is realized as a context condition that yields an error if a
forbidden expression is part of an AST. Figure 8.5 depicts which kinds of expressions are
allowed to be used and which expressions are forbidden. For simplicity, the expression
kinds are identified by the syntax of their operators.

The built-in operators for feature diagrams are added as implementations of the
Expression nonterminal. The excerpt of the grammar depicts the Requires nonter-
minal (ll. 12-13) that implements the nonterminal for expressions and integrates a novel
kind of expression with a parser priority of 115. It uses the Expression nonterminal
for the left- and right-hand sides of the cross-tree constraint to enable nesting with other
kinds of expressions.

All feature names within the feature diagram grammar are marked as name usages.
This holds for feature names on the left-hand side of feature tree rules (l. 7) as well as for
feature names on their right-hand side (l. 10). At the same time, there is a nonterminal
introducing feature names in l. 6, but the nonterminal is not reachable from the start
rule of the grammar and, therefore, is never parsed. Instead, the nonterminal has the

206

8.2 The Feature Configuration Languages

01

02

03

04

05

06

package car.cfg;

import car.pl.Navigation;

featureconfig BasicNavigation for Navigation {

Navigation, VoiceControl, Display, SmallScreen, GPS, Memory, Small;

}

FCimports a feature model

feature model must
be explicated

list of selected features

feature
configuration

01

02

03

04

05

06

07

08

package car.cfg;

featureconfig BasicCarNavigation for car.pl.Navigation {

select {

Navigation, VoiceControl, Display, SmallScreen, GPS, Memory, Small

}

exclude { Large }

}

PFC

block with selected featuresblock with excluded features

qualified name of feature diagram

partial feature
configuration

Figure 8.6: Exemplary models of the feature configuration language (top) and the partial
feature configuration language (bottom)

sole purpose of defining feature symbols with the effect that MontiCore generates symbol
table infrastructure for handling feature symbols. During symbol table creation of feature
diagram models, the first occurrence of a feature name in a model introduces a feature
symbol for this name. All subsequent occurrences of the name in the model are handled
as usages of this name. This deviates from the default handling of MontiCore symbol
definitions in which symbols are created if an instance of a symbol-defining nonterminal
is contained in the AST of a model. Feature diagrams have this special behavior because
the name of a feature is neither uniquely defined on the left-hand side of a feature tree
rule nor on its right-hand side.

If feature names would be defined on the left-hand side of feature tree rules, multiple
feature groups for the same parent feature could not be defined through individual feature
tree rules (cf. ll. 3-4 in Figure 8.2) as their names would not be unique. Furthermore,
leaf features would require special treatment, as their names only occur on the right-
hand sides of feature-tree rules. If feature names were defined on the right-hand side
of feature tree rules, the root feature would require special treatment because its name
occurs only on the left-hand side of feature tree rules.

8.2 The Feature Configuration Languages

The feature diagram language family includes two languages for modeling feature con-
figurations. An example of a model conforming to the FeatureConfiguration lan-
guage is depicted in the top of Figure 8.6. The bottom of the figure depicts an example
model conforming to the FeatureConfigurationPartial language. Models of both
languages can contain package definitions and import statements that refer to feature

207

Chapter 8 The MontiCore Feature Diagram Language Family

models. Each (partial) feature configuration model has a name and refers to a feature
model, which is indicated by using the name of a feature diagram. Feature configuration
models have a body that may only contain a comma-separated list of feature names (l. 5)
that are contained in the configuration. Partial feature configuration models, instead,
contain blocks with selected features (ll. 4-6) and blocks with excluded features (l. 7).
Features for which no selection has been made are not explicated.

The grammars for these languages are not included here for reasons of brevity. How-
ever, the entire source code of the feature diagram language family, including these
grammars, is available on GitHub2.

8.3 The Feature Diagram Analysis Tool

Models of all three languages that constitute the feature diagram language family are
processed by three individual language tools, where each is available as CLI and as Java
API. The FeatureDiagramCLI tool processes feature models, while the Feature-
ConfigurationCLI tool processes feature configuration models, and the Feature-
ConfigurationPartialCLI tool processes partial feature configurations. These tools
support the usual steps in language processing in a language’s frontend, such as parsing
a model to an instance of the AST, creating the symbol table for an instance of the
AST, checking context conditions, storing a symbol table to a file, and pretty printing
an AST. Each of these steps is realized as an individual method of the respective Java
class of the tool. The main methods of the Java classes invoke run(String[] args)
methods that realize the CLI.

The feature diagram analysis CLI tool (or short: FACT) utilizes the individual lan-
guage tools for feature diagrams and (partial) feature configurations and realizes several
analyses against feature models and feature configuration models. FACT can be used
both as Java API or via the command line. It processes a feature model passed as an
argument with the feature diagram tool and then pretty prints the feature model to
FlatZinc [NSB+07], which is a DSL for constraint satisfaction problems. In general,
feature models can be represented as constraint satisfaction problems [Bat05], which
enables solving feature analyses through integration with SAT solvers.

Some kinds of analyses require a feature configuration model as an additional argu-
ment. If such an analysis is performed, the input feature configuration model is processed
with the feature configuration tool and is also translated to FlatZinc. Afterward, FACT
passes the FlatZinc representation of the feature model (and optionally, the feature con-
figuration) to a constraint solver. The FlatZinc notation is a supported input format

2The feature diagram language family on GitHub: https://github.com/MontiCore/
feature-diagram

208

https://github.com/MontiCore/feature-diagram
https://github.com/MontiCore/feature-diagram

8.4 Composing Feature Models with Domain Models

of several constraint solvers such as Choco3, Gecode4, or OR Tools5. The indirection
through FlatZinc decouples FACT from a concrete (third party) solver. Furthermore, it
enables inspection of the translated feature diagram by language engineers and modelers.
To integrate a solver with the FACT, the feature diagram language family provides the
interface ISolver. This interface prescribes three methods that have a FlatZinc model
as an argument. A concrete solver has to implement the methods.

hasSolution returns true if the passed FlatZinc model has a solution and false, other-
wise. This can be used for analyses that check whether a configuration is valid.

getAnySolution returns a single solution (i.e., values for open variables) for the passed
FlatZinc model. This can be used to find a valid configuration of a feature model.

getAllSolutions returns all solutions for the passed FlatZinc model. This enumerates
all valid configurations of a feature model. Unsurprisingly, calculating all configurations
is inefficient, which may result in long execution times for large feature models.

8.4 Composing Feature Models with Domain Models

In MDD applications, feature diagram tools enable modeling a connection between the
feature model and the domain models that can provide far more analyses for the cor-
rectness of the product line and can detect inconsistencies between the participating
models. If the feature diagram language and the domain languages are not engineered
as compositional languages in the same technological space (i.e., in the same language
workbench), realizing such connections is cumbersome. In this case, the languages are
typically only loosely integrated by annotating/stereotyping the domain models with the
names of the feature model or by using comments in the domain language to indicate the
connection to a feature. With compositional languages, sophisticated forms of language
composition can be achieved, among other things, to support bidirectional traceability
between a feature and a domain model or proper type checking between features models
and domain models.

As the feature diagram language family is engineered with the language workbench
MontiCore, it can build upon MontiCore’s powerful language composition mechanisms.
This enables different forms of connections between the feature diagram language and
domain languages in which features are realized. The following sections describe three
of these forms.

209

Chapter 8 The MontiCore Feature Diagram Language Family

Feature

Diagram

Product Line

Language

Feature

Diagram

Product Line Language

Class

Diagram

MLCD

(1) extension (2) embedding

featurediagram X {

A -> B ^ C ;

class A { }

class B { }

class C { }

}

classdiagram Y {

class A { }

class B { }

class C { }

A -> B ^ C ;

}

example models:

(a) (b)

Figure 8.7: Examples for internal feature realizations on the language level (left) and
models conforming to these languages (right)

8.4.1 Internal Feature Realizations

A simplistic approach for integrating feature models with the realization of features in
domain models is to include both in a single model artifact. The produced integrated
artifact is a 150% model with an integrated feature model and, thus, has similar advan-
tages and disadvantages as regular 150% models. Technically, the product line language
can extend the feature diagram language to reuse the feature diagram syntax and add
novel concepts for the domain model parts of the language. However, internal feature
realizations can alternatively be achieved by language embedding, where the feature dia-
gram language is either the host language or the embedded language. Two examples for
internal feature realizations with class diagrams as domain language are depicted in Fig-
ure 8.7. The left side shows the different options to conceive a language for internal
feature realizations. The product line language can be realized either (1) as extension
to the feature diagram language or (2) by embedding the class diagram language into
the feature diagram language or vice versa. The latter is realized in MontiCore through
multiple inheritance. The right side of Figure 8.7 depicts exemplary models for both
cases that (a) the feature diagram language is the host language or (b) the class dia-
gram language is the host language. Either alternative can be realized by both language
extension or embedding.

An advantage of the integrated notation is that no inconsistencies between a feature
model and the domain model may arise. Furthermore, a product line engineered with
this approach comprises only a single artifact, preventing the scattering of domain arti-
facts. However, integrated feature realization models tend to become complex for larger
product lines, and therefore this approach does not scale well. In addition, all parts of
the domain model are bound to the feature model, which reduces the ability to reuse the
domain model, or parts of it, with different language product lines. As domain model and
feature model do not remain in separate models, each combination of feature language

3The Choco Website: https://choco-solver.org/
4The Gecode Website: https://www.gecode.org/
5The OR Tools Website: https://developers.google.com/optimization

210

https://choco-solver.org/
https://www.gecode.org/
https://developers.google.com/optimization

8.4 Composing Feature Models with Domain Models

example models:MLCD

featurediagram F {

A -> B ^ C ;

}
classdiagram A {

class X { }

class Y { }

class Z { }

}

Feature

Diagram

Class

Diagram

adapt CDSymbol to

FeatureSymbol

Figure 8.8: Example for feature diagrams referring to external feature realizations on the
level of languages (left) and models (right)

and domain languages requires individual language tooling such as a parser. Therefore,
internal feature realizations have limited reusability for domain language tools.

8.4.2 Referring to Feature Realizations

Through language aggregation between the feature diagram language and domain lan-
guages, features of the feature model can be related with feature realizations in the
domain language via symbolic links. This requires that the feature realization in the
domain language can be identified through a named model element that has the same
name as the feature in the feature model. Technically, this approach demands imple-
menting a symbol adapter from the symbol kind of the named language element in the
domain language to the feature symbol kind defined in the feature diagram language.
If the symbol adapter is integrated into the feature diagram language via configuration
of its global scope, a context condition can check the existence of a feature realization
for each feature of the feature model. This can also be the basis for further analyses
and transformations operating on the integrated abstract syntax between the feature
diagram language and the domain language. An example of feature diagrams that refer
to feature realizations in the form of a class diagram model is depicted in Figure 8.8.
The feature A of the feature diagram F refers to a class diagram with the name A. Other
features of the feature diagram refer to further class diagram models.

Compared to internal feature realizations, this approach enables independent reusabil-
ity of feature model and domain models, as these are only loosely coupled through lan-
guage aggregation. Furthermore, the language infrastructure for these languages can be
reused without modifications as well. The separation into different models further fosters
the readability of the models, as these have fewer lines of code and are less complex in
their structure. For language aggregation, it is viable that the name of the model element
of the feature realization is identical with the name of the feature in the feature model.
The flat namespace for feature names further prohibits using feature realizations with
hierarchical names. Hence, this approach cannot enable reusing any language elements
as feature realizations. Furthermore, the separation into individual models can yield

211

Chapter 8 The MontiCore Feature Diagram Language Family

MLCDFeature

Diagram

Class

Diagram

Mapping

Language

featurediagram F {

A -> B ^ C ;

}

classdiagram Foo {

class X { }

class Y { }

}
mapping Bla {

bind F.A to Foo.X;

bind F.B to Foo.Y;

bind F.C to Bar.Z;

}

classdiagram Bar {

class Z { }

}

example models:

Figure 8.9: Examples for mapped feature realizations on the level of languages (left) and
models (right)

inconsistencies between feature models and domain models. For example, renaming a
feature realization makes it unreachable from the feature model unless the feature is
renamed there as well.

8.4.3 Mapping to Feature Realizations

Introducing a layer of indirection between feature model and domain models helps to
mitigate some disadvantages of the approach in Section 8.4.1 but also introduces more
complexity. The indirection can be realized by introducing a mapping model or a tagging
model [GLRR15] to draw the connection between a feature model and domain models.
This mapping (or tag) model conforms to a mapping (or tagging) language aggregating
the feature diagram language with the domain language(s). An example of feature
diagrams that map features to their realizations in the form of classes of class diagram
models via a mapping model is depicted in Figure 8.9. The feature A of the feature
diagram F refers to a class X in the class diagram with the name Foo. Other features of
the feature diagram refer to further classes of the same or different class diagram models.

An advantage of mapping features to their realizations is the loose coupling between a
feature model and domain models. Any named model element can be reused as a domain
model with a suitable mapping language. The feature realization can be identified with
a name that does not match the feature name and thus can also be identified in a
hierarchical namespace. Furthermore, this approach enables using heterogeneous models
for realizing features and supports mapping a single feature to multiple solution space
artifacts. The approach, thus, is beneficial for larger product lines in which solution
space artifacts are to be engineered individually and separated from the product line.
However, mapping models increase the complexity of the product line engineering as
at least three models conforming to three different languages are required to realize
a product line. The indirection can lead to inconsistencies between all three kinds of
models, which have to be taken care of, e.g., by proper tool support.

All presented approaches have individual strengths and weaknesses that make these
suitable for different applications. The MontiCore feature diagram language family sup-

212

8.5 Discussion

ports all three approaches and moreover, supports combining the approaches to achieve
optimal results for an application. For instance, the language product line language
(cf. Section 9.2) is a combination of integrated and external feature realizations. While
feature models have integrated feature realizations in terms of referenced language com-
ponent models and binding rules, the majority of feature realizations (including the
grammars, parsers, and context conditions) are contained in external artifacts.

8.5 Discussion

The presented approach for realizing feature diagrams in the context of a language work-
bench that supports language composition is currently limited to the presented notations
and language elements. While the language includes syntax for cardinalized feature
groups [RBSP02], it does not support cardinalized features [MCHB11]. In addition,
it would be possible to extend the language with additional feature diagram language
concepts such as abstract features [TKES11]. Extending the language entails adjusting
the feature analyses that are affected by the novel language elements accordingly. How-
ever, the visitor infrastructure generated by MontiCore enables extending analyses for
new language elements with little effort [BEH+20]. A further advantage of building the
feature diagram language on top of a language workbench is the fact that it can be inte-
grated with other modeling languages to realize product lines in pervasive model-driven
applications.

There is a strong correspondence between feature diagrams and context-free gram-
mars [dJV02]. Both feature diagrams and grammars describe tree structures, where a
feature diagram describes the configuration space of feature configurations and a gram-
mar describes the valid parse trees. In this, a feature diagram can be modeled through a
grammar in which each valid model of the grammar is a feature configuration. The con-
crete syntax of the presented feature diagram language is similar to the concrete syntax
of MontiCore’s grammar language by intention. Reusing notations when engineering a
new language increases the usability of the language for language users [Hoa73].

Many approaches for modeling feature diagrams support a graphical syntax. The pre-
sented approach, however, is realized as a textual language, which may be less intuitive
to understand for users familiar with the graphical feature diagram syntax. However,
a textual syntax bears advantages such as better support for version control or no lim-
itations regarding the model editor tools [GKR+07]. A pretty printer that translates
the textual syntax of a model into a representation that can be imported by a graphical
feature diagram editor of choice can be realized with little effort.

213

Chapter 8 The MontiCore Feature Diagram Language Family

8.6 Related Work

Originally developed in the context of the feature-oriented domain analysis [KCH+90],
feature diagrams have been adapted and extended in various contexts [CE00]. There is a
variety of feature diagram tools, such as FAMILIAR [ACLF13], FeatureIDE [MTS+17],
FeaturePlugin [AC04], pure::variants [Beu12], and SPLOT [MBC09].

FAMILIAR [ACLF13] is a textual DSML for feature diagrams and operations on fea-
ture diagrams. It aims at large-scale management of feature diagrams and, hence, sup-
ports modularization and composition of feature models. In contrast to the approach
presented in this thesis, a model artifact in FAMILIAR may contain more than a single
feature model or feature configuration. It may contain multiple feature models captured
as individual variables as well as operations to modify feature models and to check prop-
erties of the feature models. These operations enable realizing both anomaly detection
and correction. In the feature diagram language family presented in this thesis, the mod-
els do not contain operations on features or feature diagrams. Instead, such analyses are
located in external tools such as the FACT tool, which makes the models less complex.

FeatureIDE [MTS+17] is a tool suite that aims at supporting all phases of feature-
oriented software development and is realized as a plug-in for the Eclipse IDE. In Fea-
tureIDE, feature diagrams and feature configurations are mainly viewed and edited in
a graphical concrete syntax. The tool suite contains editors for feature diagrams, cross-
tree constraints, and feature configurations. Furthermore, it supports several feature
analyses and different integrations for assets that realize features in the source code,
e.g., for Java artifacts. In contrast to the feature diagram language family presented
in this thesis, FeatureIDE is centered around editors and the Eclipse IDE instead of
providing command-line interface tools. The feature diagram language family is built
with the language workbench MontiCore and can be extended and integrated with other
languages through the language composition mechanisms of MontiCore.

Beyond feature diagrams, which have found wide application in modeling variability
of software, there are different variability modeling languages [BSL+13, CGR+12] such
as orthogonal variability models or decision models. Orthogonal variability models rep-
resent variation points orthogonal to a base that contains the commonalities between all
variants of a product line. Decision models focus on the decisions that have to be made
during the derivation of a product. This is in contrast to feature models, which focus on
the features that users can experience to distinguish between variants of a product line.
There are different approaches for realizing decision models [SRG11].

214

Chapter 9

Engineering Feature-Oriented Language
Product Lines with MontiCore

Throughout the past decades, software has become ubiquitous and, thus, the application
domains for which software is engineered are nearly endless. The ability to encode
problems of a domain into well-designed software depends on the means of the software
language in which the problem is described [MHS05]. MDD with DSMLs reduces the
gap between problem description and the solution domain [FR07]. Using a programming
language, such as C++ or Java, that is agnostic of the domain for encoding such problems
can lead to complex programs [BGM10]. Furthermore, implementing such programs in
a programming language can be challenging since there are typically numerous ways
of describing problems, which have individual advantages and disadvantages that only
experienced programmers can assess.

Due to the variety of different application domains for software, the domain experts
are, e.g., mechanical engineers, legal experts, robotics experts, or dispatchers but rarely
software engineering experts. Encoding, for instance, a law into a dedicated DSML en-
ables realizing a compact yet understandable syntax compared to encoding the same
law into a programming language. Among other things, this is because DSMLs can use
domain vocabulary with which domain experts are familiar. Using an overly general
software language, on the other hand, usually leads to accidental complexity [Bro87]
for the modelers as these have to learn the complex language constructs of program-
ming languages, although they require understanding only a small portion of the overall
language’s features for describing their problems.

The language composition mechanisms, as explained in Chapter 6, and modular lan-
guages in terms of the reusable language components, as described in Chapter 7, reduce
the effort for engineering new languages and, hence, foster agile language engineering.
Reusing language modules improves the quality of the language implementation – be-
cause modules can be tested independently – and reduces the time for engineering a
new language because less additional implementation effort is required. Beyond this, a
well-designed language uses concepts that its users are familiar with, i.e., a language
designer’s task is “consolidation, not innovation” [Hoa73]. This motivates developing
numerous DSMLs while reusing language parts whenever it is considered beneficial.

215

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

MyADL Product Line

Artifact

Artifact

Artifact

ArtifactArtifactArtifact

Artifact
Artifact

Artifact

Artifact
Artifact

Artifact

Artifact

Artifact

Artifact Artifact

Artifact

ArtifactArtifact

Artifact

ArtifactArtifact

Binding

BaseADL

Automata

Language

Composer

1. BaseADL

Automata

Language

Component

Engineering

2. Language

Product Line

Engineering

3. Language

Product

Engineering

�

Language

Component

Engineers

Product

Line

Manager

Domain

Expert

Modeler

AutArc

4. Modeling

TransportRobotJobQueue

Artifact

Extractor

featureconfig AutArc

for MyADL {

ADL, AutomataBehavior

}

FDADL

AutomataBehavior

Mapping

Key: tool input or output refers to conforms to

Figure 9.1: Overview of activities and roles involved in engineering and using language
product lines by the example of the product line MyADL

A language product line [WHT+09] is a product line of (domain-specific) languages
that supports managing families of similar languages coherently by fostering systematic
reuse of languages. Product lines typically represent closed variability [SVGB05] in
terms of a finite number of products that are part of the product line (cf. Section 2.3).
Thus, language product lines differ from underspecification in other forms of language
variability that typically realize open variability in terms of languages with extension
points, hook points, or customization points. With language product lines, language
engineers are able to express intended constellations of language components that can
be used together. Moreover, they can restrict constellations of languages that should
not be used together through constraints in the problem-space variability described, for
example, by means of a feature model.

Language engineering is a complex endeavor in which providing a closed set of tried-
and-tested combinations of language components in the form of a product line supports
assuring the quality of the languages. Furthermore, language product lines enable sepa-
rating the concerns of engineering languages and language components from the concern
of composing languages for a concrete application or a family of similar applications.

This chapter describes the concept and implementation of the language component
product line (LCPL) approach for feature-oriented language product lines in the context
of reusable language components. The general ideas behind the concept are explained
in Chapter 3. In the following, Section 9.1 describes the concept in more detail, and Sec-
tion 9.2 describes its implementation. The implementation for language product lines

216

9.1 Concept of a Feature-Oriented Language Product Line

in MontiCore is based on the feature diagram language family introduced in Chapter 8.
Section 9.3 discusses the LCPL approach and Section 9.4 describes related work.

9.1 Concept of a Feature-Oriented Language Product Line

The concept for language product lines in MontiCore relies on MLC models that iden-
tify the involved language components and on models of a novel LCPL language that
describes the product line’s feature model as well as mapping rules and binding rules.
Mapping rules map a feature of the feature model to a language component, and bind-
ing rules bind an extension point of a language component to an extension of another
language component. The following sections explain the processes and the roles involved
in engineering language product lines, how the composition of language components in
the product line is achieved, and how variants are derived from the product line.

9.1.1 Engineering a Language Product Line

The process of developing language product lines comprises four different engineering
phases. An overview of these phases is depicted in Figure 9.1 by an excerpt of a lan-
guage product line MyADL. The product line describes different variants of architecture
description languages [MT00] (ADLs). For demonstration purposes, the product line
uses a feature model with two features only and comprises two language components.
The language component BaseADL, modeled through a language component model,
defines language elements for definitions of components, ports, and connectors. The
language component Automata defines the syntax and well-formedness checks for in-
put/output automata [Rum96]. Through the root feature ADL that is mapped to the
language component BaseADL, all languages that can be derived from the product line
include language elements for components, ports, and connectors [RRW14]. The root
feature has an optional child feature, AutomataBehavior, that maps to the Automata
language component. If the optional feature is contained in a product of the product
line, the resulting language can express automata models for the behavior description of
atomic components [BHH+17, BRW16].

Language Component Engineering is the process of engineering individual language
components and complete languages. For increasing off-the-shelf reuse of language com-
ponents in language product lines, language components should minimize their depen-
dencies to other language components. Different language engineers can develop indi-
vidual language components independent of each other. To identify the constituents
of a language component for being used as part of a language product line, it suffices
to provide a language component model of the language. Other than that, no specific
requirements have to hold for language components that are being used within language
product lines. Thus, language components can either be engineered for the dedicated

217

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

purpose of being used within product lines but also any other language component or
complete language can be reused for this purpose. From a language component model,
an artifact extractor gathers the artifacts that are part of the language component and
bundles these as described in Section 7.3.

In the example of Figure 9.1, language component engineers have produced two lan-
guage components BaseADL and Automata. The language components are described
by language component models (cf. Section 7.4.1). An artifact extractor tool collects
the artifacts that realize the language components based on the language component
models. The tool bundles these artifacts to archives, which are units of reuse for the
product line.

Language Product Line Engineering is the realization of the language product line in
terms of its feature model, mapping rules, and binding rules by product line managers.
This process determines which variants or language products should be part of the prod-
uct line and how these can be realized by the systematic composition of language compo-
nents and languages. The process, thus, includes the selection of suitable languages and
language components. If no suitable language can be reused for a product line feature,
product line managers can also specify requirements for novel languages that language
engineers implement. For instance, a product line manager who engineers a language
product line for ADLs intends to offer an optional language feature for dynamic recon-
figurations of connectors [BHK+17]. If no suitable language component exists, she may
define specific requirements that a novel language should meet to best integrate with the
other language components of the product line.

In the example of Figure 9.1, the product line contains a feature model with the root fea-
ture ADL and its optional subfeature AutomataBehavior. The root feature is mapped
to the language component BaseADL, and the other feature uses the language compo-
nent Automata. The product line uses a single binding rule that indicates that language
embedding should be performed at the extension point realized through the grammar
rule Behavior of the BaseADL and the grammar rule Automaton of the grammar
Automata. This binding rule suffices for realizing language embedding as described
in Chapter 6.

Language Product Engineering is the process of deriving a language (product) from a
product line. Sometimes this is also referred to as a language variant. A domain engineer
determines which features of the product line have to be selected to build a language
suitable for a specific application or application domain. This means that a domain
expert creates a feature configuration model that describes a selection of language com-
ponents – through the features of the feature model – that should be composed to form
the product. The derivation of products from the product line is performed by a lan-
guage composer tool, which automatically composes the selected language components
and, as a result, creates a novel language component or standalone language. This re-

218

9.1 Concept of a Feature-Oriented Language Product Line

L
a
n

g
u

a
g

e

S
y
n

ta
x

L
a
n

g
u

a
g

e

C
o

m
p

o
n

e
n

ts

F
e
a
tu

re
 M

o
d

e
l

F
e
a
tu

re

C
o

n
fi

g
u

ra
ti

o
n

Language Component Engineer C C - -

Language Product Line Manager U/C U C -

Domain Expert - U U C

Modeler U - - -

C = Create

U = Understand

Figure 9.2: Roles involved in engineering languages through language product lines

sulting language component can be customized with MontiCore’s means for integration
of handwritten code (e.g., the TOP mechanism, hook points, an extension of the gram-
mar). If languages are composed via language aggregation (cf. Section 2.2), the result
of language product engineering can also be a set of language components.

In the example of Figure 9.1, a domain engineer selects both features of the feature model
MyADL in the feature configuration AutArc. The language composer tool composes the
language components of the selected features and produces a new language component
with the name of the feature configuration.

Modeling in this context means that a modeler crafts models conforming to a language
component that is derived from a language component as a result of language product
engineering. However, for modelers, a language that has been derived from a product
line should not be distinguishable from a language that has not been derived from a
product line.

In the example of Figure 9.1, modelers create models such as TransportRobot and
JobQueue, which conform to the AutArc language. They use the AutArc language
component through a language tool that is contained in the language component.

9.1.2 Roles Involved in Language Product Lines

Software language engineering in general always involves a language engineer who is
able to design, conceptualize, and implement the software language using a language
workbench or similar language engineering tools. In the context of modeling languages,
modelers are users of the software language and are rarely experts in language engineering
– sometimes, they are not even software engineers. The distinction between these two
roles already has certain challenges for language engineering techniques. For instance,
the tools language engineers prefer to use can differ largely from the tools modelers prefer.

219

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

However, the distinction into different roles helps to separate the concerns of the different
roles in terms of tasks, responsibilities, and required capabilities. The engineering of
language product lines involves the four roles language component engineers, product line
managers, domain experts, and modelers. All four roles have specific tasks and require
specific expertise in engineering a language product line. The roles in the process of
engineering languages product lines are introduced in Figure 9.1. Figure 9.2 explains
the tasks for each role in more detail. For some roles, it suffices to understand certain
parts of the product line only, while other roles have to create these parts. Creating
parts of the infrastructure includes understanding these parts. As usual with roles in
software engineering, a single physical person can embody multiple roles at once.

