Using Software Categories for the Development of Generative Software

Keywords:

Abstract:

Pedram Mir Seyed Nazari!, Bernhard Rumpe!

LSoftware Engineering, RWTH Aachen University, Germany
{nazari, rumpe} @se-rwth.de

Model-driven development, Code generators, Software categories

In model-driven development (MDD) software emerges by systematically transforming abstract models to
concrete source code. Ideally, performing those transformations is to a large extent the task of code generators.
One approach for developing a new code generator is to write a reference implementation and separate it into
handwritten and generatable code. Typically, the generator developer manually performs this separation —
a process that is often time-consuming, labor-intensive, difficult to maintain and may produce more code
than necessary. Software categories provide a way for separating code into designated parts with defined
dependencies, for example, “Business Logic” code that may not directly use “Technical” code. This paper
presents an approach that uses the concept of software categories to semi-automatically determine candidates
for generated code. The main idea is to iteratively derive the categories for uncategorized code from the
dependencies of categorized code. The candidates for generated or handwritten code finally are code parts
belonging to specific (previously defined) categories. This approach helps the generator developer in finding
candidates for generated code more easily and systematically than searching by hand and is a step towards

tool-supported development of generative software.

1 INTRODUCTION

Models are at the center of the model-driven de-
velopment (MDD) approach. They abstract from
technical details, facilitating a more problem-oriented
development of software. In contrast to conventional
general-purpose languages (GPL, such as Java or C),
the language of models is limited to concepts of a
specific domain, namely, a domain-specific language
(DSL). To obtain an exectuable software application,
code generators systematically transform the abstract
models to instances of a GPL (e.g., classes of Java).
However, code generators are software themselves
and need to be developed as well. There are different
development processes for code generators. One that
is often suggested (e.g., (Kelly and Tolvanen, 2008)
and (Schindler, 2012)) is shown in Fig. 1.

The approach includes four steps. First, a refer-
ence model is created, which ultimately serves as in-

Creation of - Separation of Creahon of
Reference Impl. HW and Gen Code Transformatlons

| result i result i result i result
v v v v

Reference Reference m T Jat
Model Impl.

Figure 1: Typical development steps of a code generator.

Creation of
Reference Model

put for the generator. Depending on this reference
model, the generator developer creates the reference
implementation. Next, it has to be determined which
code parts need to be or can be generated and which
ones should remain handwritten. Finally, the transfor-
mations are defined to transform the reference model
to the aforementioned generated code.

Often, the third step, i.e., ’separation of hand-
written and generated code’ is not explicitly men-
tioned in the literature. This separation is implicit
part of the last step, i.e., *creation of transformations’,
since the transformations are only created for code
that ought to be generated. However, the separation
of handwritten and generated code ought to be distin-
guished as a step on its own, since it is not always
obvious which classes need to be generated.

In general, every class can be generated, espe-
cially when using template-based generators. In an
extreme case, a class can be fully copied into a tem-
plate containing only static template code (and, thus,
is independent of the input model). This is not de-
sired, following the guideline that only as much code
should be generated as necessary (Stahl et al., 2006),
(Kelly and Tolvanen, 2008), (Fowler, 2010). Opti-
mally, most code is put into the domain framework
(or domain platform), increasing the understandabil-

E - E [MSNR15] P. Mir Seyed Nazari, B. Rumpe: Using Software Categories for the Development of Generative Software.
= In: Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development,

= pp. 498-503, Angers, France, SciTePress, 2015.
= www.se-rwth.de/publications

ity and maintainability of the software. The gener-
ated code then only configurates the domain frame-
work for specific purposes (Rumpe, 2012).

One important criterion for a code generator to be
reasonable is the existence of similar code parts, ei-
ther in the same software product or in different prod-
ucts (e.g., software product lines). Typically, genera-
tion candidates are similar code parts that are also re-
lated to the domain. For example, in a domain about
cars, the classes Wheel and Brake would be more
likely generation candidates than the domain indepen-
dent and thus unchanged class File. This, of course,
is the case, since the information for the generated
code is obtained by the input model which, in turn,
is an instance of a DSL that by definition describes
elements of a specific domain. Of course, the logi-
cal relation to the domain is not a necessary criterion,
because if the DSL is not expressive enough, the gen-
erated code is additionally integrated with handwrit-
ten code. Nevertheless, the generated code often has
some bearing on the domain.

