
Andreas Oberweis, Ralf Reussner (Hrsg.): Modellierung 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 133

An Extended Symbol Table Infrastructure to Manage the

Composition of Output-Specific Generator Information

Pedram Mir Seyed Nazari1, Alexander Roth1, Bernhard Rumpe1

Abstract: Code generation is regarded as an essential part of model-driven development (MDD) to
systematically transform the abstract models to concrete code. One current challenges of template-
based code generation is that output-specific information, i.e., information about the generated source
code, is not explicitly modeled and, thus, not accessible during code generation. Existing approaches
try to either parse the generated output or store it in a data structure before writing into a file. In this
paper, we propose a first approach to explicitly model parts of the generated output. These modeled
parts are stored in a symbol for efficient management. During code generation this information can
be accessed to ensure that the composition of the overall generated source code is valid. We achieve
this goal by creating a domain model of relevant generator output information, extending the symbol
table to store this information, and adapt the overall code generation process.

Keywords: Symbol Table, Output-Specific Generator Information, Code Generation

1 Introduction

In model-driven development (MDD) code generation is an essential part to systematically
generate detailed code from abstract input models. To bridge the gap between problem do-
main (abstract models) and solution domain (concrete code), MDD lifts the input models
to primary artifacts in the development process. Regardless of the importance, code gen-
erator development is still a labor-intense and time-consuming task, where approaches to
explicitly manage output-specific information are still lacking.

Explicitly management of output-specific code generator information, i.e., information
about the generated source code, is essential for code generation to ensure that the gen-
erated source code is valid, i.e., well-formed. More importantly, it is necessary in the de-
velopment process of code generators to split development tasks and in the maintenance
phase as a documentation. For example, consider Java code is generated from UML class
diagrams [Ru11]. In order to access parts of those generated Java classes are to be accessed
during code generator runtime, the information of the relation of class diagram elements to
Java elements is required such as class instantiation via the factory pattern [Ga95] versus
direct instantiation via new-constructs.

Current code generator frameworks, e.g., [Me15, Xt15, Ac15, Je15], primarily focus on
the code generation process and the development of code generators but mainly neglect
explicit modeling of code generator output. Moreover, round-trip engineering [MER99]

1 RWTH Aachen University, Software Engineering, http://www.se-rwth.de

[MSNRR16] P. Mir Seyed Nazari, A. Roth, B. Rumpe: 
An Extended Symbol Table Infrastructure to Manage the Composition of Output-Specific Generator Information. 
In: Modellierung 2016 Conference, LNI P-254, pp. 133–140. Bonner Köllen Verlag, 2016.
www.se-rwth.de/publications 



134 Pedram Mir Seyed Nazari, Alexander Roth, Bernhard Rumpe

and reverse engineering [CC90] try to recreate models from the generated output. An ap-
proach to explicitly model information, which is exchanged during code generation, has
been presented [JMS08]. However, the output still needs to either be first generated or
approaches to address the required parts of the generated source code are lacking.

Hence, in this paper we present our approach to make output-specific code generator infor-
mation explicit. As this information is dependent on the used input and output language,
we present a preliminary domain model for a code generator that uses a variant of UML
class diagrams [OM15] as input and Java as output. In this domain model, we use existing
approaches [Ru11, Ru12] to map elements of UML class diagrams to Java code and pro-
vide an extension to manage Java object instantiation and field access via accessors and
mutators. By making such information explicit, we enable code generator developers to
exchange this information during development. Moreover, we make this information ac-
cessible at generation-time by extending the symbol table and the code generation process
to allow storing arbitrary information.

Hence, we first introduce the basic concepts of symbol tables and code generation used in
the MontiCore framework in Section 2. Then, we present our approach to manage output-
specific code generator information by extending the symbol table and the code generation
process (Section 3). Finally, we conclude our paper in Section 5.

2 Symbol Table and Code Generation

As the foundation for all aspects of language definition, language processing, and template-
based code generation, we use the MontiCore language workbench [KRV10]. It uses a
grammar defining the language to be processed and generates a parser and infrastructure
for language processing based on this grammar. The generated infrastructure can be used
to parse models conforming the defined grammar.