Language Component Engineers are language engineers whose task is to build lan-
guage components. To this end, they must have the expertise to engineer languages.
Beyond this, language component engineers must be able to design reusable languages
and, due to this, focus on documentation of the language’s extension points and ex-
tensions. Language component engineers do not need to be familiar with engineering
product lines through feature models. Furthermore, they are not necessarily required
to be familiar with language composition in general. Instead, the language composition
can also be described by language product line managers.

Language Product Line Managers gather language components for realizing a language
product line. To this end, they create feature models and mapping rules from features
to language components. Furthermore, they create binding rules to integrate the syntax
of the language components. Ideally, language product line managers do not have to
be language engineers. This is the case if extension points and extensions are well doc-
umented, and all language components can be used together as intended. In practice,
reusing language components with the purpose of composing these requires an under-
standing of the language component’s internals and thus, requires language engineering
expertise. In some cases, it might be required for language product line managers to
implement “glue” code for missing pieces of integrating syntax.

Domain Experts create feature configuration models, i.e., select features of the feature
model to build a product of the product line. For realizing a useful product, they should
be experts in the application domain of the DSML. Domain experts do not have to be
language engineers for the purpose of deriving a product from the product line. However,
domain experts can optionally customize the language component that results from the
language derivation tooling.

Modelers are domain experts who use the language component that is the result of
deriving a product from the product line to produce models for concrete applications.
Modelers do not need to be aware of any product-line-related languages and tools such
as feature models or the language derivation tooling. In fact, modelers do not have to

220

9.1 Concept of a Feature-Oriented Language Product Line

CardinalitiesConstraintsAttributesFeatureTree

Feature

Diagram

CardinalitiesConstraintsAttributesFeatureTree

Feature

Diagram

FD

MLCD

represents a variant

Figure 9.3: Example for composition of language components in language product lines

be language engineers. Nevertheless, to understand the syntax and semantics of the
language they use, it is helpful if they have language engineering expertise.

All four roles require specific expertise, and the separation relieves roles from requiring
expertise in all fields. Although almost all roles require language engineering expertise,
the level of detail in which specific knowledge is required differs. While language com-
ponent engineers have to be experts in engineering every aspect of a software language,
language product line managers mainly have to be familiar with language infrastructure
for which manual composition is required. It is impossible to alleviate language product
line engineers from software language engineering expertise [VCPC13, VCCA14].

9.1.3 Describing the Composition of Language Components

In our language product line approach, the features from the feature diagram refer to
language features that are realized by language components. The explicit composition
of language components is described by binding rules. The approach also allows im-
plicit relationships between the language components, i.e., language composition not
described by binding rules. LCPL, thus, does not prescribe how, e.g., inheritance rela-
tionships between language components and the arrangement of features in the feature
tree influence each other.

A simplistic approach for realizing language product lines from a set of given language
components can be achieved by translating all feature-subfeature relationships in the
feature model to equivalent but inverted inheritance relationships between the language
components. This is depicted by the example of a product line of feature diagram
languages in Figure 9.3, where the feature model of the language product line is depicted
at the bottom, and the language components are depicted at the top. Each variant of the
product line should contain the language component FeatureTree and may optionally
contain the language components Attributes, Constraints, and Cardinalities.

221

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

CardinalitiesConstraintsAttributesFeatureTree

Feature

Diagram

FDCommon MLCD

Figure 9.4: Example for the implicit composition of language components in language
product lines with a common base

In the feature model of the product line, all language components are denoted by features
with the same name as the language components to which these refer. The root feature
of the product line has the name FeatureDiagram. The language derivation tooling
synthesizes a new language component for each product of the product line. The new
language component extends all language components that correspond to features that
are selected in the variant and integrates their syntax.

The language product line can also be established from a set of existing language
components. By constructing a feature tree from the (inverted) inheritance relationships,
the feature model describes constellations of allowed or forbidden subsets of the set
of inheritance relationships between the language components. For this, the feature
model can use mandatory and optional subfeatures, subfeature groups, and cross-tree
constraints. The set of language components and all inheritance relationships realize the
product line, while each subset of inheritance relationships describes a legal or illegal
variant of the product line that is the realization of the respective feature configuration.

In this example, the parts of the feature diagram language are developed independently
and, hence, they cannot rely on a common language component from which they inherit.
Therefore, it is impossible that the composition of the syntax of the individual parts can
be realized, for instance, by implementing a common interface nonterminal. Instead,
the composition has to be realized via explicit grammar rules in the FeatureDiagram
grammar. For the product line, this means that the composition has to be described
through explicit binding rules instead of implicit composition. The reason for this is that
any description for integrating the languages in the FeatureDiagram grammar would
cause an invalid grammar if the inheritance relationship is not established because the
respective feature has not been selected for a language variant. With binding rules, the
description of the language composition between two language components MLC1 and
MLC2, is only included in the resulting language component if both MLC1 and MLC2 are
part of the variant through the selection of features that map to these.

222

9.1 Concept of a Feature-Oriented Language Product Line

To circumvent explicit statements of the composition in binding rules, a base lan-
guage component can be introduced that all language components of the product line
implement. This base grammar can introduce common (interface) nonterminals acting
as extension points that some grammars use and for which other grammars provide ex-
tensions by implementing the interface. In this scenario, the integrating grammar is not
required to provide any grammar rules to describe the language composition except for
deciding which start nonterminal to use. Thus, the language product line does not re-
quire any binding rules and can instead rely on the implicit composition of the languages.
This is depicted by the example of the FeatureDiagram product line in Figure 9.4.

However, both forms of language composition rely on language inheritance between
language components used by the features. This produces an inherent coupling between
the language components that prevents reusing an individual language component in a
different context or in another language product line. Furthermore, this coupling com-
plicates replacing a language component with a new one if other language components
that are used in the same product line rely on the language component that is to be re-
placed. The evolution of the product line in terms of adding novel features and language
components also requires more effort if the language components of the product line
are already strongly coupled. Other forms of language composition, such as language
embedding and language aggregation, can compose languages that do not depend on one
another.

As introduced in Section 2.2, language embedding describes the embedding of an em-
bedded language into a host language. In MontiCore, language embedding constitutes
the composed grammar, which extends both the grammars of host and embedded lan-
guages. Through the inheritance relationships in the grammar alone, it is not clear
which grammar is the host grammar and which is the embedded grammar. Instead, this
is determined by integrating syntax in the composed grammar. For language product
lines, an intuitive idea is to perform language embedding along the feature-subfeature
relationships. In this, the language component of the root feature becomes the host
language, and the language components of subfeatures of the root feature become em-
bedded languages. However, in practice, this approach is too restrictive. Sometimes it
is helpful to perform embedding, e.g., with languages of sibling features. For realizing
embedding in language product lines, our concept defines binding rules that describe
embedding of a language with a nonterminal acting as an extension into a nonterminal
of another language acting as an extension point.

For instance, the language component BaseADL contains an interface nonterminal
IBehavior that acts as an extension point for integrating component behavior descrip-
tions. A binding rule in the product line describes that the nonterminal Automaton of
the language Automata should be used as an extension bound to the extension point
through language embedding. When deriving a language variant from the product line,
the language composer tool generates syntax that integrates the languages. The realiza-
tion of this is described in Section 9.2.

223

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

For language aggregation, the symbol tables of language components have to be inte-
grated. To describe this in a language product line, it suffices to indicate which symbol
adapters should be established between symbol kinds of the involved languages. A ded-
icated kind of binding rules describes the adaptation from symbols of a source kind
to symbols of a target kind. From such rules, the language composer tool generates
an abstract class for the symbol adapter. The implementation of the adapter must be
provided through the TOP mechanism as it cannot be generated. This is due to the
fact that the adapter implementation depends not only on the source and target symbol
kind but also on the purpose of the adapter. For instance, depending on the purpose,
there might be different adapters that translate between state symbols of an automata
language and class symbols of a class diagram language. Thus, the number of potential
adapters that can be realized for each pair of source and target kind is infinite. How-
ever, in the context of product lines, the adapter is specific to a pair of language features
whose language components’ symbol tables are to be integrated. Therefore, the adapter
must be contained in every product of the product line that includes both features and,
otherwise, should not be part of the product. To keep the language components of ag-
gregated languages independent of another, the symbol adapter should not be part of
either of the language components. Instead, it can be either part of the product line or
of a specific language variant. To foster the reusability of adapters, it is preferable to
locate these at the level of the product line.

The composition of context conditions does not need to be described through binding
rules. Instead, the sets of context conditions of the individual languages are unified
during language variant derivation and can be checked against the composed languages
after applying the language composer tool. Sometimes, additional context conditions
should be applied that are not part of any of the used language components but are
specific to the combination of two or more language components. Therefore, our concept
for language product lines also enables specifying context conditions at the level of the
product line.

Following the concept of product-line-specific symbol adapter implementations and
context conditions, other parts of the language infrastructure can be added to the product
line as well.

9.1.4 Language Variant Derivation

The composition operators for language components presented in Chapter 6 enable com-
posing languages according to the binding rules as presented in Section 9.1.3. After a
language product line has been modeled, variants can be derived from the product line.
As LCPL is based on feature diagrams, variants are described by feature configurations.
The process of deriving a language from a given language product line and a feature
configuration is called the language variant derivation. This process is performed by a
language composer tool, which processes an input product line comprising feature model,

224

9.1 Concept of a Feature-Oriented Language Product Line

Language Composer
BaseADL Automata AutArc

LanguageComponentGenerator

GrammarGenerator

CoCoGenerator

�

MLC

MCG

CoCo

�

MLC

MCG

CoCo

�

MLC

MCG

�

CoCo

MLCD

Figure 9.5: Structure of a language composer

binding rules, mapping rules, and language components as well as a feature configuration
and produces a composed language component according to the selection of features. If
language aggregation is used through binding rules, the result can be a set of multiple
language components.

To realize the language variant derivation, the language composer tool comprises in-
dividual code generators for all handwritten constituents of the language components.
For instance, one generator composes the grammars, another generator composes the
language component models, and a further generator composes the context conditions.
Which generators are required depends on the technological space in which language
components are realized and on the forms of language composition that are supported.
Dedicated generators for generated language constituents are not required to be part of
the language composer, as these can either be re-generated from other composed artifacts
or can remain separated. An overview of the internal architecture of a language com-
poser is depicted in Figure 9.5. The figure visualizes the composition of the language
components BaseADL and Automata producing the composed language component
AutArc. The language composer contains an individual generator for each handwritten
constituent of a language component, including a generator responsible for composing
the MLC models.

Conceptually, LCPL does not prescribe an order in which language components have to
be composed during language variant derivation. In fact, all languages can be composed
at once. The result of language variant derivation is a (set of) novel language components
that can be reused by another language product line as well. Therefore, any order of
compositions can be simulated by composing pairs of language components and replacing
these and the features in the product line with the result of the composition. Whether
a particular order of composition has to be considered in the implementation, however,
depends on the concrete language composition operators. Some composition operators
may prescribe to preserve a specific order, while others do not.

The start nonterminals of the composed languages are already specified through the
binding rules and the implicit forms of language composition. With language aggregation

225

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

Feature

Diagram

MontiCore

Grammar

MLCLCPL

MLCDused for describing
language embedding

introduces binding rules and
mapping rules

used for realizing
mapping rules

Figure 9.6: The LCPL language reuses other languages

used in at least one binding rule, the outcome of language variant derivation is a set of
language components. Each language component has a start nonterminal, which is
determined by the host language of embedded languages. For other forms of language
composition, the start nonterminal has to be derivable as well.

The context conditions of the composed language is the set union of the context con-
ditions of all language components of selected features. Checking the context condition
of the composed language is realized with the generated visitor-based context condition
checker of the composed language. Our concept for language product lines allows prod-
uct line engineers to reuse a language component not only through its start nonterminal
but through any nonterminal. For example, the nonterminal State of the language
component Automata can be used for embedding, even if it is not the start nonterminal
of the Automata grammar. As an effect, it might occur that some AST nodes from
nonterminals of original language components are not part of any parsed model of the
composed language. Therefore, context conditions implemented against such nontermi-
nals do not influence the well-formedness of models of the composed languages. With a
suitable analysis, such nonterminals can be identified and removed during composition.

9.2 Realizing Language Product Lines in MontiCore

The MontiCore feature diagram language (cf. Chapter 8) is the basis of LCPL according
to the concept described in Section 9.1. For this purpose, the feature diagram language
has been extended with novel language elements that describe (1) the connection be-
tween features of the feature model and language components that realize these (i.e.,
mapping rules) and (2) the connection between two language components to describe
their language composition (i.e., binding rules). We refer to this extension of the feature
diagram language as the language product line or LCPL language.

The LCPL language describes product lines as integrated models. In previous realiza-
tions of the approach [BEK+18a, BEK+19], the feature diagram and binding rules are
located in separate model artifacts. This enables reusing different notations for feature
diagrams, such as from Feature IDE [TKB+14] because the feature diagram notation
does not have to be extended with language-product-line-specific syntax. However, this

226

9.2 Realizing Language Product Lines in MontiCore

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

featurediagram MyADL {

ADL -> AutomataBehavior? ;

ADL {

mlc BaseADL;

}

AutomataBehavior {

mlc Automata;

grammar {

start ComponentDef;

AutomataDef implements IBehavior;

}

}

}

LCPL

realization of mapping rules

features definitions via
feature blocks

embedding can be described
through grammar block

feature tree

language component
product line language

Figure 9.7: A model of the LCPL language demonstrating language embedding

separation introduces a gap between the feature model and the model containing the
mapping and binding rules. The gap can lead to inconsistencies between the models
and complicates the configuration of the product line, as more artifacts are involved.
The separation of artifacts enables reusing a single feature model with different binding
models or using a binding model with different feature models. This is not possible with
integrated product line models. Nevertheless, our experiences have shown that using the
same feature model for different language product lines is rarely feasible.

9.2.1 The Language Product Line Language

The LCPL language is a MontiCore language used to create models that describe lan-
guage product lines. It extends the feature diagram language (cf. Chapter 8) with novel
feature definition blocks. Inside these definition blocks, a feature can reference an MLC
model via its name. These references realize the mapping rules that map a feature to
a language component. The LCPL language further reuses grammar rules from the
MontiCore grammar language through language inheritance and uses MLCDefSymbols
defined in the MLC language (cf. Section 7.4.1). Figure 9.6 depicts the LCPL language
and its relations to reused language components.

Binding rules are realized inside of feature definition blocks. The LCPL language
currently supports two forms of binding rules. With the first form, product line engineers
can specify binding “glue” inside of a block with grammar statements. This is especially
useful for realizing language embedding, where different patterns can be used to connect
an extension point to an extension nonterminal. Furthermore, such grammar blocks can
indicate the start rule for the composed language’s grammar. The grammar block may
use nonterminals of all grammars that are part of the product line. The second form of
binding rules describes the types of adapters between two symbol kinds.

227

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

featurediagram MyADL {
ADL -> AutomataBehavior? ;
ADL -> CDTypes | JavaTypes ;

CDTypes {
mlc CD4A;
adapt CDTypeSymbol to PortTypeSymbol;

}

JavaTypes {
mlc JavaDSL;
adapt JavaTypeSymbol to PortTypeSymbol;

}

// further feature definitions omitted
}

LCPL

describing language aggregation

Figure 9.8: A model of the LCPL language demonstrating language aggregation

The syntax of the LCPL language is depicted in Figure 9.7 by the MyADL example as
introduced in Figure 9.1. By inheriting from the feature diagram language, the LCPL
language reuses the definition of the feature diagram type (l. 1) and the syntax for spec-
ifying the feature tree (l. 2). The definition for cross-tree constraints is also reused.
Feature definition blocks begin with the name of the feature, followed by a block em-
braced in curly brackets. The block contains statements for defining mapping rules and
binding rules. The mapping rule statements begin with the keyword mlc, followed by
the name of the language component model (cf. l. 5 and l .9) to which the feature maps.
Feature definition blocks can further contain binding rules in the form of embedded
grammar blocks, as depicted in ll. 10-13. In this example, the grammar block contains
two grammar rules. The first rule in l. 11 indicates that the nonterminal ComponentDef
should be used as start nonterminal of the grammar generated for language variants that
include the feature AutomataBehavior. Alternatively, the product line manager could
have indicated the start rule in a grammar block contained in the body of the definition
of the root feature. The second rule (l. 12) overrides the nonterminal AutomataDef
from the grammar of the language component Automata and implements the interface
nonterminal IBehavior defined in the grammar of the language component BaseADL.
In the context of language embedding, IBehavior is an extension point for which, as
modeled through the grammar rule, AutomataDef is an extension.

To demonstrate language aggregation, the MyADL product line in Figure 9.7 is evolved
by adding a selection of two new subfeatures to the feature ADL. An excerpt of the new
LCPL model is depicted in Figure 9.8. Both new features realize types that are used by
component port definitions [BRW16]. In the feature CDTypes, the port types are defined
in classes or interfaces of CD models. With the selection of the feature JavaTypes, types
defined in Java can be used as port types. Both features are defined in feature definition

228

9.2 Realizing Language Product Lines in MontiCore

blocks and reuse individual languages, namely the JavaDSL language and the CD4A
language. The CD4A language is composed with the language component ADL through
language aggregation, as described by the binding rule in l. 7. The rule indicates that
CDTypeSymbols defined in class diagrams are adapted to PortTypeSymbols of ADL
components. Through this, name usages in the ADL may refer to name definitions of
types in class diagrams. In analogy to CD4A, the JavaTypeSymbols of the JavaDSL
are adapted to PortTypeSymbols, as described in l. 12. The composition of the
language components based on a selection of features is described in Section 9.2.2.

9.2.2 The Composition Infrastructure

This section overviews the implementation of the language composer tool for language
product lines as introduced in Figure 9.1 in the context of MontiCore language compo-
nents and the LCPL language. The tool comprises individual code generators for the
different handwritten constituents of language components, as depicted in Figure 9.5.

Composing Language Component Models

For each language component that is the result of an execution of the language com-
poser, the LanguageComponentGenerator produces an MLC model. The name of
the generated language component equals the name of the feature configuration that is
used to describe the product derived from the product line. Furthermore, the language
component declares the set of all artifacts that are part of the language and the set of
artifacts and languages that the language component is allowed to use. Both sets are
calculated based on the respective information contained in all MLC models (cf. Sec-
tion 7.4.1) that are input to the composition. For the artifacts that are part of the
language component, the generator evaluates the regular expressions of the input MLC
models to obtain a set of artifacts. The own artifacts of a generated language compo-
nent are obtained by forming the set union of the input artifact sets. Furthermore, all
artifacts that are defined as part of selected features of the product line (such as adapter
implementations or additional context conditions on the level of product lines) are added
to the set of own artifacts. The generated language component model does not include
any regular expressions to denote own artifacts to avoid undesired interactions between
the include and exclude statements of individual input language components. The set
of artifacts that the generated language component is allowed to use is the union of the
sets of artifacts that input language components are allowed to use.

Composing MontiCore Grammars

The generator that performs the composition of grammars in the context of language
product lines realizes language inheritance, language extension, and language embedding.
For language aggregation, no composition of MontiCore grammars is required. The

229

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

GrammarGenerator produces a grammar with the name of the feature configuration
that is used to describe the product derived from the product line. The grammar extends
all grammars of language components to which the selected features map. Through the
LCPL language, each binding rule is attached to a feature. All binding rules of all
selected features that are realized via blocks of grammar statements are relevant for the
grammar generator as well. All grammar statements contained in such blocks are added
to the generated grammar. These binding rules not only realize the part of language
composition that integrates the concrete and abstract syntax but also determine which
grammar rule has to be used as the start rule.

Composing MontiCore Context Conditions

As described in Section 9.1.4, the context conditions are composed during language
inheritance and language embedding via set union. For language aggregation, no context
conditions need to be composed.

Unifying the sets of context conditions first requires identifying the sets of context
conditions for each language. In previous realizations of LCPL [BEK+18b, BEK+19],
language engineers had to explicate the names of all context conditions of a language
as part of the language component. With the current approach, language engineers
are relieved from that. In MontiCore, context conditions implement context conditions
interfaces generated from a grammar. With an MLC model of a language component
and an underlying artifact model of MontiCore languages, the artifacts realizing the
context conditions can automatically be identified by the language composer tool.

Context conditions are checked against the AST of a language with visitor-based
context condition checkers. As MontiCore generates these checkers for each language
component, it is not necessary that the language product line tooling performs any addi-
tional composition. However, checking the context condition has to be triggered, which is
typically realized within a language tool. To support language engineers in this, the lan-
guage composer generator for context conditions synthesizes a ContextConditions
class, which prepares a checker by adding all context conditions of all languages that are
part of the composed languages and the context conditions that are part of the language
product line as described in Section 9.1.4. Through adjusting the context conditions
added to the checker, the context conditions produced for composed language compo-
nents can be customized. Language engineers can customize context condition checkers
via the TOP mechanism.

Composing MontiCore Symbol Tables

Symbol tables are a central part of the language infrastructure for realizing language
composition. The language composer tool, however, does not have to consider the com-
position of most parts of the symbol tables as the composition is performed by Monti-

230

9.3 Discussion

PortTypeSymbol
AST-CD

CDTypeSymbolCDType2PortTypeAdapter
adaptee

1

adapt CDTypeSymbol

to PortTypeSymbol ;

LCPL
target symbol kind

generated abstract adapter class, TOP mechanism has to be applied

Figure 9.9: Example for a binding rule (left) and the adapter generated from this rule
while deriving a product from the product line (right)

Core during language inheritance (cf. Section 6.1). Through the composed grammar
produced by the language composer tool, MontiCore generates an integrated symbol
table infrastructure for the language product. For language aggregation, the symbol ta-
ble infrastructures are not integrated through integrated types for scopes and symbols.
Instead, the global scope of a language is configured with suitable symbol resolvers that
realize resolving in symbol tables of foreign languages (cf. Section 6.4).

With binding rules describing symbol adapters, LCPL enables the reuse of language
components via language aggregation in product lines. As described in Section 9.1.3,
the language composer produces abstract symbol adapter classes for which product line
engineers provide realizations. In the implementation, the TOP mechanism [HKR21]
is employed for integrating the generated abstract class and the handwritten extension
that realizes the adapter. If product line engineers do not provide a handwritten adapter
class, only the generated abstract adapter exists, which yields compilation errors. Fig-
ure 9.9 depicts an example of a binding rule for symbol adapters and the symbol adapter
class generated while deriving a language from the product line. The left side of the fig-
ure displays a binding rule that indicates that CDTypeSymbols should be adapted to
PortTypeSymbols. In the generated abstract syntax, this results in the abstract class
CDType2PortTypeAdapter depicted on the right side of the figure. The abstract class
extends the class PortTypeSymbol and has an attribute of the type CDTypeSymbol.
A handwritten extension of the adapter class must carry out the actual adaption.

9.3 Discussion

The approach for realizing language product lines presented in Section 9.1 uses grammars
for describing concrete and abstract syntax in an integrated fashion, as the approach is
realized with the MontiCore language workbench (cf. Section 9.2). Other language work-
benches for textual languages may use grammars only for the description of the concrete
syntax and realize the specification of abstract syntax via metamodels. This requires
only a slight adaption to LCPL, as composition operators are defined per constituent of
the language.

231

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

Languages defined via grammars are typically textual. Building product lines for
graphical (e.g., diagrammatical) languages with the presented approach can be achieved
by building a graphical visualization on top of the textual model representation [RRW13].

The presented language product line approach supports language embedding, exten-
sion, inheritance, and aggregation. However, the approach can be extended with novel
forms of language composition with little effort. Adding a novel language composition
technique requires introducing a new syntax element for connecting extension points
and extensions in the LCPL language, as explained in Section 9.2. Furthermore, the
generator of the language composer has to be adjusted.

Some forms of language composition enable integrating languages or language compo-
nents that are developed independently of another. For example, language aggregation
is a loose coupling of languages whose infrastructures remain separated. The integration
of the languages is realized either via symbolic interfaces or symbol adapters. Lan-
guage embedding in MontiCore means that the composed language inherits from the
host language and the embedded language, whose infrastructure in large parts remains
independent of another as well. These forms of language composition enable better “off-
the-shelf” reusability of language components and, thus, are suitable for being reused
in language product lines. However, our experiences have shown that realizing product
lines is also beneficial for realizing a family of similar languages or language components
that a single language engineer has designed to be reused for various purposes. In such
use cases, language product lines also can employ forms of language composition that
require dependencies between the composed languages, such as language inheritance and
language extension.

The MontiCore language component library is a basis used by most languages engi-
neered with MontiCore. Language engineers can choose between different grammars for
types, expressions, literals, and statements [BEH+20]. These grammars are in complex
inheritance relationships that language engineers have to untangle and understand for
reusing the optimal constellation of grammars for engineering their language. A language
product line for the language components induced by these grammars helps to manage
this complexity. It can provide a deliberate set of language variants that are commonly
used together as a basis for engineering languages. This reduces the effort for creating
new languages because numerous irrelevant constellations of language components can
be forbidden in the feature model of the product line.

Previous versions of LCPL presented in this thesis rely on explicit [BEK+18a] or
implicit [BEK+19] marking of extension points in terms of interface nonterminals of
the grammars. In these approaches, language components contribute extension points
to interfaces of the language components. We deliberately removed these interfaces as
the disadvantages described in the following outweigh the advantages. An advantage
of such an interface is that it separates parts of the language components that are
relevant for language composition from internal grammar nonterminals and rules that
are not planned to be used either as extensions or as extension points of the language

232

9.3 Discussion

components. This hides language component internals and fosters the black-box fashion
of software components. Another advantage of explicit interfaces of language components
is that there can be different realizations for the same interface. Reifying this in a
concrete language workbench, however, complicates language component engineering, as
interfaces and implementations have to be realized as separate artifacts.

A disadvantage of explicit marking of language component interfaces is the separation
of the interface of the language component and the interface nonterminal in the language
component’s grammar that realizes a particular extension point into different artifacts.
Both artifacts have to be documented independently, and the evolution of the language
can cause inconsistencies between both. Another disadvantage of explicit language com-
ponent interfaces is that language engineers have to foresee all extension points and
establish these on the language component interfaces. An unforeseen nonterminal can-
not be used as an extension point, limiting the reusability of the language component.
Implicit interfaces based on strict rules for language components, for example, by using
all interface nonterminals as extension points, however, have the disadvantage that inter-
face nonterminals can unintendedly be marked as extension points. This can complicate
reusing foreign grammars via their extension points.

Our concept for language variability, hence, relies on underspecification in the abstract
syntax through extension points in the form of grammar nonterminals. In MontiCore,
these can be, for instance, interface nonterminals that prescribe certain abstract syntax
elements or external nonterminals that must be provided by inheriting grammars or by
class nonterminals that are extended in inheriting grammars. In related workbenches
that rely on different technological spaces, extension points can be realized, for instance,
through interfaces or abstract classes in metamodel-based languages [SBPM09], through
merging of abstract syntax elements [DCB+15], or through underspecification in gram-
mars, such as binding elements of different languages by name [VC15].

A major challenge in engineering language product lines is finding a suitable granular-
ity of language components. To achieve optimal reusability of language syntax, language
components are finest-grained, meaning that each nonterminal would have to be handled
individually as an independent language component. In MontiCore, this would require
encapsulating each nonterminal into a separate grammar. However, the consequence is
a scattering of languages and a significant overhead in managing the individual language
components. Moreover, the additional complexity has to be handled in the feature model,
which complicates product line engineering. Coarse-grained language components, on
the other hand, yield less complex feature models and reduce the effort for managing
language components. However, coarse-grained language components have the disad-
vantage that when only parts of the language components shall be reused, the remaining
parts have to be handled during language composition as well. Coarse-grained language
components are inefficient because more artifacts are involved in the composition com-
pared to fine-grained components. This fosters ambiguities since more name definitions
(such as those of nonterminals) are involved.

233

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

grammar C {
Automaton = //...

}

nonterminal
name clash

grammar B {
Automaton = //...