In most cases, the generator developer manually
separates handwritten code from generated code. This
process can be time-consuming, labor-intensive and
may impede maintenance. Furthermore, when using
a domain framework, this separation is insufficient,
since the handwritten code needs to be separated into
handwritten code for a specific project and handwrit-
ten code concerning the whole domain. This sepa-
ration also impacts the maintenance of the software
(Stahl et al., 2006). To address this problem, software
categories, as presented in (Siedersleben, 2004), are
suited.

The aim of this paper is to show how soft-
ware categories can be exploited to categorize semi-
automatically classes and interfaces of an object-
oriented software system. The resulting categoriza-
tion can be used for determining candidates for gen-
erated code, supporting the developer performing this
separation task.

This paper is structured as follows: Sec. 2 intro-
duces software categories and the used terminology.
In Sec. 3, these software categories are adjusted for
generative software. Sec. 4 presents the allowed de-
pendencies derived by the previously defined software
categories. The general categorization approach is ex-
plained in Sec. 5 and exemplified in Sec. 6. Sec. 7
outlines further possible dependencies. Finally, Sec.
8 concludes the paper.

| CardGameGUISwing | _refines

| CardGameGUI | | SheepsHead ‘

Figure 2: Software categories for virtual SheepsHead
(Siedersleben, 2004) (shortened).

2 SOFTWARE CATEGORIES

Software systems, especially larger ones, con-
sist of a number of components that interact with
each other. The components usually belong to dif-
ferent kinds of categories, such as persistence, gui
and application. Therefore, (Siedersleben, 2004) sug-
gests using software categories for finding appropri-
ate components. In the following this idea is demon-
strated by an example.!

Suppose that a software system for the card game
Sheepshead should be developed. The following cat-
egories then could be created (see Fig. 2):

e (O (Zero): contains only global software that is
well-tested, e.g., java.lang and java.util of
the JDK.

o CardGame: contains fundamental knowledge
about card games in general. Hence, it can be used
for different card games.

o SheepsHead: Contains rules for the the
Sheepshead game, e.g., whether a card can
be drawn.

e CardGameGUI: determines the design of the card
game, independent of the used library, e.g., that
the cards should be in the middle of the screen.

o CardGameGUISwing: extends Swing by illustra-
tion facilities for cards.

e Swing: contains fundamental knowledge about
Java Swing.

An arrow in Fig. 2 represents a refinement rela-
tion between two categories. Classes that are in a cat-
egory CI that refines another category C2 may use
classes of this category C2. The other way around
is not allowed. Every category - directly or indi-
rectly - refines the category O (arrows in Fig. 2).
Hence, software in 0 can be used in every cate-
gory without any problems. CardGame is refined
by SheepsHead and CardGameGUI which means

IThe example is taken from (Siedersleben, 2004) and re-
duced to only the aspects required to explain our approach.

Figure 3: Software categories (a) in general (Siedersleben,
2004) and (b) adjusted for generative software.

that code in these categories can also use code in
CardGame. Note that a communication between
CardGameGUI and SheepsHead is not allowed di-
rectly, but rather by using CardGame or 0 interfaces.
Since the category CardGameGUISwing refines both
CardGameGUI and Swing, it is a mixed form of these
two categories.

Now, having these categories, appropriate com-
ponents can be found. For example, a compo-
nent SheepsHeadRules in the category SheepsHead,
CardGameInfo and VirtualPlayer in CardGame,
CardGameInfoPresentation for CardGameGUI.

Considering this example, it can be seen that be-
side the O category, three other categories can be iden-
tified that exist in most software systems (see Fig. 3a):

e Application (A): containing only application
software, i.e., CardGame, SheepsHead and
CardGameGUI

o Technical (T): containing only technical software,
e.g. Java Swing classes.’

e Combination of A and T (AT): e.g.
CardGameGUI-Swing because it refines both an
A (CardGameGUI) and a T (Swing) category.3

(Siedersleben, 2004) summarizes the characteris-
tics and rules for the software categories as follows:
the categories are partially ordered, i.e., every cate-
gory can refine one or more categories. The emerging
category graph is acyclic. The category 0 (Zero) is
the root category, containing global software. A cat-
egory C is pure, if there is only one path from C to
0. Otherwise, the category is impure. In Fig. 3a only
the category AT is impure, because it refines the two
categories A and 7. All other categories are pure.

ZNote that Swing classes are global (belonging to the
JDK) and well-tested; hence meet the criteria of the cat-
egory 0. But —as usually the user-interface should be
exchangeable— Swing classes are not necessarily global in a
specific software system.

3In (Siedersleben, 2004) also the Representation (R) cat-
egory is presented. This category contains only software for
transforming A category software to 7 and vice versa. Itis a
kind of cleaner version of AT. To demonstrate our approach,
the R category can be neglected.