During processing of models the parser creates a abstract syntax tree (AST), (an internal
representation of the input model). This abstract representation is used for further phases
of language processing, e.g., context condition checking and code generation. In addition,
a symbol table is created in order to store relevant information for each model element.

2.1 Symbol Table

A symbol table (ST) is a data structure that maps names to associated model element in-
formation. In MontiCore, a symbol is an entry in the ST and represents a (named) model
element [HNR15]. It contains all essential information related to that element. Different
kinds of model elements, e.g., method and field in Java, are distinguished by correspond-
ing symbol kinds. The main purpose of the symbol table is an efficient finding of model
element specific information such as its type and its signature.

Compared to classical symbol tables, which are typically simple hash tables [Ah07], the
symbol table in MontiCore is a combination of a (conceptual) table and the semantic model
as described in [Fo10]. Its underlying infrastructure is a scope-tree containing a collection



Managing the Composition of Output-Specific Generator Information 135

of symbols (cf. [Pa10]). Furthermore, it serves as a language-unspecific infrastructure for
an efficient and effective integration of heterogeneous modeling languages [Lo13, Ha15])

Besides the information defined in the model element and represented by a symbol in
the symbol table, a symbol can also contain information that is not explicitly part of that
model element. For example, a Java field symbol can state whether it shadows a field of
the super class or not. In addition, the source position of the model element can be stored
in the symbol. Both information are not explicitly stated in the model element, but can be
managed by the symbol. This allows to associate any kind of information—even technical
information such as the source position— with the corresponding model element. We have
even shown that a symbol table can manage code generator customizations [NRR15].

2.2 Code Generation

The code generation process of MontiCore is a mix of template-based and transformation-
based code generation as shown in Figure 1. After the parser has created the AST, multiple
transformations can be applied to transform the AST by adding, removing, or changing el-
ements of the AST. The overall goal of the transformations is to make it fit the needed
AST for code generation. During the transformation steps templates can be attached to
AST elements in order to explicitly define the template to be used for this particular ele-
ment. Certainly, this approach has limitations when generating non object-oriented code or
when the input model is not a structural description that can be used for code generation.
Thus, in the remainder of this paper we focus on a modeling language that is a variant of
UML class diagrams [OM15] and Java as the output language of the code generator.

input model AST

Template
Engine

Default
Template Set

Java

produces the AST

Parser

Model

multiple different
transformations

templates attached
to AST elements

Fig. 1: Overview of a template-based and transformation-based code generation process.

After the transformations have been successfully applied, the AST is passed to the Tem-
plate Engine. In addition, a default set of templates, which describe how to generate Java
code from the input model, is passed to the template engine. When the template engine is
started, it traverses the input AST and for each element executes either the attached tem-
plates of one of the default templates depending on the type of the AST element. Finally,
the generated output is written to a file.

3 Managing Output-Specific Information with the Symbol Table

Our presented approach to manage output-specific code generator information is based
on three elements. First, a common understanding of output-specific code generator infor-
mation is needed. In general, this information is concerned with output language specific



136 Pedram Mir Seyed Nazari, Alexander Roth, Bernhard Rumpe

elements and concepts, e.g., object instantiation in Java. Second, an extension to the sym-
bol table is required in order to add output-specific information and make it available at
generation-time, i.e., run-time of the code generator. Third, the code generation approach
needs to be adapted such that the information is added to the symbol table. Subsequently,
we elaborate on each of the three main steps in more detail.

3.1 A Preliminary Domain Model for Class Diagrams and Java

A domain model of code generator output specific information depends on the output of
the code generator and the input language. Hence, aiming for a general domain model
for code generator output specific information is challenging and possibly not feasible.
However, restricting the input language to UML class diagrams and the output language
to Java, we try to provide a preliminary domain model that shows how code generator
output-specific information can be modeled and managed with a symbol table. We do not
claim for completeness of the domain model. Instead, we try to give an idea of how to
model code generator output-specific information.