}

grammar E {
ModelRef = "for" model:Name;

}

ambiguous
terminals

grammar D {
Loop = "for" Expression;

}

MCG

ambiguous
grammar

grammar A {
Automaton = State | variable:Name;
State = Name;

}

Figure 9.10: Potential ambiguities in grammar composition

A nonterminal that is not the start nonterminal of the grammar can be used as an
extension to an extension point. This cuts off all parts of the language’s concrete and
abstract syntax that are not reachable as child elements of the abstract syntax induced
by the new start nonterminal. Being able to use any nonterminal of a grammar as
an extension increases the reusability of a grammar compared to only using the root
nonterminal. However, it can cause parts of the language infrastructure to be included
in a language variant, although these parts are not relevant there. This can be avoided
by applying sophisticated checks in the language composer tool to identify such artifacts
and exclude these in the generated language component model.

The generators composing the language components produce grammars, which extend
all grammars of language components that are selected in the feature configuration.
This mechanism produces correct results, enables reusing most parts of the language
infrastructure, and requires generating only a few additional infrastructure constituents.
However, grammars are usually leveraged as documentation of the syntax for language
users. In the case of the generated grammar extending all reused grammars, this docu-
mentation is scattered across different artifacts. This can be solved by generating a single
grammar including all nonterminals of the current grammar and transitively extended
grammars. However, such a grammar should only be used for documentation and not
for the generation of language-processing infrastructure due to performance reasons.

Language embedding in MontiCore is carried out via multiple language inheritance.
Language embedding during derivation of language products from the product line pro-
duces a novel language that extends the languages and language components of se-
lected features. Therefore, it is impossible that cyclic language inheritance is introduced
through the selection of any combination of features.

The combination of grammars, in general, can yield ambiguous abstract and concrete
syntax. We distinguish three forms of such ambiguities: (1) The grammar is ambigu-
ous, as depicted in the top of Figure 9.10 if the same nonterminal is expected in more
than one alternative. This ambiguity can lead to the generation of an ambiguous parser.

234

9.3 Discussion

MontiCore generates parsers by employing ANTLR [Par13], which is able to detect sev-
eral kinds of such ambiguities. Language engineers can add semantic predicates to the
grammar to circumvent grammar ambiguities. (2) A nonterminal name clash (cf. Fig-
ure 9.10 center) can occur if a grammar reuses multiple other grammars, which define
a nonterminal with the same name. This can only occur in language workbenches that
have a flat namespace for nonterminals, which is the case for MontiCore. In case of a
nonterminal name clash, the conflicting nonterminals have to be renamed. (3) There
may be ambiguous terminals if the same concrete syntax is used in different grammar
rules. An example of this is depicted in the bottom of Figure 9.10. In the engineering
of language product lines, these ambiguities can be tested in the product line, which is
more efficient than testing the property for each language individually during the deriva-
tion process. Product line managers can use exclude constraints in the feature model to
indicate that two features use incompatible language components. Future work should
investigate how these ambiguities can be detected efficiently and how constraints for
their avoidance can be proposed automatically.

The employed feature diagram language enables the modularization of feature mod-
els into different artifacts. This fosters both the scalability of language product lines
in general and the reuse of language product lines as part of other language product
lines. Furthermore, the compositional approach based on language components enables
better modularization and thus improved testability, maintainability, and reusability of
the individual language components compared to employing a single 150% language.
Nonetheless, large language product lines can rely on a quantity of language compo-
nents that is hardly manageable. How this can be supported well is subject to further
research.

Research and practice have produced numerous realizations for feature diagram lan-
guages. These often share commonalities but also have notational particularities. This
makes feature diagrams themselves a good candidate for realizing a language product
line that captures different optional language extensions of classical feature diagrams.
Moreover, the LCPL language can be derived as a product of this language product line,
i.e., the LCPL language could be bootstrapped.

The property of conservative extension [HKR21] of language syntax during language
composition increases the reusability of visitor-based language tooling. Without conser-
vative extension, the language tooling produced for a language could only be applied
to precisely this language. In language inheritance, for instance, conservative extension
can be circumvented by overriding a nonterminal. If parts of a nonterminal body are re-
moved, this may cause syntactical and semantical problems when analyses implemented
against the original nonterminal are applied to the overridden nonterminal. With con-
servative extension, syntactical problems can be avoided for visitor-based tooling. For
engineering language product lines, conservative extension of the language composition
mechanism is an essential property as it enables reusing analysis implemented against
a language feature for all language products that include this feature. Moreover, it en-

235

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

	�

		� 	�

	�

	� 		�

��1

��2

FC1 = �,�,� ⊆ �,�,�,�,� = ��2

⇒

set of selected

features in FC1

set of selected

features in FC2

set of valid

models in FC2

set of valid

models in FC1

model

Figure 9.11: Conservative extension in language product lines and its effect for valid
models

ables reusing tooling for language variants that comprise a superset of the set of currently
employed language components.

The benefit of conservative extension in language product lines is depicted by example
in Figure 9.11. If a language variant FC2 comprises a set of features that are a superset
of another language variant FC1, then the employed language components also form a
superset. With language composition mechanisms that realize conservative extension,
the set of valid models in FC2 is a superset of valid models in FC1. The composition
mechanism for language embedding in MontiCore realizes the conservative extension
only with respect to the composed grammars and the parsers and visitors generated for
the grammars. Context conditions invalidate models that the generated parser regards
as correct. Therefore, adding more context conditions to a language reduces the number
of valid models.

Language composition in MontiCore enables reusing context conditions implemented
against the individual language components for the composed language. However, it may
occur that a context condition checked against a certain nonterminal is not applied if
the nonterminal is not reachable from the starting nonterminal of a composed language.

Furthermore, the composition of context conditions and any other analyses against
the abstract syntax cannot guarantee to produce the results intended by the language
engineers. For instance, an analysis for an automata language counts the states of
an automaton model. This analysis can be applied to a language that extends the
automaton language and introduces hierarchical states. Depending on the realization of
language composition and the implementation of the analysis, nested states are taken
into account for the result or not. This has to be taken into consideration by language
engineers and language product line managers during language composition.

A type system for language components could improve reusing language components
off-the-shelf when engineering a language product line. However, it is currently unclear
into which dimension languages should be typed for this purpose. Languages could

236

9.4 Related Work

be typed differently such as according to their purpose (like expression language, be-
havior language, statement language), according to their language paradigm (such as,
being imperative or declarative), or according to their constituents (e.g., code generators
translate to the same target language, concrete syntax relies on the same tokens).

Language product lines can be developed top-down or bottom-up [KC16]. Applying
the paradigm of top-down language product line engineering to our approach means that
the feature model is modeled before the individual languages or language components
are (re)used in the language product line. In bottom-up language product line engineer-
ing, the feature model is conceived after the individual language components have been
implemented. Approaches for bottom-up engineering of product lines can be extended
to extract product lines [Sch19] from a set of applications that are considered the prod-
ucts of the product line. This extraction can be applied to language product lines as
well [VCPC13]. LCPL is not limited to either bottom-up or top-down engineering of
product lines. The loose coupling between the feature model and language components
supports both paradigms.

Presentational variability [CGR09] is variability between languages that only affects
the concrete syntax. MontiCore grammars are an integrated definition for the abstract
and concrete syntax of a language. Therefore, pure presentational variability cannot be
realized for languages in our approach for realizing language product lines.

The language composition mechanisms introduced in this chapter include elements for
concrete and abstract syntax, well-formedness checking, as well as additional infrastruc-
ture such as visitors. However, a holistic approach to software language product line
should consider the realization of the semantics of the languages. Software languages
assign behavior to models typically via interpretation of models or model-to-text trans-
formations. Thus, composition operators for modular code generators [Bet16, CE00] or
interpreters [BDV+16, VDKV00] have to be integrated into the language component def-
initions. The implementation presented in this thesis does not prescribe a composition
mechanism for one of these, but an approach for integrating modular code generators
into language product lines is described in [BEK+18a].

9.4 Related Work

Introducing variability in technical realizations of software languages is supported by
language workbenches and similar language development tools to different extents and
in various shapes [MAGD+16]. Reusing languages often relies on language composi-
tion [EvdSV+13]. The available forms of language composition differ in each language
workbench and also depend on the language infrastructure constituents. Language
workbenches with grammar-based syntax definitions (such as Rascal [vdS11], Monti-
Core [HLMSN+15b], Neverlang [VC15], Spoofax [KV10], or Xtext [Bet16]) realize dif-
ferent language composition techniques than, for instance, language workbenches with

237

Chapter 9 Engineering Feature-Oriented Language Product Lines with
MontiCore

metamodel-based syntax definitions (e.g., EMF [SBPM09], GEMOC Studio [DCB+15],
or MetaEdit+ [TK09]).

Several approaches support modular development of languages with language composi-
tion techniques for building specific languages but – to the best of our knowledge – do not
support realizing dedicated language product lines for arranging language modules and
their interrelations. These include mbeddr [VRSK12], ableC [KKCVW17], LISA [Mer13],
CBS modules [Mos19], and the revisitor approach [LDC18]. These approaches are de-
scribed in detail in Section 7.6. Some related approaches [HOKU15, KC16, KCO15,
LDA13, VCPC13, WHT+09] use feature diagrams to restrict combinations of modular
languages, i.e., realize feature-oriented language product lines.

Neverlang [VC15] is a language workbench for textual DSLs that enables modular
language development. A language module in Neverlang uses a grammar to define the
language’s syntax and a pipeline of evaluation phases to process models of the language.
Evaluation phases can include well-formedness checking, type checking, and code genera-
tion [VCPC13]. Languages can define extension points by using placeholder nonterminals
that are nonterminals not defined in a grammar. Through language composition, an-
other grammar can provide implementations for placeholder nonterminals. Compared
to this, MontiCore uses, interface or external nonterminals to denote underspecification
of syntax. This reduces the risk of defining extension points unintendedly (e.g., by mis-
spelling a nonterminal) and enables making assumptions on the required abstract syntax
through the right-hand side of interface nonterminals.

Neverlang has been integrated with FeatureIDE [MTS+17] to model feature diagrams
and feature configurations and AiDE [KCO15] to derive a feature model from a family
of interrelated language modules. With these extensions, Neverlang provides means
to realize feature-oriented language product lines [FKC20]. The process of engineering
product lines of languages in this approach begins with the decomposition of languages,
which results in the generation of a feature model. The processes of deriving products
from the product line and customizing language products follow concepts similar to
those in LCPL. Another extension of Neverlang [VCPC13] uses the common variability
language to realize language product lines.

Another approach [LDA13] for language product lines uses SDF for realizing modu-
lar languages with Spoofax [KV10] and FeatureHouse [AKL09] to model variability and
perform derivation of languages. Language modules can be composed through superim-
position, weaving, or inheritance between modules. In contrast to LCPL, this approach
distinguishes two different dimensions of variability. One dimension is the variability
of languages features in terms of concepts of the language, and the other dimension
describes variability in the language infrastructure.

A related approach for language product lines based on MontiCore [BPRW20, Wor19]
separates between language interfaces and implementations more strictly. A family
model contains both a feature model describing the problem space variability of the
product line and feature definitions, which connect features of the feature model with

238

9.4 Related Work

their realization in terms of a DSL component model and bindings for this component.
A DSL component model describes a language component in terms of grammar, well-
formedness rules, and code generator. Contrary to the approach described in this thesis,
other parts of language infrastructure, such as AST classes or symbol classes, are not
explicated. Instead, a DSL component describes provided and required elements of the
language interface. Furthermore, the concept of reusing languages through nonterminals
in the language interface prohibits reuse through other nonterminals of the language.
Thus, all provided and required extensions of the language must be foreseen by lan-
guage engineers at the design time of the DSL component. While this approach fosters
reusing language components as black boxes, it requires additional effort for reflect-
ing the language interfaces in the product line explicitly. This additional effort targets
language components that contain complex languages, as the interface hides language
component internals. For language components defining a small number of nontermi-
nals only, the benefit of explicating the language interface is questionable. However, the
abstraction from MontiCore-specific composition techniques supports the application of
this approach with other language workbenches. Contrary to the approach described
in this thesis, this approach distinguishes optional and mandatory extension points of
a language component. MontiCore distinguishes complete and incomplete languages
based on the grammar, which is marked as component grammar in case the language is
incomplete. If a language is technically complete but should be marked as incomplete,
this approach uses mandatory extension points. The approach in this thesis relies on
optional and mandatory features of the feature model instead, as the completeness of a
language component can differ based on the context in which it is used.

239

Chapter 10

Application-Based Evaluation

This chapter summarizes several evaluations of different forms that have been performed
using the individual results of this thesis. As stated in Chapter 3, the provided develop-
ment steps of this thesis build upon each other, but each step can be used for different
purposes than those detailed in this thesis. Hence, the steps are evaluated independently.
Most steps are evaluated by applying them to different DSMLs. Figure 10.1 depicts an
overview of the central development steps described in this thesis, which are evaluated in
the following sections. Section 10.1 describes the evaluation of the STI, which is carried
out by using the STI in various MontiCore languages. Section 10.2 explains the mea-
surement of the parser performance of the developed JSON infrastructure. Section 10.3
describes the evaluation of the approach for loading and storing symbol tables, and Sec-
tion 10.4 describes the evaluation of the language composition. The application of the
feature diagram language family is explained in Section 10.6, and an outlook on the
evaluation for the LCPL is given in Section 10.7.

B C

A

bsym asym

A

csym

CB

RR = select A,B

Figure 10.1: Development steps described in this thesis

241

Chapter 10 Application-Based Evaluation

UseCase

Diagram

Sequence

Diagram

Automata

Object

Diagram
State-

charts

Feature

Diagram
OCL

Monti

Things

MontiArc

CD4

Analysis

Grammar

MLC

MLCD

Figure 10.2: MontiCore languages that rely on the STI

10.1 Application of the STI

The STI has been applied to and constantly evaluated in the engineering of numerous
DSMLs (cf. Figure 10.2), some of which are available open-source1. During the con-
ception of the STI, the findings of the constant evaluation have been used as a basis
for iterative improvements. For instance, the application to several languages unveiled
that the symbol table instantiation is often customized at similar spots. This led to the
introduction of the hook point methods in scope genitors as described in Section 4.3.8.
Moreover, the STI has been used for building the MLC language presented in Chapter 7
of this thesis and for building the feature diagram languages presented in Chapter 8.

The symbol table infrastructure of the MLC language, as described in Section 7.4.1,
defines a single symbol kind MLCDefSymbol that is introduced in the language’s gram-
mar. Attributes of the symbol kind are defined via a symbol rule. The generated symbol
table infrastructure is customized for the symbol table instantiation in the scope genitor
class by applying the TOP mechanism. The handwritten adjustments collect the regular
expressions over artifacts and evaluate these against the actual file system. The results
of the evaluations are set to the corresponding attributes in the MLCDefSymbol.

The feature diagram language enables a feature diagram model to import other fea-
ture diagram models. The symbol table infrastructure of the feature diagram language
customizes the generated default infrastructure because it loads feature diagram models
instead of the corresponding symbol tables for each imported feature diagram. This is
realized by extending the language’s scope genitor via the TOP mechanism (cf. Sec-
tion 8.1). Furthermore, the scope genitor realizes the behavior that feature symbols are
defined by the first occurrence of their name in a model.

The feature configuration and the partial feature configuration languages extend the
generated scope genitors to add the specific behavior for import statements in their mod-

1Open-source MontiCore languages on GitHub: https://github.com/MontiCore

242

https://github.com/MontiCore

10.2 Performance of Json Infrastructure

els. Each of these models must have at most a single import statement, and this state-
ment must refer to the corresponding feature diagram (cf. Section 8.2). This is achieved
by overriding the createFromAST method in the scope genitors of both languages.
Furthermore, the FeatureConfigurationSymbol that is used in both languages
contains attributes for the FeatureDiagramSymbol and the FeatureSymbols of
selected features. These are realized through a symbol rule and, hence, can be generated
from the grammar. The instantiation, however, has to be conceived by hand, which is
achieved by overriding the visit methods for feature configurations and feature selec-
tions in the scope genitors of the languages.

Lessons learned: The application of the STI to numerous languages led to the
iterative improvements of the STI. Moreover, the application demonstrates the ability of
the STI to support the engineering of symbol tables for a variety of modeling languages.
As symbol tables are used for multiple purposes, the requirements and quality criteria
for symbol tables in different modeling languages can vary. Despite that, the generated
symbol table infrastructures form a solid base to engineer symbol kinds, scopes, and most
parts of the symbol resolution. Nevertheless, our experiences are that most languages
require handwritten adjustments to the generated infrastructure. The STI consequently
generates most parts of the symbol table infrastructure of a language. Hence, with the
TOP mechanism that can be applied to all Java classes and interfaces of the generated
symbol table infrastructures, such customizations can be achieved with little effort.

10.2 Performance of Json Infrastructure

A key motivation for engineering a JSON parser infrastructure by hand is the speed of
the parser because loading symbol tables should be efficient. Generating language infras-
tructure based on a JSON grammar and processing this with MontiCore or a different
language workbench would result in a less efficient parser. Language workbenches for tex-
tual languages are typically capable of generating parsers that parse syntax described by
any context-free grammar. However, these generated parsers are rarely optimized with
regard to parsing speed. As the syntax of the JSON language has a rather simplistic
structure, a handwritten parser and lexer can be optimized for improving the parsing
speed. We concluded this by measuring the parsing speed of different JSON parsers for
comparison. This comparison of parsing speeds includes

� the parser of Gson [www20a] as a related, commonly used optimized parser,

� the presented handwritten JSON parser (in Table 10.1 referred to as “MontiCore
handwritten”),

� the parser generated from a MontiCore grammar that optimizes parsing speed by
avoiding splitting token definitions into token fragments (“Inline literal grammar”),

243

Chapter 10 Application-Based Evaluation

Parser Parsing Time

Gson 1592 ms
MontiCore handwritten 1601 ms
Inline literal grammar 9718 ms
RFC grammar 11248 ms
Modular JSON grammar 11659 ms
Flat grammar 22164 ms

Table 10.1: Comparison of parsing speed of different JSON parsers ordered by decreasing
parsing speed.

� the parser generated from a MontiCore grammar that directly realizes the grammar
in the RFC standard of JSON (“RFC grammar”),

� the parser generated from a MontiCore grammar that is engineered for being well
extensible (“Modular JSON grammar”), and

� the parser generated from a MontiCore grammar that accepts many malformed
JSON documents and postpones more of the well-formedness to context conditions
(“Flat grammar”).

We measured the time as the mean parsing speed of 100 iterations of parsing two
generated JSON files, where one of these is a tree with a depth of 7 and a branching
factor of 7, and the other is a tree with depth 3 and a branching factor of 10. The results
of the comparison are depicted in Table 10.1. The measurements include only the pure
parsing and lexing that produce an instance of an abstract syntax model of JSON. The
instantiation of the serialized object structure from the serialized String is not taken into
account. The measurements were carried out on a machine with a 4 x 2.6GHz CPU and
16GB RAM.

Lessons learned: Although the measurements have a significant variance, among
other things, due to garbage collection, it is visible that optimized JSON parsers (Google
Gson and MontiCore handwritten) are significantly faster than the remaining investi-
gated parsers that were generated.

10.3 Application of Loading and Storing Symbol Tables

Serialization for symbol tables has been established for a larger number of MontiCore
languages, including those that are available open-source. Similar to the symbol table
infrastructure in general, the mechanisms for loading and storing symbol tables have
been constantly evaluated by employing the approaches to these languages. Therefore,

244

10.3 Application of Loading and Storing Symbol Tables

Navigation.fdsym

FeatureDiagramCLI FeatureConfigurationCLI

BasicNavigation.fcsym

store
2.

BasicNavigation.fc
parse
3.

load
4.

store
5.

Navigation.fd
parse
1.

Figure 10.3: Example of loading and storing symbols in the feature diagram language
family

the generated serialization and deserialization infrastructure is utilized, sometimes in a
customized form, in most of the open-source MontiCore languages. Since the speed of
loading and storing symbol tables largely depends on the complexity of the language
and its serialization strategies as well as on the complexity of the models, the results of
a speed measurement for loading and storing symbol tables could hardly be generalized.
Hence, it is a deliberate decision not to measure this speed. Loading and storing of
symbol tables is also used in the MLC language presented in Chapter 7 of this thesis
and for building the feature diagram languages presented in Chapter 8 of this thesis.

Although the tooling of the feature diagram language loads models instead of symbol
tables of models, the loading and storing of feature diagram models is implemented as
part of the language infrastructure. It is used for the case that a feature configuration
model is processed without executing feature analyses. In this case, the feature con-
figuration can check the conformance to the linked feature diagram model by loading
the symbol table. The tools of the two feature configuration languages are able to store
symbol tables of feature configuration models. However, these files currently have the
sole purpose of enabling developers to investigate the symbol tables of models. An ex-
ample of this is depicted in Figure 10.3, where first, the feature diagram tool processes
a feature model Navigation and stores the corresponding symbol file. Afterward, the
feature configuration tool processes the feature configuration BasicNavigation that
refers to the feature model Navigation. To check that the feature configuration refers
to the correct feature diagram, the feature configuration tool loads the symbol file of
Navigation and resolves for the name of the feature diagram symbol and the names
of the feature symbols. If all names exist at the expected locations, the tool stores the
symbol file for the feature configuration.

The MLC language relies on stored symbol tables to increase the performance of
processing MLC models. If an MLC model refers to another MLC model, loading the
corresponding symbol table file avoids re-evaluation of the regular expressions in MLC
models. The serialization strategy for MLCDefSymbols is customized to serialize the
map of exported files. This is explained in more detail in Section 7.4.1.

245

Chapter 10 Application-Based Evaluation

Class

Diagram

Object

Diagram
Statechart

Basic

Symbols
introduces symbol kind
for diagram symbols

Car:DiagramSymbol

Figure 10.4: Example of language composition through shared grammar

Lessons learned: The approach for loading and storing symbol tables generates de-
fault serialization strategies for custom symbol and scope attributes that are of basic
data types only. Other serialization strategies have to be conceived manually and inte-
grated into the corresponding DeSers. Our experiences have shown that most symbol
and scope attributes that the languages use are either Boolean flags, String attributes,
or related to type expressions. For the former two, MontiCore generates the serializa-
tion strategies. For type expressions, the runtime environment of MontiCore provides
DeSer classes for the serialization strategies of different kinds of SymTypeExpressions
(cf. Section 4.1.7). Hence, conceiving serialization strategies by hand is rarely necessary.

The loading and storing of symbol tables integrates into the process of processing
models seamlessly. In most cases, loading symbol tables of foreign models instead of
parsing and instantiating the symbol table of models anew suffices to realize type checks
and, hence, to check the correctness of a model. However, for sophisticated analyses and
code generation, it is sometimes necessary to have the AST of foreign models available
as well. For instance, the feature diagram language requires the AST of imported feature
diagrams to carry out feature analyses.

10.4 Application of Language Composition via Symbol Tables

MontiCore languages rarely exist in isolation. Most languages reuse language compo-
nents from the MontiCore language component library. Hence, most languages rely on
forms of language composition, as described in Chapter 6.

The language aggregation through a shared grammar (cf. Section 6.4.1) is used to
realize MontiCore’s type checking framework [HKR21]. The nonterminals for type def-
initions are located in a grammar that can be extended by languages that use the type
system. Similarly, language engineers can conceive further grammars that introduce
symbol-defining nonterminals that languages can use via language extension. For ex-
ample, UML [Rum16, Rum17] and SysML [www21f] comprise heterogeneous languages
for specific diagrammatical models such as class diagrams, activity diagrams, or block-
definition diagrams. Applications are typically modeled through heterogeneous models,

246

10.4 Application of Language Composition via Symbol Tables

where different aspects of the application are modeled with suitable modeling languages.
In this, the models usually refer to elements of other diagrams. In such scenarios, a com-
mon grammar can be used to introduce a symbol-defining nonterminal Diagram. Each
individual language that extends the common grammar can refer to other diagrams with
Name@Diagram. This further enables to underspecify the concrete kind of diagram and
fosters extensibility with new languages. An example of the diagram symbol exchanged
between different languages is depicted in Figure 10.4. In this, the diagram symbol can
be either exchanged as a Java object or via symbol table persistence. Optionally, the
individual languages can define language-specific diagram symbol kinds that extend the
general symbol kind DiagramSymbol. This supports distinguishing different forms of
diagrams by resolving for language-specific diagram kinds and, at the same time, resolv-
ing for any suitable diagram regardless of the concrete kind of diagram by resolving for
symbols of the more general kind DiagramSymbol.

The feature diagram language presented in Chapter 8 as part of the feature diagram
language family reuses three languages from the MontiCore language component library
that again reuse further language components (cf. Figure 8.1). This demonstrates the
reusability of language components through language inheritance. The feature configu-
ration languages inherit from the feature diagram language, inter alia, to enable their
scopes to resolve for symbol kinds defined in the feature diagram language. Moreover,
the different forms of language composition presented in Chapter 6 of this thesis are
utilized to integrate the feature diagram language with other languages through the
mechanism described in Section 8.4.

Lessons learned: The combination of kind-typed symbol tables and symbol table
persistence enables novel techniques of conceiving language composition. For instance,
in the STI, there are different ways to achieve language aggregation. Instead, in the
SMI [MSN17], language aggregation is always realized through a ModelingLanguage-
Family and AdaptedResolvingFilters.

The novel techniques for language composition enable adjusting the extensibility of
language aggregations flexibly. By reconfiguring the global scope’s DeSers and consid-
ered symbol file extensions, novel languages that provide previously unknown symbol
kinds can be integrated. On the other hand, symbol adapters can translate between
individual symbol kinds to precisely control which symbol kinds should be considered in
the aggregation.

In the STI, the symbol kinds are encoded into the names of resolve methods.
The SMI [MSN17], on the other hand, uses the symbol kinds as an argument of the
resolution. Handling foreign symbol kinds, hence, requires more effort in the STI because
the global scope cannot handle unknown kinds in its resolve methods. However,
this encourages language engineers to explicitly consider the ability of a language to
participate in language aggregation.

247

Chapter 10 Application-Based Evaluation

BasicSymbols

MCBasics

Expressions

Basis

Cardinality

Common

Literals

OOSymbols

Assert

Statements

Statements

Basis

Return

Statements

Literals

Basis

Common

Expressions

Assignment

Expressions

Common

Statements

VarDeclaration

Statements

Full

GenericTypes

Simple

GenericTypes

Collection

Types

Basic

Types

MLCD

Figure 10.5: Excerpt of MontiCore’s language component library

10.5 Application of MontiCore Language Components

Most MontiCore languages rely on languages of the MontiCore language component
library by extending one or more of its grammars. With the MLC language as presented
in Chapter 7, a language component can indicate that it is allowed to use one or more
other languages by referring to their MLC models. To this end, creating MLC models
for the language components of the MontiCore language component library is a valuable
base for creating MLC models of other, more complex languages.

Since all language components of the library are located within a single build tool
module, introducing MLC models for each of the language components helps to untan-
gle the relations between the artifacts of the build tool module. Hence, the language
component library is suited well for evaluating the MLC language and tools.

We created MLC models for all 39 language components of the MontiCore language
component library. Most language components follow the same schema: they comprise
a grammar, all Java files that are generated from the grammar, and some Java classes
that are handwritten extensions to the generated classes and result from applying the
TOP mechanism. Some language components, such as the language components for type
expressions, share several Java classes that realize the type check. Furthermore, some
language components are documented in a markdown file located next to the grammar,
while for others, the documentation is contained in common markdown files. By apply-
ing the MLC files to the language component library, several unintended relationships
between language components have been identified. For instance, in a previous version
of the language component BasicSymbols, some handwritten AST classes used classes
of the OOSymbols language. Because the OOSymbols language component extends the

248

10.6 Application of the Feature Diagram Language Family

BasicSymbols, this relationship is undesired and has been removed. An excerpt of the
language components in the language component library and some of their interrelations
are depicted in Figure 10.5.