Terminology

We call a class that has the category C a C-class. Fol-
lowing from the category graph in Fig. 2 there are:
AT-classes, A-classes, T-classes and O-classes. For
the sake of readability, we do not explicitly mention
interfaces, albeit what applies to classes applies to in-
terfaces as well.

3 CATEGORIES FOR
GENERATIVE SOFTWARE

While (Siedersleben, 2004) aims for finding com-
ponents from the defined software categories, the goal
of this paper is to determine whether a specific class
should be generated or not by analyzing its depen-
dencies to other classes.

To illustrate this, consider the following example.
When having a class Book and a class Jupiter, which
of these classes are generation candidates? Of course,
it depends on the domain. If the domain is about plan-
ets, probably Jupiter is a candidate. In a carrier
media domain, Book would be a candidate. So, we
can say, that a generation candidate somehow relates
to the domain. But this condition is not enough. In
a library domain where different books exist, Book
would rather be general for the whole domain and
should probably not be generated at all. Hence, addi-
tionally to the domain affiliation, a generation candi-
date is not general for the whole domain. Technically
speaking, the class or interface should depend on a
specific model (or model element). Consequently, a
change in the model can imply the change of the gen-
erated class. Usually, classes that are global for the
whole domain are not affected by changes in a model.

We adjusted the category model in Fig. 3a to bet-
ter fit in with the domain. Fig. 3b shows the modified
category model.

The category A from Fig. 3a is renamed to D (Do-
main), to emphasize the domain. Consequently, the
mixed form AT (Application and Technical) becomes
DT (Domain and Technical). Category T remains un-
changed. The new category DG (domain global) indi-
cates software that is global for the whole domain and
helps to differentiate from D-classes that are specific
to the domain (a particular book, e.g., CookBook).

Because of the introduction of DG, the character-
istic of the O category changes somewhat. It contains
only global software that is well-tested and indepen-
dent of the domain, e.g., java.lang and java.util
of the JDK. To highlight the difference to the initial 0
definition, 0’ is used.

Figure 4: (a) Addition of software categories (b) Allowed
dependencies between categories.

With the above objective in mind and upon search-
ing for generation candidates, in particular, classes of
the category D are interesting, i.e., D itself and DT,
refining the category of both D and T (see Fig. 3b).

The matrix in Fig. 4a underscores which software
category results if two categories are combined. A
usage of 0’ has no effect, e.g., D + 0’ = D. The same
is true for DG, as we defined it to be like 0’ (global for
the whole domain). Hence, D + DG = D, e.g., if the
D-class CookBook extends the DG-class Book it still
remains a D-class. Only the combination of D and T
leads to an (impure) mixed form, concretely DT. Any
combination with DT results in DT, i.e., * + DT = DT.

4 DEPENDENCY RULES FOR
CATEGORIES

A total of four categories (plus the mixed form
DT) have been suggested for a general classification
of code in generative software (Fig. 3b). Classes of
a particular category are only allowed to depend on
classes of the same category and classes that are on
the same path to 0’. Consequently, based on these
categories, the table in Fig. 4b can be derived auto-
matically.

The table can be read in two ways: line-by-line
or column-by-column. The former shows the allowed
dependencies of a category, whereas the latter shows
the categories that may depend on a category. The
first row in Fig. 4b shows that a DT-class may depend
on classes of any of the categories. A D-class can
only depend on D-, DG- and 0’-classes* (Fig. 4b, sec-
ond row). A D-class must not depend on a DT-class.
Only the other direction is allowed. Analogous to D-
classes, a T- class may only depend on T-, DG- and
0’-classes. A class from category DG cannot depend
on any of the categories but DG and 0’; otherwise
it would contradict the definition of DG being global
for the whole domain. For example, in the library do-
main, the (abstract) class Book (DG) would not know
anything about the single books (such as CookBook,

4Note that a D-class that depends on a T-class is rather
a DT-class.

D) or MDDBook (D)). Of course, 0’-classes can only
communicate among each other. For instance, classes
in the java.lang package (0’) do not have any de-
pendencies to a class of any of the other categories.

As mentioned before, the columns in Fig. 4b show
those categories that can depend on a specific cate-
gory. It can be seen that this is somehow antisymmet-
ric to the previously described allowed dependencies
of a category.