CDSymbol

CD

CDAssociation

CDField

CDMethod

CDEnum CDInterface

«abstract»
JavaElement

JavaMethod«abstract»
JavaType

Java
Interface

Java
Enum

Java
Class

Instantiation

«abstract»
Reference

ac
ce
ss
or

m
ut
at
or

Accessor Mutator

«abstract»
CDType

code generator
output-specific
information

JavaField

CDClass

Fig. 2: Mapping of Symbols to Java Symbols and additional Generator Information

Our domain model in Figure 2 shows how UML class diagram symbols are mapped to Java
symbols based on [Ru11, Ru12]. In this domain model, a CDType, which may represent a
UML enum, interface or class, is mapped to a JavaType. We do not restrict the mapping
to JavaClasses, because it may be necessary to generate interfaces or a modeled class.
Moreover, each CDField is mapped to JavaMethod and JavaField. The mapping of a
CDField to JavaMethods is optional as accessors and mutators may not be wanted. A
CDMethods symbol is mapped to JavaMethod and JavaField. An example for a UML
method that is mapped to a JavaField is an accessor that is mapped to the generated
JavaField to allow for direct variable access.

Figure 2 gives an example for code generator output-specific information. This information
is relevant for code generator developers and should be accessible during generation time
rather than after code generation. Focusing on our small example, we have identified two



Managing the Composition of Output-Specific Generator Information 137

types of code generator output-specific information. First, a JavaField, when mapped
to Java code, can have Accessors and Mutators. This information is relevant during
code generation as the generated code should access the field using the generated accessor
and mutator. Thus, this information should be modeled explicitly and be accessible before
the code is generated. Moreover, for JavaClasses the information relevant for creating
instances of this class is required, e.g using the Singleton pattern [Ga95].

3.2 An Extension to the Symbol Table

Having an understanding of the mapping and additional information to be stored in the
symbol table, we extend MontiCore’s symbol table infrastructure to efficiently manage
this information. The subsequent description is reduced to the essential parts and mainly
focuses on the extensions, as shown in Figure 3. In [HNR15], we introduce the symbol
table infrastructure in detail.

«interface»
Symbol

CD
«interface»

Scope
enclosingScope

* 0..1

subs *
0..1

generatorID
generatesTo

*

0..1

«RTE»

JClassGI

String getIntantiation()

JFieldGI

String getMutator()
String getAccessor()

JClassSymbolJFieldSymbol

«LS»

«interface»
GeneratorInfo

Fig. 3: Extended Symbol Table Infrastructure

As a first step, we enriched a symbol with information about the symbols of the target lan-
guage it generates to. Moreover, symbols of the source language are associated with the
corresponding symbols of the target language. For example, a class diagram field (source)
can be generated as a Java field (target). Hence, the CDFieldSymbol maps to the cor-
responding JavaFieldSymbol (see Sect. 3). However, different generators can lead to
different mappings and, thus, a unique generator id is used for each generator.

Second, each symbol now can optionally store generator-specific information, represented
by the GeneratorInfo interface. GeneratorInfo must be implemented for each sym-
bol of a target language and provide the required information. In the example of Java as
the target language, information for, among others, classes and fields is needed, which are
presented by JavaClassGI and JavaFieldGI, respectively. The former provides infor-
mation such as how the generated class is instantiated, while the latter states how the field
of the generated class is changed or accessed.

3.3 An Extension to Code Generation to handle Output-Specific Information

All modeled output-specific information is added to the symbol table to make it available
at generation-time. Two different approaches can be used to add this information. First,
before generation-time the transformations and templates can be parsed and the required
information can be extracted. To identify relevant information comments or keywords may



138 Pedram Mir Seyed Nazari, Alexander Roth, Bernhard Rumpe

be used. While this approach makes sure that all information is available before generation-
time, it has the disadvantage of processing all transformations and templates. In conse-
quence, a supporting infrastructure to parse templates and transformations is necessary.