Apart from the language components of the language component library in MontiCore,
the MLC tool has been integrated into different DSMLs, such as into the DSMLs of
the feature diagram language family. We modeled MLC models for each of the three
language components of the language family. The MLC models assure that only the
language components depicted in Figure 8.1 are allowed to be used. As the feature
analysis tooling cannot be associated directly with the feature diagram language or a
feature configuration language, it is not included in any of the language components.
Instead, we regard it as a separate software component.

Lessons learned: Engineering MLC models is a manual activity. For some language
components, creating MLC models is straightforward. For other languages, however,
creating MLC models requires effort to understand the interrelations of a language com-
ponent’s internal artifacts and their relations with the artifacts in their environment to
include or exclude these in the MLC model.

Most MontiCore languages use the same build tool configuration. Hence, MLC models
contain a part of boilerplate include statements for the grammar, the generated code,
and the handwritten code that extends the generated code through the TOP mechanism.
Similarly, each MLC model indicates that the language component is allowed to use the
same artifacts, such as the MontiCore runtime environment.

10.6 Application of the Feature Diagram Language Family

For assuring the intended functionality of the language tools, the languages of the feature
diagram language family are tested with unit tests that utilize different valid and invalid
models of the individual languages. The languages form the basis for realizing the LCPL
language and tooling described in Chapter 9 of this thesis. At the same time, the LCPL
language evaluates the extensibility of the feature diagram language to customize it for
a particular application.

To demonstrate a different form of application, we integrated the feature diagram
language with a class diagram language to create 150% class diagram models that we
refer to as product line class diagram (PLCD) models. The syntax of this language
is realized through multiple inheritance of a novel grammar from the feature diagram
grammar and the class diagram grammar. The novel grammar introduces a new start
rule PLCD for the language2. A PLCD model has a name and a body that contains
FDElements reused from the feature diagram language as well as FeatureBlocks.

FeatureBlocks are defined anew by the language and associate a feature name with

2Hence, the form of composition is language inheritance and not language embedding

249

Chapter 10 Application-Based Evaluation

01

02

03

04

05

06

07

08

09

10

11

12

plcd Car {

Car -> LaneChangeAssistant?;

Car {

abstract class Sensor {/*…*/}

}

LaneChangeAssistant {

class Lane {/*…*/}

class LaneSensor extends Sensor {/*…*/}

}

}

PLCD

product line class
diagram model

feature tree rule

feature blocks

CD classes

CD4

Analysis

Feature

Diagram

MLCD

PLCD

Figure 10.6: The PLCD language reuses the feature diagram language

a set of CDClasses and CDAssociations reused from the class diagram language.
The left side of Figure 10.6 depicts an example model of the PLCD language, and the
right side of the figure displays the relations between the involved language components.
We implemented tooling based on the generated visitor infrastructure of the language
that transforms any PLCD model into a feature diagram model. The resulting feature
diagrams enable reusing the feature analysis tooling from the feature diagram language
family (cf. Section 8.3). The visitor infrastructure can further be used to implement a
transformation that creates a class diagram model based on a given PLCD model and
feature configuration. This class diagram contains only classes and associations that
belong to features selected in the given feature configuration. To this end, this tool
derives a product from the product line modeled within the PLCD model. Such forms
of language composition can be achieved analogously with similar modeling languages.

Lessons learned: As feature modeling is a central activity in many software product
line applications, there are numerous feature modeling tools. Despite that, we created
a new feature diagram language in MontiCore. The languages of the feature diagram
language family can be integrated with other languages through MontiCore’s means of
language composition with little effort. We demonstrated this by applying the feature
diagram language in the context of PLCDs and the LCPL language. Furthermore,
the languages of the feature diagram language family can be extended with additional
feature modeling capabilities that are taken into account by feature analyses. For these
additional capabilities, analyses and code generators can be integrated with the existing
tooling. However, industrial-scale feature modeling tools are more optimized regarding
the efficiency and scalability of feature analyses than the current implementation of the
feature analyses tools presented in this thesis.

250

10.7 Evaluation of the LCPL

10.7 Evaluation of the LCPL

The concepts behind the LCPL that is described in Chapter 9 have been conceived,
evaluated, and updated continuously over the course of several years. This is reflected
in numerous publications [BEK+18a, BEK+18b, BEK+19, BPRW20, BW21]. In ad-
dition, the concepts have been applied to several example product lines, including an
architecture description language that is customizable for different application domains.
However, a proper evaluation with large-scale language product lines has yet to be con-
ducted.

251

Chapter 11

Conclusion

This thesis presents different means that support language engineering in the large. The
results of this thesis serve the purpose of being able to engineer high-quality DSMLs
tailored to specific applications with little effort. Such languages typically use domain
vocabulary and, hence, reduce the gap between problem and implementation [FR07].
This fosters domain engineers to implement software without the accidental complexity
of learning complex programming languages. Symbol tables enable efficient composition
of modular languages, and language components promote language reuse through precise
identification of language artifacts and analyses against languages. Language product
lines support the structured reuse of languages in product lines. This chapter summarizes
the main results of the thesis in Section 11.1 and describes how these results contribute
answers to the research questions introduced in Chapter 1. Section 11.2 concludes the
thesis with an outlook on directions for further research.

11.1 Summary

The thesis has developed approaches that enable engineering modular language compo-
nents with MontiCore and composing these language components, inter alia, via their
symbol tables. This fosters language reuse and is the basis for realizing language prod-
uct lines of languages. The following list summarizes the main results and explains how
these answer the partial research questions:

Typed Symbol Table Infrastructures Chapter 4 presents the typed symbol table in-
frastructure and describes how large parts of it can be generated. The STI has been
successfully applied to a larger number of MontiCore language, including the MontiCore
grammar language as well as the MLC language and the feature diagram language family
presented in this thesis. The research question RQ1 (“Can a typed symbol table infras-
tructure support language composition?”) can be answered positively because Chapter 8
shows several forms of language composition for the feature diagram language family
that rely on the STI and can be employed to integrate the FD language with other lan-
guages. In general, Chapter 6 describes how to achieve language composition with the

253

Chapter 11 Conclusion

STI through typed symbol tables and, hence, answers the research question RQ3 (“How
to compose languages via typed symbol tables?”).

Persistence of Symbol Tables An approach for realizing load and store operations for
symbol tables is described in Chapter 5. The approach enables reusing processed mod-
els of a language and fosters reuse of models across the borders of languages through
different forms of language composition that rely on stored symbol tables, as presented
in Chapter 6. Furthermore, a tool for importing class files, i.e., processed models of Java,
exemplary demonstrates how processed models from non-MontiCore languages can be
imported into MontiCore languages. Thus, the persistence of symbol tables answers the
research question RQ2 (“How can we reuse processed models of a language and of foreign
languages?”).

Language Components Chapter 7 introduces the notion of language components in
MontiCore by means of the artifacts that realize a language component. The MLC
language enables modeling language components, and MLC tools can be employed to
identify the artifacts that constitute a language component. Furthermore, language en-
gineers can identify undesired relations between language components that complicate
language reusability with the MLC tool. The definition of language components real-
ized through the MLC language and tools answers the research question RQ4 (“What
constitutes a reusable language component?”).

Language Product Lines As described in Chapter 9, language product lines in Monti-
Core can be realized with the MLC language introduced in Section 7.4.1 and the feature
diagram language family explained in Chapter 8. The approach for language product
lines in MontiCore restricts undesired combinations of language components via fea-
ture models and fosters reusability of language compositions among families of similar
languages. This answers the research question RQ5 (“How can a family/product line
describing similar languages be modeled?”).

All these results contribute to the main research question of the thesis, i.e., present
approaches for the composition of DSMLs via their symbol tables using reusable language
components. These language components can be arranged in language product lines.
With the language composition techniques, languages can be derived from the product
line in a semi-automated process.

11.2 Potential for Future Work

This thesis has answered the research questions introduced in Chapter 1 in the techno-
logical space of MontiCore. In general, engineering languages in the large is a complex
endeavor with a number of further open research questions to solve. Despite this, the
presented approaches can be evolved and extended into various dimensions.

254

11.2 Potential for Future Work

Other forms of Symbol Table Persistence The presented approach for symbol table
persistence stores symbols and scopes and re-establishes the object structure from stored
artifact scopes. As presented in Chapter 5, an alternative for this is to calculate qualified
names for each persisted symbol and store only symbols instead of both symbols and
scopes. Realizing an approach for key-value storage of symbols enables exploring the
advantages and disadvantages beyond the points discussed in Chapter 5 and enables a
comparison of both approaches in terms of the performances for symbol resolution and
in terms of suitability for language composition.

Synthesizing Language Component Models The MLC language presented in Chap-
ter 7 enables modeling regular expressions for artifact sets that realize/constitute a
language. However, the configuration of the MontiCore generator already determines
the location of all artifacts that are generated from a language’s grammar. Furthermore,
all MontiCore languages require access to the MontiCore runtime environment. The
identification of such artifacts in a manual process, hence, is not necessary. Instead,
parts of an MLC model can be synthesized with a code generator. Future work should
investigate to generate parts of MLC models, e.g., via generating adjustable proposals
for MLC models from a MontiCore grammar. The generated proposals can be customiz-
able by making the TOP mechanism available for the MLC language via inheritance
between MLC models or by adding detailed import mechanisms per artifact set of an
MLC model.

Extending the MLC Language The MLC language presented in Chapter 7 enables spec-
ifying the artifacts of a language component and the artifacts that a language component
is allowed to use. Currently, the reuse of MLC models is limited to indicating that a lan-
guage component may use all artifacts of another language component by indicating its
MLC model. This is due to the fact that the MLC language distinguishes only between
own and allowed artifacts. If a language is allowed to use another language, all own
artifacts of the other language become allowed artifacts of the language. By distinguish-
ing own artifacts that are exported for other languages and own artifacts that are only
visible locally, the MLC language could allow finer-grained specifications of artifact sets.
This could be achieved with a syntax similar to visibility modifiers from programming
languages such as Java. Furthermore, allowed artifacts of a language could be split up
into artifacts that are promoted for transitive use and artifacts that are not promoted.
However, such language extensions make the MLC language more complex to understand
and use. Future work should evaluate the benefits and the additional complexity of such
language extensions for language users and for evaluating artifact sets with MLC tools.

Enhanced Language Component Tools Currently, language-specific artifact extractors
of the MLC tooling presented in Chapter 7 identify sets of artifacts that an artifact uses.
For instance, an artifact extractor for the Java language identifies all artifacts that a Java
artifact uses. Another artifact extractor for the MontiCore grammar language identifies

255

Chapter 11 Conclusion

artifacts that a grammar artifact uses. The extractors can be improved to consider re-
lationships across artifacts of different languages. For instance, code generator template
artifacts are typically used from Java artifacts. Suitable cross-language extractors can
consider such relations as well if such inter-language relations are modeled in an artifact
model [BGRW18].

Delta-Oriented Language Product Lines The approach for language product lines pre-
sented in Chapter 9 uses modular language components that are composed to realize
language variants. In this, the features of the feature diagram refer to language compo-
nents. Future work could investigate a different approach to realize language product
lines by applying deltas [SBB+10] on the level of languages. This approach would use
a MontiCore language as the basis of the product line and root of the feature diagram.
Each further feature would constitute delta operations that are applied to the language
if the feature is selected. This could be suitable for language product lines in which the
variants differ only in a few nonterminals or context conditions. However, the appli-
cation of negative delta operations breaks with the property of conservative extension
and, hence, endangers the reusability of language tools. From a technical viewpoint, the
language describing deltas for MontiCore languages could be derived from the grammar
language [HHK+15].

Outreach to Generation Composition The presented approach for conceiving language
product lines does not explicitly handle code generators as part of language compo-
nents. However, the process of modular code generation requires some forms of com-
position [BW21]. There are several approaches for realizing modular code generators
with MontiCore. Some approaches are suitable for realizing language product lines
but are applicable with restrictions on the code generators only [BEK+18b, BW21,
BPRW20]. Other approaches require information about foreign code generators to com-
pose these [GMR+16] and, hence, are not suitable well to be applied in language com-
position as part of language product lines. A more general approach for generator
composition is yet to be conceived.

256

Bibliography

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake.
Feature-Oriented Software Product Lines:Concepts and Implementation.
Springer, 2013.

[AC04] Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlugin: Feature
Modeling Plug-In for Eclipse. In Proceedings of the 2004 OOPSLA Work-
shop on Eclipse Technology Exchange, pages 67–72, 2004.

[ACLF13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
FAMILIAR: A Domain-Specific Language for Large Scale Management
of Feature Models. Science of Computer Programming (SCP), 78(6):657–
681, 2013.

[AK03] Colin Atkinson and Thomas Kuhne. Model-Driven Development: A
Metamodeling Foundation. IEEE software, 20(5):36–41, 2003.

[AKL09] Sven Apel, Christian Kastner, and Christian Lengauer. FEATURE-
HOUSE: Language-independent, automated software composition. In
2009 IEEE 31st International Conference on Software Engineering,
pages 221–231. IEEE, 2009.

[ALSU07] Alfred V. Aho, Monika S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools. Pearson Education, 2007.

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formu-
las. In International Conference on Software Product Lines, pages 7–20.
Springer, 2005.

[BDV+16] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. Execution Framework of
the GEMOC Studio (Tool Demo). In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering,
pages 84–89. ACM, 2016.

[BEH+20] Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen,
Bernhard Rumpe, and Andreas Wortmann. A Library of Literals, Ex-
pressions, Types, and Statements for Compositional Language Design.

257

Bibliography

Journal of Object Technology, 19(3):3:1–16, October 2020. Special Issue
dedicated to Martin Gogolla on his 65th Birthday.

[BEK+18a] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Controlled and Extensible Variability of Concrete
and Abstract Syntax with Independent Language Features. In Pro-
ceedings of the 12th International Workshop on Variability Modelling of
Software-Intensive Systems (VAMOS’18), pages 75–82. ACM, January
2018.

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Modeling Language Variability with Reusable Lan-
guage Components. In International Conference on Systems and Soft-
ware Product Line (SPLC’18). ACM, September 2018.

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Systematic Composition of Independent Language
Features. Journal of Systems and Software, 152:50–69, June 2019.

[Bet16] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing Ltd, 2016.

[Beu12] Danilo Beuche. Modeling and Building Software Product Lines with
pure::variants. In Proceedings of the 16th International Software Product
Line Conference, volume 2, pages 255–255, 2012.

[BGM10] Barrett R Bryant, Jeff Gray, and Marjan Mernik. Domain-Specific Soft-
ware Engineering. In Proceedings of the FSE/SDP workshop on Future
of software engineering research, pages 65–68, 2010.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. Taming the Complexity of Model-Driven Systems Engineering
Projects. Part of the Grand Challenges in Modeling (GRAND’17) Work-
shop, July 2017.

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. On the Need for Artifact Models in Model-Driven Systems En-
gineering Projects. In Martina Seidl and Steffen Zschaler, editors, Soft-
ware Technologies: Applications and Foundations, LNCS 10748, pages
146–153. Springer, January 2018.

[BHH+17] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bern-
hard Rumpe, and Andreas Wortmann. Systematic Language Exten-
sion Mechanisms for the MontiArc Architecture Description Language.

258

Bibliography

In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 53–70. Springer, July 2017.

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bern-
hard Rumpe, and Andreas Wortmann. A Classification of Dynamic
Reconfiguration in Component and Connector Architecture Description
Languages. In Proceedings of MODELS 2017. Workshop ModComp,
CEUR 2019, September 2017.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and
Katharina Spies. Software and System Modeling Based on a Unified
Formal Semantics. In Workshop on Requirements Targeting Software
and Systems Engineering (RTSE’97), LNCS 1526, pages 43–68. Springer,
1998.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Architectural Programming with MontiArcAutomaton. In In 12th Inter-
national Conference on Software Engineering Advances (ICSEA 2017),
pages 213–218. IARIA XPS Press, May 2017.

[BMSN21] Arvid Butting and Pedram Mir Seyed Nazari. Symbol Management In-
frastructure. In Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe,
editors, MontiCore Language Workbench and Library Handbook: Edition
2021, Aachener Informatik-Berichte, Software Engineering, chapter 9,
pages 155–210. Shaker Verlag, 2021.

[BPRW20] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wort-
mann. A Compositional Framework for Systematic Modeling Language
Reuse. In Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, pages 35—-46.
ACM, October 2020.

[Bro87] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, 20(4):10–19, 1987.

[BRW16] Arvid Butting, Bernhard Rumpe, and Andreas Wortmann. Embedding
Component Behavior DSLs into the MontiArcAutomaton ADL. In Glob-
alization of Modeling Languages Workshop (GEMOC’16), volume 1731
of CEUR Workshop Proceedings, October 2016.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems: Focus on Streams, Interfaces, and Refinement. Springer
Science & Business Media, 2001.

259

Bibliography

[BSL+13] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and
Krzysztof Czarnecki. A Study of Variability Models and Languages in the
Systems Software Domain. IEEE Transactions on Software Engineering,
39(12):1611–1640, 2013.

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
Analysis of Feature Models 20 years later: A Literature Review. Infor-
mation systems, 35(6):615–636, 2010.

[BvdBH+15] Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold
Lankamp, Bert Lisser, Atze van der Ploeg, Tijs van der Storm, and Ju-
rgen Vinju. Modular Language Implementation in Rascal– Experience
Report. Science of Computer Programming, 114:7–19, 2015.

[BW21] Arvid Butting and Andreas Wortmann. Language Engineering for Het-
erogeneous Collaborative Embedded Systems, pages 239–253. Springer,
January 2021.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard
Rumpe. Conceptual Model of the Globalization for Domain-Specific Lan-
guages. In Globalizing Domain-Specific Languages, LNCS 9400, pages
7–20. Springer, 2015.

[CE99] Krzysztof Czarnecki and Ulrich W. Eisenecker. Components and Gen-
erative Programming. ACM SIGSOFT Software Engineering Notes,
24(6):2–19, 1999.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. Engineering Modeling Lan-
guages: Turning Domain Knowledge into Tools. Chapman & Hall/CRC
Innovations in Software Engineering and Software Development Series,
November 2016.

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Vari-
ability within Modeling Language Definitions. In Conference on Model
Driven Engineering Languages and Systems (MODELS’09), LNCS 5795,
pages 670–684. Springer, 2009.

[CGR+12] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and
Andrzej W ↪asowski. Cool Features and Tough Decisions: A Comparison

260

Bibliography

of Variability Modeling Approaches. In Proceedings of the 6th interna-
tional Workshop on Variability Modeling of Software-Intensive Systems,
pages 173–182, 2012.

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Trans-
formation Approaches. Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architecture,
45(3):1–17, 2003.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Con-
figuration Through Specialization and Multilevel Configuration of Fea-
ture Models. Software Process: Improvement and Practice, 10(2):143–
169, 2005.

[CKM+18] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais,
Erwan Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule,
Robert Heinrich, Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer,
Sébastien Mosser, Matthias Schöttle, Misha Strittmatter, and Andreas
Wortmann. Concern-Oriented Language Development (COLD): Foster-
ing Reuse in Language Engineering. Computer Languages, Systems &
Structures, 54:139 – 155, 2018.

[Cla99] James Clark. XSL Transformations (XSLT) Version 1.0. W3C recom-
mendation, W3C, November 1999. https://www.w3.org/TR/1999/REC-
xslt-19991116.

[CN02] Paul Clement and Linda Northrop. Software Product Lines: Practices
and Patterns. Addison-Wesley, 2002.

[DC99] Steven DeRose and James Clark. XML Path Language (XPath)
Version 1.0. W3C recommendation, W3C, November 1999.
https://www.w3.org/TR/1999/REC-xpath-19991116/.

[DCB+15] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. Melange: A Meta-language for Modular and
Reusable Development of DSLs. In 8th International Conference on Soft-
ware Language Engineering (SLE), Pittsburgh, United States, 2015.

[dJV02] Merijn de Jonge and Joost Visser. Grammars as Feature Diagrams. In
ICSR7 Workshop on Generative Programming, pages 23–24, 2002.

[DMW17] Thomas Degueule, Tanja Mayerhofer, and Andreas Wortmann. Engi-
neering a ROVER Language in GEMOC STUDIO & MONTICORE: A
Comparison of Language Reuse Support. In Proceedings of MODELS
2017. Workshop EXE, CEUR 2019, September 2017.

261

Bibliography

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Mar-
tin Becker, and Krzysztof Czarnecki. An Exploratory Study of Cloning
in Industrial Software Product Lines. In 2013 17th European Conference
on Software Maintenance and Reengineering, pages 25–34. IEEE, 2013.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The
UML as a Formal Modeling Notation. In J. Bézivin and P.-A. Muller, ed-
itors, The Unified Modeling Language. <<UML>> ’98: Beyond the No-
tation, volume 1618 of LNCS, pages 336–348. Springer, Germany, 1999.

[EGR12] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language
Composition Untangled. In Twelfth Workshop on Language Descrip-
tions, Tools, and Applications, pages 1–8, 2012.

[EKR+11] Sebastian Erdweg, Lennart CL Kats, Tillmann Rendel, Christian Käst-
ner, Klaus Ostermann, and Eelco Visser. Library-based Model-driven
Software Development with SugarJ. In Proceedings of the ACM inter-
national conference companion on Object oriented programming systems
languages and applications companion, pages 17–18. ACM, 2011.

[EvdSV+13] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D.P. Konat, Pedro J. Molina, Mar-
tin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H.
Wachsmuth, and Jimi van der Woning. The State of the Art in Language
Workbenches. In Software Language Engineering. Springer International
Publishing, 2013.

[FGLP10] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek.
Empirical Language Analysis in Software Linguistics. In International
Conference on Software Language Engineering, pages 316–326. Springer,
2010.

[FK05] William Frakes and Kyo Kang. Software reuse research: Status and fu-
ture. IEEE Transactions on Software Engineering, 31(7):529–536, 2005.

[FKC20] Luca Favalli, Thomas Kühn, and Walter Cazzola. Neverlang and Fea-
tureIDE Just Married: Integrated Language Product Line Development
Environment. In Proceedings of the 24th ACM Conference on Systems
and Software Product Line, pages 1–11, 2020.

[Fla05] David Flanagan. Java in a Nutshell. O’Reilly Media, Inc., 2005.

262

Bibliography

[For22] Henry Ford. My Life and Work. Cosimo, Inc., 1922.

[For13] Charles Forsythe. Instant FreeMarker Starter. Packt Publishing, 2013.

[Fow05] Martin Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages, 2005.

[FR07] Robert France and Bernhard Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. Future of Software Engi-
neering (FOSE ’07), pages 37–54, May 2007.

[FRF+10] Daniela Florescu, Jonathan Robie, Mary Fernandez, Don Chamberlin,
Jerome Simeon, and Scott Boag. XQuery 1.0: An XML Query Lan-
guage (Second Edition). W3C recommendation, W3C, December 2010.
https://www.w3.org/TR/2010/REC-xquery-20101214/.

[Fri06] Jeffrey EF Friedl. Mastering Regular Expressions. O’Reilly Media, Inc.,
2006.

[FT96] William Frakes and Carol Terry. Software Reuse: Metrics and Models.
ACM Computing Surveys (CSUR), 28(2):415–435, 1996.

[GGdL+19] Antonio Garmendia, Esther Guerra, Juan de Lara, Antonio Garćıa-
Domı́nguez, and Dimitris Kolovos. Scaling-Up Domain-Specific Mod-
elling Languages through Modularity Services. Information and Software
Technology, 115:97–118, 2019.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GHK+15] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dim-
itri Plotnikov, Dirk Reiß, Alexander Roth, Bernhard Rumpe, Martin
Schindler, and Andreas Wortmann. A Comparison of Mechanisms for
Integrating Handwritten and Generated Code for Object-Oriented Pro-
gramming Languages. In Model-Driven Engineering and Software De-
velopment Conference (MODELSWARD’15), pages 74–85. SciTePress,
2015.

[GHR17] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a
Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven
Projects. Aachener Informatik-Berichte, Software Engineering, Band 30.
Shaker Verlag, December 2017.

263

Bibliography

[GJR79] Susan L Graham, William N Joy, and Olivier Roubine. Hashed Symbol
Tables for Languages with Explicit Scope Control. In Proceedings of
the 1979 SIGPLAN symposium on Compiler construction, pages 50–57,
1979.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased Modeling. In 4th International Workshop on
Software Language Engineering, Nashville, Informatik-Bericht 4/2007.
Johannes-Gutenberg-Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore: A Framework for the Development of Textual
Domain Specific Languages. In 30th International Conference on Soft-
ware Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
Companion Volume, pages 925–926, 2008.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
Engineering Tagging Languages for DSLs. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 34–
43. ACM/IEEE, 2015.

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe,
Christoph Schulze, and Andreas Wortmann. Modeling Variability in
Template-based Code Generators for Product Line Engineering. In Mod-
ellierung 2016 Conference, volume 254 of LNI, pages 141–156. Bonner
Köllen Verlag, March 2016.

[GNT+07] Jeff Gray, Sandeep Neema, Juha-Pekka Tolvanen, Aniruddha S Gokhale,
Steven Kelly, and Jonathan Sprinkle. Domain-Specific Modeling. In
Handbook of Dynamic System Modeling, pages 7–1 – 7–20, 2007.

[GP15] Terje Gjøsæter and Andreas Prinz. LanguageLab-A Meta-modelling En-
vironment. In International SDL Forum, pages 91–105. Springer, 2015.

[Hef14] David R. Heffelfinger. Java EE 7 with GlassFish 4 Application Server.
Packt Publishing Ltd, 2014.

[HHK+15] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. System-
atic Synthesis of Delta Modeling Languages. Journal on Software Tools
for Technology Transfer (STTT), 17(5):601–626, October 2015.

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore
Language Workbench and Library Handbook: Edition 2021. Aachener

264

Bibliography

Informatik-Berichte, Software Engineering, Band 48. Shaker Verlag, May
2021.

[HLMSN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wort-
mann. Composition of Heterogeneous Modeling Languages. In Model-
Driven Engineering and Software Development, volume 580 of Commu-
nications in Computer and Information Science, pages 45–66. Springer,
2015.

[HLMSN+15b] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wort-
mann. Integration of Heterogeneous Modeling Languages via Extensible
and Composable Language Components. In Model-Driven Engineering
and Software Development Conference (MODELSWARD’15), pages 19–
31. SciTePress, 2015.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Acm Sigact News,
32(1):60–65, 2001.

[Hoa73] Charles A. R. Hoare. Hints on Programming Language Design. Technical
report, Stanford University, 1973.

[Hoa09] Charles A. R. Hoare. Null References: The Billion Dollar Mistake. Pre-
sentation at QCon London, 298, 2009.

[HOKU15] C. Huang, A. Osaka, Y. Kamei, and N. Ubayashi. Automated DSL Con-
struction Based On Software Product Lines. In 3rd International Con-
ference on Model-Driven Engineering and Software Development, pages
1–8, 2015.

[Höl18] Katrin Hölldobler. MontiTrans: Agile, modellgetriebene Entwicklung
von und mit domänenspezifischen, kompositionalen Transformation-
ssprachen. Aachener Informatik-Berichte, Software Engineering, Band
36. Shaker Verlag, December 2018.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of ”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[KC16] Thomas Kühn and Walter Cazzola. Apples and Oranges: Comparing
Top-Down and Bottom-Up Language Product Lines. In Proceedings of
the 20th International Systems and Software Product Line Conference,
pages 50–59. ACM, 2016.

265

Bibliography

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical report, Carnegie-Mellon University, 1990.

[KCO15] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. Choosy
and Picky: Configuration of Language Product Lines. In Proceedings of
the 19th International Software Product Line Conference, pages 71–80.
ACM, 2015.

[KKCVW17] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. Re-
liable and Automatic Composition of Language Extensions to C: The
ableC Extensible Language Framework. Proc. ACM Program. Lang.,
1(OOPSLA):98:1–98:29, October 2017.

[KKWV12] Gabriël Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser.
Declarative Name Binding and Scope Rules. In International Confer-
ence on Software Language Engineering, pages 311–331. Springer, 2012.

[Kle08] Anneke Kleppe. Software Language Engineering: Creating Domain-
Specific Languages using Metamodels. Pearson Education, 2008.