Dependencies in Java

Up to now, we included the term dependency, but we
did not define it so far. This is mainly because what
a dependency ultimately is, depends on the (target)
programming language. Java, for example, provides
different kinds of dependencies between classes and
interfaces. The following shows one possible classi-
fication, where the class A depends on the class B and
the interface I, respectively:

e Inheritance: class A extends B
e Implementation: A implements I
e Import: import B

e Instantiation: new B ()

e ExceptionThrowing: throws B

e Usage: field access (e.g., b.field0fB), method
call (e.g., b.methodOfB (), declaration (e.g., B
b), use as method parameter (e.g., void meth (B
b)), etc.

These are dependencies in Java that are mostly
manifested in keywords (e.g., extends and throws),
and hence, hold for any Java software project. How-
ever, not all of these dependencies are always desired.
It is important to determine first of all what a depen-
dency ultimately is. For example, an unused import,
i.e., a class that imports another class without using it,
is not necessarily a dependency.

5 CATEGORIZATION
APPROACH

The suggested approach for the categorization of
the source code is demonstrated in Fig. 5. Three
inputs are needed for the categorization: the source
code to be categorized (from which a dependency
graph is derived), the category graph (such as in Fig.
3b) and an initial categorization of some of the classes
and interfaces (usually done by hand). Using these
inputs, a categorization tool analyzes the dependen-
cies of the uncategorized classes and interfaces to the

Categ. i+1

performed \\
automatically

/
.
I
Category Graph T Categorization

categorization
changed? i
/

[changed]
Manual [not changed]
Categorization

further categ.
needed?

categorize
manually?

Final C;

Figure 5: Overview of the categorization approach.

already categorized ones. With the information ob-
tained from the category graph some of the uncate-
gorized classes and interfaces can be categorized au-
tomatically. For example, if a class C depends on a
D- and a T-class and the category graph in Fig. 3b is
given, the category of class C is definitively DT, be-
cause only this category refines both D and T.

In some cases the order of the categorization pro-
cess matters. For example, if a class A only depends
on a class B (and no categorized class depends on
2), A will not be categorized until B is categorized.
To prevent that the order has an effect on the final
categorization, the categorization is performed itera-
tively. The output of iteration i serves as input for
the next iteration i+/. This is repeated until a fix-
point is reached, that means, no further classes and
interfaces could be categorized. These iteration steps
can be conducted fully automatically. If there are still
uncategorized classes left, some of them can be cate-
gorized by hand (Sec. 6 illustrates this case by an ex-
ample). This updated categorization, again can serve
as input. The process can be repeated until the whole
source code is categorized or no further categoriza-
tion is needed. Finally, classes and interfaces with a
specific categorization serve as candidates for code to
be generated. Here, this applies to the categories D
and DT. The user now can decide which of these can-
didates will become generated code.

6 EXAMPLE

Now, with the help of the allowed dependencies
defined in Sec. 4, given some classes, the category of
each of the classes can be derived semi-automatically,
following the approach presented in the previous sec-
tion.

Consider the case in Fig. 6. The figure depicts
overall ten classes, whereby four are pre-categorized
(CookBook, AbstractPanel, Book and JPanel) and
six are not. The category is in parentheses beside the
class name. Uncategorized classes are marked with a

CookBookPanel (?)

CookBookReader
(?)

[Reader?) |—{ Book(®S) |
[l1r

| Author(?) | | JPanel(0) |

AbstractPanel (T)

Figure 6: Initially categorized classes.

question mark (?). Let us assume that the four cate-
gorized classes already exist and are categorized (e.g.,
manually by an expert) and the six other classes are
newly created. This situation can arise, for instance,
when software evolves. In the following, the catego-
rization process is illustrated.

The class CookBookPanel communicates
with both a D-class (CookBook) and a T-class
(AbstractPanel). Following Fig. 4b, only a
DT-class may communicate with a D as well as with
a T class (marked by a check mark in the D and
T column). Thus, CookBookPanel is definitively a
DT-class. Moreover, any other class depending on
CookBookPanel (represented by the three dots), is
also a DT-class. In the column DT in Fig. 4b there is
only a check mark for DT.

Next, CookBookReader depends on the D-class
CookBook and the not yet categorized class Reader.
If Reader is a DT- or T-class, CookBookReader will
be definitive a DT-class, for it would depend on a D-
class and either a DT- or T-class. With regard to Fig.
4b, this only fits for DT-classes. If Reader is of any
of the other categories, CookBookReader will be a D-
class. However, when trying to categorize Reader,
we encounter a problem. Reader only depends on
Book, a DG-class. According to Fig. 4b this can ap-
ply to any category except 0’. So, in this iteration,
Reader cannot be categorized automatically. Conse-
quently, the exact categorization of CookBookReader
cannot be determined.