The second approach for adding all relevant information to the symbol table is to add it
at generation-time. In particular, this means that all output-specific information is added
to the symbol table while the code generation process is running. The information is not
available before generation-time but still available at generation-time. A benefit of this
approach is that no parsing of transformations and templates is required and the provided
infrastructure can be kept small by providing an API to add this information. For our
example in Figure 2, we can to provide the following methods:

• toJavaType(CDType s, String className): Defines that a CDType is mapped
to a JavaType with the name className.

• toJavaField(CDField s, String fieldName): A mapping CDField to a Java-
Field is stored in the symbol table with the fieldName as the name of the gener-
ated Java field.

• toJavaMethod(CDMethod s, String methodName): To define a mapping of a
CDMethod to a JavaMethod the symbol table creates a Java method with the name
methodName.

• addInstantiation(JavaClass c, String code): In order to explicitly model
object instantiation and store it in the symbol table, the API allows to add piece of
code of type String to a Java class. For instance, to regard the Factory pattern, the
piece of code can be “BookFactory.create()” for the Java class Book.

• setAccessor(JavaField, String code): A mutator for a JavaField can be
defined as a piece of code that represents, e.g., the name of the method (“getTitle”
for a field named “title”).

• setMutator(JavaField, String code): For mutators the method is the same
as for accessors. Additionally, we assume that each mutator requires one argument.
Hence, when accessing this information in the symbol table a parameter should be
passed. This is used to create the resulting string for the mutator.

A disadvantage is that the transformations and code templates have an execution order in
which they have to be executed. If the execution order is violated, the information may not
be available. In other words, the symbol in the symbol table cannot be resolved.

4 Related Work

Explicit modeling of output-specific code generator information is, to our knowledge, only
hardly addressed by current literature. A closely related approach has been presented in
[JMS08]. Here, a code generator is explicitly modeled via small interconnected services,
which exchange information at runtime. This approach is similar to our presented ap-
proach as the exchanged information between serviced may contain generated informa-



Managing the Composition of Output-Specific Generator Information 139

tion. In contrast, our presented approach proposes explicit modeling of this information
and efficient management by using a symbol table.

Another approach that can be used to exchange information about the generate output has
been presented by [ZR11]. The authors propose to generate the source code into containers
before writing it into files. Hence, the complete source code is available at generation-
time. However, as the authors are mainly concerned with producing syntactically correct
output, there is no approach to address parts of the generated code as proposed by this
paper. This is, however, essential to address composition of the generated source code,
e.g., instantiation of generated Java classes.

Finally, an extension to round-trip engineering has been proposed to address the framework-
provided abstractions via a dedicated domain-specific language (DSL) [AC06]. Rather
than proposing a DSL, we explicitly model output-specific information using UML class
diagrams and additionally provide efficient management at generation-time.

5 Conclusion

As code generation is regarded as an essential part of model-driven development to gen-
erate source code, output-specific code generator information has to be regarded in order
to generate valid source code and decompose the generator development. In this paper, we
presented a first approach to make output-specific code generator information explicit.

Our proposed approach consists of three steps. First, the relevant information is collected
in a domain model. Based on this domain model the symbol table is extended to manage
this information. Using the symbol table as an infrastructure has the benefit that the man-
agement is more efficient and no additional infrastructure is required. Finally, in the last
step the code generation process needs to be adapted in order to make use of the stored
information. We have applied this approach to a small use case to show how to model
output-specific information for a UML class diagram to Java code generator. In particular,
we focused on information related to object instantiation, and mutaturs and accessors for
fields. In future, we plan to extend this approach to more real world examples.

References

[AC06] Antkiewicz, Micha; Czarnecki, Krzysztof: Framework-Specific Modeling Languages
with Round-Trip Engineering. In: Model Driven Engineering Languages and Systems,
volume 4199 of LNCS. Springer Berlin Heidelberg, 2006.

[Ac15] Acceleo. https://eclipse.org/acceleo/, October 2015.