[KMC12] Tomaž Kosar, Marjan Mernik, and Jeffrey C Carver. Program Com-
prehension of Domain-Specific and General-Purpose Languages: Com-
parison Using a Family of Experiments. Empirical software engineering,
17(3):276–304, 2012.

[KRV07] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Defini-
tion of Abstract and Concrete Syntax for Textual Languages. In Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS’07), LNCS 4735, pages 286–300. Springer, 2007.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a
Framework for Compositional Development of Domain Specific Lan-
guages. International Journal on Software Tools for Technology Transfer
(STTT), 12(5):353–372, September 2010.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: En-
abling Full Code Generation. John Wiley & Sons, 2008.

[KV10] Lennart CL Kats and Eelco Visser. The Spoofax Language Workbench:
Rules for Declarative Specification of Languages and IDEs. In Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2010),
pages 444–463. ACM, 2010.

266

Bibliography

[KVW13] Ted Kaminski and Eric Van Wyk. Creating and Using Domain-Specific
Language Features. In Proceedings of the First Workshop on the Glob-
alization of Domain Specific Languages, pages 18–21, 2013.

[LDA13] Jörg Liebig, Rolf Daniel, and Sven Apel. Feature-oriented Language
Families: A Case Study. In Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Systems, Va-
MoS ’13, pages 11:1–11:8, New York, NY, USA, 2013. ACM.

[LDC+17] Manuel Leduc, Thomas Degueule, Benoit Combemale, Tijs van der
Storm, and Olivier Barais. Revisiting Visitors for Modular Extension
of Executable DSMLs. In 2017 ACM/IEEE 20th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS).
IEEE, sep 2017.

[LDC18] Manuel Leduc, Thomas Degueule, and Benoit Combemale. Modular
Language Composition for the Masses. In Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engineering,
pages 47–59. ACM, 2018.

[LDWC19] Manuel Leduc, Thomas Degueule, Eric Van Wyk, and Benoit Combe-
male. The Software Language Extension Problem. Software and Systems
Modeling, dec 2019.

[Led19] Manuel Leduc. On Modularity and Performance of External Domain-
Specific Language Implementations. PhD thesis, University of Rennes 1,
France, 2019.

[LW94] Barbara H Liskov and Jeannette M Wing. A Behavioral Notion of Sub-
typing. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(6):1811–1841, 1994.

[Mac99] Bruce J. MacLennan. Principles of Programming Languages Design,
Evaluation, and Implementation. Oxford University Press, 1999.

[MAGD+16] David Méndez-Acuña, José A Galindo, Thomas Degueule, Benôıt
Combemale, and Benoit Baudry. Leveraging Software Product Lines
Engineering in the Development of External DSLs: A Systematic Liter-
ature Review. Computer Languages, Systems & Structures, 46:206–235,
2016.

[Mar17] Tom Marrs. JSON at Work: Practical Data Integration for the Web.
O’Reilly, 2017.

267

Bibliography

[MBC09] Marcilio Mendonca, Moises Branco, and Donald Cowan. SPLOT: Soft-
ware Product Lines Online Tools. In Proceedings of the 24th ACM SIG-
PLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications, pages 761–762, 2009.

[McC98] Glen McCluskey. Documentation of the Java Reflection API.
https://www.oracle.com/technical-resources/articles/
java/javareflection.html, 1998. [Online; accessed 24-August-
2020].

[MCHB11] Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin
Boucher. A Formal Semantics for Feature Cardinalities in Feature Di-
agrams. In Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems, pages 82–89, 2011.

[Mer13] Marjan Mernik. An Object-Oriented Approach to Language Composi-
tions for Software Language Engineering. Journal of Systems and Soft-
ware, 86(9), 2013.

[MGVB16] Sadaf Mustafiz, Cláudio Gomes, Hans Vangheluwe, and Bruno Barroca.
Modular Design of Hybrid Languages by Explicit Modeling of Semantic
Adaptation. In 2016 Symposium on Theory of Modeling and Simulation
(TMS-DEVS), pages 1–8. IEEE, 2016.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M Sloane. When And How to
Develop Domain-Specific Languages. ACM computing surveys (CSUR),
37(4):316–344, 2005.

[Mos19] Peter D Mosses. Software Meta-Language Engineering and CBS. Journal
of Computer Languages, 50:39–48, 2019.

[MRR11] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semanti-
cally Configurable Consistency Analysis for Class and Object Diagrams.
In Conference on Model Driven Engineering Languages and Systems
(MODELS’11), LNCS 6981, pages 153–167. Springer, 2011.

[MSN17] Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Com-
posed Modeling Language Essentials. Aachener Informatik-Berichte,
Software Engineering, Band 29. Shaker Verlag, June 2017.

[MT00] Nenad Medvidovic and Richard N Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 2000.

268

https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html

Bibliography

[MTS+17] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability with
FeatureIDE. Springer, 2017.

[Mus14] Benjamin Muschko. Gradle in Action. Manning, 2014.

[MVG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142, 2006.

[MVM10] Frederic P Miller, Agnes F Vandome, and John McBrewster. Apache
Maven. Alpha Press, 2010.

[NES17] Michael Nieke, Gil Engel, and Christoph Seidl. DarwinSPL: An Iinte-
grated Tool Suite for Modeling Evolving Context-Aware Software Prod-
uct Lines. In Proceedings of the Eleventh International Workshop on
Variability Modelling of Software-intensive Systems, pages 92–99, 2017.

[NPRI09] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente
Izurieta. Comparison of JSON and XML Data Interchange Formats: A
Case Study. Caine, 9:157–162, 2009.

[NR68] Peter Naur and Brian Randell, editors. Software Engineering: Report
of a conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO,
1968.

[NSB+07] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. MiniZinc: Towards a standard CP
modelling language. In International Conference on Principles and Prac-
tice of Constraint Programming, pages 529–543. Springer, 2007.

[Par13] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2013.

[PH04] Frits K. Pil and Matthias Holweg. Linking Product Variety to Order-
Fulfillment Strategies. Interfaces, 34(5):394–403, 2004.

[PSMB+06] Jean Paoli, Michael Sperberg-McQueen, Tim Bray, Eve Maler, François
Yergeau, and John Cowan. Extensible Markup Language (XML)
1.1 (Second Edition). W3C recommendation, W3C, August 2006.
https://www.w3.org/TR/2006/REC-xml11-20060816/.

[RBSP02] Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow.
Extending Feature Diagrams with UML Multiplicities. In 6th World
Conference on Integrated Design & Process Technology (IDPT2002), vol-
ume 23, pages 1–7, 2002.

269

Bibliography

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From
Software Architecture Structure and Behavior Modeling to Implementa-
tions of Cyber-Physical Systems. In Software Engineering Workshopband
(SE’13), volume 215 of LNI, pages 155–170, 2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArc-
Automaton. Aachener Informatik-Berichte, Software Engineering, Band
20. Shaker Verlag, December 2014.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektori-
entierter Systeme. Herbert Utz Verlag Wissenschaft, München, Deutsch-
land, 1996.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-Oriented Programming of Software Product
Lines. In International Conference on Software Product Lines, pages
77–91. Springer, 2010.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008.

[SBPM09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2.
edition, 2009.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung
mit der UML/P. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012.

[Sch19] Christoph Schulze. Agile Software-Produktlinienentwicklung im Kontext
heterogener Projektlandschaften. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 40. Shaker Verlag, May 2019.

[SM12] Audie Sumaray and S. Kami Makki. A Comparison of Data Serializa-
tion Formats for Optimal Efficiency on a Mobile Platform. In Proceedings
of the 6th International Conference on Ubiquitous Information Manage-
ment and Communication, pages 1–6, 2012.

270

Bibliography

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A Comparison of
Decision Modeling Approaches in Product Lines. In Patrick Heymans,
Krzysztof Czarnecki, and Ulrich W. Eisenecker, editors, Proceedings of
the 5th International Workshop on Variability Modeling of Software-
intensive Systems (VaMoS’11), pages 119–126. ACM, 2011.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[SVGB05] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. A Taxonomy of
Variability Realization Techniques. Software: Practice and experience,
35(8):705–754, 2005.

[TAK+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A Classification and Survey of Analysis Strategies for Software
Product Lines. ACM Computing Surveys (CSUR), 47(1):1–45, 2014.

[TK09] Juha-Pekka Tolvanen and Steven Kelly. MetaEdit+: Defining and Using
Integrated Domain-Specific Modeling Languages. In Proceedings of the
24th ACM SIGPLAN conference companion on Object oriented program-
ming systems languages and applications, pages 819–820. ACM, 2009.

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. FeatureIDE: An Extensible Frame-
work for Feature-Oriented Software Development. Science of Computer
Programming, 79:70–85, 2014.

[TKES11] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Sieg-
mund. Abstract Features in Feature Modeling. In 15th International
Software Product Line Conference, pages 191–200. IEEE, 2011.

[VC15] Edoardo Vacchi and Walter Cazzola. Neverlang: A Framework for
Feature-oriented Language Development. Computer Languages, Systems
& Structures, 43:1–40, 2015.

[VCCA14] Edoardo Vacchi, Walter Cazzola, Benôıt Combemale, and Mathieu
Acher. Automating Variability Model Inference for Component-Based
Language Implementations. In Proceedings of the 18th International
Software Product Line Conference, pages 167–176. ACM, 2014.

[VCPC13] Edoardo Vacchi, Walter Cazzola, Suresh Pillay, and Benôıt Combe-
male. Variability Support in Domain-Specific Language Development.
In M. Erwig, R.F. Paige, and E. Van Wyk, editors, SLE 2013, volume
8225 of LNCS, page 76–95. Springer, 2013.

271

Bibliography

[VDKV00] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-Specific Lan-
guages: An Annotated Bibliography. ACM Sigplan Notices, 35(6):26–36,
2000.

[vdML04] Thomas von der Maßen and Horst Lichter. Deficiencies in Feature
Models. In Workshop on Software Variability Management for Product
Derivation, volume 44, page 21, 2004.

[vdS11] Tijs van der Storm. The Rascal Language Workbench. CWI. Software
Engineering [SEN], 2011.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering, Band
9. Shaker Verlag, 2011.

[VP12] Markus Voelter and Vaclav Pech. Language Modularity With the MPS
Language Workbench. In Software Engineering (ICSE), 2012 34th In-
ternational Conference on, pages 1449–1450. IEEE, 2012.

[VRSK12] Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb.
mbeddr: an Extensible C-based Programming Language and IDE for
Embedded Systems. In Proceedings of the 3rd annual conference on
Systems, programming, and applications: software for humanity, pages
121–140. ACM, 2012.

[VSB+13] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon
Helsen. Model-Driven Software Development: Technology, Engineering,
Management. John Wiley & Sons, 2013.

[VSBK14] Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb.
Towards User-Friendly Projectional Editors. In International Conference
on Software Language Engineering, pages 41–61. Springer, 2014.

[WBGK08] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an
Extensible Attribute Grammar System. Electronic Notes in Theoretical
Computer Science, 2008.

[WHT+09] Jules White, James H. Hill, Sumant Tambe, Aniruddha S. Gokhale, Dou-
glas C. Schmidt, and Jeff Gray. Improving Domain- Specific Language
Reuse with Software Product Line Techniques. IEEE software, 26(4):47–
53, 2009.

[Wor19] Andreas Wortmann. Towards Component-Based Development of Tex-
tual Domain-Specific Languages. In Luigi Lavazza, Herwig Mannaert,

272

Bibliography

and Krishna Kavi, editors, International Conference on Software En-
gineering Advances (ICSEA 2019), pages 68–73. IARIA XPS Press,
November 2019.

[www99] RFC2713 - Schema for Representing Java(tm) Objects in an LDAP Di-
rectory. https://tools.ietf.org/html/rfc2713, 1999. [Online;
accessed 16-July-2020].

[www05] RFC3986 - Uniform Resource Identifier (URI): Generic Syntax. https:
//tools.ietf.org/html/rfc3986, 2005. [Online; accessed 16-
July-2020].

[www17] ECMA-404 - The JSON Data Interchange Standard. http:
//www.ecma-international.org/publications/files/
ECMA-ST/ECMA-404.pdf, 2017. [Online; accessed 16-July-2020].

[www20a] Google GSON on GitHub. https://github.com/google/gson/,
2020. [Online; accessed 28-August-2020].

[www20b] Documentation of the Java Object Serialization. https:
//docs.oracle.com/javase/8/docs/technotes/guides/
serialization/, 2020. [Online; accessed 16-August-2020].

[www20c] Documentation of the JSON Syntax. https://www.json.org/
json-en.html, 2020. [Online; accessed 16-July-2020].

[www20d] JSON-java on GitHub. https://github.com/stleary/
JSON-java/tree/master/src/main/java/org/json, 2020.
[Online; accessed 28-August-2020].

[www20e] JSON-P API Description. https://javaee.github.io/jsonp,
2020. [Online; accessed 28-August-2020].

[www20f] The JSON Schema Wbsite. https://json-schema.org/, 2020.
[Online; accessed 16-July-2020].

[www20g] Java Specification Request 374 - Java API for JSON Processing 1.1.
https://www.jcp.org/en/jsr/detail?id=374, 2020. [Online;
accessed 28-August-2020].

[www20h] Google Protocol Buffers API Reference. https://developers.
google.com/protocol-buffers/docs/reference/overview,
2020. [Online; accessed 28-February-2021].

273

https://tools.ietf.org/html/rfc2713
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://github.com/google/gson/
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://github.com/stleary/JSON-java/tree/master/src/main/java/org/json
https://github.com/stleary/JSON-java/tree/master/src/main/java/org/json
https://javaee.github.io/jsonp
https://json-schema.org/
https://www.jcp.org/en/jsr/detail?id=374
https://developers.google.com/protocol-buffers/docs/reference/overview
https://developers.google.com/protocol-buffers/docs/reference/overview

Bibliography

[www21a] The GEMOC Studio - A Language and Modeling Workbench for Exe-
cutable Modeling. http://gemoc.org/studio.html, 2021. [Online;
accessed 26-January-2021].

[www21b] javac - Java programming language compiler. https://docs.
oracle.com/javase/8/docs/technotes/tools/windows/
javac.html, 2021. [Online; accessed 03-02-2021].

[www21c] Chapter 4. The class File Format. https://docs.oracle.com/
javase/specs/jvms/se8/html/jvms-4.html, 2021. [Online; ac-
cessed 03-02-2021].

[www21d] Static Semantics Definition with NaBL2. http://www.metaborg.
org/en/latest/source/langdev/meta/lang/nabl2/index.
html, 2021. [Online; accessed 16-August-2021].

[www21e] Object Management Group: About the Unified Modeling Language,
v2.5.1. https://www.omg.org/spec/UML/About-UML/, 2021.
[Online; accessed 15-May-2021].

[www21f] Object Management Group: SysML V2. http://www.omgsysml.
org/SysML-2.htm, 2021. [Online; accessed 07-March-2021].

274

http://gemoc.org/studio.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/nabl2/index.html
https://www.omg.org/spec/UML/About-UML/
http://www.omgsysml.org/SysML-2.htm
http://www.omgsysml.org/SysML-2.htm

List of Figures

1.1 Structure of the thesis . 5

2.1 Example for the steps involved in compiling a model 11

2.2 Overview of MontiCore’s language engineering infrastructure 13

2.3 Example for the activities involved in processing a model with MontiCore 14

2.4 MontiCore grammar for an automata language 16

2.5 MontiCore grammar for an automata language with interface nonterminals 17

2.6 Example model conforming to the automata language 19

2.7 Component grammar for a basic architecture description language 20

2.8 AST data structure of the automata language 21

2.9 Relationships between AST node types . 22

2.10 Interfaces and classes that form the visitor infrastructure for traversing
the abstract syntax of the automata language 23

2.11 Example for the order of traversal of an AST enacted by visitor 24

2.12 Generated language infrastructure for context conditions 25

2.13 Context condition checking that an automaton has at least one initial state 26

2.14 The TOP mechanism for integrating handwritten source code artifacts
with generated artifacts . 28

2.15 ASTs in the different forms of language composition 29

2.16 The hierarchical automata grammar extends the automata grammar . . . 31

2.17 Overview of engineering feature-oriented SPLs (inspired by [ABKS13]) . . 35

2.18 Example for car variants in terms of features, depicted as a feature table . 36

2.19 Basic elements of the feature diagram notation: (a) mandatory feature
(b) optional feature (c) selection group (d) alternative group 37

2.20 Feature model for a product line of cars 38

4.1 Example for scopes (areas with dotted boundaries), symbol definitions
(bold and underlined), and symbol usages (bold and italic) in a Java class
Game . 46

4.2 Associations between symbols, scopes, and AST nodes in general 48

4.3 Interfaces and classes for symbols . 50

4.4 Interfaces and classes for scopes . 51

4.5 Interfaces and classes for scopes . 52

4.6 Interfaces and classes for artifact scopes 54

275

List of Figures

4.7 Interfaces and classes for global scopes . 55
4.8 Interfaces and classes for global scopes . 56
4.9 Object structures of exemplary SymTypeExpressions for a type con-

stant, an array, and a generic type. 59
4.10 Object structure of a complex exemplary SymTypeExpression. 60
4.11 Overview of resolution of symbols by an example of resolving the type X

of the variable var . 63
4.12 Activities involved in resolution in a local scope (top) and methods real-

izing these (bottom) . 64
4.13 Activities involved in bottom-up intra-model resolution (top) and meth-

ods realizing these (bottom) . 65
4.14 Activities involved in inter-model resolution (top) and methods realizing

these (bottom) . 66
4.15 Activities involved in top-down intra-model resolution (top) and methods

realizing these (bottom) . 68
4.16 Generated visitor infrastructure for AST, scopes, and symbols 69
4.17 Instantiation of symbol tables in the context of processing models 70
4.18 Examples for symbol table information in the Automata grammar 72
4.19 Examples for allowed and forbidden uses of the symbol keyword 73
4.20 Example of the influence of the symbol keyword (depicted left) and the

scope keyword (depicted right) on the associations between symbols, scopes,
and AST nodes . 74

4.21 Example of associations between symbols, scopes, and AST nodes if a
nonterminal spans a scope and defines a symbol 76

4.22 Example of associations between symbols, scopes, and AST nodes if a
nonterminal uses a symbol (depicted left) or if a nonterminal does neither
define a symbol nor span a scope (depicted right) 77

4.23 Example of a symbol rule (left) and its effect on the generated symbol
table infrastructure (right) . 78

4.24 Example of a scope rule (left) and its effect on the generated symbol table
infrastructure (right) . 79

4.25 Static methods of the language mill for the automata language that del-
egate to non-static methods of the singleton instance 82

4.26 Classes and interfaces realizing scopes in the STI 83
4.27 Managing local symbols within scopes . 84
4.28 Access to scope properties . 85
4.29 Integration of the scope with its environment 86
4.30 Methods realizing the symbol resolution by the example of state symbols 87
4.31 Artifact scope methods by the example of the automata language 91
4.32 Global scope methods by the example of the automata language 92
4.33 Methods of symbol classes by the example of the class StateSymbol . . 96

276

List of Figures

4.34 Methods of a scope genitor by the example of the class Automata-
ScopesGenitor . 98

4.35 Methods of a scope genitor delegator by the example of the class Automata-
ScopesGenitorDelegator . 99

5.1 Alternative solutions for serializing type information 110

5.2 Overview of serialization strategy with an intermediate representation . . 111

5.3 Reusing a symbol stored as kind B by loading it as a symbol of a super
kind A, a subkind C, or an unrelated kind D. 113

5.4 Organization of symbol files . 115

5.5 Overview of the classes realizing the serialization strategy for MontiCore
symbol tables . 117

5.6 Example for two alternative approaches for serializing object structures
of scopes and symbols . 120

5.7 Overview of the classes of the JSON abstract syntax model 123

5.8 The JsonString class (left) and example JSON representations (right) . 124

5.9 The JsonNumber class (left) and example JSON representations (right) . 125

5.10 The JsonBoolean class (left) and example JSON representations (right) 125

5.11 The JsonObject class (left) and example JSON representations (right) . 126

5.12 The JsonArray class (left) and example JSON representations (right) . 127

5.13 Avoidance of down casts for the JSON infrastructure 127

5.14 Overview of the JSON printer . 128

5.15 Overview of the JSON parser . 130

5.16 Example of a serialized symbol table visualized as object diagram (left)
and encoded in JSON (right) . 132

5.17 Common interface for all symbol DeSers 133

5.18 Common interface for all scope DeSers . 135

5.19 Methods of the Symbols2Json class of the automata language 138

5.20 Methods of the StateSymbolDeSer . 140

5.21 Methods of the AutomataDeSer . 142

5.22 Methods of global scope interfaces and attributes of the global scope class
that are relevant for symbol table persistence 143

5.23 Integrating persistence of symbol tables into a language tool by the ex-
ample of the automata language . 146

5.24 Implementation (top) and example (bottom) of a custom serialization
strategy for the color attribute of state symbols in the automata language 147

5.25 Example for omitting serialization of a certain symbol kind 149

5.26 Example for using the hook points for (de)serialization 150

5.27 Load AST and symbol table from models 151

6.1 Effect of language inheritance on scopes 158

277

List of Figures

6.2 Integration of handwritten code into scopes 159

6.3 Model of a composed language (left) and excerpt of scopes and AST nodes
instantiated by processing the model (right) 160

6.4 Reconfiguration of mills for language inheritance 162

6.5 Example for adaption between symbol kinds on the level of models, lan-
guages, and symbols . 164

6.6 Example for a symbol resolver realizing language aggregation 166

6.7 On-demand symbol adaptation: a symbol is loaded as its source kind and
then adapted to the target kind . 167

6.8 Polyglot symbol persistence: a symbol is persisted in multiple represen-
tations for different kinds . 168

6.9 Standalone symbol translation: a standalone tool carries out the transla-
tion from source to target symbol kind . 169

6.10 Central types of the Class2MC tool that enables importing Java types
into MontiCore languages . 171

7.1 Relation between language components and artifacts 180

7.2 Relationship between artifacts in build modules and in language components182

7.3 Artifacts of a language component LC1 and their environment 183

7.4 Syntax elements of MontiCore language component diagrams 184

7.5 Internal elements of MontiCore language component diagrams 185

7.6 Example model of the MLC language . 190

7.7 MontiCore grammar of the MLC language 191

7.8 Example for an MLC model and the exported MLCDefSymbol 194

7.9 Tool for using the MLC language . 195

7.10 Example output of an execution of the MLCTool. 197

8.1 Overview of relations between language components and languages real-
izing the feature diagram language family 202

8.2 Exemplary model conforming to the feature diagram language 203

8.3 Graphical representation of the textual feature model presented in Figure 8.2204

8.4 Excerpt of the grammar realizing the syntax of the feature diagram language205

8.5 Some expressions of CommonExpressions are reused for the feature
diagram language (3), and some are not (7) 206

8.6 Exemplary models of the feature configuration language (top) and the
partial feature configuration language (bottom) 207

8.7 Examples for internal feature realizations on the language level (left) and
models conforming to these languages (right) 210

8.8 Example for feature diagrams referring to external feature realizations on
the level of languages (left) and models (right) 211

278

List of Figures

8.9 Examples for mapped feature realizations on the level of languages (left)
and models (right) . 212

9.1 Overview of activities and roles involved in engineering and using language
product lines by the example of the product line MyADL 216

9.2 Roles involved in engineering languages through language product lines . 219
9.3 Example for composition of language components in language product

lines . 221
9.4 Example for the implicit composition of language components in language

product lines with a common base . 222
9.5 Structure of a language composer . 225
9.6 The LCPL language reuses other languages 226
9.7 A model of the LCPL language demonstrating language embedding 227
9.8 A model of the LCPL language demonstrating language aggregation . . . 228
9.9 Example for a binding rule (left) and the adapter generated from this rule

while deriving a product from the product line (right) 231
9.10 Potential ambiguities in grammar composition 234
9.11 Conservative extension in language product lines and its effect for valid

models . 236

10.1 Development steps described in this thesis 241
10.2 MontiCore languages that rely on the STI 242
10.3 Example of loading and storing symbols in the feature diagram language

family . 245
10.4 Example of language composition through shared grammar 246
10.5 Excerpt of MontiCore’s language component library 248
10.6 The PLCD language reuses the feature diagram language 250

279

Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview of related work done at the SE Group, RWTH Aachen. More de-
tails can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The work presented
here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods for innova-
tive and efficient development of software and software-intensive systems, such that high-quality products
can be developed in a shorter period of time and with flexible integration of changing requirements. Fur-
thermore, we demonstrate the applicability of our results in various domains and potentially refine these
results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04c]: “Using an executable,
yet abstract and multi-view modeling language for modeling, designing and programming still allows to
use an agile development process.”, [JWCR18] addresses the question of how digital and organizational
techniques help to cope with the physical distance of developers and [RRSW17] addresses how to teach
agile modeling.

Modeling will increasingly be used in development projects if the benefits become evident early, e.g
with executable UML [Rum02] and tests [Rum03]. In [GKR+06], for example, we concentrate on the
integration of models and ordinary programming code. In [Rum11, Rum12] and [Rum16, Rum17], the
UML/P, a variant of the UML especially designed for programming, refactoring, and evolution is defined.

The language workbench MontiCore [GKR+06, GKR+08, HKR21] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and evolve
models [LRSS10], a precise definition for model composition as well as model languages [HKR+09],
and refactoring in various modeling and programming languages [PR03]. To better understand the effect
of an agile evolving design, we discuss the need for semantic differencing in [MRR10].

In [FHR08] we describe a set of general requirements for model quality. Finally, [KRV06] discusses
the additional roles and activities necessary in a DSL-based software development project. In [CEG+14]
we discuss how to improve the reliability of adaptivity through models at runtime, which will allow
developers to delay design decisions to runtime adaptation. In [KMA+16] we have also introduced a
classification of ways to reuse modeled software components.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming process.
Managing the complexity, the size, and the number of artifacts developed and used during a project
together with their complex relationships is not trivial [BGRW17].

To keep track of relevant structures, artifacts, and their relations in order to be able e.g. to evolve
or adapt models and their implementing code, the artifact model [GHR17, Gre19] was introduced.
[BGRW18] and [HJK+21] explain its applicability in systems engineering based on MDSE projects and
[BHR+18] applies a variant of the artifact model to evolutionary development, especially for CPS.

An artifact model is a meta-data structure that explains which kinds of artifacts, namely code files,
models, requirements files, etc. exist and how these artifacts are related to each other. The artifact model,
therefore, covers the wide range of human activities during the development down to fully automated,
repeatable build scripts. The artifact model can be used to optimize parallelization during the development

281

Related Interesting Work from the SE Group, RWTH Aachen

and building, but also to identify deviations of the real architecture and dependencies from the desired,
idealistic architecture, for cost estimations, for requirements and bug tracing, etc. Results can be measured
using metrics or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the architecture
of (1) a neural network, (2) its training, and (3) the training data [KNP+19]. We have developed a
compositional technique to integrate neural networks into larger software architectures [KRRW17] as
standardized machine learning components [KPRS19]. This enables the compiler to support the systems
engineer by automating the lifecycle of such components including multiple learning approaches such as
supervised learning, reinforcement learning, or generative adversarial networks.

For analysis of MLOps in an agile development, a software 2.0 artifact model distinguishing different
kinds of artifacts is given in [AKK+21].

According to [MRR11g] the semantic difference between two models are the elements contained in
the semantics of the one model that are not elements in the semantics of the other model. A smart
semantic differencing operator is an automatic procedure for computing diff witnesses for two given
models. Such operators have been defined for Activity Diagrams [MRR11d], Class Diagrams [MRR11b],
Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven Component and Connector
Architectures [BKRW17, BKRW19]. We also developed a modeling language-independent method for
determining syntactic changes that are responsible for the existence of semantic differences [KR18a].

We apply logic, knowledge representation, and intelligent reasoning to software engineering to perform
correctness proofs, execute symbolic tests, or find counterexamples using a theorem prover. We have
defined a core theory in [BKR+20], which is based on the core concepts of Broy’s Focus theory [RR11,
BR07], and applied it to challenges in intelligent flight control systems and assistance systems for air or
road traffic management [KRRS19, KMP+21, HRR12].