Analogous to the class Reader, the class Author
only depends on the DG-class Book. So, except 0’,
it can be of any category. Unlike the previous case,
Book also has a dependency to Author, which means
that Author is either DG or 0’. We have already ex-
cluded 0’; hence, only DG remains as a possible cat-
egory for Author. Fig. 7 shows the extended catego-
rization after this iteration.

Two classes could not be categorized exactly af-
ter the first iteration: CookBookReader and Reader.
Recalling that our goal is to find generation candi-
dates, we are above all interested in classes of the
category D. So, the approximate categorization of
CookBookReader (D or DT) is sufficient, because
both D and DT are of the category D. In contrast,

\/
AbstractPanel (T)

\/
[Reader(?y |—| Book(DG) |

l1. |1
[Adthor @G) | [JPanei@) |

Figure 7: Categorized classes after the first iteration.

Reader is still completely uncategorized which ham-
pers the categorization of classes depending on it.
There are two options to categorize Reader in the
next iteration: either manually by the expert or au-
tomatically by adding new classes and dependencies
limiting the possible categories of Reader.

Note that the order of the categorization of
CookBookPanel and the classes depending on it
(marked by “...”) is important for the first iteration.
The “...” classes could not be categorized if they
were considered before CookBookPanel. However,
the order has no impact on the final result, because
after the first iteration CookBookPanel is surely cate-
gorized, and thus, the “...” classes can be categorized
in the next iteration.

Finally, three candidates (plus the “...” classes)
for generated code are identified: CookBook (D),
CookBookReader (D/DT) and CookBookPanel (DT).
All of these classes belong to the category D di-
rectly or indirectly (i.e., DT), and hence, are some-
how related to the domain. Having these candidates,
the generator developer has to decide which of these
classes in the end need to be generated and which
remain handwritten. Of course, this decision is re-
stricted above all by the information content of the
input model. The generator developer must be aware
of this restriction.

tE)

7 FURTHER DEPENDENCIES

Up to now, only the technical dependencies of the
code are considered for finding generation candidate
classes (see Sec. 4). There can be further dependen-
cies, such as naming dependencies. If, for example,
the CookBookPanel in Fig. 6 had no association to
CookBook, then, it would only depend on the T-class
AbstractPanel and be a T-class.

But, CookBookPanel contains the name of
CookBook as prefix in its class name. Considering
this naming dependency, CookBookPanel has also a
dependency to the D-class CookBook. Consequently,
CookBookPanel is a DT-class and a generation candi-
date. Note that from the architecture’s point of view a
(technical) dependency between CookBookPanel and

CookBook might be forbidden. Hence, deriving the
dependency rules from the architecture (and not from
software category graph) would limit the kinds of pos-
sible dependencies.

In sum, what a dependency finally is, depends on
the software system and its conventions. This affects
the emerging dependency graph of the source code
and can also lead to a different candidate list. How-
ever, the procedure as described in Sec. 5 and Sec. 6
remains unchanged.

8 CONCLUSION

Code generators are crucial to MDD, transform-
ing abstract models to executable source code. The
generated source code often depends on handwritten
code, e.g., code from the domain framework. When
a code generator is developed or evolved, the gener-
ator developer manually decides which classes need
to be generated and which remain handwritten. This
task can be time-consuming, labor-intensive and may
generate more code than is necessary, hampering the
maintenance of the software.

This paper has introduced an approach that can aid
the generator developer in finding candidates for gen-
erated code. First, a software category graph is de-
fined. From this graph the allowed dependencies be-
tween the corresponding classes (and interfaces) are
derived automatically. After an initial categorization
of some classes, further classes can be categorized
automatically, by analyzing their dependencies. This
procedure is conducted iteratively until all classes are
categorized or no more categorization is needed. Fi-
nally, generation candidates are all classes belonging
to the domain categories.

REFERENCES

Fowler, M. (2010). Domain Specific Languages. Addison-
Wesley Professional.

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Mod-
eling: Enabling Full Code Generation. Wiley.

Rumpe, B. (2012). Agile Modellierung mit UML.
Xpert.press. Springer Berlin, 2nd edition edition.

Schindler, M. (2012). Eine Werkzeuginfrastruktur zur Ag-
ilen Entwicklung mit der UML/P. Aachener Infor-
matik Berichte, Software Engineering. Shaker Verlag.

Siedersleben, J. (2004). Moderne Software-Architektur:
Umsichtig planen, robust bauen mit Quasar.
Dpunkt. Verlag GmbH.

Stahl, T., Voelter, M., and Czarnecki, K. (2006). Model-
Driven Software Development: Technology, Engineer-
ing, Management. John Wiley & Sons.