[Ah07] Aho, Alfred V.; Lam, Monica S.; Sethi, Ravi; Ullman, Jeffrey D.: Compilers: Principles,
Techniques, & Tools. Addison-Wesley series in computer science. Pearson Addison-
Wesley, 2007.

[CC90] Chikofsky, E.J.; Cross, J.H., II: Reverse engineering and design recovery: a taxonomy.
Software, IEEE, 7(1), 1990.



140 Pedram Mir Seyed Nazari, Alexander Roth, Bernhard Rumpe

[Fo10] Fowler, Martin: Domain-Specific Languages. Addison-Wesley Signature Series. Pearson
Education, 2010.

[Ga95] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.

[Ha15] Haber, Arne; Look, Markus; Mir Seyed Nazari, Pedram; Navarro Perez, Antonio; Rumpe,
Bernhard; Völkel, Steven; Wortmann, Andreas: Integration of Heterogeneous Modeling
Languages via Extensible and Composable Language Components. In: Proceedings of
the 3rd International Conference on Model-Driven Engineering and Software Develop-
ment. SciTePress, 2015.

[HNR15] Hölldobler, Katrin; Nazari, Pedram Mir Seyed; Rumpe, Bernhard: Adaptable Symbol
Table Management by Meta Modeling and Generation of Symbol Table Infrastructures.
In: 15th Workshop on Domain-Specific Modeling. http://dsmforum.org/events/
DSM15/Papers/DSM15Proceedings.pdf, 2015.

[Je15] JetBrains MPS. https://www.jetbrains.com/mps/, October 2015.

[JMS08] Jörges, Sven; Margaria, Tiziana; Steffen, Bernhard: Genesys: service-oriented construc-
tion of property conform code generators. Innovations in Systems and Software Engi-
neering, 4(4):361–384, 2008.

[KRV10] Krahn, Holger; Rumpe, Bernhard; Völkel, Steven: MontiCore: A Framework for Compo-
sitional Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer, 12, 2010.

[Lo13] Look, Markus; Navarro Pérez, Antonio; Ringert, Jan Oliver; Rumpe, Bernhard; Wort-
mann, Andreas: Black-box Integration of Heterogeneous Modeling Languages for Cyber-
Physical Systems. In: Proceedings of the 1st Workshop on the Globalization of Modeling
Languages (GEMOC). volume 1102 of CEUR Workshop Proceedings, 2013.

[Me15] Metaborg Spoofax. http://metaborg.org/spoofax/, October 2015.

[MER99] Medvidovic, Nenad; Egyed, Alexander; Rosenblum, David S.: Round-Trip Software En-
gineering Using UML: From Architecture to Design and Back. In: Proceedings of the
2nd Workshop on Object-Oriented Reengineering. ACM Press, 1999.

[NRR15] Nazari, Pedram Mir Seyed; Roth, Alexander; Rumpe, Bernhard: Management of Guided
and Unguided Code Generator Customizations by Using a Symbol Table. In: 15th
Workshop on Domain-Specific Modeling. http://dsmforum.org/events/DSM15/
Papers/DSM15Proceedings.pdf, 2015.

[OM15] OMG UML Specification. http://www.omg.org/spec/UML/2.5/, October 2015.

[Pa10] Parr, Terence: Language Implementation Patterns: Create Your Own Domain-specific and
General Programming Languages. Pragmatic Bookshelf Series. Pragmatic Bookshelf,
2010.

[Ru11] Rumpe, Bernhard: Modellierung mit UML. Xpert.press. Springer Berlin, 2nd edition
edition, September 2011.

[Ru12] Rumpe, Bernhard: Agile Modellierung mit UML : Codegenerierung, Testfälle, Refactor-
ing, volume 2nd Edition. Springer, 2012.

[Xt15] Xtext. https://eclipse.org/Xtext/, October 2015.

[ZR11] Zschaler, Steffen; Rashid, Awais: Towards Modular Code Generators Using Symmetric
Language-aware Aspects. In: Proceedings of the 1st International Workshop on Free
Composition. ACM, 2011.