Intelligent testing strategies have been applied to automotive software engineering [EJK+19, DGH+19,
KMS+18], or more generally in systems engineering [DGH+18]. These methods are realized for a variant
of SysML Activity Diagrams (ADs) and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy management
for buildings [FLP+11, KLPR12] and city quarters [GLPR15] to optimize operational efficiency and pre-
vent unneeded CO2 emissions or reduce costs. This creates a structural and behavioral system theoretical
view on cyber-physical systems understandable as essential parts of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound derivate
of the UML designed for product and test code generation. [Sch12] describes a flexible generator for the
UML/P, [Hab16] for MontiArc is used in domains such as cars or robotics [HRR12], and [AMN+20a]
for enterprise information systems based on the MontiCore language workbench [KRV10, GKR+06,
GKR+08, HKR21].

In [KRV06], we discuss additional roles necessary in a model-based software development project.
[GKR+06, GHK+15, GHK+15a] discuss mechanisms to keep generated and handwritten code separated.
In [Wei12, HRW15, Hoe18], we demonstrate how to systematically derive a transformation language in
concrete syntax and e.g. in [HHR+15, AHRW17] we have applied this technique successfully for several
UML sub-languages and DSLs.

282

Related Interesting Work from the SE Group, RWTH Aachen

[HNRW16] presents how to generate extensible and statically type-safe visitors. In [NRR16], we
propose the use of symbols for ensuring the validity of generated source code. [GMR+16] discusses
product lines of template-based code generators. We also developed an approach for engineering reusable
language components [HLN+15, HLN+15a].

To understand the implications of executability for UML, we discuss the needs and the advantages of
executable modeling with UML in agile projects in [Rum04c], how to apply UML for testing in [Rum03],
and the advantages and perils of using modeling languages for programming in [Rum02].

Unified Modeling Language (UML) & the UML-P Tool

Starting with the early identification of challenges for the standardization of the UML in [KER99] many
of our contributions build on the UML/P variant, which is described in the books [Rum16, Rum17] and
is implemented in [Sch12].

Semantic variation points of the UML are discussed in [GR11]. We discuss formal semantics for UML
[BHP+98] and describe UML semantics using the “System Model” [BCGR09], [BCGR09a], [BCR07b]
and [BCR07a]. Semantic variation points have, e.g., been applied to define class diagram semantics
[CGR08]. A precisely defined semantics for variations is applied when checking variants of class dia-
grams [MRR11e] and object diagrams [MRR11c] or the consistency of both kinds of diagrams [MRR11f].
We also apply these concepts to activity diagrams [MRR11a] which allows us to check for semantic dif-
ferences in activity diagrams [MRR11d]. The basic semantics for ADs and their semantic variation points
are given in [GRR10].

We also discuss how to ensure and identify model quality [FHR08], how models, views, and the system
under development correlate to each other [BGH+98b], and how to use modeling in agile development
projects [Rum04c], [Rum03] and [Rum02].

The question of how to adapt and extend the UML is discussed in [PFR02] describing product line
annotations for UML and more general discussions and insights on how to use meta-modeling for defining
and adapting the UML are included in [EFLR99a], [FEL+98] and [SRVK10].

The UML-P tool was conceptually defined in [Rum16, Rum17, Rum12, Rum11], got the first realiza-
tion in [Sch12], and is extended in various ways, such as logically or physically distributed computation
[BKRW17a]. Based on a detailed examination [JPR+22], insights are also transferred to the SysML 2.

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use than general-
purpose programming languages but need appropriate tooling. The MontiCore language workbench
[GKR+06, KRV10, Kra10, GKR+08, HKR21] allows the specification of an integrated abstract and con-
crete syntax format [KRV07b, HKR21] for easy development. New languages and tools can be defined in
modular forms [KRV08, GKR+07, Voe11, HLN+15, HLN+15a, HRW18, BEK+18b, BEK+19, Sch12]
and can, thus, easily be reused. We discuss the roles in software development using domain specific
languages already in [KRV06] and elaborate on the engineering aspect of DSL development in [CFJ+16].

[Wei12, HRW15, Hoe18] present an approach that allows the creation of transformation rules tailored
to an underlying DSL. Variability in DSL definitions has been examined in [GR11, GMR+16]. [BDL+18]
presents a method to derive internal DSLs from grammars. In [BJRW18], we discuss the translation
from grammars to accurate metamodels. Successful applications have been carried out in the Air Traffic
Management [ZPK+11] and television [DHH+20] domains. Based on the concepts described above,
meta modeling, model analyses, and model evolution have been discussed in [LRSS10] and [SRVK10].

283

Related Interesting Work from the SE Group, RWTH Aachen

[BJRW18] describes a mapping bridge between both. DSL quality in [FHR08], instructions for defining
views [GHK+07] and [PFR02], guidelines to define DSLs [KKP+09], and Eclipse-based tooling for DSLs
[KRV07a] complete the collection.

A broader discussion on the global integration of DSMLs is given in [CBCR15] as part of [CCF+15a],
and [TAB+21] discusses the compositionality of analysis techniques for models.

The MontiCore language workbench has been successfully applied to a larger number of domains, re-
sulting in a variety of languages documented e.g. in [AHRW17, BEH+20, BHR+21, BPR+20, HHR+15,
HJRW20, HMR+19, HRR12, PBI+16, RRW15] and Ph.D. theses like [Ber10, Gre19, Hab16, Her19,
Kus21, Loo17, Pin14, Plo18, Rei16, Rot17, Sch12, Wor16].

Software Language Engineering

For a systematic definition of languages using a composition of reusable and adaptable language com-
ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer
a language can be found in the GeMoC initiative [CBCR15, CCF+15a]. As said, the MontiCore lan-
guage workbench provides techniques for an integrated definition of languages [KRV07b, Kra10, KRV10,
HR17, HKR21, HRW18, BPR+20, BEK+19].

In [SRVK10] we discuss the possibilities and the challenges of using metamodels for language defini-
tion. Modular composition, however, is a core concept to reuse language components like in Monti-
Core for the frontend [Voe11, Naz17, KRV08, HLN+15, HLN+15a, HNRW16, HKR21, BEK+18b,
BEK+19] and the backend [RRRW15b, NRR16, GMR+16, HKR21, BEK+18b, BBC+18]. In [GHK+15,
GHK+15a], we discuss the integration of handwritten and generated object-oriented code. [KRV10] de-
scribes the roles in software development using domain specific languages.

Language derivation is to our belief a promising technique to develop new languages for a specific
purpose, e.g., model transformation, that relies on existing basic languages [HRW18].

How to automatically derive such a transformation language using a concrete syntax of the base lan-
guage is described in [HRW15, Wei12] and successfully applied to various DSLs.

We also applied the language derivation technique to tagging languages that decorate a base language
[GLRR15] and delta languages [HHK+15, HHK+13] that are derived from base languages to be able to
constructively describe differences between model variants usable to build feature sets.

The derivation of internal DSLs from grammars is discussed in [BDL+18] and a translation of gram-
mars to accurate metamodels in [BJRW18].

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services.

We use streams, statemachines, and components [BR07] as well as expressive forms of composi-
tion and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete tooling infras-
tructure called MontiArc [HRR10, HRR12] for architecture design and extensions for states [RRW13c,
BKRW17a, RRW14a, Wor16]. In [RRW13], we introduce a code generation framework for MontiArc.
[RRRW15b] describes how the language is composed of individual sublanguages.

MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and evo-
lution on deltas [HRRS12]. Other extensions are concerned with modeling cloud architectures [PR13],
security in [HHR+15], and the robotics domain [AHRW17, AHRW17b]. Extension mechanisms for
MontiArc are generally discussed in [BHH+17].

284

Related Interesting Work from the SE Group, RWTH Aachen

[GHK+07] and [GHK+08] close the gap between the requirements and the logical architecture and
[GKPR08] extends it to model variants.

[MRR14b] provides a precise technique for verifying the consistency of architectural views [Rin14,
MRR13] against a complete architecture to increase reusability. We discuss the synthesis problem for
these views in [MRR14a]. An experience report [MRRW16] and a methodological embedding [DGH+19]
complete the core approach.

Extensions for co-evolution of architecture are discussed in [MMR10], for powerful analyses of soft-
ware architecture behavior evolution provided in [BKRW19], techniques for understanding semantic dif-
ferences presented in [BKRW17], and modeling techniques to describe dynamic architectures shown in
[HRR98, HKR+16, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09, TAB+21] motivate the basic mechanisms for modularity and compositionality for model-
ing. The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically grounded
in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the language
workbench MontiCore [KRV10, HKR21] that can even be used to develop modeling tools in a compo-
sitional form [HKR21, HLN+15, HLN+15a, HNRW16, NRR16, HRW18, BEK+18b, BEK+19, BPR+20,
KRV07b]. A set of DSL design guidelines incorporates reuse through this form of composition [KKP+09].

[Voe11] examines the composition of context conditions respectively the underlying infrastructure of
the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15b] applies composi-
tionality to robotics control.

[CBCR15] (published in [CCF+15a]) summarizes our approach to composition and remaining chal-
lenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of decomposition
of model information, we have developed the concept of tagging languages in [GLRR15, MRRW16]. It
allows the description of additional information for model elements in separated documents, facilitates
reuse, and allows typing tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision, and detailed-
ness is discussed in [HR04]. We defined a semantic domain called “System Model” by using math-
ematical theory in [RKB95, BHP+98] and [GKR96, KRB96, RK96]. An extended version especially
suited for the UML is given in [GRR09], [BCGR09a] and in [BCGR09] its rationale is discussed.
[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08] or sequence
diagrams in [BGH+98a].

To better understand the effect of an evolved design, detection of semantic differencing, as opposed to
pure syntactical differences, is needed [MRR10]. [MRR11d, MRR11a] encode a part of the semantics to
handle semantic differences of activity diagrams. [MRR11f, MRR11f] compare class and object diagrams
with regard to their semantics. And [BKRW17] compares component and connector architectures similar
to SysML’ block definition diagrams.

In [BR07, RR11], a precise mathematical model for distributed systems based on black-box behav-
iors of components is defined and accompanied by automata in [Rum96]. Meta-modeling semantics is
discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the description of exem-
plary object interaction, today called sequence diagram. [BGH+98b] discusses the relationships between
a system, a view, and a complete model in the context of the UML.

285

Related Interesting Work from the SE Group, RWTH Aachen

[GR11] and [CGR09] discuss general requirements for a framework to describe semantic and syntactic
variations of a modeling language. We apply these to class and object diagrams in [MRR11f] as well as
activity diagrams in [GRR10].

[Rum12] defines the semantics in a variety of code and test case generation, refactoring, and evolution
techniques. [LRSS10] discusses the evolution and related issues in greater detail. [RW18] discusses an
elaborated theory for the modeling of underspecification, hierarchical composition, and refinement that
can be practically applied to the development of CPS.

A first encoding of these theories in the Isabelle verification tool is defined in [BKR+20].

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code, they are not initially correct
and need to be changed, evolved, and maintained over time. Model transformation is therefore essential
to effectively deal with models [CFJ+16].

Many concrete model transformation problems are discussed: evolution [LRSS10, MMR10, Rum04c,
MRR10], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20], synthesis [MRR14a], refac-
toring [Rum12, PR03], translating models from one language into another [MRR11e, Rum12], systematic
model transformation language development [Wei12, HRW15, Hoe18, HHR+15], repair of failed model
evolution [KR18a].

[Rum04c] describes how comprehensible sets of such transformations support software development
and maintenance [LRSS10], technologies for evolving models within a language and across languages,
and mapping architecture descriptions to their implementation [MMR10]. Automaton refinement is dis-
cussed in [PR94, KPR97] and refining pipe-and-filter architectures is explained in [PR99]. This has e.g.
been applied for robotics in [AHRW17, AHRW17b].

Refactorings of models are important for model driven engineering as discussed in [PR01, PR03,
Rum12]. [HRRS11, HRR+11, HRRS12] encode these in constructive Delta transformations, which are
defined in derivable Delta languages [HHK+13].

Translation between languages, e.g., from class diagrams into Alloy [MRR11e] allows for comparing
class diagrams on a semantic level. Similarly, semantic differences of evolved activity diagrams are
identified via techniques from [MRR11d] and for Simulink models in [RSW+15].

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example, cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in a
Software Product Line (SPL) that captures product commonalities as well as differences. Feature dia-
grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08, GKPR08]
using 150% models. Reducing overhead and associated costs is discussed in [GRJA12].

Delta modeling is a bottom up technique starting with a small, but complete base variant. Features
are additive, but also can modify the core. A set of commonly applicable deltas configures a system
variant. We discuss the application of this technique to Delta-MontiArc [HRRS11, HRR+11] and to
Delta-Simulink [HKM+13]. Deltas can not only describe special variability but also temporal variability
which allows for using them for software product line evolution [HRRS12]. [HHK+13, HHK+15] and
[HRW15] describe an approach to systematically derive delta languages.

We also apply variability modeling languages to describe syntactic and semantic variation points, e.g.,
in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we specified a systematic

286

Related Interesting Work from the SE Group, RWTH Aachen

way to define variants of modeling languages [CGR09], leverage features for their compositional reuse
[BEK+18b, BEK+19], and applied it as a semantic language refinement on Statecharts in [GR11].

Digital Twins and Digital Shadows in Engineering and Production

The digital transformation of production changes the life cycle of the design, the production, and the
use of products [BDJ+22]. To support this transformation, we can use Digital Twins (DTs) and Digital
Shadows (DSs). In [DMR+20] we define: "A digital twin of a system consists of a set of models of the
system, a set of digital shadows, and provides a set of services to use the data and models purposefully
with respect to the original system."

We have investigated how to synthesize self-adaptive DT architectures with model-driven methods
[BBD+21a] and have applied it e.g. on a digital twin for injection molding [BDH+20]. In [BDR+21] we
investigate the economic implications of digital twin services.

Digital twins also need user interaction and visualization, why we have extended the infrastructure
by generating DT cockpits [DMR+20]. To support the DevOps approach in DT engineering, we have
created a generator for low-code development platforms for digital twins [DHM+22] and sophisticated
tool chains to generate process-aware digital twin cockpits that also include condensed forms of event
logs [BMR+22].

[BBD+21b] describes a conceptual model for digital shadows covering the purpose, relevant assets,
data, and metadata as well as connections to engineering models. These can be used during the runtime
of a DT, e.g. when using process prediction services within DTs [BHK+21].

Integration challenges for digital twin systems-of-systems [MPRW22] include, e.g., the horizontal
integration of digital twin parts, the composition of DTs for different perspectives, or how to handle
different lifecycle representations of the original system.

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12, BBR20] are complex, distributed systems that control physical
entities. In [RW18], we discuss how an elaborated theory can be practically applied to the development
of CPS. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12, KRRW17],
autonomous driving [BR12b, KKR19], and digital twin development [BDH+20] to processes and tools to
improve the development as well as the product itself [BBR07].

In the aviation domain, a modeling language for uncertainty and safety events was developed, which is
of interest to European avionics [ZPK+11]. Optimized [KRS+18a] and domain specific code generation
[AHRW17b], and the extension to product lines of CPS [RSW+15, KRR+16, RRS+16] are key for CPS.

A component and connector architecture description language (ADL) suitable for the specific chal-
lenges in robotics is discussed in [RRW13c, RRW14a, Wor16, RRSW17, Wor21]. In [RRW12], we use
this language for describing requirements and in [RRW13], we describe a code generation framework for
this language. Monitoring for smart and energy efficient buildings is developed as an Energy Navigator
toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition of contributing
to systems engineering in automotive [FND+98] and [GHK+08a], which culminated in a new compre-

287

Related Interesting Work from the SE Group, RWTH Aachen

hensive model-driven development process for automotive software [KMS+18, DGH+19]. We leveraged
SysML to enable the integrated flow from requirements to implementation to integration.

To facilitate the modeling of products, resources, and processes in the context of Industry 4.0, we
also conceived a multi-level framework for production engineering based on these concepts [BKL+18]
and addressed to bridge the gap between functions and the physical product architecture by modeling
mechanical functional architectures in SysML [DRW+20]. For that purpose, we also did a detailed ex-
amination of the upcoming SysML 2.0 standard [JPR+22] and examined how to extend the SPES/CrEST
methodology for a systems engineering approach [BBR20].

Research within the excellence cluster Internet of Production considers fast decision making at pro-
duction time with low latencies using contextual data traces of production systems, also known as Digital
Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins (DTs) for injection mold-
ing [BDH+20], how to generate interfaces between a cyber-physical system and its DT [KMR+20], and
have proposed model-driven architectures for DT cockpit engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using statemachines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) understand-
ing how to model object-oriented and distributed software using statemachines resp. Statecharts [GKR96,
BCR07b, BCGR09a, BCGR09], (2) understanding the refinement [PR94, RK96, Rum96, RW18] and
composition [GR95, GKR96, RW18] of statemachines, and (3) applying statemachines for modeling
systems.

In [Rum96, RW18] constructive transformation rules for refining automata behavior are given and
proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded in the com-
position and behavioral specification concepts of Focus [GKR96, BR07].

We apply these techniques, e.g., in MontiArcAutomaton [RRW13, RRW14a, RRW13, RW18], in a
robot task modeling language [THR+13], and in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support for human
behavior (2) based on information from previously stored and real-time monitored structural context and
behavior data (3) at the time the person needs or asks for it [HMR+19]. To create them, we follow
a model centered architecture approach [MMR+17] which defines systems as a compound of various
connected models. Used languages for their definition include DSLs for behavior and structure such as
the human cognitive modeling language [MM13], goal modeling languages [MRV20, MRZ21] or UML/P
based languages [MNRV19]. [MM15] describes a process of how languages for assistive systems can be
created. MontiGem [AMN+20a] is used as the underlying generator technology.

We have designed a system included in a sensor floor able to monitor elderlies and analyze impact
patterns for emergency events [LMK+11]. We have investigated the modeling of human contexts for
the active assisted living and smart home domain [MS17] and user-centered privacy-driven systems in
the IoT domain in combination with process mining systems [MKM+19], differential privacy on event
logs of handling and treatment of patients at a hospital [MKB+19], the mark-up of online manuals for
devices [SM18a] and websites [SM20], and solutions for privacy-aware environments for cloud ser-
vices [ELR+17] and in IoT manufacturing [MNRV19]. The user-centered view of the system design

288

Related Interesting Work from the SE Group, RWTH Aachen

allows to track who does what, when, why, where, and how with personal data, makes information about
it available via information services and provides support using assistive services.

Modeling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires the composition and the interaction of diverse distributed software modules. This
usually leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensi-
ble, which hampers the broad propagation of robotics applications.

The MontiArcAutomaton language [RRW12, RRW14a] extends the ADL MontiArc and integrates
various implemented behavior modeling languages using MontiCore [RRW13c, RRRW15b, HKR21]
that perfectly fit robotic architectural modeling.

The iserveU modeling framework describes domains, actors, goals, and tasks of service robotics appli-
cations [ABH+16, ABH+17] with declarative models. Goals and tasks are translated into models of the
planning domain definition language (PDDL) and then solved [ABK+17]. Thus, domain experts focus
on describing the domain and its properties only.

The LightRocks [THR+13, BRS+15] framework allows robotics experts and laymen to model robotic
assembly tasks. In [AHRW17, AHRW17b], we define a modular architecture modeling method for trans-
lating architecture models into modules compatible with different robotics middleware platforms.

Many of the concepts in robotics were derived from automotive software [BBR07, BR12b].

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment, and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct vari-
ants needs to be managed, developed, and tested. A consistent requirement management connecting re-
quirements with features in all development phases for the automotive domain is described in [GRJA12].

The conceptual gap between requirements and the logical architecture of a car is closed in [GHK+07,
GHK+08]. A methodical embedding of the resulting function nets and their quality assurance using
automated testing is given in the SMaRDT method [DGH+19, KMS+18].

[HKM+13] describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses the
means to extract a well-defined Software Product Line from a set of copy and paste variants.

Potential variants of components in product lines can be identified using similarity analysis of in-
terfaces [KRR+16], or execute tests to identify similar behavior [RRS+16]. [RSW+15] describes an
approach to using model checking techniques to identify behavioral differences of Simulink models. In
[KKR19], we model dynamic reconfiguration of architectures applied to cooperating vehicles.

Quality assurance, especially of safety-related functions, is a highly important task. In the Carolo
project [BR12b, BR12], we developed a rigorous test infrastructure for intelligent, sensor-based func-
tions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup in the
development and the evolution of autonomous car functionality, and thus enables us to develop software
in an agile way [BR12b].

[MMR10] gives an overview of the state-of-the-art in development and evolution on a more general
level by considering any kind of critical system that relies on architectural descriptions.

289

Related Interesting Work from the SE Group, RWTH Aachen

MontiSim simulates autonomous and cooperative driving behavior [GKR+17] for testing various forms
of errors as well as spatial distance [FIK+18, KKRZ19]. As tooling infrastructure, the SSELab storage,
versioning, and management services [HKR12] are essential for many projects.

Internet of Things, Industry 4.0 & the MontiThings Tool

The Internet of Things (IoT) requires the development of increasingly complex distributed systems. The
MontiThings ecosystem [KRS+22] provides an end-to-end solution to modeling, deploying [KKR+22],
and analyzing [KMR21] failure-tolerant [KRS+22] IoT systems and connecting them to synthesized dig-
ital twins [KMR+20]. We have investigated how model-driven methods can support the development
of privacy-aware [ELR+17, HHK+14] cloud systems [PR13], distributed systems security [HHR+15],
privacy-aware process mining [MKM+19], and distributed robotics applications [RRRW15b].

In the course of Industry 4.0, we have also turned our attention to mechanical or electrical applica-
tions [DRW+20]. We identified the digital representation, integration, and (re-)configuration of automa-
tion systems as primary Industry 4.0 concerns [WCB17]. Using a multi-level modeling framework, we
support machine as a service approaches [BKL+18].

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions
are important challenges. Thus, energy management in buildings as well as in neighborhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales.

During the design phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12,
KPR12] is used for the technical specification of building services already.

We adapted the well-known concept of statemachines to be able to describe different states of a facility
and validate it against the monitored values [FLP+11b]. We show how our data model, the constraint
rules, and the evaluation approach to compare sensor data can be applied [KLPR12].

Cloud Computing and Services

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality, and new application domains. It
promises to enable new business models, facilitate web-based innovations, and increase the efficiency
and cost-effectiveness of web development [KRR14].

Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15a], Big Data,
Apps, and Service Ecosystems bring attention to aspects like responsiveness, privacy, and open platforms.
Regardless of the application domain, developers of such systems need robust methods and efficient, easy-
to-use languages and tools [KRS12].

We tackle these challenges by perusing a model-based, generative approach [PR13]. At the core of
this approach are different modeling languages that describe different aspects of a cloud-based system
in a concise and technology-agnostic way. Software architecture and infrastructure models describe the
system and its physical distribution on a large scale.

We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the Energy
Navigator [FPPR12, KPR12] but also for our tool demonstrators and our development platforms. New

290

List of Figures

services, e.g., for collecting data from temperature sensors, cars, etc. are now easily developed and
deployed, e.g. in production or Internet-of-Things environments.

Security aspects and architectures of cloud services for the digital me in a privacy-aware environment
are addressed in [ELR+17].

Model-Driven Engineering of Information Systems & the MontiGem Tool

Information Systems provide information to different user groups as the main system goal. Using our
experiences in the model-based generation of code with MontiCore [KRV10, HKR21], we developed
several generators for such data-centric information systems.

MontiGem [AMN+20a] is a specific generator framework for data-centric business applications that
uses standard models from UML/P optionally extended by GUI description models as sources [GMN+20].
While the standard semantics of these modeling languages remains untouched, the generator produces a
lot of additional functionality around these models. The generator is designed flexible, modular, and in-
cremental, handwritten and generated code pieces are well integrated [GHK+15a, NRR15a], tagging of
existing models is possible [GLRR15], e.g., for the definition of roles and rights or for testing [DGH+18].

We are using MontiGem for financial management [GHK+20, ANV+18], for creating digital twin
cockpits [DMR+20], and various industrial projects. MontiGem makes it easier to create low-code devel-
opment platforms for digital twins [DHM+22]. When using additional DSLs, we can develop assistive
systems providing user support based on goal models [MRV20], privacy-preserving information systems
using privacy models and purpose trees [MNRV19], and process-aware digital twin cockpits using BPMN
models [BMR+22].

We have also developed an architecture of cloud services for the digital me in a privacy-aware environ-
ment [ELR+17] and a method for retrofitting generative aspects into existing applications [DGM+21].

291

Bibliography

[ABH+16] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Bernhard
Rumpe, and Andreas Wortmann. Model-Driven Separation of Concerns
for Service Robotics. In International Workshop on Domain-Specific
Modeling (DSM’16), pages 22–27. ACM, October 2016.

[ABH+17] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Jérôme Pfeiffer,
Bernhard Rumpe, and Andreas Wortmann. Modeling Robotics Tasks
for Better Separation of Concerns, Platform-Independence, and Reuse.
Aachener Informatik-Berichte, Software Engineering, Band 28. Shaker
Verlag, December 2017.

[ABK+17] Kai Adam, Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Executing Robot Task Models in Dynamic Environments. In
Proceedings of MODELS 2017. Workshop EXE, CEUR 2019, September
2017.

[AHRW17] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Engineering Robotics Software Architectures with Exchangeable
Model Transformations. In International Conference on Robotic Com-
puting (IRC’17), pages 172–179. IEEE, April 2017.

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Modeling Robotics Software Architectures with Modular
Model Transformations. Journal of Software Engineering for Robotics
(JOSER), 8(1):3–16, 2017.

[AKK+21] Abdallah Atouani, Jörg Christian Kirchhof, Evgeny Kusmenko, and
Bernhard Rumpe. Artifact and Reference Models for Generative Ma-
chine Learning Frameworks and Build Systems. In Eli Tilevich and
Coen De Roover, editors, Proceedings of the 20th ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Ex-
periences (GPCE 21), pages 55–68. ACM SIGPLAN, October 2021.

[AMN+20a] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Si-
mon Varga. Enterprise Information Systems in Academia and Practice:
Lessons learned from a MBSE Project. In 40 Years EMISA: Digital
Ecosystems of the Future: Methodology, Techniques and Applications
(EMISA’19), LNI P-304, pages 59–66. Gesellschaft für Informatik e.V.,
May 2020.

[ANV+18] Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe,
Patricia Heuser, and Peter Letmathe. Model-Based Generation of En-
terprise Information Systems. In Michael Fellmann and Kurt Sand-

292

Bibliography

kuhl, editors, Enterprise Modeling and Information Systems Architec-
tures (EMISA’18), CEUR Workshop Proceedings 2097, pages 75–79.
CEUR-WS.org, May 2018.

[BBC+18] Inga Blundell, Romain Brette, Thomas A. Cleland, Thomas G. Close,
Daniel Coca, Andrew P. Davison, Sandra Diaz-Pier, Carlos Fernan-
dez Musoles, Padraig Gleeson, Dan F. M. Goodman, Michael Hines,
Michael W. Hopkins, Pramod Kumbhar, David R. Lester, Bóris Marin,
Abigail Morrison, Eric Müller, Thomas Nowotny, Alexander Peyser,
Dimitri Plotnikov, Paul Richmond, Andrew Rowley, Bernhard Rumpe,
Marcel Stimberg, Alan B. Stokes, Adam Tomkins, Guido Trensch, Mar-
maduke Woodman, and Jochen Martin Eppler. Code Generation in Com-
putational Neuroscience: A Review of Tools and Techniques. Frontiers
in Neuroinformatics, 12, 2018.

[BBD+21b] Fabian Becker, Pascal Bibow, Manuela Dalibor, Aymen Gannouni, Vi-
viane Hahn, Christian Hopmann, Matthias Jarke, Istvan Koren, Moritz
Kröger, Johannes Lipp, Judith Maibaum, Judith Michael, Bernhard
Rumpe, Patrick Sapel, Niklas Schäfer, Georg J. Schmitz, Günther Schuh,
and Andreas Wortmann. A Conceptual Model for Digital Shadows in In-
dustry and its Application. In Aditya Ghose, Jennifer Horkoff, Vitor E.
Silva Souza, Jeffrey Parsons, and Joerg Evermann, editors, Conceptual
Modeling, ER 2021, pages 271–281. Springer, October 2021.

[BBD+21a] Tim Bolender, Gereon Bürvenich, Manuela Dalibor, Bernhard Rumpe,
and Andreas Wortmann. Self-Adaptive Manufacturing with Digital
Twins. In 2021 International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pages 156–166. IEEE
Computer Society, May 2021.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software
& Systems Engineering Process and Tools for the Development of Au-
tonomous Driving Intelligence. Journal of Aerospace Computing, Infor-
mation, and Communication (JACIC), 4(12):1158–1174, 2007.

[BBR20] Manfred Broy, Wolfgang Böhm, and Bernhard Rumpe. Advanced Sys-
tems Engineering - Die Systeme der Zukunft. White paper, fortiss.
Forschungsinstitut für softwareintensive Systeme, Munich, July 2020.

[BCGR09] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Considerations and Rationale for a UML System Model. In
K. Lano, editor, UML 2 Semantics and Applications, pages 43–61. John
Wiley & Sons, November 2009.

293

Bibliography

[BCGR09a] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Definition of the UML System Model. In K. Lano, editor,
UML 2 Semantics and Applications, pages 63–93. John Wiley & Sons,
November 2009.

[BCR07b] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards
a System Model for UML. Part 3: The State Machine Model. Technical
Report TUM-I0711, TU Munich, Germany, February 2007.

[BCR07a] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards
a System Model for UML. Part 2: The Control Model. Technical Report
TUM-I0710, TU Munich, Germany, February 2007.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bern-
hard Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wort-
mann. Model-Driven Development of a Digital Twin for Injection Mold-
ing. In Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu,
and Vik Pant, editors, International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’20), Lecture Notes in Computer Sci-
ence 12127, pages 85–100. Springer International Publishing, June 2020.

[BDJ+22] Philipp Brauner, Manuela Dalibor, Matthias Jarke, Ike Kunze, István
Koren, Gerhard Lakemeyer, Martin Liebenberg, Judith Michael, Jan
Pennekamp, Christoph Quix, Bernhard Rumpe, Wil van der Aalst, Klaus
Wehrle, Andreas Wortmann, and Martina Ziefle. A Computer Science
Perspective on Digital Transformation in Production. ACM Trans. In-
ternet Things, 3:1–32, February 2022.

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe,
and Andreas Wortmann. Deriving Fluent Internal Domain-specific Lan-
guages from Grammars. In International Conference on Software Lan-
guage Engineering (SLE’18), pages 187–199. ACM, 2018.

[BDR+21] Christian Brecher, Manuela Dalibor, Bernhard Rumpe, Katrin Schilling,
and Andreas Wortmann. An Ecosystem for Digital Shadows in Manu-
facturing. In 54th CIRP CMS 2021 - Towards Digitalized Manufacturing
4.0. Elsevier, September 2021.

[BEH+20] Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen,
Bernhard Rumpe, and Andreas Wortmann. A Library of Literals, Ex-
pressions, Types, and Statements for Compositional Language Design.
Special Issue dedicated to Martin Gogolla on his 65th Birthday, Journal
of Object Technology, 19(3):3:1–16, October 2020. Special Issue dedi-
cated to Martin Gogolla on his 65th Birthday.

294

Bibliography

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Modeling Language Variability with Reusable Lan-
guage Components. In International Conference on Systems and Soft-
ware Product Line (SPLC’18). ACM, September 2018.

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Systematic Composition of Independent Language
Features. Journal of Systems and Software, 152:50–69, June 2019.

[Ber10] Christian Berger. Automating Acceptance Tests for Sensor- and
Actuator-based Systems on the Example of Autonomous Vehicles. Aach-
ener Informatik-Berichte, Software Engineering, Band 6. Shaker Verlag,
2010.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf
Krüger, Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin.
Exemplary and Complete Object Interaction Descriptions. In Object-
oriented Behavioral Semantics Workshop (OOPSLA’97), Technical Re-
port TUM-I9737, Germany, 1997. TU Munich.

[BGH+98a] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf
Krüger, Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin.
Exemplary and Complete Object Interaction Descriptions. Computer
Standards & Interfaces, 19(7):335–345, November 1998.

[BGH+98b] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang
Schwerin. Systems, Views and Models of UML. In Proceedings of the
Unified Modeling Language, Technical Aspects and Applications, pages
93–109. Physica Verlag, Heidelberg, Germany, 1998.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. Taming the Complexity of Model-Driven Systems Engineering
Projects. In Part of the Grand Challenges in Modeling (GRAND’17)
Workshop, July 2017.

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. On the Need for Artifact Models in Model-Driven Systems En-
gineering Projects. In Martina Seidl and Steffen Zschaler, editors, Soft-
ware Technologies: Applications and Foundations, LNCS 10748, pages
146–153. Springer, January 2018.

[BHH+17] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bern-
hard Rumpe, and Andreas Wortmann. Systematic Language Exten-
sion Mechanisms for the MontiArc Architecture Description Language.

295

Bibliography

In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 53–70. Springer, July 2017.

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bern-
hard Rumpe, and Andreas Wortmann. A Classification of Dynamic
Reconfiguration in Component and Connector Architecture Description
Languages. In Proceedings of MODELS 2017. Workshop ModComp,
CEUR 2019, September 2017.

[BHK+21] Tobias Brockhoff, Malte Heithoff, István Koren, Judith Michael, Jérôme
Pfeiffer, Bernhard Rumpe, Merih Seran Uysal, Wil M. P. van der Aalst,
and Andreas Wortmann. Process Prediction with Digital Twins. In Int.
Conf. on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 182–187. ACM/IEEE, October 2021.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and
Katharina Spies. Software and System Modeling Based on a Unified
Formal Semantics. In Workshop on Requirements Targeting Software
and Systems Engineering (RTSE’97), LNCS 1526, pages 43–68. Springer,
1998.

[BHR+18] Arvid Butting, Steffen Hillemacher, Bernhard Rumpe, David Schmalz-
ing, and Andreas Wortmann. Shepherding Model Evolution in Model-
Driven Development. In Joint Proceedings of the Workshops at Mod-
ellierung 2018 (MOD-WS 2018), CEUR Workshop Proceedings 2060,
pages 67–77. CEUR-WS.org, February 2018.

[BHR+21] Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Compositional Modelling Languages with Analytics and Con-
struction Infrastructures Based on Object-Oriented Techniques - The
MontiCore Approach. In Heinrich, Robert and Duran, Francisco and
Talcott, Carolyn and Zschaler, Steffen, editor, Composing Model-Based
Analysis Tools, pages 217–234. Springer, July 2021.

[BJRW18] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Translating Grammars to Accurate Metamodels. In International Con-
ference on Software Language Engineering (SLE’18), pages 174–186.
ACM, 2018.

[BKL+18] Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe,
Simon Storms, Stephan Wein, Michael von Wenckstern, and Andreas
Wortmann. Multi-Level Modeling Framework for Machine as a Service
Applications Based on Product Process Resource Models. In Proceedings

296

Bibliography

of the 2nd International Symposium on Computer Science and Intelligent
Control (ISCSIC’18). ACM, September 2018.

[BKR+20] Jens Christoph Bürger, Hendrik Kausch, Deni Raco, Jan Oliver Ringert,
Bernhard Rumpe, Sebastian Stüber, and Marc Wiartalla. Towards an
Isabelle Theory for distributed, interactive systems - the untimed case.
Aachener Informatik Berichte, Software Engineering, Band 45. Shaker
Verlag, March 2020.

[BKRW17a] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Architectural Programming with MontiArcAutomaton. In In 12th Inter-
national Conference on Software Engineering Advances (ICSEA 2017),
pages 213–218. IARIA XPS Press, May 2017.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wort-
mann. Semantic Differencing for Message-Driven Component & Connec-
tor Architectures. In International Conference on Software Architecture
(ICSA’17), pages 145–154. IEEE, April 2017.

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Continuously Analyzing Finite, Message-Driven, Time-Synchronous
Component & Connector Systems During Architecture Evolution. Jour-
nal of Systems and Software, 149:437–461, March 2019.

[BMR+22] Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, and
Matthias Weske. Process-Aware Digital Twin Cockpit Synthesis from
Event Logs. Journal of Computer Languages (COLA), 70, June 2022.

[BPR+20] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wort-
mann. A Compositional Framework for Systematic Modeling Language
Reuse. In Proceedings of the 23rd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems, pages 35–46.
ACM, October 2020.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Model-
lierung als Grundlage der Software- und Systementwicklung. Informatik-
Spektrum, 30(1):3–18, Februar 2007.

[BR12b] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years
after the Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical
System. In Automotive Software Engineering Workshop (ASE’12), pages
789–798, 2012.

297

Bibliography

[BR12] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driv-
ing Software. In C. Rouff and M. Hinchey, editors, Experience from the
DARPA Urban Challenge, pages 243–271. Springer, Germany, 2012.

[BRS+15] Arvid Butting, Bernhard Rumpe, Christoph Schulze, Ulrike Thomas,
and Andreas Wortmann. Modeling Reusable, Platform-Independent
Robot Assembly Processes. In International Workshop on Domain-
Specific Languages and Models for Robotic Systems (DSLRob 2015),
2015.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard
Rumpe. Conceptual Model of the Globalization for Domain-Specific Lan-
guages. In Globalizing Domain-Specific Languages, LNCS 9400, pages
7–20. Springer, 2015.

[CCF+15a] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc
Jézéquel, and Bernhard Rumpe, editors. Globalizing Domain-Specific
Languages, LNCS 9400. Springer, 2015.

[CEG+14] Betty H.C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin
Litoiu, Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman A.
Qureshi, Bernhard Rumpe, Daniel Schneider, Frank Trollmann, and
Norha M. Villegas. Using Models at Runtime to Address Assurance for
Self-Adaptive Systems. In Nelly Bencomo, Robert France, Betty H.C.
Cheng, and Uwe Aßmann, editors, Models@run.time, LNCS 8378, pages
101–136. Springer International Publishing, Switzerland, 2014.

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. Engineering Modeling Lan-
guages: Turning Domain Knowledge into Tools. Chapman & Hall/CRC
Innovations in Software Engineering and Software Development Series,
November 2016.

[CGR08] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System
Model Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU
Braunschweig, Germany, 2008.

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Vari-
ability within Modeling Language Definitions. In Conference on Model
Driven Engineering Languages and Systems (MODELS’09), LNCS 5795,
pages 670–684. Springer, 2009.

[DEKR19] Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe.
Semantic Differencing of Statecharts for Object-oriented Systems. In

298

Bibliography

Slimane Hammoudi, Luis Ferreira Pires, and Bran Selić, editors, Pro-
ceedings of the 7th International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD’19), pages 274–282.
SciTePress, February 2019.

[DGH+18] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel,
Matthias Markthaler, Bernhard Rumpe, and Andreas Wortmann.
Model-Based Testing of Software-Based System Functions. In Confer-
ence on Software Engineering and Advanced Applications (SEAA’18),
pages 146–153, August 2018.

[DGH+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel,
Evgeny Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira
Salman, Johannes Richenhagen, Bernhard Rumpe, Christoph Schulze,
Michael Wenckstern, and Andreas Wortmann. SMArDT modeling
for automotive software testing. Software: Practice and Experience,
49(2):301–328, February 2019.

[DGM+21] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard
Rumpe, and Simon Varga. A Methodology for Retrofitting Generative
Aspects in Existing Applications. Journal of Object Technology, 20:1–24,
November 2021.

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith
Michael, and Bernhard Rumpe. Modellierung, Verifikation und Synthese
von validen Planungszuständen für Fernsehausstrahlungen. In Dominik
Bork, Dimitris Karagiannis, and Heinrich C. Mayr, editors, Modellierung
2020, pages 173–188. Gesellschaft für Informatik e.V., February 2020.

[DHM+22] Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme
Pfeiffer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. Gen-
erating Customized Low-Code Development Platforms for Digital Twins.
Journal of Computer Languages (COLA), 70, June 2022.

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Se-
mantic Evolution Analysis of Feature Models. In Thorsten Berger,
Philippe Collet, Laurence Duchien, Thomas Fogdal, Patrick Heymans,
Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo, Camille
Salinesi, Xhevahire Tërnava, Thomas Thüm, and Tewfik Ziadi, ed-
itors, International Systems and Software Product Line Conference
(SPLC’19), pages 245–255. ACM, September 2019.

299

Bibliography

[DMR+20] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. Towards a Model-Driven Architecture for Interac-
tive Digital Twin Cockpits. In Gillian Dobbie, Ulrich Frank, Gerti Kap-
pel, Stephen W. Liddle, and Heinrich C. Mayr, editors, Conceptual Mod-
eling, pages 377–387. Springer International Publishing, October 2020.

[DRW+20] Imke Drave, Bernhard Rumpe, Andreas Wortmann, Joerg Berroth, Gre-
gor Hoepfner, Georg Jacobs, Kathrin Spuetz, Thilo Zerwas, Christian
Guist, and Jens Kohl. Modeling Mechanical Functional Architectures
in SysML. In Proceedings of the 23rd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems, pages 79–89.
ACM, October 2020.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-
Modelling Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 45–
60. Kluver Academic Publisher, 1999.

[EFLR99a] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The
UML as a Formal Modeling Notation. In J. Bézivin and P.-A. Muller, ed-
itors, The Unified Modeling Language. «UML»’98: Beyond the Notation,
LNCS 1618, pages 336–348. Springer, Germany, 1999.

[EJK+19] Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Ben-
jamin Pruenster, Bernhard Rumpe, and Karin Samira Salman. Apply-
ing Product Line Testing for the Electric Drive System. In Thorsten
Berger, Philippe Collet, Laurence Duchien, Thomas Fogdal, Patrick Hey-
mans, Timo Kehrer, Jabier Martinez, Raúl Mazo, Leticia Montalvillo,
Camille Salinesi, Xhevahire Tërnava, Thomas Thüm, and Tewfik Ziadi,
editors, International Systems and Software Product Line Conference
(SPLC’19), pages 14–24. ACM, September 2019.

[ELR+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe,
and Andreas Wortmann. Architecting Cloud Services for the Digital me
in a Privacy-Aware Environment. In Ivan Mistrik, Rami Bahsoon, Nour
Ali, Maritta Heisel, and Bruce Maxim, editors, Software Architecture for
Big Data and the Cloud, chapter 12, pages 207–226. Elsevier Science &
Technology, June 2017.

[FEL+98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The
UML as a formal modeling notation. Computer Standards & Interfaces,
19(7):325–334, November 1998.

300

Bibliography

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqual-
ität als Indikator für Softwarequalität: eine Taxonomie. Informatik-
Spektrum, 31(5):408–424, Oktober 2008.

[FIK+18] Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bern-
hard Rumpe, and Alexander Ryndin. Distributed Simulation of Cooper-
atively Interacting Vehicles. In International Conference on Intelligent
Transportation Systems (ITSC’18), pages 596–601. IEEE, 2018.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and
Bernhard Rumpe. Der Energie-Navigator - Performance-Controlling für
Gebäude und Anlagen. Technik am Bau (TAB) - Fachzeitschrift für
Technische Gebäudeausrüstung, Seiten 36-41, März 2011.

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and
Bernhard Rumpe. State-based Modeling of Buildings and Facilities. In
Enhanced Building Operations Conference (ICEBO’11), 2011.

[FND+98] Max Fuchs, Dieter Nazareth, Dirk Daniel, and Bernhard Rumpe. BMW-
ROOM An Object-Oriented Method for ASCET. In SAE’98, Cobo Cen-
ter (Detroit, Michigan, USA), Society of Automotive Engineers, 1998.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. The Energy Navigator - A Web-Platform for Performance De-
sign and Management. In Energy Efficiency in Commercial Buildings
Conference (IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel,
and Bernhard Rumpe. View-based Modeling of Function Nets. In
Object-oriented Modelling of Embedded Real-Time Systems Workshop
(OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In Proceedings of 4th
European Congress ERTS - Embedded Real Time Software, 2008.

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. View-Centric Modeling of Automotive
Logical Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme IV, Informatik Bericht
2008-02. TU Braunschweig, 2008.

301

Bibliography

[GHK+15] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dim-
itri Plotnikov, Dirk Reiß, Alexander Roth, Bernhard Rumpe, Martin
Schindler, and Andreas Wortmann. A Comparison of Mechanisms for
Integrating Handwritten and Generated Code for Object-Oriented Pro-
gramming Languages. In Model-Driven Engineering and Software De-
velopment Conference (MODELSWARD’15), pages 74–85. SciTePress,
2015.

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dim-
itri Plotnikov, Dirk Reiß, Alexander Roth, Bernhard Rumpe, Martin
Schindler, and Andreas Wortmann. Integration of Handwritten and Gen-
erated Object-Oriented Code. In Model-Driven Engineering and Software
Development, Communications in Computer and Information Science
580, pages 112–132. Springer, 2015.

[GHK+20] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe,
Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Gen-
erated Enterprise Information Systems: MDSE for Maintainable Co-
Development of Frontend and Backend. In Judith Michael and Do-
minik Bork, editors, Companion Proceedings of Modellierung 2020 Short,
Workshop and Tools & Demo Papers, pages 22–30. CEUR Workshop
Proceedings, February 2020.

[GHR17] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a
Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven
Projects. Aachener Informatik-Berichte, Software Engineering, Band 30.
Shaker Verlag, December 2017.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In Modellbasierte
Entwicklung von eingebetteten Fahrzeugfunktionen, Informatik Bericht
2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab
System Model with State. Technical Report TUM-I9631, TU Munich,
Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verar-
beitung domänspezifischer Sprachen. Informatik-Bericht 2006-04, CFG-
Fakultät, TU Braunschweig, August 2006.

302

Bibliography

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased Modeling. In 4th International Workshop on
Software Language Engineering, Nashville, Informatik-Bericht 4/2007.
Johannes-Gutenberg-Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore: A Framework for the Development of Textual
Domain Specific Languages. In 30th International Conference on Soft-
ware Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
Companion Volume, pages 925–926, 2008.

[GKR+17] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe,
and Michael von Wenckstern. Simulation Framework for Executing Com-
ponent and Connector Models of Self-Driving Vehicles. In Proceedings
of MODELS 2017. Workshop EXE, CEUR 2019, September 2017.

[GLPR15] Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard
Rumpe. Energieeffiziente Städte - Herausforderungen und Lösungen aus
Sicht des Software Engineerings. In Linnhoff-Popien, Claudia and Zad-
dach, Michael and Grahl, Andreas, Editor, Marktplätze im Umbruch:
Digitale Strategien für Services im Mobilen Internet, Xpert.press, Kapi-
tel 56, Seiten 511-520. Springer Berlin Heidelberg, April 2015.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
Engineering Tagging Languages for DSLs. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 34–
43. ACM/IEEE, 2015.

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and
Simon Varga. Continuous Transition from Model-Driven Prototype to
Full-Size Real-World Enterprise Information Systems. In Bonnie An-
derson, Jason Thatcher, and Rayman Meservy, editors, 25th Americas
Conference on Information Systems (AMCIS 2020), AIS Electronic Li-
brary (AISeL), pages 1–10. Association for Information Systems (AIS),
August 2020.

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe,
Christoph Schulze, and Andreas Wortmann. Modeling Variability in
Template-based Code Generators for Product Line Engineering. In Mod-
ellierung 2016 Conference, LNI 254, pages 141–156. Bonner Köllen Ver-
lag, March 2016.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata.
Technical Report TUM-I9533, TU Munich, Germany, October 1995.

303

Bibliography

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability.
In Workshop on Modeling, Development and Verification of Adaptive
Systems, LNCS 6662, pages 17–32. Springer, 2011.

[Gre19] Timo Greifenberg. Artefaktbasierte Analyse modellgetriebener Softwa-
reentwicklungsprojekte. Aachener Informatik-Berichte, Software Engi-
neering, Band 42. Shaker Verlag, August 2019.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann.
High-Level Requirements Management and Complexity Costs in Auto-
motive Development Projects: A Problem Statement. In Requirements
Engineering: Foundation for Software Quality (REFSQ’12), 2012.

[GRR09] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe. System
Model-based Definition of Modeling Language Semantics. In Proc. of
FMOODS/FORTE 2009, LNCS 5522, Lisbon, Portugal, 2009.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics
of Activity Diagrams with Semantic Variation Points. In Conference
on Model Driven Engineering Languages and Systems (MODELS’10),
LNCS 6394, pages 331–345. Springer, 2010.

[Hab16] Arne Haber. MontiArc - Architectural Modeling and Simulation of In-
teractive Distributed Systems. Aachener Informatik-Berichte, Software
Engineering, Band 24. Shaker Verlag, September 2016.

[Her19] Lars Hermerschmidt. Agile Modellgetriebene Entwicklung von Software
Security & Privacy. Aachener Informatik-Berichte, Software Engineer-
ing, Band 41. Shaker Verlag, June 2019.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling
Languages. In Software Product Line Conference (SPLC’13), pages 22–
31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling,
Bernhard Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement
for Cloud-based Services in the Internet of Things. In Conference on
Future Internet of Things and Cloud (FiCloud’14). IEEE, 2014.

[HHK+15] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. System-
atic Synthesis of Delta Modeling Languages. Journal on Software Tools
for Technology Transfer (STTT), 17(5):601–626, October 2015.

304

Bibliography

[HHK+15a] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling,
Bernhard Rumpe, and Klaus Wehrle. A comprehensive approach to pri-
vacy in the cloud-based Internet of Things. Future Generation Computer
Systems, 56:701–718, 2015.

[HHR+15] Lars Hermerschmidt, Katrin Hölldobler, Bernhard Rumpe, and An-
dreas Wortmann. Generating Domain-Specific Transformation Lan-
guages for Component & Connector Architecture Descriptions. In Work-
shop on Model-Driven Engineering for Component-Based Software Sys-
tems (ModComp’15), CEUR Workshop Proceedings 1463, pages 18–23,
2015.

[HJK+21] Steffen Hillemacher, Nicolas Jäckel, Christopher Kugler, Philipp Orth,
David Schmalzing, and Louis Wachtmeister. Artifact-Based Analysis
for the Development of Collaborative Embedded Systems. In Model-
Based Engineering of Collaborative Embedded Systems, pages 315–331.
Springer, January 2021.

[HJRW20] Katrin Hölldobler, Nico Jansen, Bernhard Rumpe, and Andreas Wort-
mann. Komposition Domänenspezifischer Sprachen unter Nutzung der
MontiCore Language Workbench, am Beispiel SysML 2. In Dominik
Bork, Dimitris Karagiannis, and Heinrich C. Mayr, editors, Modellierung
2020, pages 189–190. Gesellschaft für Informatik e.V., February 2020.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari,
Bernhard Rumpe, and Ina Schaefer. First-Class Variability Modeling in
Matlab/Simulink. In Variability Modelling of Software-intensive Systems
Workshop (VaMoS’13), pages 11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. An Algebraic View on the Semantics of
Model Composition. In Conference on Model Driven Architecture - Foun-
dations and Applications (ECMDA-FA’07), LNCS 4530, pages 99–113.
Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Scaling-Up Model-Based-Development for
Large Heterogeneous Systems with Compositional Modeling. In Con-
ference on Software Engineeering in Research and Practice (SERP’09),
pages 172–176, July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina
Schaefer. Delta-oriented Architectural Variability Using MontiCore.

305

Bibliography

In Software Architecture Conference (ECSA’11), pages 6:1–6:10. ACM,
2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab:
A Plug-In-Based Framework for Web-Based Project Portals. In Devel-
oping Tools as Plug-Ins Workshop (TOPI’12), pages 61–66. IEEE, 2012.

[HKR+16] Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and
Andreas Wortmann. Retrofitting Controlled Dynamic Reconfiguration
into the Architecture Description Language MontiArcAutomaton. In
Software Architecture - 10th European Conference (ECSA’16), LNCS
9839, pages 175–182. Springer, December 2016.

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore
Language Workbench and Library Handbook: Edition 2021. Aachener
Informatik-Berichte, Software Engineering, Band 48. Shaker Verlag, May
2021.

[HLN+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wort-
mann. Integration of Heterogeneous Modeling Languages via Extensible
and Composable Language Components. In Model-Driven Engineering
and Software Development Conference (MODELSWARD’15), pages 19–
31. SciTePress, 2015.

[HLN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wort-
mann. Composition of Heterogeneous Modeling Languages. In Model-
Driven Engineering and Software Development, Communications in
Computer and Information Science 580, pages 45–66. Springer, 2015.

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. Innovations in Model-based Software
and Systems Engineering. The Journal of Object Technology, 18(1):1–60,
July 2019.

[HNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas
Wortmann. Compositional Language Engineering using Generated, Ex-
tensible, Static Type Safe Visitors. In Conference on Modelling Foun-
dations and Applications (ECMFA), LNCS 9764, pages 67–82. Springer,
July 2016.

[Hoe18] Katrin Hölldobler. MontiTrans: Agile, modellgetriebene Entwicklung
von und mit domänenspezifischen, kompositionalen Transformation-

306

Bibliography

ssprachen. Aachener Informatik-Berichte, Software Engineering, Band
36. Shaker Verlag, December 2018.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of ”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Work-
bench Edition 2017. Aachener Informatik-Berichte, Software Engineer-
ing, Band 32. Shaker Verlag, December 2017.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dy-
namic Component Interfaces. In Technology of Object-Oriented Lan-
guages and Systems (TOOLS 26), pages 58–70. IEEE, 1998.

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Ar-
chitectural Programming of Embedded Systems. In Tagungsband des
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter-
Systeme VI, Informatik-Bericht 2010-01, pages 13 – 22. fortiss GmbH,
Germany, 2010.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank
van der Linden. Hierarchical Variability Modeling for Software Architec-
tures. In Software Product Lines Conference (SPLC’11), pages 150–159.
IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Ar-
chitectural Modeling of Interactive Distributed and Cyber-Physical Sys-
tems. Technical Report AIB-2012-03, RWTH Aachen University, Febru-
ary 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta
Modeling for Software Architectures. In Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteterSysteme
VII, pages 1 – 10. fortiss GmbH, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolv-
ing Delta-oriented Software Product Line Architectures. In Large-Scale
Complex IT Systems. Development, Operation and Management, 17th
Monterey Workshop 2012, LNCS 7539, pages 183–208. Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf.
Einführung eines Produktlinienansatzes in die automotive Softwareen-
twicklung am Beispiel von Steuergerätesoftware. In Software Engineering
Conference (SE’12), LNI 198, Seiten 181-192, 2012.

307

Bibliography

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. System-
atically Deriving Domain-Specific Transformation Languages. In Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS’15), pages 136–145. ACM/IEEE, 2015.

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software
Language Engineering in the Large: Towards Composing and Deriving
Languages. Computer Languages, Systems & Structures, 54:386–405,
2018.

[JPR+22] Nico Jansen, Jerome Pfeiffer, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. The Language of SysML v2 under the Magnifying
Glass. Journal of Object Technology, 21, July 2022.

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard
Rumpe. Does Distance Still Matter? Revisiting Collaborative Dis-
tributed Software Design. IEEE Software, 35(6):40–47, 2018.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ.
In A. Moreira and S. Demeyer, editors, Object-Oriented Technology,
ECOOP’99 Workshop Reader, LNCS 1743, Berlin, 1999. Springer Ver-
lag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. Design Guidelines for Domain Specific
Languages. In Domain-Specific Modeling Workshop (DSM’09), Techre-
port B-108, pages 7–13. Helsinki School of Economics, October 2009.

[KKR19] Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dy-
namic Architectures of Self-Adaptive Cooperative Systems. The Journal
of Object Technology, 18(2):1–20, July 2019. The 15th European Con-
ference on Modelling Foundations and Applications.

[KKR+22] Jörg Christian Kirchhof, Anno Kleiss, Bernhard Rumpe, David Schmalz-
ing, Philipp Schneider, and Andreas Wortmann. Model-driven Self-
adaptive Deployment of Internet of Things Applications with Auto-
mated Modification Proposals. ACM Transactions on Internet of Things,
November 2022.

[KKRZ19] Jörg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and
Hengwen Zhang. Simulation as a Service for Cooperative Vehicles. In
Loli Burgueño, Alexander Pretschner, Sebastian Voss, Michel Chaudron,
Jörg Kienzle, Markus Völter, Sébastien Gérard, Mansooreh Zahedi, Er-
wan Bousse, Arend Rensink, Fiona Polack, Gregor Engels, and Gerti

308

Bibliography

Kappel, editors, Proceedings of MODELS 2019. Workshop MASE, pages
28–37. IEEE, September 2019.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe.
Modeling Cyber-Physical Systems: Model-Driven Specification of En-
ergy Efficient Buildings. In Modelling of the Physical World Workshop
(MOTPW’12), pages 2:1–2:6. ACM, October 2012.

[KMA+16] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nico-
las Belloir, Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques
Klein, and Bernhard Rumpe. VCU: The Three Dimensions of Reuse. In
Conference on Software Reuse (ICSR’16), LNCS 9679, pages 122–137.
Springer, June 2016.

[KMP+21] Hendrik Kausch, Judith Michael, Mathias Pfeiffer, Deni Raco, Bernhard
Rumpe, and Andreas Schweiger. Model-Based Development and Logical
AI for Secure and Safe Avionics Systems: A Verification Framework for
SysML Behavior Specifications. In Aerospace Europe Conference 2021
(AEC 2021). Council of European Aerospace Societies (CEAS), Novem-
ber 2021.

[KMR+20] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon
Varga, and Andreas Wortmann. Model-driven Digital Twin Construc-
tion: Synthesizing the Integration of Cyber-Physical Systems with Their
Information Systems. In Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems,
pages 90–101. ACM, October 2020.

[KMR21] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. Un-
derstanding and Improving Model-Driven IoT Systems through Accom-
panying Digital Twins. In Eli Tilevich and Coen De Roover, editors,
Proceedings of the 20th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE 21), pages
197–209. ACM SIGPLAN, October 2021.

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo
Greifenberg, Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze,
Andreas Wortmann, Philipp Orth, and Johannes Richenhagen. Improv-
ing Model-based Testing in Automotive Software Engineering. In Inter-
national Conference on Software Engineering: Software Engineering in
Practice (ICSE’18), pages 172–180. ACM, June 2018.

309

Bibliography

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard
Rumpe, and Thomas Timmermanns. Modeling and Training of Neu-
ral Processing Systems. In Marouane Kessentini, Tao Yue, Alexander
Pretschner, Sebastian Voss, and Loli Burgueño, editors, Conference on
Model Driven Engineering Languages and Systems (MODELS’19), pages
283–293. IEEE, September 2019.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Spec-
ification and Refinement with State Transition Diagrams. In Workshop
on Feature Interactions in Telecommunications Networks and Distributed
Systems, pages 284–297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie
Navigator. In H. Lichter and B. Rumpe, Editoren, Entwicklung und Evo-
lution von Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011,
Aachener Informatik-Berichte, Software Engineering, Band 14. Shaker
Verlag, Aachen, Deutschland, 2012.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Se-
bastian Stüber. On the Engineering of AI-Powered Systems. In Lisa
O’Conner, editor, ASE19. Software Engineering Intelligence Workshop
(SEI19), pages 126–133. IEEE, November 2019.

[KR18a] Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Re-
pair Failed Model Refinements. In Conference on Model Driven Engi-
neering Languages and Systems (MODELS’18), pages 289–299. ACM,
October 2018.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 1. Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based
mathematical model for distributed information processing systems -
SysLab system model. In Workshop on Formal Methods for Open Object-
based Distributed Systems, IFIP Advances in Information and Commu-
nication Technology, pages 323–338. Chapmann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud
Computing. Springer, Schweiz, December 2014.

[KRR+16] Philipp Kehrbusch, Johannes Richenhagen, Bernhard Rumpe, Axel
Schloßer, and Christoph Schulze. Interface-based Similarity Analysis of

310

Bibliography

Software Components for the Automotive Industry. In International Sys-
tems and Software Product Line Conference (SPLC ’16), pages 99–108.
ACM, September 2016.

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber.
Model-Based Engineering for Avionics: Will Specification and Formal
Verification e.g. Based on Broy’s Streams Become Feasible? In Stephan
Krusche, Kurt Schneider, Marco Kuhrmann, Robert Heinrich, Reiner
Jung, Marco Konersmann, Eric Schmieders, Steffen Helke, Ina Schaefer,
Andreas Vogelsang, Björn Annighöfer, Andreas Schweiger, Marina Re-
ich, and André van Hoorn, editors, Proceedings of the Workshops of the
Software Engineering Conference. Workshop on Avionics Systems and
Software Engineering (AvioSE’19), CEUR Workshop Proceedings 2308,
pages 87–94. CEUR Workshop Proceedings, February 2019.

[KRRW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael
von Wenckstern. Modeling Architectures of Cyber-Physical Systems.
In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 34–50. Springer, July 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-
Physical Systems - eine Herausforderung für die Automatisierungstech-
nik? In Proceedings of Automation 2012, VDI Berichte 2012, Seiten
113-116. VDI Verlag, 2012.

[KRS+18a] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael
von Wenckstern. Highly-Optimizing and Multi-Target Compiler for Em-
bedded System Models: C++ Compiler Toolchain for the Component
and Connector Language EmbeddedMontiArc. In Conference on Model
Driven Engineering Languages and Systems (MODELS’18), pages 447 –
457. ACM, October 2018.

[KRS+22] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and An-
dreas Wortmann. MontiThings: Model-driven Development and Deploy-
ment of Reliable IoT Applications. Journal of Systems and Software,
183:1–21, January 2022.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software
Development using Domain Specific Modelling Languages. In Domain-
Specific Modeling Workshop (DSM’06), Technical Report TR-37, pages
150–158. Jyväskylä University, Finland, 2006.

311

Bibliography

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor
Generation for Compositional DSLs in Eclipse. In Domain-Specific Mod-
eling Workshop (DSM’07), Technical Reports TR-38. Jyväskylä Univer-
sity, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Defini-
tion of Abstract and Concrete Syntax for Textual Languages. In Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS’07), LNCS 4735, pages 286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modu-
lar Development of Textual Domain Specific Languages. In Conference
on Objects, Models, Components, Patterns (TOOLS-Europe’08), LNBIP
11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a
Framework for Compositional Development of Domain Specific Lan-
guages. International Journal on Software Tools for Technology Transfer
(STTT), 12(5):353–372, September 2010.

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated
semantics-preserving parallel decomposition of finite component and con-
nector architectures. Automated Software Engineering, 27:119–151, April
2020.

[Kus21] Evgeny Kusmenko. Model-Driven Development Methodology and
Domain-Specific Languages for the Design of Artificial Intelligence in
Cyber-Physical Systems. Aachener Informatik-Berichte, Software Engi-
neering, Band 49. Shaker Verlag, November 2021.

[LMK+11] Philipp Leusmann, Christian Möllering, Lars Klack, Kai Kasugai, Bern-
hard Rumpe, and Martina Ziefle. Your Floor Knows Where You
Are: Sensing and Acquisition of Movement Data. In Arkady Za-
slavsky, Panos K. Chrysanthis, Dik Lun Lee, Dipanjan Chakraborty,
Vana Kalogeraki, Mohamed F. Mokbel, and Chi-Yin Chow, editors, 12th
IEEE International Conference on Mobile Data Management (Volume
2), pages 61–66. IEEE, June 2011.

[Loo17] Markus Look. Modellgetriebene, agile Entwicklung und Evolution
mehrbenutzerfähiger Enterprise Applikationen mit MontiEE. Aachener
Informatik-Berichte, Software Engineering, Band 27. Shaker Verlag,
March 2017.

312

Bibliography

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and
Jonathan Sprinkle. Model Evolution and Management. In
Model-Based Engineering of Embedded Real-Time Systems Workshop
(MBEERTS’10), LNCS 6100, pages 241–270. Springer, 2010.

[MKB+19] Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Wei-
dlich, and Judith Michael. Privacy-Preserving Process Mining: Differen-
tial Privacy for Event Logs. Business & Information Systems Engineer-
ing, 61(5):1–20, October 2019.

[MKM+19] Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Bara-
caldo, and Bernhard Rumpe. User-Centered and Privacy-Driven Process
Mining System Design for IoT. In Cinzia Cappiello and Marcela Ruiz,
editors, Proceedings of CAiSE Forum 2019: Information Systems En-
gineering in Responsible Information Systems, pages 194–206. Springer,
June 2019.

[MM13] Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient
assistance. In Conceptual Modeling - ER 2013, LNCS 8217, pages 403–
413. Springer, 2013.

[MM15] Judith Michael and Heinrich C. Mayr. Creating a domain specific mod-
elling method for ambient assistance. In International Conference on
Advances in ICT for Emerging Regions (ICTer2015), pages 119–124.
IEEE, 2015.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Archi-
tecture Descriptions of Critical Systems. IEEE Computer, 43(5):42–48,
May 2010.

[MMR+17] Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A.
Shekhovtsov, and Claudia Steinberger. Model Centered Architecture,
pages 85–104. Springer International Publishing, 2017.

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. To-
wards Privacy-Preserving IoT Systems Using Model Driven Engineer-
ing. In Nicolas Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Sol-
berg, Manuel Wimmer, and Andreas Wortmann, editors, Proceedings of
MODELS 2019. Workshop MDE4IoT, pages 595–614. CEUR Workshop
Proceedings, September 2019.

[MPRW22] Judith Michael, Jérôme Pfeiffer, Bernhard Rumpe, and Andreas Wort-
mann. Integration Challenges for Digital Twin Systems-of-Systems. In
10th IEEE/ACM International Workshop on Software Engineering for

313

Bibliography

Systems-of-Systems and Software Ecosystems, pages 9–12. IEEE, May
2022.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for
Semantic Model Differencing. In Proceedings Int. Workshop on Models
and Evolution (ME’10), LNCS 6627, pages 194–203. Springer, 2010.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Se-
mantic Differencing for Activity Diagrams. In Conference on Founda-
tions of Software Engineering (ESEC/FSE ’11), pages 179–189. ACM,
2011.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational
Semantics for Activity Diagrams using SMV. Technical Report AIB-
2011-07, RWTH Aachen University, Aachen, Germany, July 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy:
Class Diagrams Analysis Using Alloy Revisited. In Conference on Model
Driven Engineering Languages and Systems (MODELS’11), LNCS 6981,
pages 592–607. Springer, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Se-
mantic Differencing for Class Diagrams. In Mira Mezini, editor, ECOOP
2011 - Object-Oriented Programming, pages 230–254. Springer Berlin
Heidelberg, 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object
Diagrams. In Object-Oriented Programming Conference (ECOOP’11),
LNCS 6813, pages 281–305. Springer, 2011.

[MRR11f] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semanti-
cally Configurable Consistency Analysis for Class and Object Diagrams.
In Conference on Model Driven Engineering Languages and Systems
(MODELS’11), LNCS 6981, pages 153–167. Springer, 2011.

[MRR11g] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing
Semantic Model Differences. In Bernhard Schätz, Dirk Deridder, Alfonso
Pierantonio, Jonathan Sprinkle, and Dalila Tamzalit, editors, ME 2011
- Models and Evolution, October 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of
Component and Connector Models from Crosscutting Structural Views.
In Meyer, B. and Baresi, L. and Mezini, M., editor, Joint Meeting

314

Bibliography

of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE’13), pages 444–454. ACM New York, 2013.

[MRR14a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of
Component and Connector Models from Crosscutting Structural Views
(extended abstract). In Wilhelm Hasselbring and Nils Christian Ehmke,
editors, Software Engineering 2014, LNI 227, pages 63–64. Gesellschaft
für Informatik, Köllen Druck+Verlag GmbH, 2014.

[MRR14b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Com-
ponent and Connector Models against Crosscutting Structural Views. In
Software Engineering Conference (ICSE’14), pages 95–105. ACM, 2014.

[MRRW16] Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael von
Wenckstern. Consistent Extra-Functional Properties Tagging for Com-
ponent and Connector Models. In Workshop on Model-Driven Engi-
neering for Component-Based Software Systems (ModComp’16), CEUR
Workshop Proceedings 1723, pages 19–24, October 2016.

[MRV20] Judith Michael, Bernhard Rumpe, and Simon Varga. Human behav-
ior, goals and model-driven software engineering for assistive systems.
In Agnes Koschmider, Judith Michael, and Bernhard Thalheim, edi-
tors, Enterprise Modeling and Information Systems Architectures (EM-
SIA 2020), pages 11–18. CEUR Workshop Proceedings, June 2020.

[MRZ21] Judith Michael, Bernhard Rumpe, and Lukas Tim Zimmermann. Goal
Modeling and MDSE for Behavior Assistance. In Int. Conf. on Model
Driven Engineering Languages and Systems Companion (MODELS-C),
pages 370–379. ACM/IEEE, October 2021.

[MS17] Judith Michael and Claudia Steinberger. Context modeling for active
assistance. In Cristina Cabanillas, Sergio España, and Siamak Farshidi,
editors, Proc. of the ER Forum 2017 and the ER 2017 Demo Track
co-located with the 36th Int. Conference on Conceptual Modelling (ER
2017), pages 221–234, 2017.

[Naz17] Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Com-
posed Modeling Language Essentials. Aachener Informatik-Berichte,
Software Engineering, Band 29. Shaker Verlag, June 2017.

[NRR15a] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe.
Mixed Generative and Handcoded Development of Adaptable Data-

315

Bibliography

centric Business Applications. In Domain-Specific Modeling Workshop
(DSM’15), pages 43–44. ACM, 2015.

[NRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An
Extended Symbol Table Infrastructure to Manage the Composition of
Output-Specific Generator Information. In Modellierung 2016 Confer-
ence, LNI 254, pages 133–140. Bonner Köllen Verlag, March 2016.

[PR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Archi-
tectures as Interactive Systems. In Model-Driven Engineering for High
Performance and Cloud Computing Workshop, CEUR Workshop Pro-
ceedings 1118, pages 15–24, 2013.

[PBI+16] Dimitri Plotnikov, Inga Blundell, Tammo Ippen, Jochen Martin Eppler,
Abigail Morrison, and Bernhard Rumpe. NESTML: a modeling language
for spiking neurons. In Modellierung 2016 Conference, LNI 254, pages
93–108. Bonner Köllen Verlag, March 2016.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product
Line Annotations with UML-F. In Software Product Lines Conference
(SPLC’02), LNCS 2379, pages 188–197. Springer, 2002.

[Pin14] Claas Pinkernell. Energie Navigator: Software-gestützte Optimierung
der Energieeffizienz von Gebäuden und technischen Anlagen. Aach-
ener Informatik-Berichte, Software Engineering, Band 17. Shaker Verlag,
2014.

[Plo18] Dimitri Plotnikov. NESTML - die domänenspezifische Sprache für den
NEST-Simulator neuronaler Netzwerke im Human Brain Project. Aach-
ener Informatik-Berichte, Software Engineering, Band 33. Shaker Verlag,
February 2018.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement
used for Behaviour Modelling with Automata. In Proceedings of the
Industrial Benefit of Formal Methods (FME’94), LNCS 873, pages 154–
174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Ar-
chitectures. In Congress on Formal Methods in the Development of Com-
puting System (FM’99), LNCS 1708, pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov,
H. and Baclavski, K., editor, Tenth OOPSLA Workshop on Behavioral
Semantics. Tampa Bay, Florida, USA, October 15. Northeastern Uni-
versity, 2001.

316

Bibliography

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Spec-
ifications. In Kilov, H. and Baclavski, K., editor, Practical Foundations
of Business and System Specifications, pages 281–297. Kluwer Academic
Publishers, 2003.

[Rei16] Dirk Reiß. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engi-
neering, Band 22. Shaker Verlag, May 2016.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component
and Connector Systems. Aachener Informatik-Berichte, Software Engi-
neering, Band 19. Shaker Verlag, Aachen, Germany, December 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Be-
havior. In B. Harvey and H. Kilov, editors, Object-Oriented Behavioral
Specifications, pages 265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme -
Syslab-Systemmodell. Technischer Bericht TUM-I9510, TU München,
Deutschland, März 1995.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and
Customizable Data Centric Applications with MontiDex. Aachener
Informatik-Berichte, Software Engineering, Band 31. Shaker Verlag, De-
cember 2017.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. In-
ternational Journal of Software and Informatics, 2011.

[RRRW15b] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas
Wortmann. Language and Code Generator Composition for Model-
Driven Engineering of Robotics Component & Connector Systems. Jour-
nal of Software Engineering for Robotics (JOSER), 6(1):33–57, 2015.

[RRS+16] Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer, Christoph
Schulze, Kevin Thissen, and Michael von Wenckstern. Test-driven Se-
mantical Similarity Analysis for Software Product Line Extraction. In In-
ternational Systems and Software Product Line Conference (SPLC ’16),
pages 174–183. ACM, September 2016.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and An-
dreas Wortmann. Teaching Agile Model-Driven Engineering for Cyber-
Physical Systems. In International Conference on Software Engineering:

317

Bibliography

Software Engineering and Education Track (ICSE’17), pages 127–136.
IEEE, May 2017.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Re-
quirements Modeling Language for the Component Behavior of Cyber
Physical Robotics Systems. In Seyff, N. and Koziolek, A., editor, Mod-
elling and Quality in Requirements Engineering: Essays Dedicated to
Martin Glinz on the Occasion of His 60th Birthday, pages 133–146. Mon-
senstein und Vannerdat, Münster, 2012.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From
Software Architecture Structure and Behavior Modeling to Implementa-
tions of Cyber-Physical Systems. In Software Engineering Workshopband
(SE’13), LNI 215, pages 155–170, 2013.

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Mon-
tiArcAutomaton: Modeling Architecture and Behavior of Robotic Sys-
tems. In Conference on Robotics and Automation (ICRA’13), pages
10–12. IEEE, 2013.

[RRW14a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArc-
Automaton. Aachener Informatik-Berichte, Software Engineering, Band
20. Shaker Verlag, December 2014.

[RRW15] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Tailor-
ing the MontiArcAutomaton Component & Connector ADL for Gener-
ative Development. In MORSE/VAO Workshop on Model-Driven Robot
Software Engineering and View-based Software-Engineering, pages 41–
47. ACM, 2015.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern,
Jan Oliver Ringert, and Peter Manhart. Behavioral Compatibility of
Simulink Models for Product Line Maintenance and Evolution. In Soft-
ware Product Line Conference (SPLC’15), pages 141–150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektori-
entierter Systeme. Herbert Utz Verlag Wissenschaft, München, Deutsch-
land, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Night-
mare? In T. Clark and J. Warmer, editors, Issues & Trends of Infor-
mation Technology Management in Contemporary Associations, Seattle,
pages 697–701. Idea Group Publishing, London, 2002.

318

Bibliography

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Sys-
tems. In Symposium on Formal Methods for Components and Objects
(FMCO’02), LNCS 2852, pages 380–402. Springer, November 2003.

[Rum04c] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on
Radical Innovations of Software and Systems Engineering in the Future
(RISSEF’02), LNCS 2941, pages 297–309. Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin,
September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Test-
fälle, Refactoring, 2te Auflage. Springer Berlin, Juni 2012.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement
in Hierarchically Decomposable and Underspecified CPS-Architectures.
In Lohstroh, Marten and Derler, Patricia Sirjani, Marjan, editor, Prin-
ciples of Modeling: Essays Dedicated to Edward A. Lee on the Occasion
of His 60th Birthday, LNCS 10760, pages 383–406. Springer, 2018.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung
mit der UML/P. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012.

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard
Rumpe, Matthias Brockmann, Andreas Wortmann, Judith Maibaum,
Manuela Dalibor, Pascal Bibow, Patrick Sapel, and Moritz Kröger.
Effizientere Produktion mit Digitalen Schatten. ZWF Zeitschrift für
wirtschaftlichen Fabrikbetrieb, 115(special):105–107, April 2020.

[SM18a] Claudia Steinberger and Judith Michael. Towards Cognitive Assisted
Living 3.0. In International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops 2018), pages 687–692.
IEEE, march 2018.

[SM20] Claudia Steinberger and Judith Michael. Using Semantic Markup to
Boost Context Awareness for Assistive Systems. In Smart Assisted Liv-
ing: Toward An Open Smart-Home Infrastructure, Computer Communi-

319

Bibliography

cations and Networks, pages 227–246. Springer International Publishing,
2020.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor
Karsai. Metamodelling: State of the Art and Research Challenges.
In Model-Based Engineering of Embedded Real-Time Systems Workshop
(MBEERTS’10), LNCS 6100, pages 57–76. Springer, 2010.

[TAB+21] Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale,
Robert Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bern-
hard Rumpe, Patrizia Scandurra, and Hans Vangheluwe. Composition
of Languages, Models, and Analyses. In Heinrich, Robert and Duran,
Francisco and Talcott, Carolyn and Zschaler, Steffen, editor, Composing
Model-Based Analysis Tools, pages 45–70. Springer, July 2021.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze,
and Andreas Wortmann. A New Skill Based Robot Programming Lan-
guage Using UML/P Statecharts. In Conference on Robotics and Au-
tomation (ICRA’13), pages 461–466. IEEE, 2013.

[Voe11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering, Band
9. Shaker Verlag, 2011.

[WCB17] Andreas Wortmann, Benoit Combemale, and Olivier Barais. A Sys-
tematic Mapping Study on Modeling for Industry 4.0. In Conference on
Model Driven Engineering Languages and Systems (MODELS’17), pages
281–291. IEEE, September 2017.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformation-
ssprachen. Aachener Informatik-Berichte, Software Engineering, Band
12. Shaker Verlag, 2012.

[Wor16] Andreas Wortmann. An Extensible Component & Connector Archi-
tecture Description Infrastructure for Multi-Platform Modeling. Aach-
ener Informatik-Berichte, Software Engineering, Band 25. Shaker Verlag,
November 2016.

[Wor21] Andreas Wortmann. Model-Driven Architecture and Behavior of Cyber-
Physical Systems. Aachener Informatik-Berichte, Software Engineering,
Band 50. Shaker Verlag, Oktober 2021.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige,
Kumardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On De-

320

Bibliography

mand Data Analysis and Filtering for Inaccurate Flight Trajectories. In
Proceedings of the SESAR Innovation Days. EUROCONTROL, 2011.

321

	Table of Contents
	Introduction
	Research Question & Objectives
	Main Results and Structure of Thesis

	Foundations
	Software Language Engineering
	Software Languages

	The MontiCore Language Workbench
	MontiCore Grammars
	Abstract Syntax Tree Data Structure
	Traversing the Abstract Syntax
	Context Conditions
	Identifying Artifacts in the File System
	Instantiating the Language Infrastructure
	Integration of Handwritten Code
	Language Composition

	Software Product Line Engineering
	Variability in Software and Software Product Lines
	Software Reuse
	Feature Diagrams

	Method for the Systematic Composition of Language Components in MontiCore
	Generating Kind-Typed Symbol Table Infrastructures
	Concept of Kind-Typed Symbol Tables
	Relationships between Symbols, Scopes, and AST Nodes
	Defining Names via Symbols
	Capturing Name Visibility with Scopes
	Providing Access to a Model's Symbol Table with Artifact Scopes
	Bridging the Gap Between Models with Global Scopes
	Using Model Elements through Names
	Type Definitions and Type Expressions
	Symbol Resolution
	Symbol Table Traversal
	Symbol Table Instantiation

	Annotating Grammars with Symbol Table Information
	Indicate that a Nonterminal Defines a Symbol Kind
	Indicate that a Nonterminal Spans a Scope
	Indicate that a Nonterminal Uses the Name of a Symbol
	Providing Symbol Kind Attributes
	Providing Scope Attributes

	Implementation of the Typed Symbol Table Infrastructure
	Implementation of Language Mills in MontiCore
	Implementation of Scopes in MontiCore
	Implementation of Artifact Scopes in MontiCore
	Implementation of Global Scopes in MontiCore
	Implementation of Symbol Resolvers in MontiCore
	Customizing Symbol Resolution
	Realization of Symbols in Symbol Classes
	Instantiating Symbol Tables with Scopes Genitors
	Instantiating Symbol Tables of Composed Languages with Scopes Genitor Delegators

	Discussion
	Related Work

	Infrastructure for Loading and Storing Symbol Tables
	Serialization in General
	Serialization and Deserialization
	Serialization Strategies
	Serialization with Intermediate Structure

	Concept for Symbol Table Persistence
	Overview of Symbol Table Persistence
	Organization of Persisted Files
	Concept for Symbol Table Serialization and Deserialization

	JSON Infrastructure
	JSON Abstract Syntax Model
	Serialization Infrastructure
	Deserialization Infrastructure

	Realization of Loading and Storing of Symbol Tables in MontiCore
	Commonalities of Symbol DeSers in the ISymbolDeSer Interface
	Commonalities of Scope DeSers in the IDeSer Interface
	The JsonDeSers Class
	Symbols2Json Classes for Traversing Symbol Tables
	SymbolDeSer Classes with Serialization Strategies for Symbols
	ScopeDeSer Classes with Serialization Strategies for Scopes
	Loading and Storing Symbol Tables via the Global Scope
	Integrating Loading of Symbol Tables into Symbol Resolution
	Supporting Storing of Symbol Tables for Model Processing

	Customizing the Persistence of Symbol Tables in MontiCore
	Providing a Serialization Strategy for a Symbol Attribute
	Omitting Serialization of Symbols of a Certain Kind
	Realizing Serialization of an Additional Scope Attribute
	Load ASTs together with Symbol Tables
	Load Symbol Tables of a Single Language Only
	Load Symbols as Instances of their Subkinds
	Load Symbols as Instances of their Super Kinds

	Discussion
	Related Work

	Using Typed Symbol Tables for Language Composition
	Language Inheritance in the Typed Symbol Table Infrastructure
	Language Inheritance of Scopes
	Language Inheritance of Symbol Table Creation
	Language Inheritance of Symbol Table Persistence
	Reconfiguration via Mills

	Adapting between Symbol Kinds
	Concept for Symbol Adapters
	Finding Symbol Adapters during Symbol Resolution
	Combination of Symbol Adapters and Symbol Persistence

	Importing Symbols from Java with Class2MC
	Aggregation of Languages
	Aggregation through Shared Grammar
	Aggregation through Unifying Grammar
	Aggregation through Resolvers
	Aggregation through Symbol Files

	Discussion
	Related Work

	Language Components
	Language Component Models
	MontiCore Language Component Diagrams
	Concept for Identifying Artifacts of Language Components
	Address Artifacts of a Language Component
	Artifact Analysis
	Building Self-Contained Language Component Archives

	Realization of Language Components
	The MLC Language
	Tool for Processing MLC Models

	Discussion
	Related Work

	The MontiCore Feature Diagram Language Family
	The Feature Diagram Language
	The Feature Configuration Languages
	The Feature Diagram Analysis Tool
	Composing Feature Models with Domain Models
	Internal Feature Realizations
	Referring to Feature Realizations
	Mapping to Feature Realizations

	Discussion
	Related Work

	Engineering Feature-Oriented Language Product Lines with MontiCore
	Concept of a Feature-Oriented Language Product Line
	Engineering a Language Product Line
	Roles Involved in Language Product Lines
	Describing the Composition of Language Components
	Language Variant Derivation

	Realizing Language Product Lines in MontiCore
	The Language Product Line Language
	The Composition Infrastructure

	Discussion
	Related Work

	Application-Based Evaluation
	Application of the STI
	Performance of Json Infrastructure
	Application of Loading and Storing Symbol Tables
	Application of Language Composition via Symbol Tables
	Application of MontiCore Language Components
	Application of the Feature Diagram Language Family
	Evaluation of the LCPL

	Conclusion
	Summary
	Potential for Future Work

	Bibliography
	List of Figures

